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Abstract  

This paper presents the aim of TeamWork, our ongoing effort to 
develop a comprehensive dynamic deadlock confirmation tool for 
multithreaded programs. It also presents a refined object abstrac-
tion algorithm that refines the existing stack hash abstraction. 

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging – testing tools. D.4.1 [Operating 

Systems]: Processing Management –deadlocks, synchronization, 
threads. 

General Terms Reliability, Verification 

Keywords  deadlock detection, object abstraction, thread scheduling 

1. Introduction 

Deadlocks in multithreaded programs are difficult to both expose 
and reproduce, and yet they are critical bugs that should be fixed. 
Existing dynamic detection techniques that rely on systematic 
thread scheduling only guarantee a low probability to trigger real 
deadlocks [2]. Dynamic randomized deadlock confirmation tech-
niques [3][6] that attempt to heuristically trigger a real deadlock in 
a new run with respect to some predictive run show their promise to 
significantly improve the deadlock detection probability over the 
systematic thread scheduling approach. Nonetheless, the current 
generation of randomized deadlock confirmation actively manip-
ulate thread schedules of an execution only when a thread is about 
to acquire a lock at a position (site) predicted to form a deadlock in 
a predictive run that has been run beforehand. These techniques 
have no ability to coordinate threads (that are predicted to form a 
deadlock occurrence) and yet deadlock is a global property that 
threads should be carefully synchronized (instead of in a random-
ized manner) to trigger them.  

This paper reports the status of our ongoing project for the dy-
namic confirmation of resource deadlocks in large-scale multi-
threaded programs. This work has not been generalized to consider 
deadlocks that involve communication primitives (e.g., the 
wait−notify primitives in Java) or conditional variables (e.g., to 
implement user-defined synchronization idioms). 

In a program execution, a resource deadlock occurs if every 
thread in a set waits for a lock that another thread in the same set 
holds. Existing predictive techniques usually either identify cyclic 
subgraphs in lock-order graphs [1] or infer cyclic dependency 

chains from a lock dependency set [3][6]. We refer to their reported 
cases as tentative deadlocks. 

Figure 1 is a resource deadlock example: Two threads t1 and t2 
compete for two locks l1 and l2. A deadlock occurs when (1) t1 has 
acquired l1 at line 2 and requests to acquire l2 at line 3 and (2) t2 has 
acquired l2 at line 9 and requests to acquire l1 at line 10. On the 
other hand, if t1 executes lines 1−6 followed by t2 executing lines 
7−12, then the execution produces no deadlock occurrence. Based 
on the second execution, deadlock prediction technique such as [3] 
is able to report a tentative deadlock in the form of cyclic lock 
dependency chain [3]: t1, l2, {l1, m}, t2, l1, {l2}, which means 
that the thread t1 requests the lock l2 while holding the set of locks 
{l1, m} and the thread t2 requests the lock l1 while holding a set of 
locks {l2}.  

In the rest of this paper, we present a brief overview of our 
ongoing effort to trigger resource deadlocks hidden in multi-
threaded programs. It also presents an object abstraction algorithm 
that our framework is expected to use. 

2. Our Framework 

2.1 The Aim of the TeamWork Component 

We are developing a framework to supports the dynamic detection 
of concurrency bugs in multithreaded programs. The first two 
components of the framework include a lock trace reduction 
component [4] for predictive data race detection [5] and a dynamic 
predictive deadlock detector [3] to produce tentative deadlocks. We 
are developing TeamWork as its third component, which is for 
dynamic confirmation of the tentative deadlocks if such deadlocks 
are real deadlocks. All these three components share the common 
theme that the casual dependencies among threads with respect to 
the threading and locking operations can be harvested to signifi-
cantly improve the cost-effectiveness of the framework.  

In this section, we outline our onging work on TeamWork.  
We conjecture that in real-world applications, a program exe-

cution visits a series of critical states before reaching a tentative 
deadlocked state. We are investigating methods to identify such 
critical states. In general, a critical state over multiple threads forms 
a thread synchronization condition, which this paper refers to it as a 
barrier.  

Thread t1 Thread t2 

1: 
2: 
3: 
4: 
5: 
6: 

Acquire(m) 
  Acquire(l1) 
    Acquire(l2) 
    Release(l2) 
  Release(l1) 
Release(m) 

7: 
8: 
9: 
10: 
11: 
12: 

Acquire(l1) 
Release(l1) 
Acquire(l2) 
  Acquire(l1) 
  Release(l1) 
Release(l2) 

Figure 1. An example deadlock scenario (the deadlock is high-
lighted) 
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Once they could be identified, we plan to synchronize selected 
threads at selected barriers so that the operations performed by 
these threads could be executed by stages. TeamWork aims at 
escorting threads to concurrently pass through all the selected 
barriers before reaching the deadlocked state. If this is successful, 
TeamWork will be novel in its barrier-based strategy to confirm 
real concurrency bugs in general and real deadlocks in particular.  

