
MagicFuzzer: Scalable Deadlock Detection for Large-Scale Applications†

Yan Cai

Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

yancai2@student.cityu.edu.hk

W.K. Chan

Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

Abstract—We present MagicFuzzer, a novel dynamic deadlock

detection technique. Unlike existing techniques to locate

potential deadlock cycles from an execution, it iteratively

prunes lock dependencies that each has no incoming or

outgoing edge. Combining with a novel thread-specific

strategy, it dramatically shrinks the size of lock dependency set

for cycle detection, improving the efficiency and scalability of

such a detection significantly. In the real deadlock

confirmation phase, it uses a new strategy to actively schedule

threads of an execution against the whole set of potential

deadlock cycles. We have implemented a prototype and

evaluated it on large-scale C/C++ programs. The experimental

results confirm that our technique is significantly more

effective and efficient than existing techniques.

Keywords-deadlock detection; multithreaded programs.

I. INTRODUCTION

A multithreaded C/C++/Java program may use locks to
coordinate its threads. However, some improper uses of
locks in the code may lead to concurrency bugs [13][15].
Deadlocks [1][2][9][10][18] are severe problems that lead
multithreaded programs (or their components) to fail to make
further progress if deadlocks are formed. In general, there are
two kinds of deadlocks: resources deadlock [1][10] and
communications deadlocks [9]. A resource deadlock occurs
when a set of threads is holding some resources and is
waiting for the resources which have already been held by
the threads in the same set. A communication deadlock
occurs when one or more threads wait for some
messages/signals from other threads, which are paused and
unable to send the required messages/signals or have already
sent the messages/signals before a waiting thread starts to
wait for the messages/signals. In this paper, we focus on
resource deadlocks where locks are resources.

Potential deadlocks can be detected via static analysis
[12][20][26], model checking [7], dynamic analysis [2],
runtime monitoring [25], or their integration [1][9]. Analyses
based on lock order graphs [15] or their integrations with the
use of the happens-before relation have been explored [2].
Methods to confirm whether a potential deadlock is real
[3][5][10][18] and to avoid or heal deadlocks [11][18][25]
have been studied.

It has been well discussed in the above-mentioned
references that different categories of techniques
complement one another. In general, static detection
techniques and model checking for deadlock detection can

analyze the whole program including open framework;
whereas, dynamic techniques are more precise and more
scalable. Dynamic confirmation techniques are valuable to
confirm a potential deadlock if it is a real one, but they could
not help to rule out a potential deadlock (as a false alarm).
Avoidance and healing techniques are often pattern-based,
which may not precisely quantify deadlock conditions. They
may produce false positive cases, which slow down an
execution further, or cannot prevent a deadlock to re-occur.

We observe that the many modern deadlock detection
techniques such as MulticoreSDK [15] or DeadlockFuzzer
[10] firstly use lockset-based strategies to predict potential
deadlocks. Once a potential deadlock has been found,
deadlock confirmation, avoidance, or healing strategies can
be applied. However, without analyzing an execution
successfully, such a technique cannot report any potential
deadlocks for the subsequence steps to take actions.

Many large-scale applications such as OpenOffice [19],

Chromium [4], Firefox [6], MySQL [16], SQLite [22] and

Thunderbird [24] are widely-used. A deadlock bug in such
a program may affect millions of users. However, due to the
sheer sizes of large-scale programs, the probabilities of a run
from exhibiting a thread holding a lock for a particular
deadlock (because there are many locks in a program), that
for such a lock occurred a right time to trigger a deadlock,
and that of all such locks simultaneously occurred in the run
can be all low. It poses challenges to dynamic deadlock
detections.

In this paper, we present our technique, which is known
as MagicFuzzer. MagicFuzzer consists of three phases. In
Phase 1 (see Section IV.A), it executes a given program p,
monitors the critical events (i.e., thread creation as well as
lock acquisition and release), and generates a log consisting
of a series of lock dependencies (see Section III.B for
definition). This log can be viewed as a lock dependency
relation D. In Phase II, it uses the Magiclock algorithm (see
Section IV.B) to find potential deadlock cycles from D.
Magiclock firstly classifies all the locks appearing in D into
four sets using an innovative and highly efficient algorithm.
In particular, after our iterative classification, one (which is
called cyclic-set) of the four sets must contain all the target
lock dependencies (i.e., all the locks that may occur in any
potential deadlock cycles in the monitored execution). We
interestingly observe that (1) each thread can only occur
once in a cycle, (2) multiple threads form an order in every
permutation of a cycle, and (3) detecting one permutation of
the same cycle suffices to represent the cycle. Magiclock
explores this insight, and constructs a set of thread-specific † This work is supported in part by the General Research Fund of the

Research Grant Council of Hong Kong (project no. 111410).

lock-dependency relations based on the locks in cyclic-set. In
Magiclock, we propose a novel depth-first-search algorithm
to traverse every such thread-specific lock-dependency
relation to find cycles. All such cycles will form a set
(denoted by CycleSet) of potential deadlock cycles. In Phase
III (see Section IV.C) MagicFuzzer accepts CycleSet as an
input, and actively executes p with the aim of triggering the
occurrence of one or multiple potential deadlock cycles in
CycleSet in single execution. If a real deadlock occurs in this
phase, MagicFuzzer report it.

The main contribution of this paper is three-fold. First,
we propose a novel and elegant technique Magiclock to
detect potential deadlock cycles from an execution. Second,
we present MagicFuzzer. Unlike existing active scheduling
strategies for deadlock detection, it can schedule threads
against a set of cycles, with the aim of improving the
probability of finding a match between a cycle and an
execution. Third, we have implemented MagicFuzzer as a
C++ tool, and shows that the tool can analyze executions of a
suite of widely-used and large-scale C/C++ programs
efficiently with very manageable memory consumption
(compared to the other techniques in the experiment).

The rest of this paper is organized as follows. Section II
shows a motivating example. Section III presents the basic
terminology. Our MagicFuzzer technique will be presented
in Section IV. Section IV presents our experiment to validate
MagicFuzzer, followed by a discussion on related work in
Section V. Section VI concludes this paper.

II. MOTIVATING EXAMPLE

Example A: We motivate our work via the example
adapted from [15] as shown in Figure 1. The example
includes two functions doubleLock and tripleLock, three threads

(t1, t2 and t3), and seven locks (l1l7). The thread t1 calls
doubleLock twice, the thread t2 accesses l2 and l1 in a nested
manner, and the thread t3 calls doubleLock followed by calling
tripleLock twice.

Suppose that during the call to doubleLock(l1, l2), t1 acquires
l1 at s2 followed by t2 acquiring l2 at s19. Then, t1 wants to
acquire l2 at s3, which is blocked by t2. Similarly, t2 wants to
acquire l1 at s20, which is blocked by t1. They form a
deadlock. Then, t3 invokes doubleLock(l1, l4). However, t3
cannot acquire l1 successfully because t1 is holding l1. The
entire execution ceases to proceed further.

In a lock order graph [1][2], a node represents a lock. For
instance, the two nodes labeled as l1 and l2 represent the two
lock l1 and l2 in Figure 1, respectively. The directed edge from
node l1 to node l2 is associated with a set of labels (e.g., t1 as a
label), representing that, during the above execution, the

thread t1 acquires the lock n while holding the lock m. For
instance, t1 is holding l1 when it acquires l2, and so, there is an
edge from node l1 to node l2. For simplicity, we do not show
the other information on an edge in the rest of the paper.

