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ABSTRACT 

Manual deadlock fixing is error-prone and time-consuming. Exist-

ing generic approach (GA) simply inserts gate locks to fix dead-

locks by serializing executions, which could introduce various 
new deadlocks and incur high runtime overhead. We propose a 

novel approach DFixer to fix deadlocks without introducing any 

new deadlocks by design. DFixer only selects one thread of a 

deadlock to pre-acquire a lock w together with another lock h, 
where before fixing, the deadlock occurs when the thread holds 

lock h and waits for lock w. As such, DFixer eliminates a hold-

and-wait necessary condition, preventing the deadlock from oc-
curring. The thread performing pre-acquisition is carefully select-
ed such that no other synchronization exists in between the two 

original acquisitions. Otherwise, DFixer further introduces a con-

text-aware conditional protected by above lock w to guarantee the 

correctness of DFixer. The evaluation is on 20 deadlocks, includ-

ing 17 from widely-used real-world C/C++ programs. It shows 

that DFixer successfully fixed all deadlocks. Whereas GA intro-

duced 9 new deadlocks; a latest work Grail failed to fix 8 dead-

locks and introduced 3 new deadlocks on others. On average, 

DFixer incurred only 2.1% overhead, where GA and Grail in-
curred 15.8% and 11.5% overhead, respectively.  
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engineering➝Software testing and debugging.  
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1. INTRODUCTION 
Deadlock [39] occurrence prevents a program execution from 
making further progress. In general, there are two kinds of dead-
locks [28]: resource deadlock [7][29] and communication dead-
lock [28][34]. A resource deadlock occurs when a set of threads 
are holding some locks and are waiting for the other locks held by 
the threads in the same set. A communication deadlock occurs 
when some threads wait for some messages but they never receive 
these messages. In this paper, we focus on fixing resource dead-
locks as two kinds of deadlocks are caused by different mecha-
nisms and cannot be handled by the same technique [28].  

Manual bug fixing not only takes a long time [26] but is also error 
prone [60]. Recently, automated bug fixing become popular [19] 
[20][21][33][44][57][64]. However, almost all existing techniques 
on concurrency bugs fixing insert new locks (known as gate locks) 
statically or dynamically to serialize all executions of threads 

involved in a concurrency bug, including AFix [26][27], Axis [36], 

Grail [37], Gadara [55], and [42]. By introducing new locks, new 

deadlocks may also be introduced [36][37][42]. Even manual 
fixing may also introduce deadlocks (e.g., 16.4% incorrect fixing 

indeed introduced new deadlocks [60]). Axis [36] further iterative-

ly fixes introduced deadlocks by adding more new gate locks. 

Grail [37] adopts Petri-net analysis to eliminate such introduced 

deadlocks [55] which, however, is only applicable to deadlocks 
with two threads [37].  

Introducing gate locks might be necessary to fix other concurren-
cy bugs except deadlocks as fixing the former requires serializa-
tion of memory accesses from all threads of such bugs. However, 
deadlock is a kind of high level concurrency bugs caused by in-
correct synchronization orders; whereas others (e.g., atomicity 
violations) are usually caused by missing synchronizations to 
protect the involved memory accesses from occurring in wrong 
orders. For example, many techniques differentiate concurrency 
bugs as deadlock bugs and non-deadlock bugs [33][39][43][54] 
[62] as they require different techniques to detect and fix. 

ConcBugAssist [33] focuses on data races, atomicity violations, 

and order violations. Even among above listed fixing techniques, 

AFix cannot fix deadlocks [26][37] and Grail only targets to fix 

deadlocks of two threads which further uses Petri-net analysis to 
avoid introducing new deadlocks.  

In this paper, we propose a novel strategy known as DFixer to-

ward deadlock fixing. The key insight of DFixer is that a deadlock 

can be fixed by breaking a necessary condition for this deadlock 
to occur: the hold-and-wait condition of one thread involved in 
this deadlock. Suppose that if a deadlock D occurs, one of its 

thread t is waiting for a lock (denoted by wLock of thread t) 

while holding another lock (denoted by hLock of thread t) and 

this hLock is waited by another thread in the same deadlock D. 

Our fixing is, for the thread t of the deadlock D, its wLock should 
be acquired (i.e., pre-acquired) together with its acquisition on the 

hLock. This fixing strategy exactly breaks the hold-and-wait con-

dition of a thread (e.g., holding a hLock and waiting for a wLock 

by above thread t) in a deadlock. Hence DFixer is able to fix the 

deadlock. The advantages of this strategy are that (1) it does not 

introduce any new lock by its design; (2) if a thread is properly 
selected (see Section 3) to perform its pre-acquisition on its 

wLock, no new deadlock is introduced; and (3) it exactly fixes a 
deadlock without serializing the executions from other threads 
that execute the same program code but do not participate in the 
deadlock, avoiding performance downgrade.  

We have implemented DFixer for C/C++ programs and evaluated 
it on 20 deadlocks, including 17 real-world deadlocks and 13 of 

them are from three versions of widely-used large-scale MySQL 

database. We compared DFixer with the generic approach (denot-

† Corresponding author. 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 

for components of this work owned by others than ACM must be hon-

ored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. Request permissions from Permis-

sions@acm.org. 
ICSE '16, May 14-22, 2016, Austin, TX, USA 

© 2016 ACM. ISBN 978-1-4503-3900-1/16/05…$15.00 

DOI: http://dx.doi.org/10.1145/2884781.2884819 



  

 

 

 

ed by GA that fixes a deadlock by inserting gate locks) and a 

latest concurrency bug fixing technique Grail (that is based on 

GA but inserts context-aware gate locks). The experiment result 

shows that DFixer was able to fix all these deadlocks without 

introducing any new deadlock; whereas GA fixed all deadlocks 

but also introduced 9 new deadlocks, and Grail not only failed to 

fix 8 deadlocks but also introduced 3 deadlocks on fixing other 

deadlocks. After fixing, DFixer incurred the least overhead (i.e., 

about 2% on average) while both GA and Grail incurred a signifi-

cantly larger overhead (i.e., 15.8% and 11.5%, respectively).  

The main contributions of this paper are as follows:  

 It proposes a novel deadlock fixing strategy DFixer that in-
troduces neither new locks nor new deadlocks.  

 DFixer fixes a deadlock by selecting only one thread to pre-
acquire a lock. This allows parallel executions of threads not 
from the deadlocks, avoiding performance downgrade.  

 We implemented DFixer as a prototype tool (see 

http://lcs.ios.ac.cn/~yancai/dfixer) to evaluate DFixer with 

comparison to the generic approach GA and a latest tech-

nique Grail. The experiment results demonstrate the effec-

tiveness and efficiency of DFixer compared to GA and Grail.  

