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ABSTRACT 

Many predictive deadlock detection techniques analyze multi-

threaded programs to suggest potential deadlocks (referred to as 

cycles or deadlock warnings). Nonetheless, many of such cycles 

are false positives. On checking these cycles, existing dynamic 

deadlock confirmation techniques may frequently encounter 

thrashing or result in a low confirmation probability. This paper 

presents a novel technique entitled ConLock to address these prob-

lems. ConLock firstly analyzes a given cycle and the execution 

trace that produces the cycle. It identifies a set of thread schedul-

ing constraints based on a novel should-happen-before relation. 

ConLock then manipulates a confirmation run with the aim to not 

violate a reduced set of scheduling constraints and to trigger an 

occurrence of the deadlock if the cycle is a real deadlock. If the 

cycle is a false positive, ConLock reports scheduling violations. 

We have validated ConLock using a suite of real-world programs 

with 11 deadlocks. The result shows that among all 741 cycles 

reported by Magiclock, ConLock confirms all 11 deadlocks with a 

probability of 71%−100%. On the remaining 730 cycles, ConLock 

reports scheduling violations on each. We have systematically 

sampled 87 out of the 730 cycles and confirmed that all these 

cycles are false positives. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 

reliability, correctness proofs, validation. D.2.5 [Software Engi-

neering]: Testing and Debugging – testing tools. D.4.1 [Gen-

eral]: Processing Management – concurrency, deadlocks. 

General Terms 
Reliability, Verification 

Keywords 

Deadlock, confirmation, should-happen-before relation. 

1. INTRODUCTION 
Many multithreaded programs use various locking mechanisms 

[32] to coordinate how their threads produce the program outputs. 

Improper sequences of lock acquisitions and releases performed 

by these threads may result in concurrency bugs such as data races 

[11][14][46], atomicity violations [30], or deadlocks [5][7][15] 

[25]. A deadlock [15][25] occurs when every thread in a thread 

set waits for acquiring a lock that another thread in the same set is 

holding. Each occurrence of a deadlock stops the threads involved 

in it from making further progress. Deadlock is a critical failure. 

Once a deadlock has occurred in an execution trace, it is not diffi-

cult to report the occurrence and reproduce it [45]. In general, 

deadlocks rarely occur in the program executions of real-world 

programs, but may reveal their presences in some other execution 

traces. To suggest potential deadlocks, many static techniques 

(e.g., [40][43]) and dynamic techniques (e.g., [5][12][34]) have 

been proposed. Static techniques analyze the program code to 

infer the existence of cyclic lock acquisition (i.e., cycles) among 

threads as potential deadlocks. They generally suffer from report-

ing many false positives. For instance, the experiment in [43] 

reported more than 100,000 potential cases when analyzing the 

Java JDK; and yet only 7 of them could finally be confirmed as 

real deadlocks (after applying various unsound heuristics). Dy-

namic predictive techniques [7][8] also suffer from reporting false 

positives, albeit less serious than the static counterparts. Tracking 

the happened-before relations [29] or constructing a segmentation 

graph [7] on the corresponding execution trace may eliminate 

some kinds of false positives, but may also eliminate certain true 

positives due to different thread schedules [25], which is risky. 

Confirming each given cycle to be a real deadlock or not by exe-

cuting the program with respect to the cycle is desirable. 

Latest techniques that can automatically confirm cycles as real 

deadlocks include DeadlockFuzzer [25] and MagicScheduler [15]. 

A minor adaptation of PCT [9] is also an alternative. However, in 

Section 5, our experiment shows that they either are unable to 

confirm a real deadlock at all or can only achieve a low confirma-

tion probability. Besides, existing dynamic techniques such as 

[15][25] have no strategy to handle cycles that are false positives. 

To ease our presentation, we refer to an execution used to suggest 

cycles as a predictive run. Similarly, we refer to an execution that 

is used to confirm whether a suggested cycle c is a real deadlock 

or not as a confirmation run. We also suppose that cycles have 

been suggested by a predictive technique on a predictive run. 

In this paper, we propose ConLock, a novel constraint-based ap-

proach to dynamic confirmation of deadlocks and handling false 

positives. ConLock consists of two phases: (1) In Phase I, ConLock 

analyzes the predictive run, and generates a set of scheduling 

constraints with respect to the given cycle c. Each constraint spec-

ifies the order of a pair of lock acquisition/release events in a 

confirmation run between the corresponding pair of threads in-

volved in the cycle c. (2) In Phase II, ConLock manipulates a con-

firmation run with the attempt to not violate the reduced set of 

constraints produced in Phase I so as to trigger the deadlock if the 

cycle c is a real deadlock; or else, it reports a scheduling violation 

against the given set of constraints, which indicates that the cur-

rent run is no longer meaningful to confirm the cycle c. In either 

case, ConLock terminates the current confirmation run. 
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We have implemented a prototype of ConLock to validate ConLock 

on a suite of real-world programs. We compared ConLock with 
MagicScheduler [15], DeadlockFuzzer [25], and PCT [9] in terms 

of confirmation probability, consistency in confirmation, and the 

amount of time taken to check against all given cycles. In the 

experiment, ConLock achieved a consistently higher probability 

(71%–100%) in confirming all 11 real deadlocks; whereas, other 

techniques either missed to confirm 5 to 7 cycles as real deadlocks 

in every confirmation run or only achieved a lower probability on 

remaining real deadlock cases. We systematically sampled a sub-

set (87 cycles in total) of the remaining 730 cycles (on which 

ConLock reported scheduling violations) for careful manual code 

inspection, and confirmed that they were all false positives. 

The main contribution of this paper is threefold:  

 This paper proposes ConLock, a novel dynamic constraint-

based deadlock confirmation technique to isolating real dead-

locks from the given set of cycles with a high probability and 

a low slowdown overhead.  

 To the best of our knowledge, ConLock is the first technique 

that can terminate confirmation runs on false positive cycles 

by reporting scheduling violations.  

 We report an experiment, which confirms that ConLock can 

be effective and efficient. 

In the rest of this paper, Section 2 revisits the preliminaries of this 

work. Section 3 motivates our work by an example. Section 4 

presents the ConLock algorithm. Section 5 describes a validation 

experiment, and reports the experimental results. Section 6 re-

views the closely related work. Section 7 concludes this paper. 

2. PRELIMINARIES 

2.1. Events and Traces 
Our model monitors an execution trace over a set of critical opera-

tions  = {acq, rel} performed on locks, where acq represents 

lock acquisition and rel represents lock release. The extension to 

handle other synchronization primitives (e.g., barriers) is straight-

forward [11][14][20]. 

Definition 1. An event e = t, op, m@s, ls denotes that a thread t 

performs an operation op   on a lock m, which occurs at the 

site s, and at the same time, t is holding a set of locks (called 

lockset) ls, each of which is associated with the site where t ac-

quires the corresponding lock. 

Definition 1 extends the definition of lock dependency in [15][25] 

by including lock release rel in . A site is an execution context 

[16][25] (e.g., the triple call stack, statement number, the latest 

occurrence count of the couple call stack, statement number can 

be used to denote an execution context).  

An execution trace  of a program p is a sequence of events, and 

t is the projection of a trace  on a thread t of the same trace. 

2.2. Cycle as Potential Deadlock 

Definition 2. A sequence of k events denoted by c = e1, e2, …, 

ek, where ei = ti, acq, mi@si, lsi for 1 ≤ i ≤ k, is called a cycle 

[15] if both of the following two conditions are satisfied: 

(1) for 1 ≤ i ≤ k - 1, mi  lsi+1, and mk  ls1; and, 

(2) for 1 ≤ i < j ≤ k, ti ≠ tj, mi ≠ mj, mi lsi, and lsi ∩ lsj =∅. 