 Goodlock [1][2]: To detect a deadlock in the above
execution, Goodlock firstly constructs a lock order graph to
detect whether there is any cycle on the graph. The lock
order graph for the example is shown in Figure 2(a). We also
highlight a detected cycle using dotted edges.

Following [10], in the rest of this paper, we refer to such
a cycle as a potential deadlock cycle (or simply cycle).

Directly checking on a traditional lock order graph for
large-scale program is impractical. For instance, Luo et al.
[15] reported that such a graph for the ITCAM application
contained over 300K nodes and 600K edges, and Goodlock
spent 48 hours and 13.6 GByte memory to traverse it to find
cycles if they exist [15].

MulticoreSDK [15] is a most recent technique based on
lock order graph. It employs a two-phase strategy to address
the scalability problem. It firstly groups the locks being held
by different threads at the same code location in the same
group, and then merges multiple groups into the same group
whenever they have at least one shared lock, resulting in a
location-based lock order graph (see Figure 2(b)), on which
MulticoreSDK locates whether any cyclic dependencies
among these groups exist. In Figure 2(b), Groups A and B
form a cycle. Then, MulticoreSDK only consider the locks in
these groups (i.e., l1, l2, l3, l4, and l6) in its second phase,
where it constructs a traditional lock order graph (Figure
2(c)).

Finding all cycles on a digraph has been well-researched
such as applying the Tarjan algorithm [23] (which is also

Figure 2. Lock order graph example (Sx in (b) presents the code line x where the corresponding lock is acquired; edges in cycles are shown in dotted lines)

(a) Traditional lock order graph (b) Location based lock order graph (c) Filtered lock order graph (d) Our lock order graph

l1

l2l3

l6

l4

l7

l5

t1t1

t2

t3

t3

t3

t3

t3 t3

t3

t1, t3

t2
t3

A

B C
l1

l2

t1

t2

{l2,l3,l4,l6}

{l1} {l5,l7}
l1

l2l3

l6

l4t1t1

t2

t3

t3

t3

Shared data: Lock l1, l2, l3, l4, l5, l6, l7;

s1

s2

s3
s4

s5

s6
s7

s8

s9
s10

s11

s12
s13

s14
s15

s16

doubleLock(lock m, lock n){
Acquire(m);

Acquire(n);
…
Release(n);

Release(m);
}
tripleLock(lock m, lock n){

Acquire(l2);
Acquire(m);

Acquire(n);
…
Release(n);

Release(m);
Release(l2);

}

s17

s18

s19
s20

s21

s22

s23
s24

s25

Thread t1

doubleLock(l1, l2);
doubleLock(l1, l3);

Thread t2

Acquire(l2);
Acquire(l1);
Release(l1);

Release(l2);

Thread t3

doubleLock(l1, l4);
tripleLock(l4, l5);
tripleLock(l6, l7);

Figure 1. Example program (adapted from [15])

optimal). As highlighted by the above experience on ITCAM in
Luo et al. [15], one key challenge is to generate a small
digraph (as small as possible) to apply such an algorithm on
it. From Figure 2(c), we observe that the graph used by
MulticoreSDK to search for cycles is far from optimal. For
instance, none of l3, l4, and l6 on the graph has any outgoing

edge they cannot be involved in any cycle, and yet they
appear on the graph. In Figure 2(b), they belong to Group A,
which also contains l2. It has no information to eliminate
these locks from A to reduce the graph in Figure 2(c) further.

DeadlockFuzzer [10]: iGoodlock is the core component
of DeadlockFuzzer to identify cycles. It however searches
for cycles on the full permutations of the whole set of lock
dependencies [10] generated from an execution trace (with a
heuristic pruning strategy), and only suppresses the detected
but duplicated cycles (rather than preventing them by
design). In our experiment (see Section V), iGoodlock is
found to consume all the memory that a Linux process is
allowed to consume, and crashes before returning any cycle,
making the phase two of DeadlockFuzzer even unable to
start because no input (i.e., cycles annotated with their object
abstractions as contexts) has been generated by iGoodlock.

Once a set of cycles has been identified by iGoodlock,
DeadlockFuzzer selects cycles one by one, and actively (but
biased-randomly) schedules a run to confirm whether the
selected cycle is a real deadlock. We observe that its
probability of successfully matching a cycle with an
execution depends on (1) not only how the algorithm
schedules the execution (2) but also whether a cycle that can
match with the execution has been selected to check against
the execution (which is fixed before an invocation of the
algorithm is started). If the probability of producing an
execution that matches any potential deadlock cycle in the
identified cycle set is not high, and there are many cycles in
the cycle set, the probability of “hitting” a right combination
is, intuitively, low.

Our technique (this paper): To find cycles, Magiclock
of our technique iteratively removes the lockset {l3, l6, l7}
and their edges followed by removing {l4, l5} and their
edges, resulting in a set of lock dependencies that precisely
represents the lock order graph as shown in Figure 2(d). Note
that, after the first round of graph pruning to remove {l3, l6,
l7}, this intermediate lock order graph is already smaller than
the corresponding result of MulticoreSDK. Moreover, to
reduce the size of the set of lock dependencies for a cycle
detection algorithm to work on, Magiclock executes this step
by a new thread-specific strategy (See Section IV.B.2). To
improve the probability of hitting a “match” to address the
above active scheduling problem, our algorithm works at the
cycle set level rather than merely picking one cycle to pair
with the execution subject to active thread scheduling.

III. PRELIMINARIES

In this section, we revisit the basic definitions.

A. Monitoring Events and Execution Trace

Given an execution of a multithreaded program p, we use
t Tid to identify a thread and m Lock to identify a lock in
the execution. A lockset L is defined as {m | m Lock},

representing a set of locks. We also denote the set of thread
identifiers and the set of locks in D by D.Tid and D.Lock,
respectively. Similar to [10][15], MagicFuzzer monitors the
following three kinds of critical events:

 create(t): a new thread t is created;

 acquire(t, m): the thread t acquires the lock m;

 release(t, m): the thread t releases the lock m.
An execution trace is a sequence of such acquire(t, m)

and release(t, m) events.

B. Lock Dependency Relation

DeadlockFuzzer [10] uses a lock dependency relation to
model an execution trace. The phase one of our technique
also uses a kind of lock dependency relation to describe an
execution. Our lock dependency relation is as follows:

A lock dependency relation D for p is a set of lock

dependencies on p. A lock dependency = t, m, L is a
triple that contains a thread t, a lock m, and a lockset L such
that the thread t acquires a lock m while holding all the locks
in the lockset L. In Example A, at the execution step where t1
acquires the lock l2 at line s3 while holding the lockset {l1} at
line s2 via calling doubleLock(l1, l2), the corresponding lock

dependency is t1, l2, {l1}.
Given a lock dependency t, m, L, from the perspective

of lock order graph [15], a lock n in L represents an edge
from node n to node m on such a graph. A lock dependency

t, m, L has a correspondence with the set of edges from ni

(for all ni L) to m in a lock order graph. The cardinality of
this set of edges is the same as that of the lockset L. We
simply refer to the cardinality of L as |L|

1
. Note that in

general, a lock order graph may contain multiple sets of
nodes (say L1 and L2) that each forms a lock dependency with
m (where t is a label of such an edge), and they contain the
same node. It is understandable because during an execution,
a thread may hold different sets of locks when it acquires the
same lock.

