

Fixing Deadlocks via Lock Pre-Acquisitions

Yan Cai† and Lingwei Cao

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{ycai.mail, lingweicao}@gmail.com

ABSTRACT

Manual deadlock fixing is error-prone and time-consuming. Exist-

ing generic approach (GA) simply inserts gate locks to fix dead-

locks by serializing executions, which could introduce various
new deadlocks and incur high runtime overhead. We propose a

novel approach DFixer to fix deadlocks without introducing any

new deadlocks by design. DFixer only selects one thread of a

deadlock to pre-acquire a lock w together with another lock h,
where before fixing, the deadlock occurs when the thread holds

lock h and waits for lock w. As such, DFixer eliminates a hold-

and-wait necessary condition, preventing the deadlock from oc-
curring. The thread performing pre-acquisition is carefully select-
ed such that no other synchronization exists in between the two

original acquisitions. Otherwise, DFixer further introduces a con-

text-aware conditional protected by above lock w to guarantee the

correctness of DFixer. The evaluation is on 20 deadlocks, includ-

ing 17 from widely-used real-world C/C++ programs. It shows

that DFixer successfully fixed all deadlocks. Whereas GA intro-

duced 9 new deadlocks; a latest work Grail failed to fix 8 dead-

locks and introduced 3 new deadlocks on others. On average,

DFixer incurred only 2.1% overhead, where GA and Grail in-
curred 15.8% and 11.5% overhead, respectively.

CCS Concepts

• Software and its engineering➝Deadlocks • Software and its

engineering➝Software testing and debugging.

Keywords

Deadlock, fixing, multithreaded program, lock order

1. INTRODUCTION
Deadlock [39] occurrence prevents a program execution from
making further progress. In general, there are two kinds of dead-
locks [28]: resource deadlock [7][29] and communication dead-
lock [28][34]. A resource deadlock occurs when a set of threads
are holding some locks and are waiting for the other locks held by
the threads in the same set. A communication deadlock occurs
when some threads wait for some messages but they never receive
these messages. In this paper, we focus on fixing resource dead-
locks as two kinds of deadlocks are caused by different mecha-
nisms and cannot be handled by the same technique [28].

Manual bug fixing not only takes a long time [26] but is also error
prone [60]. Recently, automated bug fixing become popular [19]
[20][21][33][44][57][64]. However, almost all existing techniques
on concurrency bugs fixing insert new locks (known as gate locks)
statically or dynamically to serialize all executions of threads

involved in a concurrency bug, including AFix [26][27], Axis [36],

Grail [37], Gadara [55], and [42]. By introducing new locks, new

deadlocks may also be introduced [36][37][42]. Even manual
fixing may also introduce deadlocks (e.g., 16.4% incorrect fixing

indeed introduced new deadlocks [60]). Axis [36] further iterative-

ly fixes introduced deadlocks by adding more new gate locks.

Grail [37] adopts Petri-net analysis to eliminate such introduced

deadlocks [55] which, however, is only applicable to deadlocks
with two threads [37].

Introducing gate locks might be necessary to fix other concurren-
cy bugs except deadlocks as fixing the former requires serializa-
tion of memory accesses from all threads of such bugs. However,
deadlock is a kind of high level concurrency bugs caused by in-
correct synchronization orders; whereas others (e.g., atomicity
violations) are usually caused by missing synchronizations to
protect the involved memory accesses from occurring in wrong
orders. For example, many techniques differentiate concurrency
bugs as deadlock bugs and non-deadlock bugs [33][39][43][54]
[62] as they require different techniques to detect and fix.

ConcBugAssist [33] focuses on data races, atomicity violations,

and order violations. Even among above listed fixing techniques,

AFix cannot fix deadlocks [26][37] and Grail only targets to fix

deadlocks of two threads which further uses Petri-net analysis to
avoid introducing new deadlocks.

In this paper, we propose a novel strategy known as DFixer to-

ward deadlock fixing. The key insight of DFixer is that a deadlock

can be fixed by breaking a necessary condition for this deadlock
to occur: the hold-and-wait condition of one thread involved in
this deadlock. Suppose that if a deadlock D occurs, one of its

thread t is waiting for a lock (denoted by wLock of thread t)

while holding another lock (denoted by hLock of thread t) and

this hLock is waited by another thread in the same deadlock D.

Our fixing is, for the thread t of the deadlock D, its wLock should
be acquired (i.e., pre-acquired) together with its acquisition on the

hLock. This fixing strategy exactly breaks the hold-and-wait con-

dition of a thread (e.g., holding a hLock and waiting for a wLock

by above thread t) in a deadlock. Hence DFixer is able to fix the

deadlock. The advantages of this strategy are that (1) it does not

introduce any new lock by its design; (2) if a thread is properly
selected (see Section 3) to perform its pre-acquisition on its

wLock, no new deadlock is introduced; and (3) it exactly fixes a
deadlock without serializing the executions from other threads
that execute the same program code but do not participate in the
deadlock, avoiding performance downgrade.

We have implemented DFixer for C/C++ programs and evaluated
it on 20 deadlocks, including 17 real-world deadlocks and 13 of

them are from three versions of widely-used large-scale MySQL

database. We compared DFixer with the generic approach (denot-

† Corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be hon-

ored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permis-

sions@acm.org.
ICSE '16, May 14-22, 2016, Austin, TX, USA

© 2016 ACM. ISBN 978-1-4503-3900-1/16/05…$15.00

DOI: http://dx.doi.org/10.1145/2884781.2884819

ed by GA that fixes a deadlock by inserting gate locks) and a

latest concurrency bug fixing technique Grail (that is based on

GA but inserts context-aware gate locks). The experiment result

shows that DFixer was able to fix all these deadlocks without

introducing any new deadlock; whereas GA fixed all deadlocks

but also introduced 9 new deadlocks, and Grail not only failed to

fix 8 deadlocks but also introduced 3 deadlocks on fixing other

deadlocks. After fixing, DFixer incurred the least overhead (i.e.,

about 2% on average) while both GA and Grail incurred a signifi-

cantly larger overhead (i.e., 15.8% and 11.5%, respectively).

The main contributions of this paper are as follows:

 It proposes a novel deadlock fixing strategy DFixer that in-
troduces neither new locks nor new deadlocks.

 DFixer fixes a deadlock by selecting only one thread to pre-
acquire a lock. This allows parallel executions of threads not
from the deadlocks, avoiding performance downgrade.

 We implemented DFixer as a prototype tool (see

http://lcs.ios.ac.cn/~yancai/dfixer) to evaluate DFixer with

comparison to the generic approach GA and a latest tech-

nique Grail. The experiment results demonstrate the effec-

tiveness and efficiency of DFixer compared to GA and Grail.

2. BACKGROUND AND MOTIVATIONS

2.1 Preliminaries
A deadlock occurrence involves a subset of the following events:

 acq(t, m): A thread t acquires a lock m.

 tryAcq(t, m): A thread t tries to acquire a lock m and it re-
turns true if this try succeeds or false otherwise.

 rel(t, m): A thread t releases a lock m.

 wait(t, m): A thread t firstly releases a lock m and then waits
to acquire it again on a notification (i.e., a communication
message) from a different thread (see below).

 notify(t, m): A thread t sends a notification to a different

thread t' that is blocked on wait(t', m). If there is no such a

thread t', the notification is discarded.

In the rest of this paper, we may not mention thread t or even lock

m when we discuss above kinds of events if they are implied by
the context (e.g., we may refer to acq(t, m) as acq(m) or acq()).

If a thread firstly acquires a lock m and then acquires another lock

n before releasing lock m, we say there is a lock order from lock m

to lock n, denoted by m ↝ n. If there exists another lock order n ↝

m (or n ↝ … ↝ m for multiple threads), we say it is a reversed lock

order of the lock order m ↝ n. Existence of a lock order and its
reversed lock order indicates a potential deadlock depending on
whether they can be formed at the same time in an execution;
however, the absence of a lock order and its reversed lock order
indicates the absence of any deadlock on these two locks.

To simply our analysis on lock orders, we assume that "a thread
can only release the lock that it acquired last" [31]. Or at least, we

assume this kind of lock acquisitions within deadlocks.

Formally, we adopt the lock dependency relation [12][29] to de-

fine deadlocks. A lock dependency  = t, w, h, L denotes that a

thread t acquires a lock w while holding lock h and all locks in set

L. Besides, each event occurs at a program location which is re-

ferred to as a Site. A sequence of k (k > 1) dependencies D = 1,

2 … k, where i = ti, wi, hi, Li, forms a resource deadlock, if:

(1) for 1 ≤ i ≤ k – 1, wi  Li, wi = hi+1 (wk = h1), and,

(2) for 1 ≤ i < j ≤ k, ti ≠ tj, wi ≠ wj, and Li ∩ Lj = ∅.

The above definition describes that a set of threads wait mutually
for a set of locks that are held by other threads in the same set.

That is, each lock dependency i is a necessary condition for a
deadlock D to occur. For example, the deadlock shown in Figure

1(a) is described as D1 = t1, n, m, {}, t2, m, n, {}.

For a lock dependency  = t, w, h, L of a deadlock D, we refer to

lock w as a wLock of thread t and lock h as a hLock of thread t
as when deadlock D occurs, thread t is waiting on lock w while

holding lock h. For example, on above deadlock D1 in Figure

1(a), for thread t1, its hLock and wLock are lock m and lock n,

respectively; and for thread t2, its hLock and wLock are lock n
and lock m, respectively.