2. BACKGROUND AND MOTIVATIONS 

2.1 Preliminaries 
A deadlock occurrence involves a subset of the following events:  

 acq(t, m): A thread t acquires a lock m.  

 tryAcq(t, m): A thread t tries to acquire a lock m and it re-
turns true if this try succeeds or false otherwise.  

 rel(t, m): A thread t releases a lock m. 

 wait(t, m): A thread t firstly releases a lock m and then waits 
to acquire it again on a notification (i.e., a communication 
message) from a different thread (see below).  

 notify(t, m): A thread t sends a notification to a different 

thread t' that is blocked on wait(t', m). If there is no such a 

thread t', the notification is discarded. 

In the rest of this paper, we may not mention thread t or even lock 

m when we discuss above kinds of events if they are implied by 
the context (e.g., we may refer to acq(t, m) as acq(m) or acq()).  

If a thread firstly acquires a lock m and then acquires another lock 

n before releasing lock m, we say there is a lock order from lock m 

to lock n, denoted by m ↝ n. If there exists another lock order n ↝ 

m (or n ↝ … ↝ m for multiple threads), we say it is a reversed lock 

order of the lock order m ↝ n. Existence of a lock order and its 
reversed lock order indicates a potential deadlock depending on 
whether they can be formed at the same time in an execution; 
however, the absence of a lock order and its reversed lock order 
indicates the absence of any deadlock on these two locks.  

To simply our analysis on lock orders, we assume that "a thread 
can only release the lock that it acquired last" [31]. Or at least, we 

assume this kind of lock acquisitions within deadlocks.  

Formally, we adopt the lock dependency relation [12][29] to de-

fine deadlocks. A lock dependency  = t, w, h, L denotes that a 

thread t acquires a lock w while holding lock h and all locks in set 

L. Besides, each event occurs at a program location which is re-

ferred to as a Site. A sequence of k (k > 1) dependencies D = 1, 

2 … k, where i = ti, wi, hi, Li, forms a resource deadlock, if:  

(1) for 1 ≤ i ≤ k – 1, wi  Li, wi = hi+1 (wk = h1), and,  

(2) for 1 ≤ i < j ≤ k, ti ≠ tj, wi ≠ wj, and Li ∩ Lj = ∅.  

The above definition describes that a set of threads wait mutually 
for a set of locks that are held by other threads in the same set. 

That is, each lock dependency i is a necessary condition for a 
deadlock D to occur. For example, the deadlock shown in Figure 

1(a) is described as D1 = t1, n, m, {}, t2, m, n, {}.  

For a lock dependency  = t, w, h, L of a deadlock D, we refer to 

lock w as a wLock of thread t and lock h as a hLock of thread t 
as when deadlock D occurs, thread t is waiting on lock w while 

holding lock h. For example, on above deadlock D1 in Figure 

1(a), for thread t1, its hLock and wLock are lock m and lock n, 

respectively; and for thread t2, its hLock and wLock are lock n 
and lock m, respectively.   

2.2 Generic Approach 
A generic approach (GA) to deadlock fixing serializes the execu-

tions of all threads in the deadlock by inserting a gate lock. GA is 

widely adopted by existing works and is also adopted to fix other 
concurrency bugs [26][27][36][37][55][42]. As discussed in Sec-

tion 1, GA could fix a deadlock; but it may easily introduce vari-

ous new resource or communication deadlocks, and may further 
reduce the parallelism of executions from different threads due to 
over synchronization (i.e., introducing performance bugs [25]). 

We firstly illustrate GA on three deadlocks D1 to D3 as well as 

how it introduces various new deadlocks. For simplicity, we may 
not show lock releases if they are not related to our discussion.  

Deadlock D1: Figure 1(a) shows a program P1 with a deadlock D1 

on two threads t1 and t2 as they acquire two locks m and n in re-
versing lock orders (denoted by two dotted arrows). To fix dead-

lock D1, GA inserts a gate lock G to prevent two threads from 

acquiring two locks m and n concurrently as shown in Figure 1(b). 

GA correctly fixes D1.  

Deadlock D2: Figure 1(c) shows a program P2 with three threads 

t1 to t3 executing lock acquisitions and releases on locks m and n 

in three functions f1() to f3(), respectively. Program P2 contains a 

deadlock D2 between threads t1 and t2 if the value of need_m at 

site s22 is true. (The variable need_m is used to prevent a second 
lock acquisition by thread t3 via its call to f2() at site s33).  

Figure 1(d) shows the program fixed by GA on deadlock D2. Af-
ter fixing, deadlock D2 never occurs due to the insertion of a gate 

lock G. However, considering three threads together, we could 

observe that a new deadlock is introduced between threads t1 and 

t3: right after thread t1 acquires lock G and thread t3 acquires lock 

m (at site s31), thread t1 cannot further acquire lock m (at site s11) 

as which is held by thread t3; next, thread t3 cannot acquire lock 

G (at site sGa2) on its call to function f2() (at site s33) as lock G is 

held by thread t1. As a result, GA fixes deadlock D2 but introduc-

es a new resource deadlock on locks G and m.  

Deadlock D3: Figure 1(e) shows a program P3 with two threads t1 
and t2 to acquire locks m and n. Similar to program P1, program 
P3 contains a deadlock D3. The difference is that program P3 con-

tains a pair of events wait(n) and notify(n) at sites s22 and s13, 
respectively. However, the deadlock D3 is not related to this pair 

of events. It occurs if (1) thread t1 acquires lock m and is about to 

acquire lock n (at site s12) and (2) thread t2 acquires lock n and is 

about to acquire lock m at site s23 without executing wait(n) at site 
s22 (i.e., the value of v is a false).  

Figure 1(f) shows the program fixed by GA on deadlock D3. After 

fixing, deadlock D3 never occurs. However, a new communication 

deadlock is introduced: if thread t2 acquires both locks G and n 
and then executes wait(n) (i.e., the value of v is true), then the 
corresponding notification message will never be received by 

thread t2. It is because thread t1 is prevented from sending out the 

message at site s13 by executing notify(n) at site sGa1, as lock G is 



  

 

 

 

already held by thread t2. As a result, GA fixes deadlock D3 but 
introduces a new communication deadlock.  

Besides introducing new deadlocks, GA also introduces perfor-
mance bugs because it inserts a global lock as a gate lock. For 

example, on D1, if the two locks m and n of thread t1 are different 

from the locks m and n of thread t2, no deadlock occurs; hence, 
the two thread could execute in parallel. However, after fixing by 

GA, the two threads always execute sequentially due to a global 

gate lock, incurring runtime overhead.  

The latest work Grail [37] follows GA approach, but inserts a 

context-aware gate lock (determined by both locks m and n). Thus, 

Grail does not reduce parallelism if no deadlock may occur. How-

ever, as Grail still adopts the gate lock strategy, it cannot avoid 

introducing new deadlocks like GA (e.g., on fixing deadlock D2 

and D3); hence, Grail has to rely on other analyses (e.g., Petri-net 
model) to further prevent newly introduced deadlocks. Besides, as 

Grail needs to compute a context-aware lock involving all locks 

of a deadlock [37], it may fail on complex programs as some 
locks cannot be determined before some statements are executed. 