We also present three elementary definitions below to
relate a lock dependency relation to a lock order graph. We
note that the following definitions of indegree and outdegree
are the same as the definitions of indegree and outdegree

2
 of

a digraph in graph theory.

 indegree(m) is the sum of |Li| for all Li { L | t, m’, L
D m = m’}. Intuitively, indegree(m) represents the
indegree of the node m on the lock order graph.

 outdegree(n) is the cardinality of the set { t, m’, L | t,

m’, L D n L}. Intuitively, it represents the
outdegree of the node n on the corresponding lock order
graph.

 edgesFromTo(m, n) is the cardinality of the set { t, m’,

L | t, m’, L D n L m = m’}. Intuitively, it
represents the number of edges from n to m on a lock
order graph.

1 In set theory, the cardinality of a set A is defined as the number of
elements of the set, and is denoted by |A|.
2 In graph theory, the indegree and outdegree of a node n are the number of
incoming edges to n and that of outgoing edges from n, respectively.

C. Lock Dependency Chain

Given a sequence of k (where k > 1) lock dependencies D
= t1, m1, L1, …, tk, mk, Lk, if m1 L2, …, mk-1 Lk, ti ≠ tj,
and Li ∩ Lj=∅ for 1 ≤ i, j ≤ k (i ≠ j), we refer to D as a lock

dependency chain. In particular, if mk L1, D is a cyclic lock
dependency chain. A cyclic dependency chain represents a
potential deadlock cycle.

For example, the lock dependency chain for the dotted

edges in Figure 2 (a) is t1, l2, {l1}, t2, l1, {l2}. This chain
also forms a deadlock as illustrated in the running example.

IV. ALGORITHM

Our technique MagicFuzzer consists of three phases.

A. Phase I: Generation of Execution Trace

This phase is a pre-processing step to construct a log
based on the critical events occurred in an execution of a
multithreaded program p. Given a program p, we firstly
collect the set of critical events from an execution of the
program. The detail is as follows:

Suppose that a log w is an empty sequence initially.
Whenever an event create(t) occurs, we allocate a new
thread identifier and an empty lockset Lt for the thread t.
Also, whenever an acquire(t, m) event occurs, we firstly

append the triple t, m, Lt to w, and then add m to Lt (i.e., Lt

:= Lt {m}). Whereas, whenever a release(t, m) event
occurs, we only remove the lock m from Lt (i.e., Lt := Lt\{m})
without affecting w.

To identify a reentrant lock, which can be acquired by the
same thread multiple times before the thread releases the
lock, we set up a counter for each lock m, and increment (and
decrement, respectively) it by 1 on an acquire event (and a
release event, respectively). After an increment/decrement,
only when this counter becomes 1/0, the above triple for lock
acquisition/release is appended to w. The generated log w is
used by Phase II.

B. Phase II: Magiclock

We firstly recall that in general, on a lock order graph G,
a node may have no incoming or outgoing edge. However,
for a node participating into a potential deadlock cycle, the
node must have both incoming and outgoing edges.

Based on the above observation, suppose that we have a
lock order graph G. A node that has no incoming edge or
outgoing edge cannot be on any cycle in G. Hence, it is safe
to remove all such nodes and their outgoing and incoming
edges from G without the worry of removing any cycle in G.

Our first insight is that after such a removal, the
generated graph (say G1) may contain nodes that each has no
incoming edge or outgoing edge. Such a node (say n)
however must have at least one edge on G because n must
have at least one edge connected it with a removed node;
otherwise, n must have been removed from G already.

Magiclock iteratively applies such a removal strategy
until no more node can be removed. This iterative process
must be terminating because it only removes nodes and
edges from a graph without adding any new node or edge.
The resultant graph should contain only nodes, each of
which has both incoming and outgoing edges.

The second insight is that in applying the above strategy,
we only need to know the indegree and outdegree of each
node to determine whether a node should be removed. The
net result is that Magiclock needs not to construct or
maintain any lock order graph explicitly at all, but only
iteratively subtracts the indegree and outdegree of each node
from those outdegree and indegree of the removed nodes,
respectively, and marks whether a node has been removed
during the inference.

A cycle having v nodes is a sequence, but there are in
total v permutations of the nodes to represent the same cycle.
Detecting one permutation suffixes to represent the cycle.

The third insight (Thread-Specificity) is, as follows, in a
cycle, each thread (as an edge to connect two nodes in the
cycle) can only occur once. Our definition of cyclic lock
dependency chain in Section III.C reflects this insight. More
importantly, because (1) each thread can only occur once in a
cycle, (2) multiple threads form an order in every
permutation of a cycle, and (3) detecting one permutation of
the same cycle is sufficient to represent the cycle, we
observe that we can use a thread-driven approach to search
for cycles.

Magiclock firstly partitions the set of lock dependencies
by threads, sorts the partitions in the ascending order of their
thread identifiers to align its search sequence among the
partitions with the permutation of every potential cycle that a
thread with a smaller identifier always appears first in the
permutation. Because each thread can only occur once in a
cycle, Magiclock further employs a depth-first-search to
avoid exploring any subtree if any node in the path from the
root node to the current node in the search tree has the
thread identifier of the root node of the subtree.

In the rest of this section, we present Phase II in detail.

1) Lock Classification
This is an iterative step. In each iteration, Magiclock aims

at categorizing all the lock dependencies of D into four sets
iteratively:

 independent-set: contains all the locks, each (say m) of
which satisfies the following condition: indegree(m) = 0

 outdegree(m) = 0.

 intermediate-set: contains all the locks, each (say m) of
which satisfies the following condition: (indegree(m) = 0

 outdegree(m) = 0) (indegree(m) = 0
outdegree(m) = 0).

 inner-set: contains all the locks, each (say m) of which

satisfies the following condition: either (1) for all t, m, L

 D and for all n L, n must be an element of

intermediate-set inner-set; or (2) for all t, n, L D
and for all m L, n must be an element of intermediate-
set inner-set.

 At the final iteration, if there are still locks that do not
belong to any one of the above three sets, the algorithm
classifies them into the fourth set: cyclic-set.

Algorithms 1 and 2 show our lock classification
algorithms. In the algorithms, indegree and outdegree are
arrays that each maps a lock (as an index) to a number,
denoting the values of indegree and outdegree of the lock;

edgesFromTo is a two-dimensional array (a sparse matrix),
where an entry edgesFromTo(n, m) represents the number of
edges to go from n to m. An entry isTraversed(i) keeps
whether the thread i has been completed its traversal or not.

InitClassification (Algorithm 1) initializes the indegree,
outdegree, and edgesFromTo associated with each lock as

those values for the corresponding node on a corresponding
lock order graph.