There are some considerations that we are studying for this 
component of our framework. For instance, a subset (possibly a 
singleton set) of all identified barriers can be used to synchronize 
threads at the same time. The same subset may be used multiple 
times to manipulate the same execution before the execution 
reaching the deadlocked state. Moreover, the number of threads 
selected among different occurrences of the same subset (or dif-
ferent subsets) of all the selected barriers can be non-identical. The 
thread selection strategy with respect to each barrier will be inves-
tigated. We will also study the complexity of large-scale real-world 
multithreaded programs to make TeamWork both scalable and 
effective to deal with this interesting class of program. As such, 
TeamWork is an umbrella of techniques instead of one technique. 

2.2 Object Frequency Abstraction 

Our framework relies on an effective but abstract representation to 
both effectively and efficiently models various entities (e.g., a 
program state needed in the barriers).  

For dynamic confirmation of concurrency bugs, one key chal-
lenge is to compute an object abstraction [3][6] so that a thread or 
an event in a confirmation run is able to approximately map to the 
“same” thread or the “same” event occurred in another (e.g., pre-
dictive) run. An exact mapping may not be able to be developed. 

We have developed an instance form of object abstraction 
[3][6][8] with a reference to memory indexing [7]. This form of 
object abstraction used the hash value for the program stack content 
(refer to as stack hash) [8] for matching efficiency. It also refines 
the precision of the existing proposal [3][6] by distinguishing the 
number of times that the same combination of a particular thread 
(and lock) abstraction (in the sense of existing form [3][6]) and a 
particular stack hash value has been used for the creation of the 
abstraction. We refer to it as the object frequency abstraction: 

 For a lock object or a thread object o, its abstraction abs(o) is 
denoted by thread_abs, call_stack_hash, newObjcounter, where 
the couple call_stack_hash, newObjcounter is the site (i.e., 
site(o)) of the object. 

 For a lock acquisition event e, the abstraction abs(e) is denoted 
by thread_abs, lock_abs, call_stack_hash, acqcounter, where 
the couple call_stack_hash, acqcounter is the site (i.e., site(e)) 
of the event. 

In the above two abstraction definitions, thread_abs is the ab-
straction of the thread [3] to produce the new object or lock acqui-
sition events, lock_abs is a lock abstraction [3], and 
call_stack_hash is the hash value [8] for the combination of call 
stack value and a program statement stmt being executed by the 
thread. Both acqcounter and newObjcounter are thread-local mappings 
from thread_abs and call_stack_hash and from thread_abs, 
lock_abs, and call_stack_hash to an integer, respectively. Algo-
rithm 1 shows the algorithm to compute the object frequency 
abstraction for object and locking event creations. The object 
frequency abstractions for the other events and objects can be 
defined and computed similarly.  

In the algorithm, each call to a function getProgramCall-
Stack (k) at lines 3 and 8 returns the sequence of the top k (inputted 
at line 1) values of the program call stack (or the whole call stack if 
there are less than k values). Line 2 initializes the abstraction of the 

main thread (denoted by main_thread) by arbitrary values as its 
abstraction. The procedure OnCreateAnObject (lines 3–7) 
computes abs(o) for an object o. It firstly computes the 
above-mentioned hash value, finds out the number of times that the 
couple of this hash value and the thread associated with o have 
previously been mapped via Occurrencecounter1() (which is a map from 
the inputted pair to the occurrence times of this pair). It then con-
structs abs(o). The procedure OnAcquireALock (lines 8–12) 
computes abs(e) for a lock acquisition event e, which can be in-
terpreted similar to OnCreateAnObject. The function Occur-

rencecounter2() can be interpreted similar to Occurrencecounter1().  
Using Algorithm 1, in our experimentation, the executions for 

deadlock confirmation only encounters very few occurrences of 
object mismatches. We leave the report of the experimental results 
as a future work.  

3. Conclusion 

In this paper, we have presented the aim of TeamWork. We have 
also presented a refined object abstraction algorithm. Future work 
includes the formulation of the concrete strategy of TeamWork. 
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Algorithm 1: Object Frequency Abstraction 

 
Initialization 

1: 

 

2: 

k := input(); //a user specified value, by default, it is 8 according 

//to [8]. 

abs (main_thread) := 1, 1, 1; 

 OnCreateAnObject (Thread t, Object o, Statement stmt): 

3: 

4: 

5: 

6: 

7: 

Vector st := getProgramCallStack(k); 

st.push (stmt); 

call_stack_hash := hash(st); 

newObjcounter = Occurrencecounter1 (abs(t), call_stack_hash); 

abs(o) :=  abs(t), call_stack_hash, newObjcounter ; 

 OnAcquireALock (Thread t, Lock m, Statement stmt, Event e ): 

8: 

9: 

10: 

11: 

 

12: 

Vector st := getProgramCallStack(k); 

st.push (stmt); 

call_stack_hash := hash(st); 

acqcounter := Occurrencecounter2 (abs(t), abs(m), 

call_stack_hash); 

abs(e) :=  abs(t), abs(m), call_stack_hash, acqcounter  

 