2.2 Generic Approach
A generic approach (GA) to deadlock fixing serializes the execu-

tions of all threads in the deadlock by inserting a gate lock. GA is

widely adopted by existing works and is also adopted to fix other
concurrency bugs [26][27][36][37][55][42]. As discussed in Sec-

tion 1, GA could fix a deadlock; but it may easily introduce vari-

ous new resource or communication deadlocks, and may further
reduce the parallelism of executions from different threads due to
over synchronization (i.e., introducing performance bugs [25]).

We firstly illustrate GA on three deadlocks D1 to D3 as well as

how it introduces various new deadlocks. For simplicity, we may
not show lock releases if they are not related to our discussion.

Deadlock D1: Figure 1(a) shows a program P1 with a deadlock D1

on two threads t1 and t2 as they acquire two locks m and n in re-
versing lock orders (denoted by two dotted arrows). To fix dead-

lock D1, GA inserts a gate lock G to prevent two threads from

acquiring two locks m and n concurrently as shown in Figure 1(b).

GA correctly fixes D1.

Deadlock D2: Figure 1(c) shows a program P2 with three threads

t1 to t3 executing lock acquisitions and releases on locks m and n

in three functions f1() to f3(), respectively. Program P2 contains a

deadlock D2 between threads t1 and t2 if the value of need_m at

site s22 is true. (The variable need_m is used to prevent a second
lock acquisition by thread t3 via its call to f2() at site s33).

Figure 1(d) shows the program fixed by GA on deadlock D2. Af-
ter fixing, deadlock D2 never occurs due to the insertion of a gate

lock G. However, considering three threads together, we could

observe that a new deadlock is introduced between threads t1 and

t3: right after thread t1 acquires lock G and thread t3 acquires lock

m (at site s31), thread t1 cannot further acquire lock m (at site s11)

as which is held by thread t3; next, thread t3 cannot acquire lock

G (at site sGa2) on its call to function f2() (at site s33) as lock G is

held by thread t1. As a result, GA fixes deadlock D2 but introduc-

es a new resource deadlock on locks G and m.

Deadlock D3: Figure 1(e) shows a program P3 with two threads t1
and t2 to acquire locks m and n. Similar to program P1, program
P3 contains a deadlock D3. The difference is that program P3 con-

tains a pair of events wait(n) and notify(n) at sites s22 and s13,
respectively. However, the deadlock D3 is not related to this pair

of events. It occurs if (1) thread t1 acquires lock m and is about to

acquire lock n (at site s12) and (2) thread t2 acquires lock n and is

about to acquire lock m at site s23 without executing wait(n) at site
s22 (i.e., the value of v is a false).

Figure 1(f) shows the program fixed by GA on deadlock D3. After

fixing, deadlock D3 never occurs. However, a new communication

deadlock is introduced: if thread t2 acquires both locks G and n
and then executes wait(n) (i.e., the value of v is true), then the
corresponding notification message will never be received by

thread t2. It is because thread t1 is prevented from sending out the

message at site s13 by executing notify(n) at site sGa1, as lock G is

already held by thread t2. As a result, GA fixes deadlock D3 but
introduces a new communication deadlock.

Besides introducing new deadlocks, GA also introduces perfor-
mance bugs because it inserts a global lock as a gate lock. For

example, on D1, if the two locks m and n of thread t1 are different

from the locks m and n of thread t2, no deadlock occurs; hence,
the two thread could execute in parallel. However, after fixing by

GA, the two threads always execute sequentially due to a global

gate lock, incurring runtime overhead.

The latest work Grail [37] follows GA approach, but inserts a

context-aware gate lock (determined by both locks m and n). Thus,

Grail does not reduce parallelism if no deadlock may occur. How-

ever, as Grail still adopts the gate lock strategy, it cannot avoid

introducing new deadlocks like GA (e.g., on fixing deadlock D2

and D3); hence, Grail has to rely on other analyses (e.g., Petri-net
model) to further prevent newly introduced deadlocks. Besides, as

Grail needs to compute a context-aware lock involving all locks

of a deadlock [37], it may fail on complex programs as some
locks cannot be determined before some statements are executed.

Due to these reasons, Grail failed to fix 8 out of 20 deadlocks in
our experiment (in Section 5).

3. OUR APPROACH

3.1 Rationales and Overview of DFixer
GA fixes a deadlock by inserting new gate locks to serialize exe-

cutions of the targeted deadlocks. Introducing new locks must
introduce new lock orders from the introduced gate locks to the
locks involved in targeted deadlocks. These newly introduced
lock orders may form new deadlocks if their reversed lock orders
are also introduced. For example, on fixing deadlock D2 in Figure

1(c), the two newly introduced lock orders G ↝ m and m ↝ G form

a new deadlock. Besides, the introduced new global locks are
inserted to prevent all threads of a deadlock from executing con-
currently, which may (1) block communication messages from
sending out (e.g., on fixing deadlock D3) or (2) introduce perfor-
mance bugs by preventing other threads from executing the same
program code concurrently.

Therefore, the key insights of deadlock fixing strategy are (1) to
avoid introducing new lock orders and (2) to fix the executions
exactly involved in the targeted deadlocks, but not to globally
serialize all the involved program code. Based on above insights,

we propose a novel strategy to fix deadlocks, known as DFixer.

We note that a necessary condition for a deadlock D to occur is

that each thread of D has to hold a hLock and then waits for a

wLock (i.e., the hold-and-wait condition). DFixer exactly breaks

such a necessary condition of one thread by fixing this thread to

acquire its wLock together with its hLock, denoted by

acq(hLock&wLock) which is formally defined in Section 3.2.1.

That is, the selected thread by DFixer should either acquire the

two locks at the same time or not acquire any one of them, break-
ing a hold-and-wait condition of the thread. We refer to this early

acquisition by a selected thread on its wLock together with the
acquisition on its hLock as a lock pre-acquisition.

For example, Figure 2 shows program P1 (see Figure 1) with

deadlock D1 fixed by DFixer. There are two ways for DFixer to

fix deadlock D1: (1) thread t1 pre-acquires its wLock n (i.e.,

acq(m&n)), and (2) thread t2 pre-acquires its wLock m (i.e.,

acq(n&m), where the two pre-acquisitions are highlighted and also
depicted by from the original acquisition on the corre-
sponding wLock to its pre-acquisition.

However, not all deadlocks could be fixed like the way to fix D1.

For example, if there is another lock acquisition acq(p) in be-

tween acq(m) and acq(n) of thread t1 in P1, pre-acquisition on

lock n also introduces a new lock order n ↝ q. Hence, such other
synchronization events may also introduce various new deadlocks.
To address such challenge, we carefully analyze these cases and
further propose context-aware conditionals to guarantee the fixing

correctness of DFixer via pre-acquisition.

Overall, the novelties of DFixer are: (1) neither new lock nor new
lock order is introduced, introducing no resource deadlocks. (2)

Thread t1 Thread t2

s11

s12
s13
s14

acq(m&n)

acq(n)
rel(n)
rel(m)

s21

s22
s23
s24

acq(n)

acq(m)
rel(m)

rel(n)

(b) Fixing B: pre-acquisition on m by t2.

Fixed Program P1
Thread t1 Thread t2

s11

s12
s13
s14

acq(m)

acq(n)
rel(n)
rel(m)

s21

s22
s23
s24

acq(n&m)

acq(m)
rel(m)
rel(n)

(a) Fixing A: pre-acquisition on n by t1.
Figure 2. Two ways to fix deadlock D1 in program P1 by DFixer.

Thread t1 Thread t2

s11
s12
s13

acq(m)
acq(n)
notify(n)

s21
s22
s23

acq(n)
if(v) wait(n)
acq(m)

(e) A deadlock D3.

Thread t1 Thread t2

sGa1
s11
s12
s13
sGr1

acq(G)
acq(m)
acq(n)
notify(n)

rel(G)

sGa2
s21
s22
s23
sGr2

acq(G)
acq(n)
if(v) wait(n)
acq(m)

rel(G)

(f) A fix to D3 by GA that introduces a new communication deadlock.



Program P3

Thread t1 Thread t2
s11

s12

acq(m)

acq(n)

s21

s22

acq(n)

acq(m)

Thread t1 Thread t2
sGa1
s11
s12
sGr1

acq(G)
acq(m)
acq(n)

rel(G)

sGa2
s21
s22
sGr2

acq(G)
acq(n)
acq(m)

rel(G)

(a) A deadlock D1.

(b) A correct fix to D1 by GA.

Program P1

Thread t1 Thread t2 Thread t3

s11
s12

Func f1()
{
acq(m)
acq(n)

}

s21
s22

Func f2()
{
acq(n)
if(need_m)

acq(m)
}

s31
s32
s33
s34
s35

Func f3()
{
acq(m)
need_m = false
call f2()
need_m = true
rel(m)

}(c) A deadlock D2.

(d) A fix to D2 by GA that introduces a new resource deadlock.

Thread t1 Thread t2 Thread t3

sGa1
s11
s12
sGr1

Func f1()
{
acq(G)
acq(m)
acq(n)

rel(G)
}

sGa2
s21
s22

sGr2

Func f2()
{
acq(G)
acq(n)
if(need_m)

acq(m)
rel(G)
}

s31
s32
s33
s34
s35

Func f3()
{
acq(m)
need_m = false
call f2()
need_m = true
rel(m)

}

Program P2

Simplified from a MySQL deadlock

with BugID = 62614.