Due to these reasons, Grail failed to fix 8 out of 20 deadlocks in 
our experiment (in Section 5).  

3. OUR APPROACH  

3.1 Rationales and Overview of DFixer 
GA fixes a deadlock by inserting new gate locks to serialize exe-

cutions of the targeted deadlocks. Introducing new locks must 
introduce new lock orders from the introduced gate locks to the 
locks involved in targeted deadlocks. These newly introduced 
lock orders may form new deadlocks if their reversed lock orders 
are also introduced. For example, on fixing deadlock D2 in Figure 

1(c), the two newly introduced lock orders G ↝ m and m ↝ G form 

a new deadlock. Besides, the introduced new global locks are 
inserted to prevent all threads of a deadlock from executing con-
currently, which may (1) block communication messages from 
sending out (e.g., on fixing deadlock D3) or (2) introduce perfor-
mance bugs by preventing other threads from executing the same 
program code concurrently.  

Therefore, the key insights of deadlock fixing strategy are (1) to 
avoid introducing new lock orders and (2) to fix the executions 
exactly involved in the targeted deadlocks, but not to globally 
serialize all the involved program code. Based on above insights, 

we propose a novel strategy to fix deadlocks, known as DFixer. 

We note that a necessary condition for a deadlock D to occur is 

that each thread of D has to hold a hLock and then waits for a 

wLock (i.e., the hold-and-wait condition). DFixer exactly breaks 

such a necessary condition of one thread by fixing this thread to 

acquire its wLock together with its hLock, denoted by 

acq(hLock&wLock) which is formally defined in Section 3.2.1. 

That is, the selected thread by DFixer should either acquire the 

two locks at the same time or not acquire any one of them, break-
ing a hold-and-wait condition of the thread. We refer to this early 

acquisition by a selected thread on its wLock together with the 
acquisition on its hLock as a lock pre-acquisition.  

For example, Figure 2 shows program P1 (see Figure 1) with 

deadlock D1 fixed by DFixer. There are two ways for DFixer to 

fix deadlock D1: (1) thread t1 pre-acquires its wLock n (i.e., 

acq(m&n)), and (2) thread t2 pre-acquires its wLock m (i.e., 

acq(n&m), where the two pre-acquisitions are highlighted and also 
depicted by  from the original acquisition on the corre-
sponding wLock to its pre-acquisition.  

However, not all deadlocks could be fixed like the way to fix D1. 

For example, if there is another lock acquisition acq(p) in be-

tween acq(m) and acq(n) of thread t1 in P1, pre-acquisition on 

lock n also introduces a new lock order n ↝ q. Hence, such other 
synchronization events may also introduce various new deadlocks. 
To address such challenge, we carefully analyze these cases and 
further propose context-aware conditionals to guarantee the fixing 

correctness of DFixer via pre-acquisition.  

Overall, the novelties of DFixer are: (1) neither new lock nor new 
lock order is introduced, introducing no resource deadlocks. (2) 

Thread t1 Thread t2

s11

s12
s13
s14

acq(m&n)

acq(n)
rel(n)
rel(m)

s21

s22
s23
s24

acq(n)

acq(m)
rel(m)

rel(n)

(b) Fixing B: pre-acquisition on m by t2.

Fixed Program P1
Thread t1 Thread t2

s11

s12
s13
s14

acq(m)

acq(n)
rel(n)
rel(m)

s21

s22
s23
s24

acq(n&m)

acq(m)
rel(m)
rel(n)

(a) Fixing A: pre-acquisition on n by t1.  
Figure 2. Two ways to fix deadlock D1 in program P1 by DFixer. 

Thread t1 Thread t2

s11
s12
s13

acq(m)
acq(n)
notify(n)

s21
s22
s23

acq(n)
if(v) wait(n)
acq(m)

(e) A deadlock D3.

Thread t1 Thread t2

sGa1
s11
s12
s13
sGr1

acq(G)
acq(m)
acq(n)
notify(n)

rel(G)

sGa2
s21
s22
s23
sGr2

acq(G)
acq(n)
if(v) wait(n)
acq(m)

rel(G)

(f) A fix to D3 by GA that introduces a new communication deadlock.



Program P3

Thread t1 Thread t2
s11

s12

acq(m)     

acq(n)

s21

s22

acq(n)

acq(m)

Thread t1 Thread t2
sGa1
s11
s12
sGr1

acq(G)
acq(m)
acq(n)  

rel(G)

sGa2
s21
s22
sGr2

acq(G)
acq(n)   
acq(m) 

rel(G)

(a) A deadlock D1.

(b) A correct fix to D1 by GA.

Program P1

Thread t1 Thread t2 Thread t3

s11
s12

Func f1()
{
acq(m)
acq(n)

}

s21
s22

Func f2()
{
acq(n)
if(need_m)    

acq(m)
}

s31
s32
s33
s34
s35

Func f3()
{
acq(m)
need_m = false
call f2()
need_m = true
rel(m)

}(c) A deadlock D2.

(d) A fix to D2 by GA that introduces a new resource deadlock.

Thread t1 Thread t2 Thread t3

sGa1
s11
s12
sGr1

Func f1()
{
acq(G)
acq(m)
acq(n)

rel(G)
}

sGa2
s21
s22

sGr2

Func f2()
{
acq(G)
acq(n)
if(need_m) 

acq(m)
rel(G)
}

s31
s32
s33
s34
s35

Func f3()
{
acq(m)
need_m = false
call f2()
need_m = true
rel(m)

}

Program P2

Simplified from a MySQL deadlock 

with BugID = 62614.

Simplified from a MySQL deadlock with 

Bug ID = 60682.  
Figure 1. Three deadlocks (D1 to D3) and their fixing by GA. 



  

 

 

 

DFixer only selects one thread to pre-acquire a lock and if any 

conditionals are also introduced, they are made to be context-

aware (i.e., specified by both hLock and wLock). This allows all 
other threads to execute concurrently (if they are not involved in 
deadlock) and to execute without preventing communications 
from sending out, introducing no communication deadlocks.  

3.2 Lock Pre-acquisitions and Context-aware 

Conditionals 
In this subsection, suppose that for each thread in a deadlock, the 

acquisition on its hLock dominates its acquisition on wLock (i.e., 

if acq(hLock) is executed, acq(wLock) must be executed; and if 
not, the latter is not executed). Section 3.3 discusses how to han-
dle the opposite cases.  

3.2.1 Implement Lock Pre-acquisition 
DFixer requires that the two locks wLock (w for short) and hLock 

(h for short) of a selected thread should be acquired at the same 
time. However, if the two statements are simply placed together 

(i.e., "acq(h); acq(w)" or "acq(w); acq(h)"), there always exists a 

lock order between two acquisitions (i.e., h ↝ w or w ↝ h, respec-

tively), which either is the same as that before fixing (i.e., h ↝ w) 
or may introduce a new deadlock as a new lock order is intro-

duced (i.e., w ↝ h).  

