

This work is an unpublished copy and the content of it has been informally presented at the

Doctoral Symposium of the 26th European Conference on Object-Oriented Programming

(ECOOP'12, DS).

A Dynamic Deadlock Prediction, Confirmation and

Fixing Framework for Multithreaded Programs

Yan Cai
Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong
yancai2@student.cityu.edu.hk

Abstract. Deadlocks widely exist in real-world multithreaded programs. Ex-

isting predictive strategies are not consistently scalable; existing confirmation

strategies may miss to trigger deadlocks, and existing fixing strategies may in-

cur false positives or high runtime overheads. This paper presents an overview

of my approach to automatic deadlock prediction, confirmation, and fixing.

1 Introduction

Deadlock [4] widely exists in real-world multithreaded programs such as Chromi-

um, MySQL, Apache httpd, and OpenOffice. Its occurrence in a program run pre-

vents the run to proceed further. Communication deadlocks and resource deadlocks

are two board categories [1, 5, 8]. An instance of the former kind occurs when a

thread waits for a message that has been sent before the thread starts to wait or every

sender is blocked from sending such a message. An instance of the latter kind occurs

when each thread in a set T cyclically waits for a resource held by another thread in T.

As we are going to present, existing deadlock prediction, confirmation, and fixing

strategies are still inadequate to handle the complex nature of real-world programs

reliably. This paper presents our framework to be built that addresses the challenges

in these areas in the context of object-oriented programs.

Table 1. Memory and Time Comparisons among iGoodlock, MulticoreSDK, and Magiclock

Benchmark
Memory (MB) Time in second (s)

iGoodlock MulticoreSDK Magiclock iGoodlock MulticoreSDK Magiclock

SQLite 1.05MB 1.05MB 1.05MB 0.002s 0.003s 0.002s

MySQL >2800MB 1.15MB 1.05MB >125s 398s 1.73s

Chromium >2800MB >48.2MB 8.01MB >6420s >3600s 1m42s

Firefox >2800MB 122.41MB 4.14MB >640s 7.43s 3.06s

OpenOffice 245.20MB >48.4MB 8.01MB 6360s >3600s 0.67s

Thunderbird 298.83MB 40.09MB 4.15MB 973s 4.75s 1.18s

2 Dynamic Deadlock Prediction and Confirmation

We [3] have shown that MulticoreSDK [10] and iGoodLock [8] could not consist-

ently scale up to analyze the execution traces of large-scale programs to detect dead-

lock potentials. Table 1, taken from [3], shows that they may exhaust all available

memory (2.8GB) for a process or run over an excessive period.

The general idea of MulticoreSDK [10] and iGoodLock [8] are, implicitly or ex-

plicitly, search over the lock-order graph (see the rightmost graph in Fig. 1) formed

by the execution trace to locate every (minimal) circular chain of edges, and reports

every such chain as a deadlock potential (and we also refer to it as a cycle).

mailto:yancai2@student.cityu.edu.hk

Our Idea: In an execution trace of a real-world program, only a small fraction of

all lock dependencies between threads may involve in such a cycle; otherwise, the

program may have numerous amounts of deadlock potentials. Magiclock exploits this

insight. It iteratively infers and removes edges that each cannot involve in such a

cycle from the graph. It eliminates false positives by enforcing the sets of locks hold-

ing by the threads of a cycle to be mutually disjoint, and avoids the generation of

duplicated cycles by searching the graph starting with all unique combinations of any

two threads. The algorithm can be found in [3] and the column in Table 1 entitled

Magiclock shows the result of this technique. We will generalize our approach to

handle conditional variables and communication deadlocks. We will evaluate the

generalized Magiclock by systematically reproducing the deadlock bugs reported over

a period in the bug repository of the set of benchmarks shown in Table 1.

l1

l2l3

l6

l4

l7

l5

t1t1

t2

t3

t3

t3

t3

t3 t3

t3

l1

l2

l6

l4
t1

t2

t3

t3

t3

l1

l2

t1

t2

A corresponding lock-order graph depicting
the original set of lock dependencies

Nodes l3, l5 and l7 have been
removed because they have no
outgoing edge

Nodes l4 and l6 have been further
removed because they have no
outgoing edge

D
et

ec
te

d

d
ea

d
lo

ck

p
o

te
n
ti

al

Fig. 1 Lock-order graph (ti is a thread; li is a lock; and an arrow refers to lock acquisition order)