Simplified from a MySQL deadlock with

Bug ID = 60682.
Figure 1. Three deadlocks (D1 to D3) and their fixing by GA.

DFixer only selects one thread to pre-acquire a lock and if any

conditionals are also introduced, they are made to be context-

aware (i.e., specified by both hLock and wLock). This allows all
other threads to execute concurrently (if they are not involved in
deadlock) and to execute without preventing communications
from sending out, introducing no communication deadlocks.

3.2 Lock Pre-acquisitions and Context-aware

Conditionals
In this subsection, suppose that for each thread in a deadlock, the

acquisition on its hLock dominates its acquisition on wLock (i.e.,

if acq(hLock) is executed, acq(wLock) must be executed; and if
not, the latter is not executed). Section 3.3 discusses how to han-
dle the opposite cases.

3.2.1 Implement Lock Pre-acquisition
DFixer requires that the two locks wLock (w for short) and hLock

(h for short) of a selected thread should be acquired at the same
time. However, if the two statements are simply placed together

(i.e., "acq(h); acq(w)" or "acq(w); acq(h)"), there always exists a

lock order between two acquisitions (i.e., h ↝ w or w ↝ h, respec-

tively), which either is the same as that before fixing (i.e., h ↝ w)
or may introduce a new deadlock as a new lock order is intro-

duced (i.e., w ↝ h).

To eliminate both lock orders, the two acquisitions must be per-
formed at the same time. This could be implemented by re-writing
locking mechanism. However, we propose to use the existing

locking primitive tryAcq() (e.g., pthread_mutex_trylock()

from Pthread) to implement acq(h&w) as follows:

acq(h&w) =
while((tryAcq(h) && tryAcq(w)) == false)
{ rel(h); rel(w); }

That is, if a thread cannot acquire both locks, it immediately re-
leases the acquired one if any. Although this implementation still

introduces a lock order h ↝ w which, however, does not introduce
any new deadlocks even if there exists a reversed lock order (i.e.,

w ↝ h). The reason is that the thread involved in above pre-

acquisition immediately releases its lock h, which never results in

a hold-and-wait condition on locks h and w. From this viewpoint
by not introducing any deadlock, we regard that this implementa-

tion does not introduce a lock order h ↝ w. In the rest of this pa-

per, we directly use "acq(h&w)" to denote the pre-acquisition on
a wLock w together with a hLock h.

Note that tryAcq() may introduce livelocks [35]. In theory, such a
livelock cannot be eliminated. In practice, it can be easily resolved
by inserting a random sleep (e.g., from 0 to 5 milliseconds as
adopted in our experiment) right after two release operations.

3.2.2 Avoid Introducing Resource Deadlocks
Simply let a thread to pre-acquire its wlock may also introduce
new (resource) deadlocks as it may introduce new lock orders. Let
us consider a general case. Suppose for a deadlock D shown in

Figure 3(a), thread t1 is selected to pre-acquire its lock w together
with its lock h (i.e., acq(h&w)) as shown in Figure 3(b).

After pre-acquisition, a challenge is that: if there exists other lock

acquisitions, say on a lock p, between the original two acquisi-

tions, a new lock order w ↝ p is then introduced as denoted in a

dotted arrow in Figure 3(b). For such a lock order w ↝ p, if its

reversed lock order p ↝ w also exists (e.g., Figure 3(c)), a new
deadlock is introduced.

Therefore, a straightforward approach for DFixer is to only select

a thread of a deadlock such that, in between its acq(h) and acq(w),

no other lock acquisition exists. For such a thread, its pre-

acquisition on w not only fixes the deadlock but also introduces no
new lock orders, hence introducing no new deadlocks.

However, above approach may fail on fixing some deadlocks as,
for a deadlock, all its threads may acquire other locks in between
their two acquisitions. We further propose context-aware condi-

tionals (specified by both hLock and wLock) to handle such cases
where a thread of a deadlock acquires other locks in between its
two acquisitions, together with lock pre-acquisition. This fixing is
shown in Figure 3(d) where the original deadlock is the one in
Figure 3(a). Our proposal is, after pre-acquisition, if there is any

other lock acquisition, say acq(p):

(1) DFixer firstly releases the pre-acquired lock w right before

the acquisition on lock p and then re-acquires lock w togeth-

er with the acquisition on lock p (i.e., from "acq(p)" to

"rel(w); acq(p&w)").

(2) DFixer further guarantees that the second thread of the

deadlock could not acquire lock w if the thread in (1) has re-

leased its pre-acquired lock w but not re-acquired it together
with lock p.

The first step guarantees no new lock order w ↝ p is introduced.

However, the re-acquisition on lock w of acq(p&w) recovers the

lock order h ↝ w (formed by "acq(h&w) … rel(w); acq(p&w)"),

failing to fix the deadlock considering its reversed lock order w ↝

h from the second thread of the deadlock (or w ↝ ... ↝ h if the

deadlock contains more than two threads). Therefore, DFixer has

to guarantee that such a lock order h ↝ w does not form a dead-

lock from the other thread that forms the lock order w ↝ h. This is
guaranteed in (2) that prevents two lock orders forming at the
same time. This guarantee could be implemented by adding new
locking mechanism or even communications (e.g., a pair of

wait() and notify() primitives). However, this makes DFixer
much more complex.

We then introduce a context-aware conditional vhw, specified by

both hLock h and wLock w, to provide the guarantee. Specifical-

ly, as shown in Figure 3(d), thread t1 sets a vhw to be true right

before it releases its pre-acquired lock w and recovers it to be false

after it re-acquires lock w. For thread t2, after it acquires lock w

(i.e., the hLock of thread t2), it checks whether thread t1 requires

to re-acquire lock w (i.e., vhw = true?); if so, it does not actually

acquire lock w but waits until vhw becomes false. As such, although

thread t1 forms a lock order h ↝ w, it cannot be formed with the

lock order w ↝ h by thread t2 at the same time. Besides, this con-

ditional does not prevent either thread t2 acquiring lock w at other

sites or other threads acquiring lock w. Note that, this conditional
is different from an ad-lock synchronization [59] as accesses to
vhw are always protected by the same lock w.

The cases where more than one other lock acquisitions exist in
between acq(h) and acq(w) are handled in the same way.

Thread t1
acq(h)
acq(p)
acq(w)

Thread t1
acq(h&w)
acq(p)
acq(w)

(a) (b)

Pre-acquisition

on lock w:

Thread t2
acq(w)
acq(h)

Thread t'
acq(p)
acq(w)A new deadlock

is introduced.

(c)

(d)

Thread t1
acq(h&w)

vhw=true
rel(w); acq(p&w);
vhw=false
acq(w)

Thread t2
while(acq(w))
{
if(vhw) rel(w);
else break;

}
acq(h)

vhw=false

Figure 3. Fixing via lock pre-acquisition fails (above) and a condition-

al is required (below).

Discussion. To avoid introducing new deadlocks, DFixer fixes a

given thread via lock pre-acquisitions and context-aware condi-
tionals. A question is that: without any pre-acquisition, could a
deadlock be fixed directly by any conditionals alone? We believe
a deadlock could be fixed by conditionals only. However, it may
involve complex control logic among two threads (e.g., consider-
ing protections on conditionals, two cases considering which
thread firstly acquire their first lock); otherwise, hangs (like dead-
lock) may occur, prevent the threads from making any progress.

For example, Figure 4 shows that a conditional vhw is used to al-
low only one thread of a deadlock (e.g., deadlock D2 in Figure
1(c)) to execute acquisitions on two locks at a time.

Then, a hang occurs as follows: after thread t1 changes vhw to be

true and thread t3 acquires lock m, t1 cannot acquire m at site s11

and thread t3 always executes while(vhw) after it calls f2() at site
s33. For deadlock D3, if a conditional is applied to fix it, the result
is similar as a gate lock is applied (i.e., a communication deadlock
is introduced). Besides, the conditional has to be protected by a
common lock. Introducing such a lock further brings a potential to
introduce deadlocks; whereas, our conditional is rightly protected
by the existing wLock of a selected thread.

3.2.3 Avoid Introducing Communication Deadlocks
Although DFixer aims to fix resource deadlocks, it should intro-

duce neither resource deadlocks nor communication deadlocks. If

DFixer fixes a deadlock without considering communications

among all threads, a communication deadlock may also be intro-
duced as shown in Figure 5. Figure 5(a) shows a general case: a

thread t2 (we use the symbol "t2" not "t1" to be consistent with

deadlock D3 in Figure 1) of a deadlock executes a wait(k) be-

tween its two acquisitions (where lock k is acquired before

wait(k) and may be the same as lock h). After pre-acquisition (as
shown in Figure 5(b)), a communication deadlock occurs if (1)

thread t2 is blocked on executing wait(k) while it is holding lock

w and (2) a thread t' that should execute notify(k) is then

blocked as it cannot acquire lock w as shown in Figure 5(c). The

cases where a notify() eixsts is similar; we only discuss wait()
below as its solution also applies to cases of notify().

Fortunately, our solution in the last subsection (to address other

lock acquisitions acq(p)) also applies to the existence of above

wait(k) in Figure 5(a). This is because an event wait(k) consists

of three setps: release lock k (denoted by relw(k)), wait for a

message related to lock k, and re-acquire lock k (denoted by

acqw(k)). As relw(k) does not produce lock orders, we do not
consider it. However, the wait requires that pre-acquisition on
lock w should not prevent other threads sending a message via

notify(k); and acqw(k) requires that no new lock order from the

pre-acquired lock w is introduced. Hence, in both cases, the pre-

acquired lock w should be released, which is similar with the case
on avoiding introducing resource deadlocks and our above
solution also applies to this case.