LockClassification (Algorithm 2) firstly identifies all the
locks that belong to independent-set by checking, for each
lock m, whether the indegree(m) and outdegree(m) of the

lock m are both zero (lines 34). Then, it further identifies all
the locks that belong to intermediate-set by checking, for
each lock m, both whether both m does not belong to
independent-set and whether one of its indegree(m) and

outdegree(m) is zero (lines 67). Such an identified lock
must have either no incoming edge or no outgoing edge.
Hence, all such locks and their edges can be removed from
the subsequent consideration of deadlock detection. Then,
for each lock that belongs to intermediate-set,
LockClassification also pushes the lock into a stack S (line 8).

The algorithm then enumerates the stack S. There are two
cases: (Case 1) indegree(m) = 0 and (Case 2) outdegree(m)
= 0, where m is a lock in S. If the indegree(m) of the lock m
is zero, LockClassification subtracts indegree(n) from
edgesFromTo(m, n), and subtracts and outdegree(m) from
the latter as well. It then resets edgesFromTo(m, n) to be
zero, indicating that the edge has been “removed”. After the
deduction and reset (if any), if the indegree(n) of any node n
becomes zero, n will be classified to inner-set and also be

pushed into S (lines 1424) for further inference in
subsequent iterations. Similarly, if the outdegree(m) of the
lock m is zero, LockClassification performs the same actions of
what it does to handle the first case except that it now works

on outdegrees instead of indegrees (lines 2535). If there is
no more element in the stack S, it indicates that no more edge
and node removal needed to be done. LockClassification
classifies all such locks (whose have not been classified in

the above three sets) into cyclic-set (lines 3741).
Example B: Take the lock order graph in Figure 2 (a) for

illustration purpose. Table 1 shows the indegree and
outdegree of every lock (node) for the graph in Figure 2 (a).
For instance, for lock l1, the table shows that the lock has
three outgoing edges and 1 incoming edge, which match the
situation presented in Figure 2 (a). Other entries can be
interpreted similarly.

After the initialization of indegree, outdegree, and

edgesFromTo for every node, LockClassification aims to
classify nodes to independent-set, but, as shown in Table 1,
no lock has 0s in both (indegree and outdegree) rows.
Hence, the set independent-set is empty. Then, it classifies l3,
l5, and l7 into intermediate-set because each of them has a
value 0 in its outdegree row, and the algorithm pushes these
three locks into the stack S (initially empty). Readers may
refer to Figure 2(a) that if the three locks (i.e., nodes) have
been removed, the five edges connected to them can be
removed. Correspondingly, on processing the three lock in S,
LockClassification decrements the values in the outdegree
row for l1, l2, l4, and l6 by 1, 2, 1, and 1, respectively. The

Table 1. The indegrees and outdegrees for the nodes on the graph

shown in Figure 2(a)

Lock instance l1 l2 l3 l4 l5 l6 l7

indegree 1 1 1 2 2 1 2

outdegree 3 5 0 1 0 1 0

Algorithm 1: InitClassification(D)

1
2

3
4

5

6

7
8

9

10
11

12

13
14

for each m D.Lock do

indegree(m) := 0
outdegree(m) := 0

end for

for each pair of locks (m, n) in D.Lock such that t, n, L D

and m L do

edgesFromTo(m, n):= 0

end for

for each lock dependency t, m, L D do

for each lock n L
indegree(m) := indegree(m) + 1
outdegree(m) := outdegree(m) + 1

edgesFromTo(n, m) := edgesFromTo(n, m) + 1

end for
end for

Algorithm 2: LockClassification (D)

1

2

3
4

5

6
7

8

9
10

11

12
13

14

15
16

17

18

19

20

21
22

23

24
25

26

27
28

29

30
31

32

33
34

35
36

37

38
39

40

41

Stack S := ; independent-set := ; intermediate-set := ;

inner-set := ; cyclic-set :=

 for each lock m D.Lock

if indegree(m)=0 and outdegree(m)=0 then
add m to independent-set // keep in independent-set

else

if indegree(m) = 0 or outdegree(m) = 0 then
add m into intermediate-set // keep in intermediate-set

push m into S

end if

end if

end for

while S is non-empty do

pop m from S

if indegree(m) = 0 then

for each n D.Lock and n ≠ m do

indegree(n) := indegree(m) – edgesFromTo(m, n)
outdegree(m) := outdegree(m) – edgesFromTo(m, n)

edgesFromTo(m, n) := 0

if indegree(n) = 0 then

push n into S

add n into inner-set // keep in inner-set

end if
end for

end if

if outdegree(m) = 0 then

for each n D.Lock and n ≠ m do

outdegree(n) := outdegree(m) – edgesFromTo(n, m)

indegree(m) := indegree(m) – edgesFromTo(n, m)

edgesFromTo(n, m) := 0
if outdegree(n) = 0 then

push n into S

add n into inner-set //keep in inner-set

end if

end for

end if
end while

for each lock m D.Lock do

if m independent-set intermediate-set inner-set then

add m to cyclic-set // keep in cyclic-set

end if

end for

values in the outdegree row for l4, and l6 become zeros.
Hence, LockClassification further classifies l4 and l6 into
inner-set, and pushes them into S. Note that the values in the

outdegree row for the locks l1l7 are now 2, 3, 0, 0, 0, 0, and
0, respectively. The algorithm then handles these two locks
in S, and finds that 1 outgoing edge connected to l1 and 2
outgoing edges connected to l2 are associated with the
classified l4, and l6. The algorithm then deducts the values in
the outdegree row for l4, and l6 by 2 and 1, respectively. The
row for the seven locks becomes 1, 1, 0, 0, 0, 0, and 0,
respectively. The iteration stops because the stack S is now
empty. Both the indegree and outdegree rows for either l1 or
l2 are non-zeros. The algorithm classifies l1 and l2 into cyclic-
set (which, incidentally, precisely reduces the set of locks to
show the cycle for Example A).

To ease readers to follow, Figure 2 (d) shows the result
of cyclic-set with the edges associated with their lock
dependencies such that both nodes of an edge are elements in
cyclic-set.

2) Cycle Detection Algorithm
In this step, Magiclock constructs one thread-specific

lock dependency relation Di for each thread ti by

CycleDetection (Algorithm 3) as a partition mentioned in the

“Thread Specificity” insight. Lines 210 in CycleDetection
show the partitioning process. Note that, as explained above,
Magiclock only needs to examine the lock dependencies for

the locks that each of them is in cyclic-set (lines 79).
Then, CycleDetection iteratively (lines 17 and 33) search

the sequences of thread-specific lock dependency relations
via a depth first search strategy in such a way that when
visiting the partition Di, it only further explores Dj for 1 ≤ j ≤
k, where k is the number of threads in D (i.e., |D.Tid|) (lines
12 and 22), skipping those visited (line 23). It also prunes a
branch when a cycle is detected (line 29).

3) Discussion
Compared with iGoodlock in DeadlockFuzzer,

Magiclock has several innovations:
First, Magiclock uses a thread-specific lock dependency

relation (denoted by thread-specific ldr) for each thread
instead of mixing all them in the same ldr as iGoodlock does.
Every thread in every lock dependency in a lock dependency
chain can only occur once. Hence, if a technique puts all
available lock dependencies in the same ldr, the technique
cannot tell whether two lock dependencies in this ldr share
the same thread identifier, unless the technique compares the
thread identifiers of the two lock dependencies. However, to
use a thread-specific ldr, Magiclock can actively select a
particular set of lock dependencies (i.e., a partition
mentioned above) with the required thread identifier without
doing any comparison later.