Isolating the real deadlocks from the predictive ones is the next target. Our exper-

iment [3] shows that triggering deadlocks from these large-scale programs was diffi-

cult, and the probability was significantly lower than that reported in [8], which used

a suite of small- and medium-scale benchmarks. We observe that DeadlockFuzzer [8],

in our experiment [3], often suspended some threads that caused the run ceased to

proceed further naturally (i.e., thrashing), and resumed one holding thread from sus-

pension, making the deadlock unable to be confirmed. The experiment reported in [2]

shows that PCT can be of very low probability in detecting deadlocks for large-scale

programs, even though it suffered from no thrashing. BTrigger [12] required manual

efforts to determine the variable matching conditions to suspend a thread and judge a

good timeout period to resume a thread from suspension. ConTest [6] simply injected

arbitrary timeouts to alter the thread schedule with the intent to trigger deadlocks.

Our Idea: We are developing strategies to address these challenges. Our plan is to

firstly conduct an empirical investigation to find clues on why thrashing builds up,

why injecting timeouts is an effective strategy, and why the deadlock code has been

passed through in an execution trace without triggering any deadlock. Then, we will

either enhance the predictive phase of deadlock detection to collect data about such

clues if the clues require whole trace analysis or extract partial information from such

an execution trace for on-the-fly condition determination in the confirmation run. We

target to develop a technique that can result in a consistently high probability (e.g.,

80%) in confirming real deadlocks. We plan to evaluate our technique against the

above-mentioned existing techniques on the benchmarks used to evaluate Magiclock

in terms of detection probability, rate of thrashing, slowdown factors, and memory

footprint.

3 Dynamic Deadlock Fixing

Once a deadlock is revealed, it can be fixed. Recent deadlock fixing approaches [9,

11, 13] aim to serialize the execution of the program portion involved in deadlocks.

Nir-Buchbinder et al. [11] proposed inserting a gate lock right before each thread

involved in a deadlock acquires its problematic lock, which nonetheless, cannot han-

dle communication deadlocks and non-trivial resource deadlocks, and may introduce

new deadlocks due to gate lock insertions. Dimmunix [9] prevented the second occur-

rence of a deadlock by recording the pattern of the first occurrence of the deadlock

and matching the pattern in later execution traces. Such a pattern matching strategy is

imprecise, failing to avoid deadlocks from re-occurrence. Its slowdown factor is good

(e.g., 15% [9]). Gadara [13] detected all cycles offline. At runtime, any matched cy-

cle along the run triggers a serialization of the corresponding deadlock potential code,

and many such occurrences in the same run may prolong the run significantly.

To ease our presentation, we refer to a lock involved in a deadlock as a wait-lock,

and a thread involved in the same deadlock as a wait-thread.

Our Idea: With respect to a deadlock, we plan to actively assign the corresponding

wait-lock of a wait-thread to the wait-thread when the wait-thread acquires any wait-

lock of the deadlock. We aim to develop a technique that introduces no deadlock.

We expect that this active lock assignment strategy breaks the circular waiting

condition [4] for deadlock formation. Moreover, many programming languages sup-

port reentrant locks. This feature allows the same thread successfully acquires the

same lock that it is holding. Hence, a pre-acquisition of a wait-lock by a wait-thread

does not block the thread to acquire the wait-lock at the deadlocking position.

Thread t1: synchronized(A) { synchronized (B) {…}}
Thread t2: synchronized(B) { synchronized (A) {…}}

(a) Example deadlock code

Thread t1: synchronized(B) { synchronized(A) { synchronized (B) {…}}}
Thread t2: synchronized(B) { synchronized (A) {}}

(b) Pre-acquisition of the lock B by thread t1
Thread t1: synchronized(A) { synchronized (B) {…}}
Thread t2: synchronized(A) { synchronized(B) { synchronized (A) {…}}}

(c) Pre-acquisition of the lock A by the thread t2
Fig. 2 Two pre-acquisition solutions illustrated in (b) and (c) for the deadlocking scenario illustrated in (a).

The dynamically inserted codes are shown in the form of inserted code.