The only difference between acq(k) and acqw(k) of a wait(k) is

that, the latter is implicitly included in the wait(k). That is, right

after wait(k), the re-acquisition on lock k (i.e., acqw(k)) has been

done. Hence, we insert a rel(k) right after a wait(k) and then let
the thread acquire both locks together:

wait(k) and acq(w) =

wait(k); rel(k); acq(k&w);

However, as we mentioned before, the lock k in wait(k) might be

the lock h. This does not affect the fixing correctness of DFixer

except one special case: the corresponding notify(k) (i.e., noti-
fy(h)) is expected to be executed by thread t1 (i.e., thread t1 is

the same as thread t') in between its acquisition and release on

lock w (i.e., hLock of thread t1). This case is actually the deadlock
D3 in Figure 1. For this case, above fixing fails as three threads (if
they are likely to form a deadlock) are expected to execute by
following the below orders according to our solution, resulting a
controdiction:

1) Thread t2 pre-acquires lock w together with lock h and then

releases lock h right before wait(k).

2) thread t' firstly acquires lock w (acq(w)) and then executes

notify(k).

3) thread t2 re-acquires lock w together with lock k (acq(w&k)).
4) thread t1 (i.e., thread t') should acquire lock w (acq(w)).

When thread t' is actually the thread t1 and the lock k is the lock

h, their acquisitions on lock w (highlighted in 2) and 4)) are the
same one, making above execution order infeasible. Actually,
after executing the first three steps, there is no fourth step as it is
included in step 2). As the step 4) is forced by our context-aware
conditional, we then remove this conditional. That is, to fix
deadlocks of this special case, the pre-acquisition alone is enough
(on the thread where a wait(k) exists and lock k is its hLock).

Figure 6 shows fixing of deadlock D3 on program P3 if thread t2
is selected. This fixing only involves pre-acquisition of wLock m.

3.2.4 Fix Multiple Deadlocks
A program may contain multiple deadlocks. These deadlocks

could be incrementally (i.e., one by one) fixed by DFixer.

However, DFixer could also be optimized to fix multiple

deadlocks by selecting a shared thread, if these deadlocks share
the thread as well as its two acquisitions (i.e., share a lock
dependency).

3.3 Handle Program Control Flows
In Section 3.2, we assume that acq(h) dominates its acq(w) for a

thread selected by DFixer. However, this is not always the case

due to the complexity of program controls (e.g., an early return

may exist in between acq(h) and acq(w)).

There are five basic cases according to whether the code lines

between two acquisitions on hLock and wLock of a thread involve
(1) single or multiple entries and single or multiple exits and (2)
loop structures, as shown in Figure 7. To ease our following

Thread t2
acq(h)
wait(k)
acq(w)

Thread t2
acq(h&w)
wait(k)

acq(w)

(a) (b)

Thread t'

acq(k)
acq(w)
notify(k)

(c)

Pre-acq.
on lock w:

A new
deadlock is
introduced.

Figure 5. A communication deadlock introduced after pre-acquisition.

Thread t1 Thread t2 Thread t3

s11
s12

Func f1()
{
while(vhw);
vhw=true
acq(m)
acq(n)
vhw=false

}

s21

s22

Func f2()
{
while(vhw);
vhw=true
acq(n)
if(need_M) acq(m)
vhw=false

}

s31
s32
s33
s34
s35

Func f3()
{
acq(m)
need_M = false
call f2()
need_M = true
rel(m)

}
Figure 4. Deadlock fixing via a conditional without pre-acquisitions.

Thread t1 Thread t2

s11
s12
s15

acq(m)
acq(n)
notify(n)

s21
s22
s23

acq(n&m)
if(v) wait(n)
acq(m)

Fixed Program P3

Figure 6. Fixing on deadlock D3 by DFixer.

presentation, we suppose that the two locks h and w are the hLock

and the wLock of a selected thread, respectively.

 Single-entry and Single-exit. In this case, DFixer directly in-
serts an acq(w) into the pre-acquisition block, as the execution
of acq (h) always results in the execution of the original acq
(w); and the original acq(w) should be removed.

 Single-entry and Multiple-exits. If there are more than one
branch between the two lock acquisitions, DFixer has to insert
a lock release statement (i.e., rel(w)) at the beginning of all
other branches that do not contain the original acq(w).

 Multiple-entries and Single-exit. If there are multiple entries
between the two lock acquisitions (e.g., acq(w) and acq(h) are
in two different functions), DFixer adds a lock w specified
conditional (i.e., vw in Figure 7(c)) to indicate whether the
lock w is previously acquired at its pre-acquisition site.

 Multiple-entries and Multiple-exits. This case is a combina-
tion of the last two cases. Therefore, DFixer not only inserts
release statements on lock w to all other branches not contain-
ing the original acq(w), but also inserts a lock w specified
conditional. For this case, the inserted release statements
should also be executed conditionally.

 Loop structure. We firstly note that if the original acq(w) is
within a loop, its corresponding rel(w) should also be in the
same loop; otherwise, a self-deadlock exists. As DFixer re-
quires that the lock w should be pre-acquired, it has to take the
acquisition on lock w out of the loop body. Otherwise, the
originally protected executions become unprotected during
the second and later executions of the loop.

Among our example deadlocks, only deadlock D2 involves multi-

ple-exits on thread t2. If thread t2 is selected, the program control
flow is fixed as shown in Figure 8 according to Figure 7(b).

3.4 DFixer Algorithm
Algorithm 1 outlines DFixer. Given a program P and a deadlock

D from program P, DFixer firstly (Step 1) analyzes the program

statements1 involved in each thread of D. This analysis is based on

a Depth-First-Search, for each thread t, to explore all possible

paths from the statement of its hLock (i.e., site(h)) to the state-

ment of its wLock (i.e., site(w)). Within this search, DFixer keeps

all other locks p of acq(p) in Lp(t) and all locks k of wait(k) or
notify(k) in WNk(t).

1 These statements should be extracted when the deadlock occurs as it is diffi-
cult for Object-oriented programs (e.g., C++) to statically extract the concrete
calls between the two sites site(h) and site(w) for a thread.

Next (Step 2), DFixer tries to select a thread t such that the size of

Lp(t) and WNk(t) is the smallest one among all not selected (see

Step 3) threads of D. If the size of Lp(t) and WNk(t) is 0, DFixer

directly applies pre-acquisition fixing alone; otherwise, it applies
both pre-acquisition and a context-aware conditional to fix D. It
then handles program control follows as said in Section 3.3.

After applying fixing, DFixer (Step 3) compiles the fixed pro-

gram. If the compilation fails, DFixer returns to Step 2 to select

another thread to fix deadlock D again. (This compilation failure

is usually caused as some wLocks cannot be pre-acquired). If no

thread is selected in Step 2, DFixer fails to fix the deadlock D.

3.5 Guarantee of DFixer
DFixer guarantees to fix a given deadlock D without introducing
new resource or new communication deadlocks as Theorem 1.

Theorem 1. Given a deadlock D from a program P, after fixing

deadlock D by DFixer according to Algorithm 1: (1) the events in

D do not form any deadlock occurrence, and (2) no other re-
source or communication deadlock is introduced.

Proof Sketch. Suppose that the deadlock D = … ti, wi, hi, Li

… and DFixer selects the thread ti to pre-acquire its wLock wi.

Case 1: |𝐿𝑝(𝑡𝑖) + 𝑊𝑁𝑘(𝑡𝑖)| = 0. This case is straightforward. Be-

fore fixing, there are two lock orders: hi ↝ wi for thread ti and wi
↝ … ↝ hi for other threads in D. After fixing, the lock order hi ↝
wi is removed due to pre-acquisition of wi (i.e., acq(hi & wi)).
Therefore, the events in D cannot form a deadlock occurrence. On

the other hand, as |𝐿𝑝(𝑡𝑖) + 𝑊𝑁𝑘(𝑡𝑖)| = 0, no other lock acquisi-

tions or wait() /notify() exist in between the original acq(hi)
and acq(wi). Therefore, after pre-acquisition of the lock wi, no
new lock order is introduced and the pre-acquisition does not

prevent any wait() or notify() from occurring. Hence, no new
resource deadlock or communication deadlock is introduced.

Case 2: |𝐿𝑝(𝑡𝑖) + 𝑊𝑁𝑘(𝑡𝑖)| ≠ 0. In this case, as the original lock

order hi ↝ wi is eliminated after fixing, the events in D cannot
form a deadlock occurrence. After fixing, no other lock order is

acq(h)

acq(w) acq(w)rel(w)

acq(h)

acq(w)

rel(w)

(b) Single-entry and Multiple-exits

(e) Loop structure

Pre-acquisitions and

handling of control flows

Removed statements

acq(h)

acq(w)

acq(h&w)

acq(w)

(a) Single-entry and Single-exit

(c) Multiple-entries and Single-exit (d) Multiple-entries and Multiple-exits

Original statements

if(!vw)
acq(w)

acq(h&w)
vw=true

vw=false
rel(w)

acq(h)

acq(w)

rel(w)

acq(h)

acq(w)

rel(w)

acq(h&w)

if(!vw)
acq(w)

vw=false
rel(w)

if(vw){
vw=false
rel(w)}

acq(h&w)
vw=true

rel(w)

acq(w)

rel(w)

acq(h&w)

Figure 7. Five basic cases of control flows.