A cycle models a potential deadlock: The site si in the event ei 

involved in a cycle c is referred to as a deadlocking site of the 

thread ti. The lock mi of an event ei is the lock that the thread ti 

waits to acquire.  

For instance, Figure 1(b) (to be described in Section 3) depicts 

that a thread t1 is holding the lockset {a, p, m} and is waiting to 

acquire the lock n at site s08; and a thread t2 is holding the lockset 

{n}, and is waiting to acquire the lock p at site s16. The four boxed 

operations represent a deadlock bug that has not been triggered in 

the scenario; and this deadlock can be modeled as a cycle c0 = 

t1, acq, n@s08, {a@s03, p@s06, m@s07}, t2, acq, p@s16, {n@s15}.  

We denote the set {mi | ei = ti, acq, mi@si, lsi  ei  c} by WLOCKc. 

It means that each lock in WLOCKc is a lock waiting to be acquired 

by a thread involved in the cycle c at its deadlocking site. Similar-

ly, we denote the set of all locks, each of which is being held by a 

thread involved in c at the deadlocking site, by the set HLOCKc (i.e., 

HLOCKc = {nj | ei = ti, acq, mi@si, lsi  ei  c  nj@sj  lsi for 

some site sj}). Moreover, the site to acquire a lock m  WLOCKc (n 

 HLOCKc, respectively) is denoted by WSITEc(m) (HSITEc(n), re-

spectively). For the above cycle c0 in Figure 1(b), we have 

WLOCKc0 = {n, p}, WSITEc0 (n) = s08, WSITEc0 (p) = s16, HLOCKc0 = {n, 

p, a, m}, HSITEc0 (n) = s15, HSITEc0 (p) = s06, HSITEc0 (a) = s03, 

and HSITEc0 (m) = s07.  

3. MOTIVATING EXAMPLE 
Figure 1(a) shows a bug that can be triggered by using two 

threads operating on four locks. The operations acq(x) and rel(x) 

in the figure depict a lock acquisition event and a lock release 

event on the lock x, respectively. The program in Figure 1(a) 

illustrates a deadlock bug as shown by the four boxed operations.  

Execution 1, depicted in Figure 1(a), passes through the path s13, 

s14, s01, s02, s03, s04, s05, s06, s07, s15, resulting in a deadlock occur-

rence: Specifically, the thread t2 firstly acquires the lock a at the 

site s13 and then releases the lock a at the site s14. When the thread 

t2 is about to acquire the lock n at the site s15, the thread t2 is sus-

pended. Then, the thread t1 executes the operations at sites s01 to 

s07 to acquire three locks a, p, and m, at the sites s03, s06 and s07, 

respectively. When t1 is about to acquire the lock n at the site s08, 

it is suspended, and the thread t2 is resumed to successfully ac-

quire the lock n at the site s15. Then, the thread t2 is suspended 

when it is about to acquire the lock p at the site s16 because the 

lock p is being held by t1 at this moment. As such, the thread t1 

resumes its execution. Nonetheless, the thread t1 has to wait for 

the thread t2 to release the lock n so that the thread t1 can acquire 

this lock n. The two threads now mutually wait for each other to 

release their waiting locks. The execution triggers a deadlock.  

Execution 2, depicted in Figure 1(b), passes through the path s13, 

s14, s15, s16, s17, s18, s01, s02, s03, s04, s05, s06, s07, s08, s09, s10, s11, s12, 

failing to trigger any deadlock: Suppose that the thread t2 has 

acquired the lock n at the site s15 (which is different from the Exe-

cution 1), and is about to acquire the lock p at the site s16. At this 

moment, the thread t2 is suspended, and the thread t1 is resumed. 

However, the thread t1 cannot successfully acquire the lock n at 

the site s01 because the thread t2 is holding the lock n. Hence, t1 is 

suspended. The thread t2 is then resumed, and acquires the lock p. 

It finally releases the two locks p and n at the sites s17 and s18, 

respectively. Next, the thread t1 is resumed, and completes its 

remaining execution. No deadlock has been triggered.  

Existing dynamic predictive techniques (e.g., [15][25][34]) may 

analyze Execution 2 to suggest the cycle c0 = t1, acq, n@s08, 

{a@s03, p@s06, m@s07}, t2, acq, p@s16, {n@s15}. However, 

without confirming the cycle c0, this cycle c0 is unknown to be a 
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real deadlock or just a false positive. Manually confirming every 

such cycle can be tedious and error prone.  

The latest state-of-the-art techniques on automatic confirmation of 

cycles as real deadlocks include DeadlockFuzzer [25] and Mag-

icScheduler [15]. PCT [9] is not designed for deadlock confirma-

tion, but it provides a probabilistic guarantee to detect real dead-

locks if they exist. We review them to motivate our work. 

MagicScheduler (MS) [15]: MS is the latest dynamic deadlock 

confirmation technique. It uses a heuristic to randomly schedule 

each individual thread in a given program against a set of given 

cycles and suspend a thread if the thread holds a set of locks and 

requests another lock at the deadlocking site of this thread speci-

fied by a given cycle [15]. Consider the example in Figure 1(b). 

MS aims to suspend the thread t1 when t1 is right before executing 

the operation at the site s08, and suspend the thread t2 when t2 is 

right before executing the operation at the site s16.  

Directly applying the above heuristic can be challenging to sched-

ule the two threads in a confirmation run to trigger a real dead-

lock. Suppose that MS firstly suspends the thread t2 right before 

executing the operation at the site s16 (after the thread t2 has ac-

quired the lock n at the site s15). To trigger the deadlock with re-

spect to the cycle c0, MS aims to wait for the thread t1 to be sus-

pended at the site s08. This target is nonetheless impossible to 

achieve because the thread t1 has been blocked at the site s01 (or 

the site s04) as the lock n is being held by t2, and yet t2 has been 

suspended. This kind of problem is known as thrashing [25]. To 

resolve this occurrence of thrashing, MS resumes the thread t2, 

which runs to complete the execution of the operations up to the 

site s18 and releases the lock n. Nonetheless, the deadlocking site 

s16 for t2 has been passed. So, the cycle c0 could not be confirmed. 

Execution 2 starts with the thread t2 at the site s13. On Execution 2, 

according to the scheduling strategy of MS, MS always results in 

thrashing and fails to trigger the cycle c0 as a real deadlock. An 

execution scenario that starts with the thread t1 would still result 

in thrashing caused by MS. For instance, suppose that MS has 

successfully suspended the thread t1 at the site s08 (before acquir-

ing the lock n), and then the thread t2 starts. The thread t2 cannot 

acquire the lock a at s13 because t1 is still holding the lock a. As a 

result, thrashing occurs. MS resumes t1 to acquire the lock n. As 

such, no deadlock could be triggered. This also illustrates that 

merely applies the active thread scheduling at the sites s08 and s16 

is unlikely to trigger the deadlock bug with a high probability.  

DeadlockFuzzer (DF) [25] uses a heuristic strategy that is identical 

to MS except that DF tries to confirm one cycle per run instead of 

a set of cycles per run. The running example has only one cycle. 

DF suffers from the same problem experienced by MS. 