Fig. 2(a) illustrates a deadlock scenario. Our fixing strategy leads to two possible

fixes for the scenario. They are the pre-acquisition of the locks B and A by the threads

t1 and t2, respectively, which are depicted as Fig. 2(b) and Fig. 2(c). (The gate-lock

fixing strategy of Nir-Buchbinder et al. [11] does not work if there is a pair of

wait()-notidfy() statements between t1 and t2 within the inserted gate-lock block.)

Several technical challenges still exist: A pre-acquisition of a lock by a thread may

alter the original lock acquisition order of the program, introducing new deadlocks.

We will analyze the lock-order graphs to determine whether some potential fixes are

undesirable and avoid generating them. Because the involved static or dynamic analy-

sis on lock-order graphs could be imprecise, we will study new dynamic lock retreat

strategy to release the actively pre-acquired wait-lock from a wait-thread to resolve

“thrashing”. Besides, it may not be generally feasible to pre-acquire a wait-lock at the

positions as illustrated by Fig 2. Multiple deadlocks may interfere with one another.

We plan to evaluate to what extent our technique (1) introduces no new deadlocks

and (2) handles general scenarios (e.g., communication deadlocks) that Dimmunix and

Gadara could not handle well. We plan to use several large real-world applications

that we have presented in Table 1 as benchmarks.

4 Conclusion

In this paper, we have reviewed existing work on deadlock prediction, confirma-

tion, and fixing. We have sketched our framework that addresses some selected tech-

nical challenges. We believe that having a highly effective strategy in each phase is

essential to address the challenges posted by deadlocks in real-world programs.

5 References

1. S. Bensalem and K. Havelund, Scalable Dynamic Deadlock Analysis of Multi-threaded Programs. In

the 2005 workshop on Parallel and Distributed Systems: Testing and Debugging (PADTAD’05), 2005.

2. S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A Randomized Scheduler with Probabil-

istic Guarantees of Finding Bugs. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural

Support for Programming Languages and Operating Systems (ASPLOS’10), 167–178, 2010.

3. Y. Cai and W.K. Chan. MagicFuzzer: Scalable Deadlock Detection for Large-Scale Applications. To

appear in Proceedings of the 34th International Conference on Software Engineering (ICSE'12), re-

search track, 11 pages, 2012. Also available at: http://www.cs.cityu.edu.hk/~wkchan/papers/icse12-

cai+chan.pdf.

4. Deadlock, http://en.wikipedia.org/wiki/Deadlock.

5. J. Deshmukh, E. A. Emerson, and S. Sankaranarayanan. Symbolic Deadlock Analysis in Concurrent

Libraries and Their Clients. In Proceedings of the 2009 IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE’09), 480–491, 2009.

6. E. Farchi, Y. Nir-Buchbinder, and S. Ur. A Cross-Run Lock Discipline Checker for Java. In the 2005

workshop on Parallel and Distributed Systems: Testing and Debugging (PADTAD’05), 2005.

7. P. Joshi, M. Naik, K, Sen, and D. Gay. An Effective Dynamic Analysis for Detecting Generalized

Deadlocks. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations

of Software Engineering (FSE’10), 327–336, 2010.

8. P. Joshi, C.S. Park, K. Sen, amd M. Naik. A Randomized Dynamic Program Analysis Technique for

Detecting Real Deadlocks. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’09), 110–120.

9. H. Jula, D. Tralamazza, C. Zamfir, and G.e Candea. Deadlock Immunity: Enabling Systems to Defend

against Deadlocks. In Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (OSDI’08), 295–308, 2008.

10. Z.D. Luo, R. Das, and Y. Qi. MulticoreSDK: A Practical and Efficient Deadlock Detector for Real-

World Applications. In Proceedings of the 2011 fourth IEEE Conference on Software Testing, Verifi-

cation and Validation (ICST’11), 309–318, 2011.

11. Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: From Exhibiting to Healing. In Proceedings of

the 8th Workshop on Runtime Verification (RV’08), 104–118, 2008.

12. C.-S. Park and K. Sen. Concurrent Breakpoints. In Proceedings of the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPOPP’12), poster article, 331–332, 2012.

13. Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara: Dynamic Deadlock Avoidance

for Multithreaded Programs. In Proceedings of the 8th USENIX Conference on Operating Systems De-

sign and Implementation (OSDI’08), 281–294, 2008.

http://www.cs.cityu.edu.hk/~wkchan/papers/icse12-cai+chan.pdf
http://www.cs.cityu.edu.hk/~wkchan/papers/icse12-cai+chan.pdf