Second, Magiclock employs a new depth-first-search
algorithm to traverse Di for each thread ti. This is different
from the iGoodlock algorithm in DeadlockFuzzer. iGoodlock
uses the transitive closure to iteratively find cycles. A
noticeable limitation in iGoodlock is that iGoodlock has to
keep all intermediate results, which consumes a lot of
memory [10]. For Magiclock, a key parameter of its
overhead is the traversal depth, which is at most the same as
the total number of threads in an execution. On the other
hands, iGoodlock may require a shorter period of time on
reporting a cyclic lock dependency chain with, say, length =
2 because Magiclock has to traverse all possible depths for a
given ldr before traversing another one at the same depth.
Our technique has compensated this disadvantage by using
the innovative thread-specific strategy as discussed above.

3

Third, iGoodlock suffers from an overhead of
suppressing the report of v occurrences of the same cyclic
lock dependency chain where v is the length of the chain. For

example, given a cyclic lock dependency chain t1, m1, L1,

t2, m2, L2, t3, m3, L3 with v = 3, there are two other cyclic

lock dependency chains: t2, m2, L2, t3, m3, L3, t1, m1, L1

and t3, m3, L3, t1, m1, L1, t2, m2, L2. They all represent
the same cycle. iGoodlock addresses this problem by
suppressing the report of all but one occurrence of each
cyclic dependency chain. However, it can only do so after
the repeated occurrences of the same cyclic dependency
chain have been detected. The Algorithm 3 of Magiclock

3
 Of course, with a slight adaption, Magiclock can be also configured to

detect cyclic lock dependency chains with depth = 2 only.

Algorithm 3: CycleDetection(cyclic-set, D)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

k := |D.Tid|
for each i from 1 to k do

isTraversed(i):=False
Di :=

end for
for each lock dependency = ti, m, L D do

if m cyclic-set then

add into Di

end if
end for

Stack S :=

for each i from 1 to k
visiting:=i //repeated cycles elimination
for each =t, m, L Di do

isTraversed(i):=True //mark thread identifier ti
push into S
call DFS_Traverse(visiting, S)
pop from S

end for

end for

Function DFS_Traverse(visiting, S)
For each j from visiting+1 to k do

if isTraversed(j)=False then //otherwise, skip all visited Dj

for each Dj do

:= S
push into
if forms a dependency chain then

if forms a cyclic dependency chain then

report as a potential deadlock cycle

else

isTraversed (j):=True
push into S
call DFS_Traverse(visiting, S)
pop from S
isTraversed (j):=False

end if

end if

end for

end if

end for

end Function

uses the Thread Specificity insight and an elegant depth-first-
search strategy to prevent any traversal that the search visits
a thread partition with a larger thread identifier before
visiting a thread partition with a smaller thread identifier.

C. Phase III: deadlock confirmation

1) Object Abstraction
To confirm whether a cyclic lock dependency chain is a

real deadlock [9], we need to map the locks on every
potential deadlock cycle provided by Phase II to the locks of
an execution in this phase. DeadlockFuzzer uses a
lightweight indexing algorithm [10], which computes an
abstraction for each thread or lock for Java programs. For
each object o in a Java program, lightweight indexing is
computed according the thread-local CallStack

4
 and the

thread-local Counter. A Counter is an integer mapped from
three keys: a thread identifier t, the depth of CallStack d
(precisely, half of the depth), and a label c (e.g., code line
number) where the object o is created.

MagicFuzzer adapts this object abstraction approach as
lightweight indexing in DeadlockFuzzer to compute an
abstraction for each thread and lock so that it can work on
C/C++ programs. There are two differences, however. First,
unlike a Java program, in a C/C++ program, not all locks are
dynamically initialized. For instance, developers may
statically initialize a block of memory as the initialization of
a particular lock via a call to PTHREAD_MUTEX_INITIALIZER
in the Pthread library. In the implementation, MagicFuzzer
uses pintool [14] to monitor execution events, which cannot
provide events to our tool about this kind of memory
allocations in the Probe mode (see Section V.A). Therefore,
MagicFuzzer works around to compute an abstraction for
every statically initialized lock by checking whether a lock
has been created in its first lock acquisition, and if its
creation has not been recorded, MagicFuzzer approximates
the acquisition site of the lock in the code as the creation site
of the lock. Second, the data structure CallStack in
DeadlockFuzzer is maintained by DeadlockFuzzer itself on
function call and return as well as on creation of a new
objection. MagicFuzzer directly uses the call stack of the
C/C++ program runtime to retrieve any required call stack
directly to precisely represent the actual situation and
optimize its performance.

2) MagicFuzzer Scheduler
We firstly recall that by the non-deterministic nature of a

multithreaded program, executing a program over an input
may probabilistically exhibits a real deadlock in an execution
if the deadlock can be formed. Our insight here is that such
an execution may also probabilistically produce an object
abstraction of a potential deadlock cycle. To actively guide a
run to produce a deadlock, it relies on the probability of
producing such an object abstraction in the run and the
probability of selecting a potential deadlock cycle that
contains the same object abstraction. It is possible that the
same object abstraction may exist in an execution multiple

4 Note that this CallStack is maintained by DeadlockFuzzer itself and

slightly different from that we usually said call stack at its content. It
contains one more item Counter on each function call event.

times, but a corresponding deadlock cycle may not be the
focus of the current monitoring run, or the right occurrence
of the abstraction has been accidently missed in active thread
scheduling, hence, missing an opportunity to confirm a
deadlock in the execution. DeadlockFuzzer suffers from this
problem because before an execution produces any object
abstraction that may match with any potential deadlock
cycle, a particular potential deadlock cycle (which may not
match with the object abstraction in question) has been
chosen as the only “suspect” to be confirmed for the run.

MagicFuzzer uses an active random scheduler to check
against a set of cycles (denoted as CycleSet) reported by
Magiclock with each execution. To ease our presentation,

we firstly define the following notations: CycleSet is a set

of cycles reported by Magiclock. ToBePaused is a set of

Algorithm 4: MagicScheduler (Program p, set of cycles: CycleSet)

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40

ToBePaused:={t | =t, m, L and D CycleSet, such that
D}
Paused := ∅
Lockset(t) := ∅ for each thread t
Enable:= {t | t p}
while Enable ≠ ∅ do

t:= a random thread in Enable\Paused
stmt:= next statement to be executed by t
if t ToBePaused then

execute(stmt)
else

if stmt=acquire(t, m) then

call CheckDeadlock
if CheckAndPause(t, m) returns a Cycle then

pause(t)
Paused := Paused {t, Cycle}

else

Lockset(t):=Lockset(t) {m}
execute(stmt)

end if
else

if stmt=release(t, m) then

Lockset(t):=Lockset(t) \{m}
execute(stmt)

end if

end if

end if

if | Paused | = | Enable | then

pick a random pair t, Cycle Paused
Paused := Paused - {t, Cycle }
resume(t)

end if
end while

if Active ≠ ∅ then

print ‘System Stalls!’
end if

Function CheckDeadlock
if {t1, …tn} ToBePaused and Cycle CycleSet such

that t1, ToAcquire(t1), Lockset(t1), …tn, ToAcquire(tn),
Lockset(tn) = Cycle then

print ‘a real deadlock detected on ’ + ToString(Cycle)
end if

end Function

1
2

3
4
5
6

Function CheckAndPause(t, m)
if Cycle CycleSet such that t, m, Lockset(t)

Cycle then

return Cycle
end if

return ∅
end function

threads with each thread existing in some cycles in
CycleSet. ToAcquire(t) represents a lock that t wants to

acquire in its next statement. Paused is a set of pairs of a
thread t and a Cycle, which denotes that, when executing p, a

thread will be paused and added into Paused if t,

ToAcquire(t), Lockset(t) belongs to a Cycle. Enable is
a set of threads that each has not terminated yet. We use
stmt to denote a high-level instruction, such as an acquire or
release operation. We denote a call to execute a statement
stmt by execute(stmt). The functions pause(t) and

resume(t) represent the actions to pause and resume t,
respectively.