Probabilistic Scheduler: PCT [9] probabilistically generates a 

sequence of priority changing points. From the probabilistic theo-

ry, PCT can generate a thread schedule (e.g., Execution 1 in Fig-

ure 1(a)) that results in triggering a deadlock occurrence. Accord-

ing to [9], its guaranteed probability is 1 / (n  k d-1) for a concur-

rency bug of depth d involving n threads that executes a total of k 

steps. For the running example, the guaranteed probability is 1 / 

(2182-1) or 0.02778, which is low, despite that PCT can detect 

the deadlock bug without needing any predictive run or any in-

formation about a given cycle. 

In the next section, we present ConLock and illustrate how Con-

Lock confirms the cycle c0 in Figure 1.  

4. CONLOCK 

4.1. Overview 
ConLock is a novel constraint-based dynamic approach to dead-

lock checking. It consists of two phases with respect to a given 

cycle [5][7][15] as depicted in Figure 2. 

A predictive technique firstly suggests a cycle c (as depicted in 

Figure 2(a)). ConLock then starts its two phases.  

In Phase I, given a cycle from a predictive run, ConLock generates 

a set of constraints  (as depicted in Figure 2(b)). The generation 

of the constraint set  is based on the novel should-happen-before 

relation (proposed in Section 4.2.1).  

In Phase II, ConLock actively schedules a confirmation run with 

respect to a subset of constraints , and produces two important 

consequences: (1) if the given cycle is a real deadlock (as depicted 

in Figure 2(c)), ConLock tries to confirm it. As shown in our ex-

periment, its confirmation probability is high; (2) if the given 

cycle is a false positive (as depicted in Figure 2(d)), ConLock 

reports a scheduling violation. The two consequences significant-

ly distinguish ConLock from the existing techniques.  

4.2. Phase I: Generation of Constraint Set  

and Scheduling Points 
To schedule a confirmation run that successfully confirms a given 

cycle as a real deadlock, each thread involved in a cycle should be 

precisely suspended at its deadlocking site. Many existing dynam-

ic active testing techniques [15][25] have used this insight to ex-

tract information from a predictive run to guide the manipulation 

of a confirmation run. Moreover, we observe that at the same time, 

a confirmation technique should avoid occurrences of thrashing as 

much as possible. Hence, our goal is that each thread involved in 

a cycle should not be artificially blocked by any other thread in-

volved in the same cycle before the former thread is about to ac-

quire the lock at its deadlocking site as much as possible. 

Based on the above two observations, we formulate a novel rela-

tion entitled the should-happen-before relation to (1) effectively 

prevent occurrence of thrashing and (2) precisely suspend each 

thread involved in a cycle at its deadlocking site. We note that the 
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thread t1 thread t2

s01

s02

s03

s04

s05

s06

s07

s08
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s10
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


⃝=

⃝= : waiting to acquire the lock 

 : deadlocking site. Actual case in (a) and Predictive case in (b)
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(a) Execution 1

(scenario with deadlock)

(b) Execution 2

(scenario without deadlock)

 






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

⃝i : the execution order 

Figure 1. Example deadlock adapted from JDBC Connector 5.0 [2] 

(Bug ID: 2147). The acronym n, a, p, and m are Connection, 

Statement, ServerPreparedStatement, and Connec-

tion.Mutex, respectively. 
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should-happen-before relation is a relation between two events in 

the execution trace of a predictive run (where the run itself has no 

deadlock occurrence). It denotes that the two related events 

should occur in a specified order in the confirmation run.  

4.2.1 Should-Happen-Before Relation 

We firstly revisit the happened-before-relation. We use ↣ to de-

note the happened-before relation between two events.  

In our problem context, the happened-before relation [29] de-

scribes a relation between two events over the given execution 

trace of the predictive run. The happened-before relation [29] is 

defined as follows: (i) Program order: if two events e1 and e2 are 

performed by the same thread, and e1 appeared before e2 in the 

execution trace, then e1 ↣ e2. (ii) Lock acquire and release: if (1) 

er is a lock release on a lock m by a thread t1, (2) ea is a lock ac-

quisition on the same lock m by a thread t2, where t1  t2 and (3) er 

appears prior to ea in the execution trace, then er ↣ ea. (iii) Transi-

tivity: if e1 ↣ e2 and e2 ↣ e3, then e1 ↣ e3.  

We proceed to present the definition of should-happen-before 

relation. We use ⇝ to represent this relation over two events. To 

ease our subsequent presentation, sometimes, we refer to the event 

ei by the thread ti involved in the cycle c as (c, ti), and use the site 

of an event e to denote e when describing the ⇝ and ↣ relations. 

Definition 3. Given an execution trace , a cycle c on , suppose 

that t, t, and t are threads involved in the cycle c, where t  t 

and t  t, the should-happen-before relation is defined as: 

Rule 1: Suppose that e and e are two events performed by two 

threads t and t, respectively, and they both operate on the same 

lock m. If the three conditions (1) m  WLOCKc, (2) e ↣ (c, t), 

and (3) e= (c, t) are satisfied, then e ⇝ e. 

Rule 2: Suppose that e and e are two events performed by two 

threads t and t, respectively, and they both operate on the same 

lock n. If the three conditions (1) n  HLOCKc, (2) e ↣ (c, t), 

and (3) e = t, acq, n@HSITEc(n), ls for some ls are satis-

fied, then e ⇝ e. (Note that e  (c, t) and e ↣ (c, t).) 

Rule 1 defines a condition to prevent predictable thrashing to 

occur on these locks in the set WLOCKc. Figure 3(a) uses Execution 

2 to illustrate this rule via the lock p and the cycle c0. In Figure 

3(a), the lock p is in WLOCKc0, the site s16 is the deadlocking site for 

the thread t2 (i.e., t in the Rule 1) that operates on this lock p, and 

the deadlocking site for the thread t1 (i.e., the thread t in Rule 1) is 

the site s08. Rule 1 specifies that any lock acquisition or release 

event on this lock p performed by the thread t1 (e.g., the event e at 

the site s06) that happened-before the event (c0, t1) at the site s08 

should-happen-before the event (i.e., e) performed by the thread 

t2 at its deadlocking site s16. Thus, by Rule 1, we get s06 ⇝ s16.  

Similarly, Rule 2 defines a condition that prevents predictable 

thrashing on these locks in the set HLOCKc. Figure 3(b) uses Execu-

tion 2 to illustrate this rule via the lock n. In Figure 3(b), the lock 

n is in HLOCKc0, and the thread t2 (i.e., the thread t in Rule 2) holds 

a lockset {n@s15} when t2 is about to acquire the lock p at its 

deadlocking site s16. We also recall that the deadlocking site for 

the thread t1 (i.e., the thread t in Rule 2) is the site s08. Rule 2 spec-

ifies that any lock acquisition or release event on n performed by 

t1 that happened-before the event occurred at its deadlocking site 

s08 should-happen-before the lock acquisition event on n at site s15 

(i.e., the event e). Thus, by Rule 2, we get s05 ⇝ s15. The lock n 

has also been acquired or released by the thread t1 at sites s01, s02, 

and s04. So, we get s01 ⇝ s15, s02 ⇝ s15, and s04 ⇝ s15, accordingly. 

The Whole Set of Should-Happen-Before Relations in the 

Running Examples: We now apply Rule 1 and Rule 2 to identify 

a complete set of should-happen-before relations with respect to 

the cycle c0. We recall that Execution 2 in Figure 1(b) operates on 

four locks {n, a, p, m}. The cycle c0 has two deadlocking sites s08 

of the thread t1 and s16 for the thread t2. WLOCKc0 is {n, p}, and 

HLOCKc0 is {n, a, p, m}.  

The lock m is only acquired once. There is no should-happen-

before relation on it (because the should-happen-before relation is 

defined over two events performed by different threads).  