Thread t1 Thread t2 Thread t3

s11

s12

Func f1()
{
acq(m)

acq(n)
}

s21
s22

Func f2()
{
acq(n&m)
if(need_m)
acq(m)

else
rel(m)

}

s31
s32
s33
s34
s35

Func f3()
{
acq(m)
need_m = flase
call f2()
need_m = true
rel(m)

}

Fixed Program P2

Figure 8. Fixing on deadlock D2 by DFixer if thread t2 is selected.

introduced except one for each lock p: hi ↝ wi due to the three

fixing statements (i.e., acq(hi & wi); rel(wi); acq(p & wi)) from

thread ti. However, there is a context-aware conditional vhw is
introduced (see line 14 of Algorithm 1) to determine whether the

lock order hi ↝ wi is formed. The lock order only occurs when vhw
= true (see thread t1 in Figure 3(d)). But the original lock order

wi ↝ … ↝ hi only occurs when vhw = false (see thread t2 in Fig-
ure 3(d)). Hence, the two lock orders cannot be formed at the
same time. Therefore, after fixing, the events in D as well as the
introduced lock orders cannot form a deadlock occurrence. Be-

sides, in this case, right before any other acq() or

wait()/notify(), the pre-acquired lock wi is released, introducing

no new lock order and does not prevent thread ti from executing

notify(). Hence, neither new resource deadlock nor communica-
tion deadlock is introduced.

Based on the above two cases, Theorem 1 is proved. 

4. DISCUSSIONS AND LIMITATIONS
In practice, some wLocks depend on data structures which cannot

appear together with the acquisition of their hLocks. Of course,

DFixer is able to fix a deadlock via multiple ways. If a thread

could not perform its pre-acquisition, another thread is then se-
lected. However, the worst case is that no thread of a deadlock

could perform a pre-acquisition on its wLock. In theory, this case

does exist. Note that, this challenge is also suffered by Grail;
however, Grail fails on fixing deadlocks with at least one such

thread. The reason is that Grail requires exactly all hLocks and

wLocks to abstract a context-aware gate locks. In our experiment,

it failed on 7 deadlocks from MySQL due to this reason.

DFixer may also introduce more runtime overhead than Grail and

GA. For example, after pre-acquisition of a wLock, the thread may

take a long time before reaching the original acquisition and

release of the wLock; and this may prevent other threads (not from

the deadlock) acquiring the wLock. However, Grail and GA do

not suffer this limitation as their inserted new locks only affect the
executions of threads from the deadlock.

5. EXPERIMENT

5.1 Benchmarks
We collected a set of nine benchmarks: DB Maintain, Bank

Trans., Dining Philo., HawkNL, SQLite, OpenLDAP, and

three different versions of large-scale MySQL Database Serv-

er. The first three are used for deadlock research purpose and the
rest are widely-used real-world programs. They totally include 20
deadlocks and each involves two or three threads, covering most
of deadlocks cases [39]. All these benchmarks have been used in
previous works multiple times [11][17][18][30][32][55] and are
available either online [1][3][4][6] or from the previous works
[30][55]. These benchmarks including their test cases are also

available at http://lcs.ios.ac.cn/~yancai/dfixer.

Table 1 shows the statistics of all benchmarks, including bench-
mark names with version numbers (if available), Bug IDs (if
available), program size (SLOC [5]), the number of threads of

each benchmark ("prog"), the number of threads involved in each

deadlock ("dlk"), the number of deadlocks ("# of dlks") in

each benchmark. The next five columns show the statistics related

to DFixer, including the number of other lock acquisitions ("Lq")

and the number of wait()/notify() event ("WNk") of each thread
in each deadlock, respectively, whether there are multi-entries,
multi-exits, and loops structures. We show the five metrics for
each thread of each deadlock, where a single value or symbol is
shown if they are same for all threads of a deadlock. The eleventh

column shows the depth from acq(hLock) to acq(wLock) of each
thread in each deadlock, in terms of the number of functions and

the code lines (SLOC). For example, the first such value is "0 (1)

/ 0 (3)", indicating that the two acquisitions of both threads are
within the same function and there are 1 and 3 code lines between
them, respectively. Note that, some benchmarks include multiple
deadlocks. These deadlocks from the same benchmark involve the
same set of locks but occur in different scenarios (i.e., from dif-
ferent set of threads and in different functions), we treat them as
different deadlocks as each of them should be fixed. However,
due to page limit, the statistics only show the data of one deadlock
for each benchmark; and the full statistics are also available at our
online benchmark page. The last column shows whether dead-
locks from a benchmarks could be fixed by lock pre-acquisition
only (i.e., without a context-aware conditional).

5.2 Implementation and Experimental Setup
We implemented DFixer (as well as GA and Grail) on top of

LLVM framework [2][38]. DFixer extends the ModulePass class

Table 1. Statistics of benchmarks and deadlocks.

Benchmark Bug ID SLOC
of threads
(prog/dlk)

of dlks Lp WNk
Multi-

entries?
Multi-
exits?

Any
Loops?

Depth
Func. (SLOC)

Pre-acq
only?

DB Maintain n/a 0.1K 3 / 2 1 0 0    0 (1) / 0 (3) 
Bank Trans. n/a 0.1K 3 / 2 1 0 0    0 (3) / 0 (3) 
Dining Philo. n/a 0.1K 5 / 5 1 0 0    0 (1) / 0 (1) 

Hawknl (1.6b3) n/a 9.3K 3 / 2 1 0 0    0 (5) / 0 (6) 
SQLite (3.3.3) 1672 74.0K 3 / 2 2 0 0    0 (1) / 1 (4) 
OpenLDAP (2.2.20) 3494 167.3K 5 / 2 1 1 / 0 0  /  /   /  1 (36) / 1 (29) 
MySQL-1 (6.0.4a) 34567 1,093.6K 16 / 2 4 1 / 0 0  /  /   /  8 (26) / 0 (2) 
MySQL-2 (6.0.4a) 37080 1,093.6K 17 / 2 1 1 / 3 0 /  /   /  4 (43) / 4 (15) 
MySQL-3 (5.5.17) 62614 1,282.7K 22 / 2 2 1 / 0 0  /   /   /  0 (1) / 1 (13) 
MySQL-4 (5.1.57) 60682 1,146.7K 19 / 3 6 1 / 0 / 0 1 / 1 / 0    / /  1 (23) / 4 (116) / 2 (18) 

Algorithm 1: DFixer
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

Input: 𝑃 and D = 𝑡1, 𝑤1, ℎ1, {}, 𝑡1, 𝑤2, ℎ2, {} …
//Step 1: identify program information

for each 𝑡, 𝑤, ℎ, {} ∈ 𝐷 {
 let 𝐿𝑝(𝑡) = ∅, 𝑊𝑁𝑘(𝑡) = ∅ //other acq(q) and wait(k) in between
 Analyze 𝑃 from 𝑠𝑖𝑡𝑒(ℎ) to 𝑠𝑖𝑡𝑒(𝑤) and update 𝐿𝑝(𝑡), 𝑊𝑁𝑘(𝑡)
 //this analysis is based on DFS exploring
}
//Step 2: select a thread and apply fixing

let 𝑡 ∈ 𝐷 be a thread with smallest |𝐿𝑝(𝑡) + 𝑊𝑁𝑘(𝑡)| from all threads
in 𝐷 except those threads previously selected.
if no such a thread 𝑡,
 print "DFixer failed to fix deadlock D from program 𝑃." halt.
if |𝐿𝑝(𝑡) + 𝑊𝑁𝑘(𝑡)| = 0: Apply pre-acquisition on thread 𝑡.
else Apply pre-acquisition and context-aware conditional on thread 𝑡.
handle program control flow according to Section 3.3.
//Step 3: verify fixing

let the fixed program 𝑃 as program 𝑃′.
compile 𝑃′, if failed, goto Step 2.

of LLVM to perform a Depth-First-Search as shown in Algorithm
1 on Bitcode files. It firstly extracts synchronizations and controls
(i.e., Control-Flow-Graphs and Call-Graphs) for each thread in

between its acq(hLock) and acq(wLock). Next, based on extract-
ed information, it applies pre-acquisition or/and context-aware

conditionals. However, DFixer does not directly modify any
Bitcode files; instead, it generates a fixing guide file (e.g., where
and what should be inserted). We built a small program to trans-
late this file into a Linux patch file. The patch file can be patched
into the source code of the given program to fix a deadlock.

For the DFixer and Grail, some wLocks were not visible at the

acquisition of their hLocks. Trying to solve the visibility issue
might be difficult (as which requires C/C++ source file inclusion
and could easily introduce compilation errors). Therefore, we set a

pointer and assign the value of the wLock to the pointer. This

pointer is used for pre-acquisition by DFixer or for computation of

context-aware gate locks by Grail. We implemented context-

aware conditionals for DFixer via a map structure from two given

locks (hLock and wLock) to a Boolean value.

Grail is based on context-aware gate locks. It firstly generates a

string by concatenating the addresses of hLock and wLock. Next,
a second constant string (mapped in Java String Pool in Java 7,

see String.intern()) with same values is returned as a

gatelock object. This constant string is unique in each Java
execution. We implemented this via a map structure in C++,
which maps a concatenation of two lock addresses to a gate lock.
There is no essential difference between our implementation in

C++ and the Grail original implementation in Java.