Algorithm 4 shows our MagicScheduler active random
scheduler.

Given a program p and a CycleSet, MagicScheduler

firstly identifies ToBePaused set by extracting all identical

threads abstractions from each Cycle in CycleSet (at line

1). It then initializes Paused to be empty (at line 2),

Lockset(t) to be empty for each thread t (at line 3), and

Enable to contain all threads in p (at line 4).

When executing p, if t is not in ToBePaused,
MagicScheduler allows t to execute statements. Otherwise, if
the next statement of t is a lock acquisition statement
(acquire(t, m)), just before executing this statement,
MagicScheduler checks whether any real deadlock may
occur if t acquires m by call CheckDeadlock. The function

CheckDeadlock (lines 36–40) checks whether a real
deadlock occurs, and reports a deadlock if there exists a
cyclic lock dependency chain as defined in Section IV.B. No
matter a deadlock occurs or not, MagicScheduler then calls
CheckAndPause to determine whether or not the current

thread should be paused. If CheckAndPause returns a Cycle,

MagicScheduler pauses t and adds the pair t, Cycle into

Paused; otherwise, MagicScheduler calls execute(stmt) to
execute the statement, and updates the lockset of t. If the
statement stmt is a lock release statement, MagicScheduler
updates the lockset of t and calls execute(stmt). All other
statements will be directly executed without the interception
by MagicFuzzer.

CheckAndPause differentiates MagicScheduler from
DeadlockFuzzer. DeadlockFuzzer only checks a
predetermined cycle for each invocation. However,
CheckAndPause checks all the cycles in CycleSet and

returns a Cycle if t, ToAcquire(t), Lockset(t) belongs to
at least one cycle; otherwise, it returns ∅. In such way,
MagicScheduler is able to check and confirm multiple cycles
to be real deadlocks in the same run. If not all cycles are
confirmed by MagicScheduler in a run, then MagicScheduler
can proceed to confirm the remaining cycles at the next run
iteratively until all cycles have been confirmed, or it reaches
a certain number R (e.g., 100, which is inputted by a user)
of runs.

3) Thrashing
Thrashing [10] may occur due to improper pausing a set

of threads. Both DeadlockFuzzer and MagicScheduler suffer
from thrashing. When a thrashing occurs, MagicScheduler
selects a thread randomly, and resumes it (lines 28–32).

V. EXPERIMENT

A. Implementation and Benchmark

Implementation. We have implemented MagicFuzzer
using Pin 2.9 [14], a dynamic instrumentation analysis tool,
running in its Probe-based mode. The Probe-based mode
supports high-level instrumentation so that the instrumented
program runs almost natively [14]. MagicFuzzer has been
implemented for C/C++ programs using Pthreads libraries on
a Linux system. For each thread or lock, MagicFuzzer
maintains a shadow memory location to store its data, such
as a lockset for a thread, and an integer heldCounter for a
lock (where heldCounter is used to handle the acquisitions of
a reentrant lock).

MagicFuzzer instruments a program to produce an
execution trace as described in Section IV.A. It also
generates a location for each lock acquisition event for
MulticoreSDK as this technique needs it. To compare with
our tool, we also faithfully implemented DeadlockFuzzer
[10] and MulticoreSDK [15] on pin based on their papers and
downloadable artifacts because their original tool can handle
Java programs only. However, to compute an abstraction for
each thread and lock, we directly search CallStack (through
stack pointer sp via pin) rather than maintaining a CallStack
as in [10].

Benchmarks
5
. We selected a set of widely-used C/C++

open source programs, including SQLite [22], MySQL [16],

Firefox [6], Chromium [4], Thunderbird [24], and Open

Office [19]. Because SQLite is an embedded database, we
wrote a simple test harness program with two threads to
concurrently call it. Originally, we intended to use
benchmarks that have been published, but there is virtually
no such benchmark with large-scale C/C++ programs with
test cases that can repeat the occurrences of deadlocks. For
SQLite and MySQL, we use the test cases adapted from their

bug reports [22][16]. For Firefox, Chromium, and Open

Office, we simple start them, and then close them when

their user interface appears. For Thunderbird, we
configure it to get two emails from a Gmail account.

Our experiment was performed on the Ubuntu Linux
10.04 configured with a 3.16GHz Duo 2 processor and
3.25GB physical memory. We use the time command (a
Linux utility) to collect the time consumption and read the

5

 The suite of benchmarks and MagicFuzzer can be downloaded at
http://www.cs.cityu.edu.hk/~51948163/magicfuzzer/.

Table 2. Descriptive Statistics of Benchmarks (a-r events refer to

acquisition and release events; NA means no bug ID available)

Benchmarks Bug ID SLOC
of

threads
of

locks

Trace size

File size
of a-r
events

SQLite #1672 74.0k 10 4 732Bytes 460

MySQL #37080 1,093.6k 27 127 23.8KB 4,986

Chromium NA 3,577.5k 21 1,363 4.1MB 1,325,202

Firefox NA 3,315.4k 22 912 5.7MB 4,165,230

OpenOffice NA 5,445,8k 7 1,349 4.1MB 1,357,696

Thunderbird NA 2,751.2k 10 915 2.6MB 1,601,456

memory usage from /proc/<benchmark processing

ID>/statm to compute the maximum amount of memory
used for each run on a benchmark. Following the experiment
in [10], we reported the average perform on 100 runs on each
tool.

Table 2 shows the descriptive statistics of the
benchmarks we selected. The first three columns show the
name, Bug ID (where NA means no bug ID available), and
code size (SLOC [21]) of each benchmark. The fourth and
fifth columns show the number of threads and the number of
locks, respectively. The last two columns show the execution
trace size in forms of the trace file size and the number of
lock acquisitions and releases (denoted as a-r events).

B. Result Analysis

Table 3 summarizes the overall comparisons among
iGoodlock, MulticoreSDK (denoted as MSDK), and Magiclock
in aspects of the memory consumption (under the column
Memory) in Megabytes (MB) (or GB for Gigabytes if the
memory consumption is large than 1024MB), the time
consumption (under column Time) in second (s) (or “m” for
minute if the time if larger than 60 seconds and “h” for hour
if the time is larger than 60 minutes), and the number of
cycles (under the column # of cycles). The last column
shows the number of real deadlocks among the detected
cycles. Due to the out of memory error of iGoodlock, we
cannot collect its data in full. We mark these cells with “ND”
indicating where no data is collected and with “>” indicating
that the value in the cell is just the value before it crashed.
We also use these two marks in Table 4 and Table 5 for the
same purpose.