To eliminate both lock orders, the two acquisitions must be per-
formed at the same time. This could be implemented by re-writing 
locking mechanism. However, we propose to use the existing 

locking primitive tryAcq() (e.g., pthread_mutex_trylock() 

from Pthread) to implement acq( h&w ) as follows: 

acq(h&w) = 
while( (tryAcq(h) && tryAcq(w)) == false) 
{ rel(h); rel(w); } 

That is, if a thread cannot acquire both locks, it immediately re-
leases the acquired one if any. Although this implementation still 

introduces a lock order h ↝ w which, however, does not introduce 
any new deadlocks even if there exists a reversed lock order (i.e., 

w ↝ h). The reason is that the thread involved in above pre-

acquisition immediately releases its lock h, which never results in 

a hold-and-wait condition on locks h and w. From this viewpoint 
by not introducing any deadlock, we regard that this implementa-

tion does not introduce a lock order h ↝ w. In the rest of this pa-

per, we directly use "acq(h&w )" to denote the pre-acquisition on 
a wLock w together with a hLock h.  

Note that tryAcq() may introduce livelocks [35]. In theory, such a 
livelock cannot be eliminated. In practice, it can be easily resolved 
by inserting a random sleep (e.g., from 0 to 5 milliseconds as 
adopted in our experiment) right after two release operations.  

3.2.2 Avoid Introducing Resource Deadlocks 
Simply let a thread to pre-acquire its wlock may also introduce 
new (resource) deadlocks as it may introduce new lock orders. Let 
us consider a general case. Suppose for a deadlock D shown in 

Figure 3(a), thread t1 is selected to pre-acquire its lock w together 
with its lock h (i.e., acq(h&w)) as shown in Figure 3(b).   

After pre-acquisition, a challenge is that: if there exists other lock 

acquisitions, say on a lock p, between the original two acquisi-

tions, a new lock order w ↝ p is then introduced as denoted in a 

dotted arrow in Figure 3(b). For such a lock order w ↝ p, if its 

reversed lock order p ↝ w also exists (e.g., Figure 3(c)), a new 
deadlock is introduced.  

Therefore, a straightforward approach for DFixer is to only select 

a thread of a deadlock such that, in between its acq(h) and acq(w), 

no other lock acquisition exists. For such a thread, its pre-

acquisition on w not only fixes the deadlock but also introduces no 
new lock orders, hence introducing no new deadlocks.  

However, above approach may fail on fixing some deadlocks as, 
for a deadlock, all its threads may acquire other locks in between 
their two acquisitions. We further propose context-aware condi-

tionals (specified by both hLock and wLock) to handle such cases 
where a thread of a deadlock acquires other locks in between its 
two acquisitions, together with lock pre-acquisition. This fixing is 
shown in Figure 3(d) where the original deadlock is the one in 
Figure 3(a). Our proposal is, after pre-acquisition, if there is any 

other lock acquisition, say acq(p):  

(1) DFixer firstly releases the pre-acquired lock w right before 

the acquisition on lock p and then re-acquires lock w togeth-

er with the acquisition on lock p (i.e., from "acq(p)" to 

"rel(w); acq(p&w)").  

(2) DFixer further guarantees that the second thread of the 

deadlock could not acquire lock w if the thread in (1) has re-

leased its pre-acquired lock w but not re-acquired it together 
with lock p.  

The first step guarantees no new lock order w ↝ p is introduced. 

However, the re-acquisition on lock w of acq(p&w) recovers the 

lock order h ↝ w (formed by "acq(h&w) … rel(w); acq(p&w)"), 

failing to fix the deadlock considering its reversed lock order w ↝ 

h from the second thread of the deadlock (or w ↝ ... ↝ h if the 

deadlock contains more than two threads). Therefore, DFixer has 

to guarantee that such a lock order h ↝ w does not form a dead-

lock from the other thread that forms the lock order w ↝ h. This is 
guaranteed in (2) that prevents two lock orders forming at the 
same time. This guarantee could be implemented by adding new 
locking mechanism or even communications (e.g., a pair of 

wait() and notify() primitives). However, this makes DFixer 
much more complex.  

We then introduce a context-aware conditional vhw, specified by 

both hLock h and wLock w, to provide the guarantee. Specifical-

ly, as shown in Figure 3(d), thread t1 sets a vhw to be true right 

before it releases its pre-acquired lock w and recovers it to be false 

after it re-acquires lock w. For thread t2, after it acquires lock w 

(i.e., the hLock of thread t2), it checks whether thread t1 requires 

to re-acquire lock w (i.e., vhw = true?); if so, it does not actually 

acquire lock w but waits until vhw becomes false. As such, although 

thread t1 forms a lock order h ↝ w, it cannot be formed with the 

lock order w ↝ h by thread t2 at the same time. Besides, this con-

ditional does not prevent either thread t2 acquiring lock w at other 

sites or other threads acquiring lock w. Note that, this conditional 
is different from an ad-lock synchronization [59] as accesses to 
vhw are always protected by the same lock w.  

The cases where more than one other lock acquisitions exist in 
between acq(h) and acq(w) are handled in the same way.  

Thread t1
acq(h)
acq(p)
acq(w)

Thread t1
acq(h&w)
acq(p)
acq(w)

(a) (b)

Pre-acquisition 

on lock w:

Thread t2
acq(w)
acq(h)

Thread t'
acq(p)
acq(w)A new deadlock

is introduced.

(c)

(d)

Thread t1
acq(h&w)

vhw=true
rel(w); acq(p&w);
vhw=false
acq(w)

Thread t2
while(acq(w))
{
if(vhw) rel(w);
else break;

}
acq(h)

vhw=false

 
Figure 3. Fixing via lock pre-acquisition fails (above) and a condition-

al is required (below). 



  

 

 

 

Discussion. To avoid introducing new deadlocks, DFixer fixes a 

given thread via lock pre-acquisitions and context-aware condi-
tionals. A question is that: without any pre-acquisition, could a 
deadlock be fixed directly by any conditionals alone? We believe 
a deadlock could be fixed by conditionals only. However, it may 
involve complex control logic among two threads (e.g., consider-
ing protections on conditionals, two cases considering which 
thread firstly acquire their first lock); otherwise, hangs (like dead-
lock) may occur, prevent the threads from making any progress. 

For example, Figure 4 shows that a conditional vhw is used to al-
low only one thread of a deadlock (e.g., deadlock D2 in Figure 
1(c)) to execute acquisitions on two locks at a time.  