Consider the lock n. We have applied Rule 2 on it to have identi-

fied s01 ⇝ s15, s02 ⇝ s15, s04 ⇝ s15, and s05 ⇝ s15 in the above 

illustration of Rule 2. The thread t1 performs the event on the lock 

n at its deadlocking site s08, which is also denoted by (c0, t1). For 

the thread t2, there is only one event e = t2, acq, n@s15, {} oper-

ating on the lock n and e ↣ (c0, t2). By Rule 1, we get s15 ⇝ s08. 

Consider the lock p. We have applied Rule 1 on this lock to have 

identified s06 ⇝ s16. We recall that HSITEc(p) is the site s06, but 

there is no event operating on the lock p by the thread t2 that hap-

pened-before the event (c0, t2) at the site s16. Thus, Rule 2 pro-

duces no further should-happen-before relation for the lock p.  
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Figure 2. An overview of ConLock. 
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Consider the lock a. Rule 1 gives no should-happen-before rela-

tion on this lock because the lock a is not in WLOCKc0. In the cycle 

c0, the lock a is in a lockset of an event for thread t1. By Rule 2, 

any lock acquisition or release event on the lock a that happened-

before (c0, t2) should-happen-before the lock acquisition event on 

a performed by the thread t1 at the site s03. As for the thread t2, s13 

↣ (c0, t2) and s14 ↣ (c0, t2), we get s13 ⇝ s03 and s14 ⇝ s03. 

In total, based on Execution 2 and the cycle c0, we identify a set of 

eight should-happen-before relations {s01 ⇝ s15, s02 ⇝ s15, s04 ⇝ 

s15, s05 ⇝ s15, s06 ⇝ s16, s13 ⇝ s03, s14 ⇝ s03, s15 ⇝ s08}. They are 

depicted as dotted arrows in Figure 4(a).  

Execution 2 fails to trigger the deadlock, and its execution path is 

s13, s14, s15, s16, s17, s18, s01, s02, s03, s04, s05, s06, s07, s08, s09, s10, s11, 

s12. This path violates 5 out of these eight should-happen-before 

relations (each has been highlighted in the last paragraph). In fact, 

any other execution path violating at least one of these eight 

should-happen-before relations misses to trigger the deadlock. 

Execution 1 triggers a deadlock occurrence, and its execution path 

is s13, s14, s01, s02, s03, s04, s05, s06, s07, s15 before deadlocking at 

the site s08 for the thread t1 and the site s16 for the thread t2. We 

observe that this execution path satisfies all eight should-happen-

before relations. 

In Section 3, we have illustrated an occurrence of thrashing 

suffered by both MS and DF. This thrashing occurrence is due to 

the thread t2 having acquired the lock n at the site s15 before the 

thread t1 attempts to acquire the same lock at the site s01, and yet 

the thread t2 is actively suspended by the technique (e.g., MS) at 

the site s16. The above set of should-happen-before relations has 

pointed out that the execution under active scheduling has already 

violated the relation s01 ⇝ s15, irrespective to whether or not the 

technique suspends t2 at s16. 

ConLock can identify all such should-happen-before relations 

before scheduling a confirmation run. As such, it has the ability to 

guide a thread scheduler to avoid occurrence of thrashing.  

4.2.2 Generation of Should-Happen-Before Relations 

ConLock treats each identified should-happen-before relation as a 

scheduling constraint in a confirmation run. Algorithm 1 shows 

the constraint set generation algorithm (-Generator for short).  

Given an execution trace  and a cycle c, Algorithm 1 firstly 

identifies all the locks in WLOCKc and HLOCKc and all threads in c as 

Threads(c) (lines 02–06). Then, it checks each event in the pro-

jection t of the trace  over each thread t in the reversed program 

order starting from the deadlocking site of the thread t (lines 09–

11) with respect to the two rules (lines 12–27). The set 

Threads(c) at line 8 keeps all the threads involved in the cycle c 

(computed at line 03). For each event e = t, op, l@s, ls from t, the 

algorithm checks whether the lock l is in the set WLOCKc (line 12). 

If this is the case, the algorithm further checks e against e to 

determine whether the pair of events e and e forms a should-

happen-before relation based on Rule 1 (lines 13–14). If this is the 

case, it adds the relation e ⇝ e into the set  (line 15). Next, the 

algorithm checks whether the lock l is in the set HLOCKc (line 19). 

If this is the case, it checks whether or not there is an event e 

operating on the lock l such that l@s of the event e is in the 

lockset ls' of (c, t) (lines 20–22), which indicates the site s is 

HSITEc(l). If there is such an event e, the algorithm adds the rela-

tion e ⇝ e into  (line 23) based on Rule 2.  

ConLock can schedule a confirmation run with the aim of not vio-

lating any constraint thus produced. However, if the size of the set 

constraint  is large, scheduling a program execution against such 

a large set of constraints from the beginning may incur a high 

runtime overhead. In the following two subsections, we present a 

precise constraint reduction algorithm and an optimization by 

selecting a nearest scheduling point for each thread.  

4.2.3 Reduction of Constraints 

We first give two properties of the should-happen-before relation: 

Property 1 (Transitivity): If the constraint set  has included 

both e1 ⇝ e2 and e2 ⇝ e3, then  needs not to include e1 ⇝ e3 

because the event order specified by e1 ⇝ e3 has been implic-

itly and jointly specified by the relations e1 ⇝ e2 and e2 ⇝ e3.  

Property 2 (Program Locking Order): If the constraint set  

has included ea ⇝ ex and er ⇝ ex such that ea is the corre-

sponding lock acquisition event of er performed by the same 

thread t, then  needs not to include ea ⇝ ex because ea ⇝ ex 

is enforced by the program order of the thread t and er ⇝ ex. 

Applying both properties produces a smaller but equivalent set of 

constraints generated by Algorithm 1. The reduction algorithm is 

straightforward: recursively applying the two properties on every 

triple of constraints until no more constraint can be reduced.  

For the running example, applying these two properties on the 

constraint set produced by Algorithm 1 removes the following 

four constraints from the original constraint set: s01 ⇝ s15, s02 ⇝ 

s15, s04 ⇝ s15, s13 ⇝ s03 (see Figure 4(b)). 

4.2.4 Identifying Scheduling Points 

Lu et al. [32] empirically conclude that a concurrency bug in real-

world large-scale multithreaded programs usually needs a "short 

Algorithm 1: -Generator 
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Input:  : an execution trace 
Input: c : a cycle 
Output:  : a constraint set with respect to c on  

 := , WLOCKc:= , HLOCKc:=  
for each event t, req, m@s, ls in c do  
│ WLOCKc := WLOCKc  {m}, Threads(c) := Threads(c)  {t} 
│ for each n@sn  ls 
│ │ HLOCKc := HLOCKc  {n} 
│ end for 
end for 
for each t  Threads (c) do  
│ let i := p such that t[p] = (c, t)  
│ while i -- > 0 do  
│ │ let t[i] be e = t, op, l@s, ls //e ↣ (c, t), op  {acq, rel} 
│ │ if l WLock then //By Rule 1 
│ │ │ for each e = t, acq, m@s, ls = (c, t)  t  t do 
│ │ │ │ if l = m then // m  WLOCKc 
│ │ │ │ │  :=   {e ⇝ e} 
│ │ │ │ end if 
│ │ │ end for  
│ │ end if 
│ │ if l  HLOCKc then //By Rule 2 
│ │ │ let e = t, acq, l@s, ls where t  t  
│ │ │ let (c, t) = t, acq, m@s', ls' //the deadlocking site of t 
│ │ │ if l@s  ls' then //thus, we have s= HSITEc(l)  
│ │ │ │  :=   {e ⇝ e} 
│ │ │ end if 
│ │ end if 
│ end while 
end for 
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depth" to manifest itself in an execution. In other words, it is em-

pirically enough to explicitly schedule only parts of an execution 

to manifest a deadlock. This indicates the existence of a set of 

points (events) from which ConLock can start to schedule the in-

volved threads. (Such a point may be the beginning of each thread 

in the worst case.) We refer to such a point as a scheduling point.  