From Table 3, we observe on SQLite, the three
algorithms performed similarly in memory and time
consumption. They also reported the same number of cycles.

However, except on SQLite, iGoodlock consumed the most
memory and the most time among the three algorithms and
run out of memory on MySQL, Chromium and Firefox.
MulticoreSDK consumed up to hundreds of Megabyte
memory. Magiclock consumed the least memory; and on all
benchmarks, it consumed less than ten Megabytes memory.
On time consumption, MulticoreSDK consumed two to six
times than that consumed by Magiclock except on
Chromium and Open Office. On Chromium and Open

Office, both iGoodlock and MulticoreSDK did not finish
(iGoodlock run out of memory and, for MulticoreSDK, we
have killed its process after the reported time in Table 3 has
elapsed).

On the reported numbers of cycles, MulticoreSDK and
Magiclock reported the same number of cycles; iGoodlock
also reported the same number as that reported by
MulticoreSDK and Magiclock except on those benchmarks
that it ran out of memory (and crashed).

We find that Magiclock is better than iGoodlock and
MulticoreSDK in terms of memory and time consumption. In
the following subsection V.C, we compare Magiclock with
iGoodlock and MulticoreSDK in more details.

C. Comparisons

1) Comparison between iGoodlock and Magiclock

Because both iGoodlock and Magiclock used the lock
dependencies relation implementations to find cycles, we
compared the number of lock dependencies produced by the
two algorithms as shown in the second and the third columns
in Table 4. Besides, iGoodlock uses an iterative algorithm to
find all cycles and has to store all intermediate results (see
Section IV.B.2 and [10]), Table 4 also shows the
intermediate results for each benchmark produced by
iGoodlock in the last three columns (denoted by DF

x
 x≥2

where x is the (x-1) iteration round).
From Table 4, we observe that, except on SQLite,

iGoodlock produced too many lock dependencies in the first
iteration (denoted by DF

1
). However, Magiclock only

produced a small number of lock dependencies. In particular,
on Firefox, iGoodlock produced nearly 7800 more times
lock dependencies than that produced by Magiclock. The
result of the first iteration is shown in column DF

2
.

Compared to the number of dependencies in the first
iteration (DF1) on MySQL, Chromium, and Firefox,
iGoodlock produced more numbers of dependencies for the
second iteration (DF2), which caused iGoodlock to crash due
to the out of memory errors.

Table 3. Memory and Time Comparisons among iGoodlock, MulticoreSDK, and Magiclock (MSDK refers to MulticoreSDK; ND means no data collected in

the cell; UKN means unknown)

Benchmark
Memory(MB) Time(s) # of cycles # of real

deadlocks iGoodlock MSDK Magiclock iGoodlock MSDK Magiclock iGoodlock MSDK Magiclock

SQLite 1.05MB 1.05MB 1.05MB 0.002s 0.003s 0.002s 1 1 1 1

MySQL >2.8GB 1.15MB 1.05MB >2m5s 6m38s 1.73s >1 1 1 1

Chromium >2.8GB >48.2MB 8.01MB >1h47m >1h 1m42s ND ND 3 UKN

Firefox >2.8GB 122.41MB 4.14MB >10m40s 7.43s 3.06s ND 0 0 0

OpenOffice 245.20MB >48.4MB 8.01MB 1h46m >1h 0.67s 0 ND 0 0

Thunderbird 298.83MB 40.09MB 4.15MB 16m13s 4.75s 1.18s 0 0 0 0

Table 4. Comparisons between iGoodlock and Magiclock (ND means no

data collected in the cell.)

Benchmarks

of lock
dependencies # of intermediate results of

iGoodlock

iGoodlock
(DF1)

Magic-
lock DF 2 DF 3

DF i

(i ≥ 4)

SQLite 136 136 0 0 0

MySQL 1,588 565 78,789 1,885,672 ND

Chromium 392,583 12,174 >4,771,070 ND ND

Firefox 202,408 26 >510,421 ND ND

OpenOffice 308,268 29,244 78,120 0 0

Thunderbird 23,848 430 136,098 323,096 0

2) Comparison between MulticoreSDK and Magiclock
MulticoreSDK and Magiclock use the different pruning

strategies to reduce the size of a lock order.
Table 5 lists the comparisons between MulticoreSDK and

Magiclock in terms of the numbers of nodes and edges. The
second main column shows the size of the lock order graph
that constructed by a traditional graph (Total, as A), by

MulticoreSDK (denoted by MSDK, as B), and by Magiclock

(as C), respectively, as well as the percentage of nodes (after
pruning) for MulticoreSDK and Magiclock. Note that the
second column (Total) is the same as the total number of
locks because each lock corresponds to a node in a lock
order graph. The columns on the right show the number of
edges produced by a traditional graph (Total, as D), by

MulticoreSDK (denoted by MSDK, as E), and by Magiclock

(as F), respectively, as well as the percentage of the
remaining edges for MulticoreSDK and Magiclock after
pruning. Note that for a fair comparison, on counting the
number of edges for Magiclock, we have converted each
lock dependency to a set of edges. For example, a lock

dependency t, m, {l1, l2} corresponds to two edges in a lock
order graph. The last row shows the average non-pruned
nodes and edges percentage for MulticoreSDK and
Magiclock, respectively.

From Table 5, we observe that MulticoreSDK only
pruned a small number of nodes and edges except on
SQLite. Even on Chromium, MulticoreSDK pruned about a
half (52%) of all nodes, whereas, Magiclock pruned almost
all nodes (97%). On Firefox, Magiclock pruned more than
99% of nodes and edges; however, MulticoreSDK pruned
only 21% of all nodes and less than 1% of all edges.

On average, Magiclock pruned about 80% of all nodes
and edges; MulticoreSDK pruned less than 30% of all nodes
and about 25% of all edges.

D. MagicFuzzer

In Phase III, MagicFuzzer confirms the cycles reported
by Magiclock in Phase II.

As shown in Table 3, on SQLite and MySQL, there is
only one cycle and this cycle is confirmed by MagicFuzzer
as a real deadlock. The detected deadlocks are described at
the bug databases of SQLite [22] and MySQL [16].

We leave the report on the probability of MagicScheduler
on the confirmation of a set of potential deadlock cycles as a
future work.

VI. RELATED WORK

Techniques on deadlock detection can be classified into
static ones and dynamic ones. We have compared our
MagicFuzzer with two dynamic techniques DeadlockFuzzer
and MulticoreSDK, and indirectly compared with Goodlock.

Many static techniques ([1][17][20][26]) analyze the
source code and infer lock order graphs to find potential
deadlock cycles. They have an advantage to apply for
software that is not close such as the Java library. These
techniques however suffer from high false positives. For
example, an early work [26] reports that 1,000 deadlocks and
only 7 are real deadlocks. More recently, Naik et al. [17]
combines a suite of static analysis techniques to reduce the
false positive rates. However, problems like conditional
variables and scalability are still the concerns on using static
techniques. MagicFuzzer never reports a false positive due to
its confirmation of each potential deadlock cycle.