Then, a hang occurs as follows: after thread t1 changes vhw to be 

true and thread t3 acquires lock m, t1 cannot acquire m at site s11 

and thread t3 always executes while(vhw) after it calls f2() at site 
s33. For deadlock D3, if a conditional is applied to fix it, the result 
is similar as a gate lock is applied (i.e., a communication deadlock 
is introduced). Besides, the conditional has to be protected by a 
common lock. Introducing such a lock further brings a potential to 
introduce deadlocks; whereas, our conditional is rightly protected 
by the existing wLock of a selected thread.  

3.2.3 Avoid Introducing Communication Deadlocks 
Although DFixer aims to fix resource deadlocks, it should intro-

duce neither resource deadlocks nor communication deadlocks. If 

DFixer fixes a deadlock without considering communications 

among all threads, a communication deadlock may also be intro-
duced as shown in Figure 5. Figure 5(a) shows a general case: a 

thread t2 (we use the symbol "t2" not "t1" to be consistent with 

deadlock D3 in Figure 1) of a deadlock executes a wait(k) be-

tween its two acquisitions (where lock k is acquired before 

wait(k) and may be the same as lock h). After pre-acquisition (as 
shown in Figure 5(b)), a communication deadlock occurs if (1) 

thread t2 is blocked on executing wait(k) while it is holding lock 

w and (2) a thread t' that should execute notify(k) is then 

blocked as it cannot acquire lock w as shown in Figure 5(c). The 

cases where a notify() eixsts is similar; we only discuss wait() 
below as its solution also applies to cases of notify(). 

Fortunately, our solution in the last subsection (to address other 

lock acquisitions acq(p)) also applies to the existence of above 

wait(k) in Figure 5(a). This is because an event wait(k) consists 

of three setps: release lock k (denoted by relw(k)), wait for a 

message related to lock k, and re-acquire lock k (denoted by 

acqw(k)). As relw(k) does not produce lock orders, we do not 
consider it. However, the wait requires that pre-acquisition on 
lock w should not prevent other threads sending a message via 

notify(k); and acqw(k) requires that no new lock order from the 

pre-acquired lock w is introduced. Hence, in both cases, the pre-

acquired lock w should be released, which is similar with the case 
on avoiding introducing resource deadlocks and our above 
solution also applies to this case.  

The only difference between acq(k) and acqw(k) of a wait(k) is 

that, the latter is implicitly included in the wait(k). That is, right 

after wait(k), the re-acquisition on lock k (i.e., acqw(k)) has been 

done. Hence, we insert a rel(k) right after a wait(k) and then let 
the thread acquire both locks together:  

wait(k) and acq(w) = 

wait(k); rel(k); acq(k&w); 

However, as we mentioned before, the lock k in wait(k) might be 

the lock h. This does not affect the fixing correctness of DFixer 

except one special case: the corresponding notify(k) (i.e., noti-
fy(h)) is expected to be executed by thread t1 (i.e., thread t1 is 

the same as thread t') in between its acquisition and release on 

lock w (i.e., hLock of thread t1). This case is actually the deadlock 
D3 in Figure 1. For this case, above fixing fails as three threads (if 
they are likely to form a deadlock) are expected to execute by 
following the below orders according to our solution, resulting a 
controdiction:  

1) Thread t2 pre-acquires lock w together with lock h and then 

releases lock h right before wait(k). 

2) thread t' firstly acquires lock w (acq(w)) and then executes 

notify(k). 

3) thread t2 re-acquires lock w together with lock k (acq(w&k)). 
4) thread t1 (i.e., thread t') should acquire lock w (acq(w)).  

When thread t' is actually the thread t1 and the lock k is the lock 

h, their acquisitions on lock w (highlighted in 2) and 4)) are the 
same one, making above execution order infeasible. Actually, 
after executing the first three steps, there is no fourth step as it is 
included in step 2). As the step 4) is forced by our context-aware 
conditional, we then remove this conditional. That is, to fix 
deadlocks of this special case, the pre-acquisition alone is enough 
(on the thread where a wait(k) exists and lock k is its hLock).  

Figure 6 shows fixing of deadlock D3 on program P3 if thread t2 
is selected. This fixing only involves pre-acquisition of wLock m.  

3.2.4 Fix Multiple Deadlocks 
A program may contain multiple deadlocks. These deadlocks 

could be incrementally (i.e., one by one) fixed by DFixer. 

However, DFixer could also be optimized to fix multiple 

deadlocks by selecting a shared thread, if these deadlocks share 
the thread as well as its two acquisitions (i.e., share a lock 
dependency).  

3.3 Handle Program Control Flows 
In Section 3.2, we assume that acq(h) dominates its acq(w) for a 

thread selected by DFixer. However, this is not always the case 

due to the complexity of program controls (e.g., an early return 

may exist in between acq(h) and acq(w)).  

There are five basic cases according to whether the code lines 

between two acquisitions on hLock and wLock of a thread involve 
(1) single or multiple entries and single or multiple exits and (2) 
loop structures, as shown in Figure 7. To ease our following 

Thread t2
acq(h)
wait(k)
acq(w)

Thread t2
acq(h&w)
wait(k)

acq(w)

(a) (b)

Thread t'

acq(k)
acq(w)
notify(k)

(c)

Pre-acq. 
on lock w:

A new 
deadlock is 
introduced.

 
Figure 5. A communication deadlock introduced after pre-acquisition. 

Thread t1 Thread t2 Thread t3

s11
s12

Func f1()
{
while(vhw);
vhw=true
acq(m)
acq(n)
vhw=false

}

s21

s22

Func f2()
{
while(vhw);
vhw=true
acq(n)
if(need_M) acq(m)
vhw=false

}

s31
s32
s33
s34
s35

Func f3()
{
acq(m)
need_M = false
call f2()
need_M = true
rel(m)

}  
Figure 4. Deadlock fixing via a conditional without pre-acquisitions. 

Thread t1 Thread t2

s11
s12
s15

acq(m)
acq(n)
notify(n)

s21
s22
s23

acq(n&m)
if(v) wait(n)
acq(m)

Fixed Program P3

 
Figure 6. Fixing on deadlock D3 by DFixer. 



  

 

 

 

presentation, we suppose that the two locks h and w are the hLock 

and the wLock of a selected thread, respectively.  

 Single-entry and Single-exit. In this case, DFixer directly in-
serts an acq(w) into the pre-acquisition block, as the execution 
of acq (h) always results in the execution of the original acq 
(w); and the original acq(w) should be removed.  

 Single-entry and Multiple-exits. If there are more than one 
branch between the two lock acquisitions, DFixer has to insert 
a lock release statement (i.e., rel(w)) at the beginning of all 
other branches that do not contain the original acq(w).  

 Multiple-entries and Single-exit. If there are multiple entries 
between the two lock acquisitions (e.g., acq(w) and acq(h) are 
in two different functions), DFixer adds a lock w specified 
conditional (i.e., vw in Figure 7(c)) to indicate whether the 
lock w is previously acquired at its pre-acquisition site.  