A scheduling point should-happen-before the deadlocking site of 

the same thread. Besides, the lockset held by a thread at such a 

point must be empty; otherwise, suspending a thread at its sched-

uling point may prevent other threads to acquire locks at their 

corresponding scheduling points (,which is akin to the occurrenc-

es of thrashing). In general, a thread may have one or more 

scheduling points. ConLock selects the scheduling point nearest to 

the deadlocking site of the same thread. We formulate a schedul-

ing point as an event and denote all scheduling points and the 

nearest one of a thread t in  as sp(t) and nsp(t), respectively. 

Figure 4(c) shows four scheduling points (two for the thread t1 

and two for the thread t2) denoted by the horizontal arrows.  

The algorithm to select the nearest scheduling point for each 

thread t (i.e., nsp(t)) can be revised from Algorithm 1 by inserting 

the following four lines (z1  z4) to the position in between line 25 

and line 26 in Algorithm 1. For brevity and owing to its simplici-

ty, we do not show the whole revised algorithm here. 

z1 

z2 

z3 

z4 

if ls =  then 
│ nsp(t) := e 
│ break while 
end if 

For the running example, Figure 4(d) shows an execution sched-

ule fragment that starts from the nearest scheduling point of each 

thread and satisfies the constraints in Figure 4(c). In the confirma-

tion run for the program in Figure 1, ConLock is able to confirm 

the cycle c0 predicated from Execution 2 (Figure 1(b)) as a real 

deadlock with a certainty, and produces no thrashing occurrence. 

4.3. Phase II: ConLock Scheduler 
4.3.1 Confirmation Algorithm 

ConLock accepts a program p, a cycle c, a set of nearest schedul-

ing points nsp (one for each thread in c), and a set of constraints  

as inputs. It firstly executes the program using randomized sched-

uling, and monitors the events until any thread, say t, involved in 

c reaches (i.e., is the same as) its scheduling point. Then, ConLock 

suspends t (without executing the event), and waits for other 

threads involved in c to reach their corresponding nearest schedul-

ing points. Next, ConLock schedules all subsequent events with 

the aim of not violating the reduced constraints set , and checks 

for deadlock occurrence. It stops the current confirmation run 

immediately whenever it detects a scheduling violation. We pro-

ceed to present a few auxiliary concepts before presenting the 

scheduling algorithm of ConLock. 

State of a constraint. Given a constraint h = ea ⇝ eb, the state of 

the constraint h (denoted as State(h)) is one of the followings: 

 Idle: if both ea and eb are not executed.  

 Active: if eb is about to be executed, and ea is not executed. 

 Used: if ea is executed.  

State of a thread. Given a thread t, the state of the thread t (de-

noted as State(t)) is one of the followings: 

 Enabled: if t can be scheduled to execute its next event. 

 Waiting: if t is waiting on a constraint. (Note: if t is about to 

execute an event e, but there is a constraint, say, h = e' ⇝ e 

on which e' has not been executed. To avoid violating the 

constraint h, ConLock suspends the thread t until the event e' 

has been executed. In such cases, we say that the thread t is 

waiting on the constraint h, and is in the Waiting state.) 

 Suspended: if t is suspended by ConLock. 

 Disabled: if t has terminated or suspended by OS.  

Definition 4. A scheduling violation occurs in a confirmation run 

with respect to a cycle c if the two conditions below are satisfied: 

 ∄ t  Threads(c), such that State(t) = Enabled, and, 

  t  Threads(c), such that State(t) = Waiting.  

A scheduling violation means that no any thread in Threads(c) is 

in the Enabled state, and each thread in Threads(c) is either 

Disabled or Waiting on a constraint. Each Waiting thread t 

waits on a constraint, say e' ⇝ e, to be fulfilled (i.e., the event e' 

from a different thread (i.e.,  t) should be executed before the 

execution of the event e by t). Because there is no thread in the 

Enabled state, no any event can be further executed. To continue 

the whole execution, at least one constraint will be violated in the 

current scheduling (or else a deadlock has been triggered). Be-

cause a constraint has been violated, the current confirmation run 

is no longer meaningful to be further scheduled not to violate 

other constraints in view of triggering the deadlock with respect to 

the given cycle. Hence, we can terminate the confirmation run. 

Algorithm 2 presents the confirmation scheduler of ConLock. It 

takes a program p, a cycle c, a set of constraints , and a set of 

nearest scheduling points nsp (one for each thread involved in c) 
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Figure 4. Reduction of constraints and selection of nearest scheduling points with respect to the cycle c0 and Execution 2  
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as inputs. The scheduler firstly initializes the state of each con-

straint as Idle (line 01). It also updates the state of each thread as 

Enabled (lines 02–03). Then, it uses OS scheduling to execute 

the operation of a randomly selected instruction (lines 04–12). If a 

thread t is about to execute an event that is the nearest scheduling 

point of the same thread, the scheduler suspends t, moves t from 

EnabledSet into SuspendedSet, and sets State(t)= Sus-

pended (lines 07−08). Otherwise, the instruction is executed (line 

10).  

After all these threads reach their corresponding nearest schedul-

ing points (by checking whether Threads(c)  SuspendedSet 

(line 04)), ConLock enables all these threads (lines 13, 14, and 16).  

In order to check for the occurrence of a real deadlock, ConLock 

maintains some necessary data for each thread. These data are 

three maps: from a thread t to a lockset as LS(t), from t to its 

requested lock as Req(t), and from t to its requested site as 

Site(t), which are all initialized to be empty (line 17).  

Next, ConLock starts its guided scheduling (lines 19–43). It ran-

domly fetches the next event e from a random and Enabled 

thread (line 20). Before executing the event e, ConLock checks e 

against each constraint in  that is not in the Used state, and 

determines the states of both the selected constraint and the cur-

rent thread t (lines 21–32) such that no constraint is violated. 

There are three cases to consider:  

 If there is any constraint h = ea ⇝ eb such that State(h) = 

Idle and the current event e = eb, the execution of event e 

will be postponed until ea has been executed. ConLock sets 

State(h) = Active and State(t) = Waiting on h (lines 

22). It then checks whether any scheduling violation occurs, 
and reports the violation if any (lines 23–26). 

 If there is any constraint h = ea ⇝ eb and State(h) = Ac-

tive, such that the current event e = ea, ConLock sets 

State(h) = Used and updates the state of every thread (say 

t') that is Waiting on h to be Enabled (lines 28–29). At line 

29, we use Notify(h) to indicate the change of the state of 

each thread (say t') waiting on this constraint h from Wait-

ing to Enabled. 

 If there is any constraint h = ea ⇝ eb and State(h) = Idle, 

such that the current event e = ea, ConLock sets State(h) = 

Used (lines 30–31).  

Next, ConLock checks the type of the event e, and performs a 

corresponding action. If e is a lock acquisition, ConLock updates 

the three maps Req, Site, and LS, and calls the function Check-

Deadlock()(lines 36–38). If e is a lock release, ConLock updates 

the map LS only (line 40). For any other event, ConLock directly 

executes the event. Algorithm 2 then handles the next instruction. 