Joshi et al. [9] monitors annotated conditional variables
to produce a trace program containing only thread and lock
operations as well as the values of conditionals. Then they
apply a model checker (Java Pathfinder) to check all
abstracted execution paths of the trace program for
deadlocks. This technique suffers from needing manual
effort to add annotations and scalability to handle large-scale
programs. Bensalem et al. [2][3] use the happens-before
relation to improve the precision of cycle detection and use a
guided scheduler to confirm deadlocks. Ur and colleagues
[5][18] propose ConTest that uses a Goodlock algorithm to
identify cycles, and actively introduces noise to increase the
probability of deadlock occurrence [5].

Like [10], MagicFuzzer uses object abstractions to relate
locks and threads to overcome the cross-execution reference
problem, and guides executions to work toward cycles.

Deadlock Immunity [11] prevents the second occurrence
of a deadlock by maintaining a database containing all
patterns of occurred deadlock and using online monitoring. It
does not have an active schedule or potential deadlock cycle
detection component. Gadara [25] statically detects
deadlocks and inserts deadlock avoidance code right before
the positions of the lock acquisitions in detected deadlocks.
When executing the inserted code, Gadara is called to
analyze the state of lock acquisition and insert a gate lock
acquisition dynamically to prevent the occurrence of the
corresponding deadlock. Gadara however may report both
false positives and false negatives when detecting deadlocks.

VII. CONCLUSION

Existing dynamic potential deadlock techniques are not

scalable enough to detect potential deadlock cycles. We

have presented MagicFuzzer, a novel technique to detect

potential deadlocks and confirm them as real ones. The

experiment confirms that it is highly efficient and effective

to tackle the challenges in handling the executions of large-

scale, widely-used, and open-source multithreaded C/C++

programs.

Table 5. Comparisons between MulticoreSDK and Magiclock (MSDK refers

to MulticoreSDK).

Benchmarks

of lock nodes # of edges

Total

(A)

MSDK

(B)

B

÷A

Magic-

lock

(C)

C÷A
Total

 (D)

MSDK

(E)
E÷D

Magic-

lock

(F)

F÷D

SQLite 4 3 0.75 3 0.75 136 136 1.00 136 1.00

MySQL 127 86 0.68 21 0.17 3,179 1,070 0.34 565 0.18

Chromium 1,363 659 0.48 19 0.01 463,928 130,813 0.28 12,174 0.03

Firefox 912 723 0.79 2 0.01 253,796 250,655 0.99 26 0.01

OpenOffice 1,349 972 0.72 275 0.20 902,791 902,738 1.00 29,244 0.03

Thunderbird 915 769 0.84 25 0.03 54,124 46,898 0.87 430 0.01

Avg. – – 0.71 – 0.19 – – 0.75 – 0.21

REFERENCES

[1] R. Agarwal, L. Wang, and S. D. Stoller. Detecting Potential
Deadlocks with Static Analysis and Run-Time Monitoring. In
Proceedings of the Parallel and Distributed Systems: Testing and
Debugging track of the 2005 IBM Verification Conference, 2005.

[2] S. Bensalem and K. Havelund, Scalable Dynamic Deadlock Analysis
of Multi-threaded Programs. In the 2005 workshop on Parallel and
Distributed Systems: Testing and Debugging (PADTAD’05), 2005.

[3] S. Bensalem, J.C. Fernandez, K. Havelund, and L. Mounier.
Confirmation of Deadlock Potentails Detected by Runtime Analysis.
In Proceedings of the 2006 workshop on Parallel and Distributed
Dystems: testing and debugging, (PADTAD’06), 41−50, 2006.

[4] Chromium 12.0.742, available at: http://code.google.com/chromium.

[5] E. Farchi, Y. Nir-Buchbinder, and S. Ur. A Cross-Run Lock
Discipline Checker for Java. In the 2005 workshop on Parallel and
Distributed Systems: Testing and Debugging (PADTAD’05), 2005.

[6] Firefox 6.0, available at: http://www.mozilla.org/firefox.

[7] K. Havelund, Using Runtime Analysis to Guide Model Checking of
Java Programs, in Proceedings of the 7th International SPIN
Workshop on SPIN Model Checking and Software Verification
(SPIN’00), 245–264, 2000.

[8] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. RADBench: A
Concurrency Bug Benchmark Suite, In Proceedings of the 3rd
USENIX conference on Hot topic in parallelism (HotPar'11), 2011.

[9] P. Joshi, M. Naik, K, Sen, and D. Gay. An Effective Dynamic
Analysis for Detecting Generalized Deadlocks. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering(FSE’10), 327–336, 2010.

[10] P. Joshi, C.S. Park, K. Sen, amd M. Naik. A Randomized Dynamic
Program Analysis Technique for Detecting Real Deadlocks. In
Proceedings of The 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’09),
110–120, 2009.

[11] H. Jula, D. Tralamazza, C. Zamfir, and G.e Candea. Deadlock
Immunity: Enabling Systems to Defend against Deadlocks. In
Proceedings of The 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI’08), 295–308, 2008.

[12] D. Kester, M. Mwebesa, and J. S. Bradbury. How Good is Static
Analysis at Finding Concurrency Bugs? In Proceedings of the 10th

IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM’ 10), 115–124, 2010.

[13] S. Lu , S. Park , E. Seo , Y.Y. Zhou. Learning from Mistakes: A
Comprehensive Study on Real World Concurrency Bug
Characteristics. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’08), 329–339, 2008.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’05),
191–200, 2005.

[15] Z.D. Luo, R. Das, and Y. Qi,. MulticoreSDK: A Practical and
Efficient Deadlock Detector for Real-World Applications. In
Proceedings of the 2011 fourth IEEE Conference on Software
Testing, Verification and Validation (ICST’11), 309–318, 2011.

[16] MySQL 6.0.4, available at: http://www.mysql.com. Bug ID: 37080.

[17] M. Naik, C.S. Park, K. Sen, and D. Gay. Effective Static Deadlock
Detection. In Proceedings of the 31st International Conference on
Software Engineering (ICSE’09), 386–396, 2009.

[18] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: From Exhibiting
to Healing. In Proceedings of the 8th Workshop on Runtime
Verification (RV’08), 104–118, 2008.

[19] OpenOffice 3.2.0, available at: http://www.openoffice.org.

[20] V.K. Shanbhag. Deadlock-Detection in Java-Library Using Static-
Analysis. In Proceedings of the 2008 15th Asia-Pacific Software
Engineering Conference (APSEC’08), 361–368, 2008.

[21] SLOCCount 2.26, available at: http://www.dwheeler.com/sloccount/.

[22] SQLite 3.3.3, available at: http://www.sqlite.org. Bug ID: 1672.

[23] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM
Journal on Computing 1(2): 146–160, doi:10.1137/0201010.

[24] Thunderbird 2.0.0, avaliable at: http://www.mozilla.org/thunderbird.

[25] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara:
Dynamic Deadlock Avoidance for Multithreaded Programs. In
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI’08), 281–294, 2008.

[26] A. Williams, W. Thies, and M.D. Ernst. Static Deadlock Detection
for Java Libraries. In Proceedings of the 19th European Conference
on Object Oriented Programming (ECOOP’05), 602–629, 2005.