 Multiple-entries and Multiple-exits. This case is a combina-
tion of the last two cases. Therefore, DFixer not only inserts 
release statements on lock w to all other branches not contain-
ing the original acq(w), but also inserts a lock w specified 
conditional. For this case, the inserted release statements 
should also be executed conditionally.    

 Loop structure. We firstly note that if the original acq(w) is 
within a loop, its corresponding rel(w) should also be in the 
same loop; otherwise, a self-deadlock exists. As DFixer re-
quires that the lock w should be pre-acquired, it has to take the 
acquisition on lock w out of the loop body. Otherwise, the 
originally protected executions become unprotected during 
the second and later executions of the loop.  

Among our example deadlocks, only deadlock D2 involves multi-

ple-exits on thread t2. If thread t2 is selected, the program control 
flow is fixed as shown in Figure 8 according to Figure 7(b).  

3.4 DFixer Algorithm 
Algorithm 1 outlines DFixer. Given a program P and a deadlock 

D from program P, DFixer firstly (Step 1) analyzes the program 

statements1 involved in each thread of D. This analysis is based on 

a Depth-First-Search, for each thread t, to explore all possible 

paths from the statement of its hLock (i.e., site(h)) to the state-

ment of its wLock (i.e., site(w)). Within this search, DFixer keeps 

all other locks p of acq(p) in Lp(t) and all locks k of wait(k) or 
notify(k) in WNk(t).  

                                                                 
1 These statements should be extracted when the deadlock occurs as it is diffi-
cult for Object-oriented programs (e.g., C++) to statically extract the concrete 
calls between the two sites site(h) and site(w) for a thread. 

Next (Step 2), DFixer tries to select a thread t such that the size of 

Lp(t) and WNk(t) is the smallest one among all not selected (see 

Step 3) threads of D. If the size of Lp(t) and WNk(t) is 0, DFixer 

directly applies pre-acquisition fixing alone; otherwise, it applies 
both pre-acquisition and a context-aware conditional to fix D. It 
then handles program control follows as said in Section 3.3. 

After applying fixing, DFixer (Step 3) compiles the fixed pro-

gram. If the compilation fails, DFixer returns to Step 2 to select 

another thread to fix deadlock D again. (This compilation failure 

is usually caused as some wLocks cannot be pre-acquired). If no 

thread is selected in Step 2, DFixer fails to fix the deadlock D.  

3.5 Guarantee of DFixer 
DFixer guarantees to fix a given deadlock D without introducing 
new resource or new communication deadlocks as Theorem 1.  

Theorem 1. Given a deadlock D from a program P, after fixing 

deadlock D by DFixer according to Algorithm 1: (1) the events in 

D do not form any deadlock occurrence, and (2) no other re-
source or communication deadlock is introduced.  

Proof Sketch. Suppose that the deadlock D = … ti, wi, hi, Li 

… and DFixer selects the thread ti to pre-acquire its wLock wi.  

Case 1: |𝐿𝑝(𝑡𝑖) + 𝑊𝑁𝑘(𝑡𝑖)| = 0. This case is straightforward. Be-

fore fixing, there are two lock orders: hi ↝ wi for thread ti and wi 
↝ … ↝ hi for other threads in D. After fixing, the lock order hi ↝ 
wi is removed due to pre-acquisition of wi (i.e., acq(hi & wi)). 
Therefore, the events in D cannot form a deadlock occurrence. On 

the other hand, as |𝐿𝑝(𝑡𝑖) + 𝑊𝑁𝑘(𝑡𝑖)| = 0, no other lock acquisi-

tions or wait() /notify() exist in between the original acq(hi) 
and acq(wi). Therefore, after pre-acquisition of the lock wi, no 
new lock order is introduced and the pre-acquisition does not 

prevent any wait() or notify() from occurring. Hence, no new 
resource deadlock or communication deadlock is introduced.  

Case 2: |𝐿𝑝(𝑡𝑖) + 𝑊𝑁𝑘(𝑡𝑖)| ≠ 0. In this case, as the original lock 

order hi ↝ wi is eliminated after fixing, the events in D cannot 
form a deadlock occurrence. After fixing, no other lock order is 

acq(h)

acq(w) acq(w)rel(w)

acq(h)

acq(w)

rel(w)

(b) Single-entry and Multiple-exits

(e) Loop structure

Pre-acquisitions and 

handling of control flows

Removed statements

acq(h)

acq(w)

acq(h&w)

acq(w)

(a) Single-entry and Single-exit

(c) Multiple-entries and Single-exit (d) Multiple-entries and Multiple-exits

Original statements

if(!vw)
acq(w)

acq(h&w)
vw=true

vw=false
rel(w)

acq(h)

acq(w)

rel(w)

acq(h)

acq(w)

rel(w)

acq(h&w)

if(!vw)
acq(w)

vw=false
rel(w)

if(vw){ 
vw=false
rel(w)}

acq(h&w)
vw=true

rel(w)

acq(w)

rel(w)

acq(h&w)

 

Figure 7. Five basic cases of control flows. 

Thread t1 Thread t2 Thread t3

s11

s12

Func f1()
{
acq(m)

acq(n)
}

s21
s22

Func f2()
{
acq(n&m)
if(need_m)
acq(m)

else
rel(m)

}

s31
s32
s33
s34
s35

Func f3()
{
acq(m)
need_m = flase
call f2()
need_m = true
rel(m)

}

Fixed Program P2

 
Figure 8. Fixing on deadlock D2 by DFixer if thread t2 is selected.  



  

 

 

 

introduced except one for each lock p: hi ↝ wi due to the three 

fixing statements (i.e., acq(hi & wi); rel(wi); acq(p & wi)) from 

thread ti. However, there is a context-aware conditional vhw is 
introduced (see line 14 of Algorithm 1) to determine whether the 

lock order hi ↝ wi is formed. The lock order only occurs when vhw 
= true (see thread t1 in Figure 3(d)). But the original lock order 

wi ↝ … ↝ hi only occurs when vhw = false (see thread t2 in Fig-
ure 3(d)). Hence, the two lock orders cannot be formed at the 
same time. Therefore, after fixing, the events in D as well as the 
introduced lock orders cannot form a deadlock occurrence. Be-

sides, in this case, right before any other acq() or 

wait()/notify(), the pre-acquired lock wi is released, introducing 

no new lock order and does not prevent thread ti from executing 

notify(). Hence, neither new resource deadlock nor communica-
tion deadlock is introduced. 

Based on the above two cases, Theorem 1 is proved.  

4. DISCUSSIONS AND LIMITATIONS 
In practice, some wLocks depend on data structures which cannot 

appear together with the acquisition of their hLocks. Of course, 

DFixer is able to fix a deadlock via multiple ways. If a thread 

could not perform its pre-acquisition, another thread is then se-
lected. However, the worst case is that no thread of a deadlock 

could perform a pre-acquisition on its wLock. In theory, this case 

does exist. Note that, this challenge is also suffered by Grail; 
however, Grail fails on fixing deadlocks with at least one such 

thread. The reason is that Grail requires exactly all hLocks and 

wLocks to abstract a context-aware gate locks. In our experiment, 

it failed on 7 deadlocks from MySQL due to this reason.  