If the function CheckDeadlock() (lines 44–49) finds any cycle 

according to Definition 2, ConLock reports the occurrence of a real 

deadlock, and terminates the confirmation run.  

4.3.2 Discussions  

ConLock can report both real deadlock occurrences and scheduling 

violations. This feature makes ConLock significantly different 

from existing active randomized schedulers.  

Take confirming a cycle on the MySQL database server as an ex-

ample. MySQL is a server program that accepts a query and returns 

a dataset. However, after serving this query, the program will wait 

for the next input instead of program termination. As such, there 

is always at least one active thread once MySQL has been started.  

Existing schedulers (e.g., MagicScheduler and DeadlockFuzzer) will 

not terminate the confirmation run by their algorithmic design. 

We also recall from the motivating example that once an occur-

rence of thrashing happens, they will activate a previously sus-

pended thread. Because the deadlocking site for the previously 

suspended thread has been passed in the run, the given cycle 

could no longer be confirmed.  

Algorithm 2: ConLock Scheduler 
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Input: p – a program 

Input: c – a cycle 
Input:  – a set of constraints 
Input: nsp – the nearest scheduling points 

for each h  , State(h) := idle 
for each thread t in p, State(t) := Enabled 
EnabledSet:= all threads in p, SuspendedSet :=  

while EnabledSet    Threads(c)  SuspendedSet do 

│ e := the next event from a thread t 
│ if e = nsp(t) then 
│ │ SuspendedSet := SuspendedSet  {t}, State(t) := Suspended. 
│ │ EnabledSet := EnabledSet \ {t}. 
│ else 
│ │ execute (e) 
│ end if 
end while 

EnabledSet := EnabledSet  SuspendedSet //resume all threads 
SuspendedSet :=  

for each thread t do 

│ State(t) := Enabled 
│ LS(t) := , Req(t) := , Site (t) :=   
end for 

while  t  Threads(c)  State(t) = Enabled do 

│ let e := t, op, m@s, ls be the next event of the thread t 
│ //check e against each constraint in  
│ if  h = ea ⇝ eb , eb = e  State(h) = Idle then 
│ │ State(h) := Active, State(t) := Waiting on h 

│ │ if a scheduling violation occurs by Definition 4 then 
│ │ │ print "A scheduling violation occurs." 
│ │ │ halt //Early termination of confirmation run 
│ │ end if 
│ │ continue 
│ else if  h = ea ⇝ eb , ea = e  State(h) = Active then 
│ │ State(h) := Used, Notify(h) //State(t'): = Enabled 
│ else if  h = ea ⇝ eb , ea = e  State(h) = Idle then 
│ │ State(h) := Used  
│ end if 
│ //else execute e and check for deadlock 
│ switch (op) 
│ │ case acq: 
│ │ │ Req(t) := m, Site (t) := s 
│ │ │ call CheckDeadlock() 
│ │ │ Req(t) := , LS(t) := LS(t)  {m@s} 

│ │ case rel: 
│ │ │ LS(t) := LS(t) \ {m@s'} for some s' 
│ end switch 

│ execute (e) //other event, e.g., thread termination 
end while 

Function CheckDeadlock() 
│ if  a sequence of events e1, e2, …, en, where ei =ti, acq, 
Req(ti)@Site(ti), LS(ti) for 1 i  n, is a cycle by Definition 2 then  
│ │ │ print "a deadlock occurs." 
│ │ halt 
│ end if 
end Function 
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5. EXPERIMENT 

5.1. Implementation and Benchmarks 
Implementation. We implemented ConLock to handle both Java 

and C/C++ programs. The Java implementation used ASM 3.2 [1] 

to identify all "synchronized" operations of each loaded class 

and wrap them to produce events. Following the mechanism in 

Java, we take each "Object" as a lock instance. The C/C++ im-

plementation was based on Pin 2.10 (45467) [33] on Linux. We 

used the Probe mode of Pin because the analysis of deadlock is a 

high level problem and there is no need to monitor any low level 

memory access in our case; besides, the Probe mode provides 

almost native execution performance [33]. ConLock via Pin in-

strumented a C/C++ binary program to produce events by wrap-

ping the Pthread library functions.  

We implemented PCT [9], MagicScheduler (MS) [15], Deadlock-

Fuzzer (DF) [25], and ConLock (CL) on the same framework. Alt-

hough DeadlockFuzzer is available from the current release of 

Calfuzzer [23], yet this tool is for Java programs and cannot han-

dle C/C++ benchmarks; and when we tried it on Java benchmark 

(i.e., JDBC Connector), it only instrumented the test harness 

programs but not the library files (i.e., the program code that con-

tains the deadlocks) to prevent us from profiling any event to 

detect the deadlocks. We finally chose to faithfully implement DF 

based on [25] and Calfuzzer [23] (to include all its optimizations) 

instead of modifying Calfuzzer. We note here that according to the 

experiment in [25], DF was able to confirm deadlocks in the Java 

library List (i.e., ArrayList, LinkedList, and Stack) and 

Map (i.e., HashMap, WeakHashMap, LinkedHashMap, Identi-

tyHashMap, and TreeMap) with 100% and 53% probabilities, 

respectively. The original tools of PCT were unavailable for 

downloading at the time of conducting this experiment. Thus, we 

implemented its scheduling algorithms for deadlocks according to 

[9]. We have assured our implementation by a few programs.  

Benchmarks. We selected a suite of widely-used real-world Java 

and C/C++ programs, including JDBC connector [2], SQLite 

[4], and MySQL Database Server [3]. These benchmarks have 

been used in previous deadlock related experiments (e.g., [15] 

[26]) and are available online. All our test cases on these bench-

marks are taken from [26] or their Bugzilla repositories.  

Site. We used the existing Object Frequency Abstraction [16] to 

model the site (of an object or an event). The same site of each 

object or event is used by all techniques (i.e., PCT, MS, DF, CL).  

5.2. Experimental Setup 
We ran the experiment on Ubuntu Linux 10.04 configured with a 

3.16GHz Duo2 processor and 3.25GB physical memory, Open-

JDK 1.6, and GCC 4.4.3. For each benchmark, we used 

MagicLock [15] to generate the set of cycles based on the collected 

execution traces. We then inputted each cycle (and other inputs 

needed by Algorithm 2 if any) to each technique (i.e., PCT, MS, 

DF, and CL) for each test case to run 100 times [15][25]. PCT is 

insensitive to a given cycle. Hence, if a benchmark shows the 

presence of k cycles, we ran PCT for 100  k times.  

Table 1 shows the descriptive statistics of the benchmarks used in 

the experiment. The column "Benchmark", "Bug ID", and "SLOC" 

show the benchmark name, the available bug report number, and 

the size of each benchmark in terms of SLOC, respectively. The 

"Deadlock Description" column shows the functions or oper-

ations that can lead to the corresponding deadlock state. The next 

three columns show the number of threads and the number of 

locks ("# of threads/locks"), the total number of cycles ("# of 

cycles"), and the cycle ID for each real deadlock ("# of real 

deadlocks (cycle ID)"). The last two columns show the num-

ber of data races ("# of data races") detected by LOFT 

[11][14] configured with FastTrack [20] and the number of events 

("# of events") on the predicative runs, respectively.  