After applying three techniques to all benchmarks, we ran each
fixed program by each technique for 100 times and collected the
cases where deadlock occurred. During this 100 runs, we inserted
a set of random sleep before and after each original and fixing
lock acquisition of each deadlock to amplify deadlock occurrence
probabilities. (Note, without the random sleep, the 100 runs were
not enough.) We also ran them for 10 additional times without

sleep to collect their execution time. As all versions of MySQL are
servers, we only collected their processing time on SQL queries
(i.e., test cases) but not the whole program execution time.

We conducted the experiment on a ThinkPad workstation W540
with a 2.5 GHz (up to 3.4GHz) i7-4710MQ processor, installed
with Ubuntu 14.04 and GCC 4.8.

5.3 Result Analysis

5.3.1 Overall Effectiveness
Table 2 shows the detailed fixing results. The second major col-

umn shows that, before ("Native") and after fixing by each tech-

nique, how many deadlocks occurred in 100 runs (with random
sleep). The third major column shows, after fixing, whether any
new deadlock was introduced. We adopted manual inspection into

the fixed source code firstly ("Potential") and then ran each
fixed program to see whether any new deadlocks could be trig-

gered ("Triggered"). The mark "-" indicates that no data was
collected (e.g., a technique failed to fix a deadlock or a new dead-
lock always occurred after fixing). The last major column shows
the average fixing overhead of the 10 additional runs (no sleep).

From the second major column of Table 2, we see that all dead-
locks were likely to occur with random sleep. After fixing, no
deadlocks occurred except on two benchmarks where new dead-
locks were introduced. However, no deadlock occurrences did not
indicate that no new deadlocks were introduced by three tech-
niques. The second major column of Table 2 then shows that,
after fixing, many potential deadlocks were introduced by both

GA and Grail; and these potential deadlock were also triggered.

However, DFixer did not introduce any potential deadlocks and no

deadlock was triggered.

We further summarized the fixing results of three techniques on
17 deadlocks from real-world benchmarks in Table 3 (summa-
rized from Table 2), including the number of deadlocks success-
fully fixed by each technique and whether there is any significant
performance downgrade (e.g., more than 5% overhead). From the

table, we observe that Grail and GA only successfully fixed 7 and

6 deadlocks out of 17 deadlocks, respectively; on other deadlocks,
they either failed or/and introduced new deadlocks. However,

DFixer fixed all 17 deadlocks correctly. Besides, both Grail and

GA incurred larger than 5% overheads on average; whereas,

DFixer did not incur such a large overhead across all benchmarks.

5.3.2 Overall Efficiency
The last major column of Table 2 shows the fixing overhead. Av-

eragely, on real-world deadlocks, GA incurred 15.8% overhead,

Grail incurred 11.5% overhead, but DFixer only incurred 2.1%

overhead.

We note the following: Grail fixes a deadlock by inserting a con-

text-aware gate lock, which could reduce fixing overhead com-

pared to GA that inserts a global gate lock. Previous experiments

[37] also verified this point. In our experiment, Grail incurred the

largest overhead on four of six benchmarks. This, however, does
not contradict the previous results [37]. The reason is that our

Table 2. Detailed comparisons of GA, Grail, and DFixer (The avg. overhead in last row is on real-world deadlocks only).

Benchmark

of deadlocks occurrences

with random sleep

of new deadlocks
Average overhead Potential Triggered

Native GA Grail DFixer GA Grail DFixer GA Grail DFixer GA Grail DFixer

DB Maintain 51 0 0 0 0 0 0 0 0 0 0.0% 0.0% 0.0%
Bank Trans. 53 0 0 0 0 0 0 0 0 0 184.4% 312.5% 3.1%
Dining Philo. 31 0 - 0 0 - 0 0 - 0 106.8% - 0.6%

Hawknl 73 0 0 0 0 0 0 0 0 0 11.2% 27.1% 1.9%
SQLite 56 100 100 0 1 1 0 1 1 0 - - 2.7%
OpenLDAP 47 0 0 0 0 0 0 0 0 0 2.0% 2.9% 0.5%
MySQL-1 62 0 0 0 0 0 0 0 0 0 7.1% 9.5% 0.5%
MySQL-2 37 0 - 0 0 - 0 0 - 0 19.4% - 2.9%
MySQL-3 70 0 0 0 2 2 0 2 2 0 11.5% 6.3% 1.8%
MySQL-4 28 47 - 0 6 - 0 6 - 0 43.5% - 4.1%

 Sum: 9 3 0 9 3 0 Avg.: 15.8% 11.5% 2.1%

Table 3. Summary of fixing on real-world deadlocks.

of total real

deadlocks

of fixed With overhead < 5%?

GA Grail DFixer GA Grail DFixer

17 7 (41%) 6 (35%) 17 (100%)   

experiments focused on scenarios where deadlocks were likely to
occur before fixing, while the previous experiments focused on
scenarios where deadlocks (and atomicity violations) were not

likely to occur (see the deadlock benchmark Log4j-bugID-24159
[37]). Therefore, for our cases, all three techniques have to serial-
ize part or all executions in each deadlock as our test cases are

designed to trigger deadlock occurrences. As both GA and Grail
completely serialized the executions in our cases, they incurred

more overhead than that by DFixer which not only serialized part

of executions via per-acquisitions but also released pre-acquired
locks if no deadlocks may occur (i.e., by fixing program control

flows). On the other hand, GA simply inserted gate locks; where-

as Grail had to compute context-aware gate locks by matching

context in a map structure (even in its original implementation in

Java, see Section 5.2). As a result, Grail may incur a larger over-

head than GA on some benchmarks.

5.3.3 Detailed Discussion
DB Maintain and Bank Trans. These two benchmarks are

simple ones like our example deadlock D1. All three techniques

correctly fixed them. On DB Maintain, no additional overhead

was incurred by all techniques. However, on Bank Trans, the
two threads acquire their first locks twice before they acquire their

second lock, i.e., "acq(m); acq(m); acq(n)" (here no self-deadlock
exists as two threads use recursive locking of Pthread). Besides,
the two threads only acquire their second lock in less than half of
all cases. As a result, the deadlock seldom occurs before fixing

(without sleep). However, GA and Grail completely serialized

two threads from their first acquisitions, resulting in heavy over-

head (184.4% by GA and 300% by Grail). DFixer only selected

one thread to pre-acquire its second lock together with its first
acquisition; and if the thread takes another branch, it immediately
releases the pre-acquired locks, only incurred 3.1% overhead.

Dining Philo. This benchmark includes five threads t1 to t5
(to simulate five philosophers) and each thread ti acquires two

locks li and li+1 (l6 = l0). The deadlock occurs when each thread

ti acquires lock li and waits for lock li+1. Both GA and DFixer

were able to fix it. However, Grail only targets to fix deadlocks
with two threads. Therefore, it was unable to fix this deadlock.

(Note that, for deadlocks involving more than two threads, Grail
might generate a gate lock based on all these locks, which is fea-

sible on Dining Philo. but may fail on other deadlocks (e.g.,

MySQL-4 discussed later)). After fixing, GA incurred 106.8%
overhead as it completely serialized all executions of five threads;

whereas, DFixer only incurred 0.6% overhead as it serialized only
two threads by selecting only one thread to pre-acquire a lock.

Hawknl and OpenLDAP. On these two real-world benchmarks, all
three techniques were able to fix them correctly. Note that, alt-

hough one thread from OpenLDAP involves a lock acquisition on

a third lock as shown in Table 1, DFixer fixed it by selecting the

second thread to perform a pre-acquisition only. Actually, by

selecting the first thread, DFixer was also able to fix it. On the

performance, on Hawknl, Grail incurred the largest overhead

(i.e., 27.1%), followed by GA incurring 11.2% overhead; DFixer

incurred only 1.9% overhead. On OpenLDAP, both Grail and GA

incurred larger overheads (i.e., 2.9% and 2.0%, respectively) than

that by DFixer (i.e., 0.5%).

SQLite. The two deadlocks from this benchmark occur when a

data race occurs on a variable inMutex. DFixer correctly fixed

both deadlocks. However, both GA and Grail failed to fix them.

On their 100 runs, there were exactly 100 occurrences of a new
deadlock. The original deadlock is like our example deadlock D2.
In the original program, two threads of each deadlock acquire two

locks mutex1 and mutex2 in a reversed order; however, a thread

sometimes does not release lock mutex2 (controlled by the varia-

ble inMutex). After fixing by GA and Grail, a gate lock G was

inserted, resulting in two lock orders G ↝ mutex1 and G ↝

mutex2. However, when one of two threads does not release lock

mutex2 and if it later re-acquires lock mutex1, it has to acquire

the inserted gate lock G, resulting in a lock order mutex2 ↝ G.

This lock order, together with the lock order G ↝ mutex2 from

another thread, forms a new deadlock. DFixer successfully fixed
two deadlocks via pre-acquisition. Of course, it had to fix the
control flows as its fixing on deadlock D2 shown in Figure 8.