DFixer may also introduce more runtime overhead than Grail and 

GA. For example, after pre-acquisition of a wLock, the thread may 

take a long time before reaching the original acquisition and 

release of the wLock; and this may prevent other threads (not from 

the deadlock) acquiring the wLock. However, Grail and GA do 

not suffer this limitation as their inserted new locks only affect the 
executions of threads from the deadlock.  

5. EXPERIMENT 

5.1 Benchmarks 
We collected a set of nine benchmarks: DB Maintain, Bank 

Trans., Dining Philo., HawkNL, SQLite, OpenLDAP, and 

three different versions of large-scale MySQL Database Serv-

er. The first three are used for deadlock research purpose and the 
rest are widely-used real-world programs. They totally include 20 
deadlocks and each involves two or three threads, covering most 
of deadlocks cases [39]. All these benchmarks have been used in 
previous works multiple times [11][17][18][30][32][55] and are 
available either online [1][3][4][6] or from the previous works 
[30][55]. These benchmarks including their test cases are also 

available at http://lcs.ios.ac.cn/~yancai/dfixer.  

Table 1 shows the statistics of all benchmarks, including bench-
mark names with version numbers (if available), Bug IDs (if 
available), program size (SLOC [5]), the number of threads of 

each benchmark ("prog"), the number of threads involved in each 

deadlock ("dlk"), the number of deadlocks ("# of dlks") in 

each benchmark. The next five columns show the statistics related 

to DFixer, including the number of other lock acquisitions ("Lq") 

and the number of wait()/notify() event ("WNk") of each thread 
in each deadlock, respectively, whether there are multi-entries, 
multi-exits, and loops structures. We show the five metrics for 
each thread of each deadlock, where a single value or symbol is 
shown if they are same for all threads of a deadlock. The eleventh 

column shows the depth from acq(hLock) to acq(wLock) of each 
thread in each deadlock, in terms of the number of functions and 

the code lines (SLOC). For example, the first such value is "0 (1) 

/ 0 (3)", indicating that the two acquisitions of both threads are 
within the same function and there are 1 and 3 code lines between 
them, respectively. Note that, some benchmarks include multiple 
deadlocks. These deadlocks from the same benchmark involve the 
same set of locks but occur in different scenarios (i.e., from dif-
ferent set of threads and in different functions), we treat them as 
different deadlocks as each of them should be fixed. However, 
due to page limit, the statistics only show the data of one deadlock 
for each benchmark; and the full statistics are also available at our 
online benchmark page. The last column shows whether dead-
locks from a benchmarks could be fixed by lock pre-acquisition 
only (i.e., without a context-aware conditional).  

5.2 Implementation and Experimental Setup 
We implemented DFixer (as well as GA and Grail) on top of 

LLVM framework [2][38]. DFixer extends the ModulePass class 

Table 1. Statistics of benchmarks and deadlocks.  

Benchmark Bug ID SLOC 
# of threads 
(prog/dlk) 

# of dlks Lp WNk 
Multi- 

entries? 
Multi- 
exits? 

Any  
Loops? 

Depth 
Func. (SLOC) 

Pre-acq 
only? 

DB Maintain n/a 0.1K 3 / 2 1 0 0    0 (1) / 0 (3)  
Bank Trans. n/a 0.1K 3 / 2 1 0 0    0 (3) / 0 (3)  
Dining Philo. n/a 0.1K 5 / 5 1 0 0    0 (1) / 0 (1)  

Hawknl (1.6b3) n/a 9.3K 3 / 2 1 0 0    0 (5) / 0 (6)  
SQLite (3.3.3) 1672 74.0K 3 / 2 2 0 0    0 (1) / 1 (4)  
OpenLDAP (2.2.20) 3494 167.3K 5 / 2 1 1 / 0 0  /  /   /   1 (36) / 1 (29)  
MySQL-1 (6.0.4a) 34567 1,093.6K 16 / 2 4 1 / 0 0  /  /   /  8 (26) / 0 (2)  
MySQL-2 (6.0.4a) 37080 1,093.6K 17 / 2 1 1 / 3 0 /  /   /  4 (43) / 4 (15)  
MySQL-3 (5.5.17) 62614 1,282.7K 22 / 2 2 1 / 0 0  /   /    /  0 (1) / 1 (13)  
MySQL-4 (5.1.57) 60682 1,146.7K 19 / 3 6  1 / 0 / 0 1 / 1 / 0    / /  1 (23) / 4 (116) / 2 (18)  

 

Algorithm 1: DFixer  
1.   
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   

10.   
11.   
12.   
13.   
14.   
15.   
16.  
17.     
18.  

Input:  𝑃 and D = 𝑡1, 𝑤1, ℎ1, {}, 𝑡1, 𝑤2, ℎ2, {} …  
//Step 1: identify program information 

for each 𝑡, 𝑤, ℎ, {} ∈ 𝐷 { 
   let 𝐿𝑝(𝑡) = ∅, 𝑊𝑁𝑘(𝑡) = ∅  //other acq(q) and wait(k) in between 
   Analyze 𝑃 from 𝑠𝑖𝑡𝑒(ℎ) to 𝑠𝑖𝑡𝑒(𝑤) and update 𝐿𝑝(𝑡), 𝑊𝑁𝑘(𝑡) 
   //this analysis is based on DFS exploring 
} 
//Step 2: select a thread and apply fixing 

let 𝑡 ∈ 𝐷 be a thread with smallest |𝐿𝑝(𝑡) + 𝑊𝑁𝑘(𝑡)| from all threads 
in 𝐷 except those threads previously selected. 
if no such a thread 𝑡,  
   print "DFixer failed to fix deadlock D from program 𝑃." halt. 
if |𝐿𝑝(𝑡) + 𝑊𝑁𝑘(𝑡)| = 0: Apply pre-acquisition on thread 𝑡. 
else Apply pre-acquisition and context-aware conditional on thread 𝑡.  
handle program control flow according to Section 3.3. 
//Step 3: verify fixing 

let the fixed program 𝑃 as program 𝑃′. 
compile 𝑃′, if failed, goto Step 2.  

  



  

 

 

 

of LLVM to perform a Depth-First-Search as shown in Algorithm 
1 on Bitcode files. It firstly extracts synchronizations and controls 
(i.e., Control-Flow-Graphs and Call-Graphs) for each thread in 

between its acq(hLock) and acq(wLock). Next, based on extract-
ed information, it applies pre-acquisition or/and context-aware 

conditionals. However, DFixer does not directly modify any 
Bitcode files; instead, it generates a fixing guide file (e.g., where 
and what should be inserted). We built a small program to trans-
late this file into a Linux patch file. The patch file can be patched 
into the source code of the given program to fix a deadlock.  