5.3. Data Analysis 
Table 2 shows the experimental results for all 11 real deadlocks 

summarized in Table 1. The first column shows the cycle ID 

("Cycle ID"), followed by the number of threads and the number 

of locks ("# of threads/locks in the cycle") and the number 

of constraints ("# of constraints") before and after constraint 

reduction generated by ConLock on each cycle. (Note that all the 

constraints before the nearest scheduling points are not counted.) 

The next three major columns show the confirmation probability 

("Probability"), the number of thrashing ("# of thrashing"), 

and the time consumption ("Time") by each technique to confirm 

each cycle, respectively. Note the time consumption is that con-

sumed by each technique to successfully confirm the correspond-

ing cycle as a real deadlock or the confirmation run has resulted in 

a preset timeout for each run (i.e., 60 seconds) as indicated by "-". 

On cycles c7c11, we cannot precisely collect the normal execu-

tion time and the time needed by PCT because these cycles are on 

MySQL Server which is non-stopping according to the test har-

ness used. We also use "-" to indicate these cases.  

The confirmation probability is computed using the formula: sc  

rt, where sc is the number of runs successfully confirming the 

cycle, and rt is the total number of confirmation runs. Note that 

the number of thrashing occurrence may not be directly related to 

the confirmation probability [25].  

Table 3 lists the total number of real deadlocks in each benchmark 

("# of real deadlocks") and the total number of such dead-

locks confirmed by each technique ("Confirmed") by at least one 

confirmation run.  

Table 1. Descriptive statistics and execution statistics of the benchmarks (Note: * the # of locks is the # of objects) 

Benchmark Bug ID SLOC Deadlock Description 
# of 

threads/ 
locks 

# of  
cycles 

# of real  
deadlocks 
(cycle ID) 

# of  
data 
races 

# of  
events 

Ja
v
a JDBC  

Connector 

5.0  

14927 

36,300 

Connection.prepareStatement() and Statement.close() 3 / 131* 10 1 (c1) 0 5,050 

31136 PreparedStatement.executeQuery() and Connection.close() 3 / 134* 16 1 (c2) 0 5,080 

17709 Statement.executeQuery() and Conenction.prepareStatement() 3 / 134* 18 2 (c3, c4) 0 5,090 

C
/C

+
+

 SQLite 3.3.3 1672 74,000 sqlite3UnixEnterMutex() and sqlite3UnixLeaveMutex() 3 / 3 2 2 (c5, c6) 1 16 

MySQL  

Server 6.0.4  

34567 
1,093,600 

Alter on a temporary table and a non-temporary table 17 / 292 322 4 (c7– c10) 405 15,670 

37080 Insert and Truncate on a same table using falcon engine 17 / 211 373 1 (c11) 241 15,170 
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5.3.1 Effectiveness on Real Deadlocks 

Table 3 shows that PCT only confirmed 4 out of 11 cases as real 

deadlocks; MS and DF both confirmed 6 real deadlocks; and, 

ConLock confirmed all 11 deadlocks.  

Table 2 shows that ConLock confirmed 11 cycles as real deadlocks 

with a probability from 71% to 100%. On confirming cycles c1 to 

c7, ConLock can always confirm each of these cycles as a real 

deadlock in every run; whereas, the other techniques were signifi-

cantly less effective in confirming these cycles as real deadlocks. 

On confirming cycles c8 to c10, all techniques except ConLock 

can only achieve a quite low or zero confirmation probability. 

Specifically, PCT, MS, and DF each had a very low probability to 

confirm 5 to 7 cycles as real deadlocks, and we highlight the cor-

responding cells in Table 2 to ease readers to reference.  

It is worth noting that PCT does not rely on any given cycle to 

detect it as a real deadlock. Hence, the comparison with PCT 
should be considered as for reference only.  

The column entitled "# of thrashing" shows that both MS and 

DF encountered thrashing quite frequently. On confirming each of 

c1c4, both MS and DF each encountered thrashing in 44–58 

runs out of 100 runs. On each of c5c7, they even guided the 

corresponding confirmation runs to experience thrashing with 

very high probabilities. On confirming c8c10, their thrashing 

probabilities are 0.67 to 0.92, respectively. On confirming c11, 

the number of thrashing ( 13 occurrences) seems acceptable.  

The MySQL Server is the largest benchmark we used in the ex-

periment that has 1,093,600 SLOC. On confirming cycles for this 

benchmark, ConLock encountered almost no occurrence of thrash-

ing in the entire experiment except one on confirming c10. How-

ever, MS and DF encountered thrashing much more frequently.  

From Table 2, we observe that the number of constraints after 

reduction ranges from 2 to 6. This is consistent with an empirical 

study result that a concurrency bug usually needs a "short depth" 

to manifest it [32]. We note that even though there were 2 con-

straints for each of 6 cycles, unlike MS and DF, ConLock did not 

suffer from thrashing on confirming these cycles as real dead-

locks.  

5.3.2 Effectiveness on False Positives 

To validate the ability of ConLock on cycles that are false posi-

tives, we sampled 87 cycles out of all 730 cycles for manual veri-

fication. The 87 cycles were sampled by the following rules: (1) 

We selected all 40 (i.e., 9+15+16) remaining cycles on JDBC 

Connector. (2) On SQLite, there is not false cycle. (3) On 

MySQL Server, we selected 1 out of every 15 consecutive cycles 

reported by MagicLock, which resulted in a total of 47 cycles. We 

manually inspected and verified that all these 87 cycles were false 

positives, which had already took us about one whole week to 

complete this manual task. As such we did not manually verify 

whether the remaining 643 cycles are false positives.  

Table 4 shows the mean performance of ConLock on handling the 

87 sampled cycles. The first two columns show the benchmark 

and the bug ID, respectively. The next column ("# of false 

positives inspected") shows the average number of false 

positives reported by ConLock as scheduling violations that we 

manual verified. The last two columns ("Avg. # of thrashing") 

and ("Avg. Time") show the mean number of thrashing and the 

mean time for each technique on confirmation runs, respectively.  

From Table 4, to confirm against cycles that were false positives, 

MS and DF were very likely to result in thrashing in the experi-

Table 3. The # of real deadlocks confirmed by each technique 

Benchmark 
Bug  

ID 

# of real 

deadlocks 

Confirmed 

PCT MS DF CL 

JDBC  

Connector 

5.0 

14927 1 1 1 1 1 

31136 1 0 1 1 1 

17709 2 1 2 2 2 

SQLite 3.3.3 1672 2 2 0 0 2 

MySQL  

Server 6.0.4 

34567 4 0 1 1 4 

37080 1 0 1 1 1 

Total - 11 4 6 6 11 

 

Table 2. Experimental results comparisons among PCT, MagicScheduler (MS), DeadlockFuzzer (DF), and ConLock (CL) 

Cycle  
ID 

# of  
threads / locks 

in the cycle 

# of constraints  
before / after  

reduction 

Probability # of thrashing Time (in seconds) 

PCT MS DF CL PCT MS DF CL Native  PCT MS DF CL 

c1 2 2 2 2 0.13 0.47 0.42 1.00 - 53 58 0 0.93 1.49 1.66 1.74 1.60 

c2 2 5 2 2 0.00 0.43 0.43 1.00 - 57 57 0 0.97 - 1.55 1.51 1.52 

c3 2 4 4 2 0.00 0.56 0.55 1.00 - 44 45 0 0.92 - 1.70 1.49 1.51 

c4 2 4 2 3 0.13 0.51 0.49 1.00 - 49 51 0 0.92 1.43 1.44 1.57 1.52 

c5 2 2 4 3 0.19 0.00 0.00 1.00 - 100 100 0 2.00 2.56 - - 2.06 

c6 2 2 4 3 0.13 0.00 0.00 1.00 - 100 100 0 2.00 2.76 - - 2.07 

c7 2 3 2,100  2 0.00 0.00 0.00 1.00 - 95 100 0 - - - - 2.36 

c8 2 3 2,102 2 0.00 0.16 0.22 0.71 - 78 67 0 - - 2.65 2.15 3.81 

c9 2 3 2,086 3 0.00 0.00 0.00 0.75 - 91 80 0 - - - - 4.62 

c10 2 3 2,088 6 0.00 0.00 0.00 0.88 - 92 78 1 - - - - 2.65 

c11 2 8 58 2 0.00 0.86 0.85 0.90 - 11 13 0 - - 0.91 0.84 0.86 

 