MySQL-1 and MySQL-2. There are totally 5 deadlocks within

MySQL-6.0.4a. All three techniques correctly fixed the first

four. However, for the last one (BugID=37080), both DFixer and

GA fixed it but Grail failed. We simplified this deadlock in Figure

9(a). The thread t2 firstly acquires a lock from a table table-

>syncObj and then acquires a global lock syncSec. The thread t1
acquires the two locks in a reversed order. However, for thread t1,
after it acquires the global lock syncSec, it has to iteratively ex-

plore a linked structure data via a pointer p in a for-loop (under-

lined). From the pointer p, a Dbb pointer dbb is fetched (via func-

tion getDbb()); then a Section pointer sec is fetched (via func-

tion findSec()). The pointer sec points to a memory containing

a table pointer table and its lock table->syncObj. As a result,

before executing findSec(), the table is unknown and hence, the

lock syncObj is also unknown. Therefore, Grail failed to compute

a gate lock from both locks syncSec and syncObj (which is un-

known). However, for DFixer, although the lock syncObj cannot

be pre-acquired with lock syncSec by thread t1, the lock

syncSec can be pre-acquired with lock table->syncObj by

thread t2. Hence, DFixer fixed this deadlock.

MySQL-3. The two deadlocks from this benchmark are actually

our example deadlock D2. There are two locks thread_count

and index. One of two threads acquires lock index if the value of

the variable need_mutex is true in a function purge_logs().

However, this function may also be called from another function

srv_printf_innodb_monitor(){ … }

lock_print_info_summary()
{acq(Kernel);}

thd_security_contex()
{acq(THDData);}

Thread t3
mysql_rm_table_part2()
{acq(Open); … }

trx_allocate_for_mysql()
{acq(Kernel);}

wait_for_locked_table_names()
{wait(Open);}

Thread t2






(b) Deadlock on MySQL-4 (BugID: 60682)







SRLUpdateRecords::commit()
{ acq(syncSec);

for(UCHAR* p=data; p<end; p+=len)
{ Dbb* dbb = log->getDbb(getInt(&p));

dbb->updateRecord(secId); …}
}

Table::treeFetch()
{acq(syncObj);}

Dbb::updateRecord(secId)
{ Section* sec = findSec(secId);
sec->updateRecord(); …}

Thread t1

(a) Deadlock on MySQL-2 (BugID: 37080)

truncateTable(Table* table)
{ acq(table->syncObj); …}

SRLDropTable::append()
{acq(syncSec);}

Thread t2

kill_one_thread()
{acq(THDData); … }

awake(){
acq(Open);
notify(Open);}

Thread t1

Figure 9. Two deadlocks simplified from MySQL-2 and MySQL-4.

purge_first_log(). In this case, the lock index is acquired in

purge_first_log(). Therefore, although Grail and GA fixed

the original deadlock, they introduced a new deadlock if function

purge_logs() is called in purge_first_log(). This produces

a lock order index ↝ GateLock. Together with its reversed lock

order GateLock ↝ index formed by another thread, a new re-

source deadlock is introduced. DFixer fixed this deadlock like its

fixing to deadlock D2 without introducing new deadlocks. On this

benchmark, GA incurred the largest overhead (i.e., 11.5%), fol-

lowed by Grail (i.e., 6.3%). DFixer only incurred 1.8% overhead.

MySQL-4. The deadlocks from this benchmark are complex. Fig-
ure 9(b) shows one of them. This deadlock involves three threads
and three locks as highlighted. However, like our deadlock D3,

there is a pair of wait() and notify() on lock Open. Grail failed

to fix this deadlock as locks Open and THDData are specified by a

database; Grail failed to compute a gate lock. For GA, like its fix

on D3, it introduced a communication deadlock as, after fixing,

once thread t2 executes wait(Open), it holds the gate lock which

prevents thread t1 from executing both acq(Open) and noti-
fy(Open). This newly introduced communication deadlock was
identified by our manual inspection and was also triggered. For

DFixer, like its fixing on D3, it fixed this deadlock by selecting

thread t2 to perform its pre-acquisition on lock Kernel. Note,

DFixer could not select thread t1 or thread t3 to perform a pre-

acquisition as both locks THDData and Open are specified by a

database. GA, by serializing all three threads, incurred 43.5%

overhead; whereas DFixer incurred only 4.1% overhead.

On MySQL-4, we manually identified 6 potential deadlocks intro-

duced by GA which were also triggered. We suspect that more

deadlocks were introduced by GA as there were many other paral-

lel executions like threads t1 and t2, which could result in dead-

lock occurrences with the gate locks inserted by GA. However,

these potential deadlocks were not triggered in our experiment as

they may require different test cases. We use symbol "" to indi-
cate this case in Table 2.

6. RELATED WORK

6.1 Deadlock Detection
Detection of deadlocks is mainly based on detection of either
cycles in lock order graphs [7][8][9][15][24][40][41][52][58] or
cyclic lock dependencies on lock dependency relation [11][12]
[29] statically or dynamically [7][15][41][48][52] [58].

Static ones may report many false positives [58] compared to
dynamic ones, even with various filters [41]. Although dynamic
one are relatively precise, they also report false positives. Kahlon
et al. [31] theoretically analyze whether two threads may form a
deadlock occurrence through reachability checking. Other works,
recently, focus on how to actually trigger occurrences of real-
world deadlocks by searching for possible scheduling

[10][12][13][29][49]. DFixer focuses on how to fix deadlocks. It

could be integrated with these techniques to fix their detected and
triggered deadlocks as a subsequent action.

There are also many works on synthesizing concurrency bugs

once observed. ESD [61] synthesizes an execution from a core

dump file of an execution with a deadlock occurrence. PENELO-
PE [53] also synthesizes part of execution to replay an observed

atomicity violations or deadlocks. These techniques may fail due
to the lack of thread interleaving and test cases.

ConTeGe [45] targets to generate concurrent test cases so as to

trigger an expected concurrency bug. OMEN [50] further synthe-

sizes executions for deadlock triggering based on ConTeGe. Sher-

lock [16] actively infers test cases based on interleaving con-

straints of threads involved in a targeted deadlock via concolic
executions [51].

Synthesis of executions and concurrent test cases may also help to
verify the existence of a potential deadlock introduced by dead-
lock fixing approaches. However, unlike existing approaches,

DFixer avoids introducing any new deadlocks by its design, no
matter what test cases are given.

Deadlocks may easily exist in database applications (e.g., most of
deadlocks in our benchmarks were taken from MySQL Database
Servers). These deadlocks could also be detected and prevented
by analyzing hold-and-wait relations (i.e., cycles) among threads

and locks [22][23]. DFixer also breaks such a hole-and-wait rela-

tion to fix a deadlock.

6.2 Concurrency Bug Fixing and Recovery
Many techniques have been proposed to fix concurrency bugs [14]
[26][27][30][36][37][55][56][63]. However, almost all these
techniques insert gate locks dynamically or statically to serialize
executions of threads in a deadlock, which could introduce new

deadlocks as discussed in this paper. DFixer distinguishes itself

from all these works by its design to avoid introducing any new
deadlocks.

Among above techniques, both Gadara [55] and Dimmunity [30]

aim to prevent previously detected deadlocks occurring. They

adopt a strategy like GA except that they may not always invoke

acquisitions on the inserted gate lock via context matching. How-
ever, context matching may introduce false positives, which fails
to prevent a deadlock occurring.

Recovery techniques could be integrated with deadlock detection

and fixing. Sammati [46] aims to provide deadlock recovery by

rolling back the executed operations, once a deadlock is detected.

ConAir [62] tries to recover most concurrency bugs including

deadlock. Lin et al. [35] propose to change lock acquisition primi-

tives (i.e., from acq() to tryAcq() or from tryAcq() to acq()) to
partially fix a deadlock. They further propose to recover program
executions once a deadlock occurs [47], which may incur high
runtime overhead. Besides, recovery from deadlock occurrence
might be infeasible as discussed in [35] (e.g., when a thread in-
volves file IO operations or accesses shared variables). Once

DFixer fixes a deadlock, the deadlock never occurs. Therefore,

there is no need for DFixer to adopt any recovery techniques.

7. CONCLUSION
Existing deadlock fixing strategies may easily introduce new
deadlocks and may also incur high runtime overhead. We propose

DFixer toward deadlock fixing without introducing any new dead-

locks via lock pre-acquisition. We have evaluated DFixer on a set

of widely used benchmarks including 20 deadlocks and also com-
pared it with existing approaches. The experimental result shows

that, compared to existing ones, DFixer not only fixed all dead-

locks but also introduced no new deadlocks; besides, DFixer only

incurred about 2% overhead on average which is significantly
lower than that of compared approaches.

8. ACKNOWLEDGEMENT
We thank anonymous reviewers for their invaluable comments

and suggestions on improving this work. We also thank Dr. Chao

Wang and Dr. Lingming Zhang for their suggestions on this work.

This work is supported in part by National 973 program of China

(2014CB340702) and National Natural Science Foundation of

China (NSFC) (grant No. 61502465, 91418206).

9. REFERENCES
[1] HawkNL, http://hawksoft.com/hawknl.

[2] LLVM Compiler Infrastructure, version 3.6, http://llvm.org.

[3] MySQL, http://www.mysql.com.

[4] MySQL Bugzilla, http://bugs.mysql.com.

[5] SLOCCount 2.26. http://www.dwheeler.com/sloccount.

[6] SQLite, http://www.sqlite.org.

[7] R. Agarwal, S. Bensalem, E. Farchi, K. Havelund, Y. Nir-

Buchbinder, S. D. Stoller, S. Ur, and L. Wang. Detection of

deadlock potentials in multithreaded programs. IBM Journal

of Research and Development, Vol. 54 (5), 520–534, 2010.

[8] S. Bensalem and K. Havelund. Scalable dynamic deadlock

analysis of multi-threaded programs. In PADTAD, 2005.

[9] S. Bensalem, J.C. Fernandez, K. Havelund, and L. Mounier.

Confirmation of deadlock potential detected by runtime

analysis. In Proc. PADTAD, 41−50, 2006.

[10] Y. Cai, C. Jia, K. Zhai, and W.K. Chan. ASN: A Dynamic

barrier-based approach to confirmation of deadlocks from

warnings for large-scale multithreaded programs. IEEE

Transactions on Parallel and Distributed Systems, 26(01),

13−23, 2015.

[11] Y. Cai and W.K. Chan. Magiclock: scalable detection of

potential deadlocks in large-scale multithreaded programs.

IEEE Transactions on Software Engineering (TSE), 40(3),

266–281, 2014.

[12] Y. Cai and W.K. Chan. MagicFuzzer: scalable deadlock

detection for large-scale applications. In Proc. ICSE,

606−616, 2012.

[13] Y. Cai, S. Wu, and W.K. Chan. ConLock: A constraint-based

approach to dynamic checking on deadlocks in multithreaded

programs. In Proc. ICSE, 491–502, 2014.

[14] X. Chang, Z. Zhang, P. Zhang, J. Xue, and J. Zhao. BIFER: a

biphasic trace filter approach to scalable prediction of

concurrency errors. Frontiers of Computer Science (FCS),

9(6), 944–955, 2015.

[15] J. Deshmukh, E. A. Emerson, and S. Sankaranarayanan.

Symbolic deadlock analysis in concurrent libraries and their

clients. In Proc. ASE, 480–491, 2009.

[16] M. Eslamimehr and J. Palsberg. Sherlock: scalable deadlock

detection for concurrent programs. In Proc. FSE, 353–365,

2014.

[17] P. Gerakios, N. Papaspyrou, and K. Sagonas. A type and

effect system for deadlock avoidance in low-level languages.

In Proc. TLDI, 15–28, 2011.

[18] P. Gerakios, N. Papaspyrou, K. Sagonas, and P. Vekris.

Dynamic deadlock avoidance in systems code using

statically inferred effects. In Proc. PLOS, Article No. 5,

2011.

[19] C. L. Goues, S. Forrest, and W. Weimer. Current challenges

in automatic software repair. Software Quality Journal,

21(3): 421–443, 2013.

[20] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A

systematic study of automated program repair: fixing 55 out

of 105 bugs for $8 each. In Proc. ICSE, 3–13, 2012.

[21] C. L. Goues, T. Nguyen, S. Forrest and W. Weimer.

GenProg: A generic method for automated software repair.

IEEE Transactions on Software Engineering (TSE), 38(1):

54-72, 2012.

[22] M. Grechanik, B.M. M. Hossain, U. Buy, and H. Wang.

Preventing database deadlocks in applications. In Proc.

ESEC/FSE, 356–366, 2013.

[23] M. Grechanik, B.M. M. Hossain, and U. Buy. Testing

database-centric applications for causes of database

deadlocks. In Proc. ICST, 174–183, 2013.

[24] K. Havelund, Using runtime analysis to guide model

checking of java programs. In Proc. SPIN, 245–264, 2000.

[25] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu.

Understanding and detecting real-world performance bugs.

In Proc. PLDI, 77–88, 2012.

[26] G. Jin, L.H, Song, W. Zhang, S. Lu, B. Liblit. Automated

atomicity-violation fixing. In Proc. PLDI, 389–400, 2011.

[27] G. Jin, W. Zhang, D. Deng, B. Liblit, S. Lu. Automated

concurrency-bug fixing. In Proc. OSDI, 221 - 236, 2012.

[28] P. Joshi, M. Naik, K, Sen, and D. Gay. An effective dynamic

analysis for detecting generalized deadlocks. In Proc. FSE,

327–336, 2010.

[29] P. Joshi, C.S. Park, K. Sen, amd M. Naik. A randomized

dynamic program analysis technique for detecting real

deadlocks. In Proc. PLDI, 110–120, 2009.

[30] H. Jula, D. Tralamazza, C. Zamfir, and G.e Candea.

Deadlock immunity: enabling systems to defend against

deadlocks. In Proc. OSDI, 295–308, 2008.

[31] V. Kahlon, F. Ivančić, and A. Gupta. Reasoning about

threads communicating via locks. In Proc. CAV, 505–518,

2005.

[32] T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke. Eliminating

concurrency bugs with control engineering. Computer,

42(12), 52–60, 2009.

[33] S. Khoshnood, M. Kusano, and C. Wang. ConcBugAssist:

Constraint solving for diagnosis and repair of concurrency

bugs. In Proc. ISSTA, 165–176, 2015.

[34] E. Knapp. Deadlock detection in distributed database

systems. ACM Computing Surveys, 19(4):303−328, 1987.

[35] Y. Lin and S. S. Kulkarni. Automatic repair for multi-

threaded programs with Deadlock/Livelock using maximum

satisfiability. In Proc. ISSTA, 237–247, 2014.

[36] P. Liu and C. Zhang. Axis: automatically fixing atomicity

violations through solving control constraints. In Proc. ICSE,

299–309, 2012.

[37] P. Liu, O. Tripp, and C. Zhang. Grail: context-aware fixing

of concurrency bugs. In Proc. FSE, 318–329, 2014.

[38] C. Lattner and B. Adve. LLVM: a compilation framework

for lifelong program analysis & transformation. In Proc.

CGO, 75–86, 2004.

[39] S. Lu , S. Park , E. Seo , Y.Y. Zhou. Learning from mistakes:

a comprehensive study on real world concurrency bug

characteristics. In Proc. ASPLOS, 329–339, 2008.

[40] Z.D. Luo, R. Das, and Y. Qi,. MulticoreSDK: a practical and

efficient deadlock detector for real-world applications. In

Proc. ICST, 309–318, 2011.

[41] M. Naik, C.S. Park, K. Sen, and D. Gay. Effective static

deadlock detection. In Proc. ICSE, 386–396, 2009.

[42] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: from

exhibiting to healing. In Proc. RV, 104–118, 2008.

[43] S. Park. Debugging non-deadlock concurrency bugs. In Proc.

ISSTA, 358–361, 2013.

[44] Y. Pei, C. A. Furia, M. Nordio, and B. Meyer. Automatic

program repair by fixing contracts. In Proc. FASE,

8411:246–260, 2014.

[45] M. Pradel and T. R. Gross. Fully automatic and precise

detection of thread safety violations. In Proc. PLDI, 521–

530, 2012.

[46] H. K. Pyla and S. Varadarajan. Avoiding deadlock

avoidance. In Proc. PACT, 75–86, 2010.

[47] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating

bugs as allergies---a safe method to survive software failures.

In Proc. SOSP, 235–248, 2005.

[48] R. Raman, J.S. Zhao, V. Sarkar, M. Vechev, and E. Yahav.

Scalable and precise dynamic datarace detection for

structured parallelism. In Proc. PLDI, 531–542, 2012.

[49] M. Samak and M.K. Ramanthan. Trace driven dynamic

deadlock detection and reproduction. In Proc. PPoPP, 29–42,

2014.

[50] M. Samak and M.K. Ramanathan. Multithreaded test

synthesis for deadlock detection. In Proc. OOPSLA, 473–

489, 2014.

[51] K. Sen and G. Agha. CUTE and jCUTE: concolic unit testing

and explicit path model-checking tools. In Proc. CAV, 419–

423, 2006.

[52] V.K. Shanbhag. Deadlock-detection in java-library using

static-analysis. In Proc. APSEC, 361–368, 2008.

[53] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE:

weaving threads to expose atomicity violations. In Proc.

FSE, 37–46, 2010.

[54] R. Surendran, R. Raman, S. Chaudhuri, J. Mellor-Crummey,

and V. Sarkar. Test-driven repair of data races in structured

parallel programs. In Proc. PLDI, 15–25, 2014.

[55] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke.

Gadara: dynamic deadlock avoidance for multithreaded

programs. In Proc. OSDI, 281–294, 2008.

[56] D. Weeratunge, X. Zhang, and S. Jaganathan. Accentuating

the positive: Atomicity inference and enforcement using

correct executions. In Proc. OOPSLA, 19–34, 2011.

[57] W. Weimer, S. Forrest, C. L. Goues, and T. Nguyen.

Automatic program repair with evolutionary computation.

Communications of the ACM (CACM), 53(5): 109–116,

2010.

[58] A. Williams, W. Thies, and M.D. Ernst. Static deadlock

detection for java libraries. In Proc. ECOOP, 602–629, 2005.

[59] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc

synchronization considered harmful. In Proc. OSDI, article

No. 1–8, 2010.

[60] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L.

Bairavasundaram. How do fixes become bugs? In Proc. FSE,

26–36, 2011.

[61] C. Zamfir and G. Candea. Execution synthesis: a technique

for automated software debugging. In Proc. EuroSys, 321–

334, 2010.

[62] W. Zhang, M. de Kruijf, A. Li, S. Lu, and K. Sankaralingam.

ConAir: featherweight concurrency bug recovery via single-

threaded idempotent execution. In Proc. ASPLOS, 113–126,

2013.

[63] L. Zheng, X. Liao, S. Wu, X. Fan, and H. Jin. Understanding

and identifying latent data races cross-thread interleaving.

Frontiers of Computer Science (FCS), 9(4), 524–539, 2015.

[64] J. Zhou, H. Zhang, and D. Lo. where should the bugs be

fixed? - more accurate information-retrieval-based bug

localization based on bug reports. In Proc. ICSE, 14–24,

2012.