Table 4. Average performance of ConLock on false positives 

(Note: there is no false warning on SQLite; "-" means time out in 

every run. PCT is excluded due to its insensitiveness to a given cycle) 

Benchmark 
Bug  
ID 

# of false 
positives 
inspected 

Avg. # of  
thrashing 

Avg. Time  
(in seconds) 

MS DF CL MS DF CL 

JDBC  

Connector  

5.0 

14927 9 100 100 0 - - 1.66 

31136 15 100 100 0 - - 1.74 

17709 16 100 100 0 - - 1.68 

MySQL  

Server 6.0.4 

34567 22 91 83 2 - - 7.85 

37080 25 95 91 0 - - 5.34 
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ment; whereas ConLock only encountered a small number (e.g., 2 

in the row entitled MySQL Server) of thrashing.1  

5.3.3 Performance 

From the column entitled "Time" in Table 2, the runtime over-

heads incurred by MS, DF, and CL on successful confirmations 

are quite close to one another, and the absolute time needed are all 

practical. Note that there are much more numbers of thrashing 

occurrences incurred by MS and DF than CL on each row, and on 

confirming cycles c5-c6, MS and DF simply suspended some 

threads until the timeout was reached.  

From Table 4, we observe that CL can terminate a confirmation 

run against a false positive much earlier than MS and DF. We also 

found that CL can report a scheduling violation in each case, ex-

cept in one confirmation run where a thrashing has occurred.  

We have experimented to configure CL using the whole set of 

constraints without reduction and scheduling points. However, on 

large-scale programs (i.e., MySQL), this configuraiton encountered 

many thrashing occurrences and incurred significant slowdown.  

5.4. Threats to Validity 
We have not manually validated all identified cycles on MySQL 

Server due to our time and effort constraints. The probability, 

the ratios of thrashing, and the time taken by the techniques may 

be different if different numbers of runs, different benchmarks, 

and tool implementations were used to conduct the experiment. 

Our implementation is based on binary instrumentation. An 

implementation of ConLock through symbolic execution [10][31] 

might produce more effective results (e.g., higher confirmation 

probability) as the constraints can be determined more precisely. 

However, symbolic execution is still not scalable to handle large-

scale programs as noted in [17] that "the largest programs that 

can be symbolically executed today are on the order of thousands 

of lines of code". In our benchmarks, MySQL Server has millions 

of source lines of codes (i.e., SLOC), which is far out of the 

ability of state-of-the-art symbolic execution engines to handle.  

6. RELATED WORK 
Many predictive deadlock detection techniques [5][12][18][24] 

[36][40][43] have been proposed. MagicLock [12][15] is the state-

of-the-art dynamic technique. They all suffer from reporting false 

positives. Real deadlocks of them should be isolated. Kahlon et al. 

[28] proposed a static theoretical model for analysis of concurren-

cy bugs in programs with well nested lock acquisitions and re-

leases. However, the lock acquisitions and releases in modern 

real-world programs (e.g., Java and C/C++) are usually not well-

nested and there exists a huge gap between static models and the 

modern programming languages [21]. Hence, unlike ConLock, 

their model cannot handle the occurrence of thrashing. Marino et 

al. [35] proposed a static approach for detecting deadlocks in ob-

ject-oriented programs with data-centric synchronizations. Their 

approach needs manual annotations to identify the ordering be-

tween atomic-sets. ConLock is a fully automated dynamic ap-

proach.  

DeadlockFuzzer [25] is the first technique that proposes to use the 

lock dependencies (i.e., a variant of event in this paper) to detect 

cycles and to schedule the program execution to confirm cycles as 
 

1 We note that on the remaining 643 cycles (which we have not manually 

verified them to be false positives), ConLock reported scheduling viola-

tions in at least 60 runs out of 100 on each cycle, and did not report any 
deadlock occurrence on checking them in any confirmation run. 

real deadlocks. MagicScheduler (the third phase of MagicFuzzer 

[15]) advances DeadlockFuzzer by allowing multiple cycles to be 

confirmed in the same run. We have intensively reviewed these 

two schedulers and compared them with our ConLock technique.  

In [13], we proposed ASN, the first constraint based real deadlock 

confirmation technique. ASN extracts constraints from the given 

cycles and formulates them as barriers. However, ASN cannot 

handle false positives. ConLock is able to detect scheduling viola-

tion to terminate an execution with respect to false positives; on 

real deadlocks, like ASN, it is also able to confirm them with high 

probabilities and low slowdown overheads.  

Java Path Finder (JPF) has the potential to explore all possible 

schedules from a single input. These schedules can be integrated 

with a deadlock detector to find deadlocks. However, these tech-

niques are unable to handle large-scale multithreaded programs 

(e.g., MySQL) even with the use of symbolic execution [17]. Syn-

chronization coverage techniques [22][39][44] may explore mul-

tiple schedules of the same input, but they do not handle infeasi-

ble coverage requirements adequately.  

Dimmunix [26][27] prevents the re-occurrence of each previously 

occurred deadlock through online monitoring. Gadara [42] inserts 

deadlock avoidance code at the gate position of each deadlock 

warning via static analysis and then prevents deadlock occurrence 

at runtime. Nir-Buchbinder et al. [37] used an execution serializa-

tion strategy for deadlock healing. These techniques develop and 

utilize no constraints among different threads and do not choose 

any nearest scheduling point (needed by ConLock). Besides, Dim-

munix and Gadara suffer from false positives; deadlocking healing 

may introduce new deadlocks [37].  

ESD [45] synthesizes an execution from a core dump of a previ-

ous execution with deadlock occurrence. ConLock can take a cycle 

(irrespective of whether it is a deadlock) as an input. Both Con-

Test [19] and CTrigger [38] inject noise to a run to increase the 

probability to trigger concurrency bugs. ConLock is not complete-

ly an active randomized scheduler, and needs not to adopt such a 

strategy. PENELOPE [41] also synthesizes an execution and uses 

a scheduling strategy similar to DeadlockFuzzer and MagicSched-

uler to detect real atomicity violations. It does not use constraints 

to avoid thrashing. ConLock uses constraints and scheduling points 

and is able to detect false positives.  

Replay techniques (e.g., [6]) are able to reproduce runs that con-

tain concurrency bugs. However, they are unable to turn a run 

containing a suggested cycle into a run containing a real deadlock.  

7. CONCLUSION 
ConLock analyzes a given execution trace and a cycle on this trace 

to generate a set of constraints and a set of nearest scheduling 

points. It schedules a confirmation run with the aim to not violate 

a reduced set of constraints from the chosen nearest scheduling 

points. ConLock not only confirms real deadlocks, but also reports 

scheduling violations if the given cycles are false positives. The 

experimental results show that ConLock can be both effective and 

efficient. We will generalize ConLock to confirm other types of 

concurrency bugs effectively and efficiently in the future. 
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