For the DFixer and Grail, some wLocks were not visible at the 

acquisition of their hLocks. Trying to solve the visibility issue 
might be difficult (as which requires C/C++ source file inclusion 
and could easily introduce compilation errors). Therefore, we set a 

pointer and assign the value of the wLock to the pointer. This 

pointer is used for pre-acquisition by DFixer or for computation of 

context-aware gate locks by Grail. We implemented context-

aware conditionals for DFixer via a map structure from two given 

locks (hLock and wLock) to a Boolean value.  

Grail is based on context-aware gate locks. It firstly generates a 

string by concatenating the addresses of hLock and wLock. Next, 
a second constant string (mapped in Java String Pool in Java 7, 

see String.intern()) with same values is returned as a 

gatelock object. This constant string is unique in each Java 
execution. We implemented this via a map structure in C++, 
which maps a concatenation of two lock addresses to a gate lock. 
There is no essential difference between our implementation in 

C++ and the Grail original implementation in Java.  

After applying three techniques to all benchmarks, we ran each 
fixed program by each technique for 100 times and collected the 
cases where deadlock occurred. During this 100 runs, we inserted 
a set of random sleep before and after each original and fixing 
lock acquisition of each deadlock to amplify deadlock occurrence 
probabilities. (Note, without the random sleep, the 100 runs were 
not enough.) We also ran them for 10 additional times without 

sleep to collect their execution time. As all versions of MySQL are 
servers, we only collected their processing time on SQL queries 
(i.e., test cases) but not the whole program execution time.  

We conducted the experiment on a ThinkPad workstation W540 
with a 2.5 GHz (up to 3.4GHz) i7-4710MQ processor, installed 
with Ubuntu 14.04 and GCC 4.8.  

5.3 Result Analysis 

5.3.1 Overall Effectiveness 
Table 2 shows the detailed fixing results. The second major col-

umn shows that, before ("Native") and after fixing by each tech-

nique, how many deadlocks occurred in 100 runs (with random 
sleep). The third major column shows, after fixing, whether any 
new deadlock was introduced. We adopted manual inspection into 

the fixed source code firstly ("Potential") and then ran each 
fixed program to see whether any new deadlocks could be trig-

gered ("Triggered"). The mark "-" indicates that no data was 
collected (e.g., a technique failed to fix a deadlock or a new dead-
lock always occurred after fixing). The last major column shows 
the average fixing overhead of the 10 additional runs (no sleep). 

From the second major column of Table 2, we see that all dead-
locks were likely to occur with random sleep. After fixing, no 
deadlocks occurred except on two benchmarks where new dead-
locks were introduced. However, no deadlock occurrences did not 
indicate that no new deadlocks were introduced by three tech-
niques. The second major column of Table 2 then shows that, 
after fixing, many potential deadlocks were introduced by both 

GA and Grail; and these potential deadlock were also triggered. 

However, DFixer did not introduce any potential deadlocks and no 

deadlock was triggered.  

We further summarized the fixing results of three techniques on 
17 deadlocks from real-world benchmarks in Table 3 (summa-
rized from Table 2), including the number of deadlocks success-
fully fixed by each technique and whether there is any significant 
performance downgrade (e.g., more than 5% overhead). From the 

table, we observe that Grail and GA only successfully fixed 7 and 

6 deadlocks out of 17 deadlocks, respectively; on other deadlocks, 
they either failed or/and introduced new deadlocks. However, 

DFixer fixed all 17 deadlocks correctly. Besides, both Grail and 

GA incurred larger than 5% overheads on average; whereas, 

DFixer did not incur such a large overhead across all benchmarks. 

5.3.2 Overall Efficiency 
The last major column of Table 2 shows the fixing overhead. Av-

eragely, on real-world deadlocks, GA incurred 15.8% overhead, 

Grail incurred 11.5% overhead, but DFixer only incurred 2.1% 

overhead.  

We note the following: Grail fixes a deadlock by inserting a con-

text-aware gate lock, which could reduce fixing overhead com-

pared to GA that inserts a global gate lock. Previous experiments 

[37] also verified this point. In our experiment, Grail incurred the 

largest overhead on four of six benchmarks. This, however, does 
not contradict the previous results [37]. The reason is that our 

Table 2. Detailed comparisons of GA, Grail, and DFixer (The avg. overhead in last row is on real-world deadlocks only). 

Benchmark 

# of deadlocks occurrences  

with random sleep 

# of new deadlocks 
Average overhead Potential Triggered 

Native GA Grail  DFixer GA Grail DFixer GA Grail DFixer GA Grail DFixer 

DB Maintain 51 0 0 0 0 0 0 0 0 0 0.0% 0.0% 0.0% 
Bank Trans. 53 0 0 0 0 0 0 0 0 0 184.4% 312.5% 3.1% 
Dining Philo. 31 0 - 0 0 - 0 0 - 0 106.8% - 0.6% 

Hawknl 73 0 0 0 0 0 0 0 0 0 11.2% 27.1% 1.9% 
SQLite 56 100 100 0 1 1 0 1 1 0 - - 2.7% 
OpenLDAP 47 0 0 0 0 0 0 0 0 0 2.0% 2.9% 0.5% 
MySQL-1 62 0 0 0 0 0 0 0 0 0 7.1% 9.5% 0.5% 
MySQL-2 37 0 - 0 0 - 0 0 - 0 19.4% - 2.9% 
MySQL-3 70 0 0 0 2 2 0 2 2 0 11.5% 6.3% 1.8% 
MySQL-4 28 47 - 0 6 - 0 6 - 0 43.5% - 4.1% 

 Sum:   9 3 0 9 3 0      Avg.: 15.8% 11.5% 2.1% 
 

Table 3. Summary of fixing on real-world deadlocks. 

# of total real  

deadlocks 

# of fixed With overhead < 5%? 

GA Grail DFixer GA Grail DFixer 

17 7 (41%) 6 (35%) 17 (100%)      



  

 

 

 

experiments focused on scenarios where deadlocks were likely to 
occur before fixing, while the previous experiments focused on 
scenarios where deadlocks (and atomicity violations) were not 

likely to occur (see the deadlock benchmark Log4j-bugID-24159 
[37]). Therefore, for our cases, all three techniques have to serial-
ize part or all executions in each deadlock as our test cases are 

designed to trigger deadlock occurrences. As both GA and Grail 
completely serialized the executions in our cases, they incurred 

more overhead than that by DFixer which not only serialized part 

of executions via per-acquisitions but also released pre-acquired 
locks if no deadlocks may occur (i.e., by fixing program control 

flows). On the other hand, GA simply inserted gate locks; where-

as Grail had to compute context-aware gate locks by matching 

context in a map structure (even in its original implementation in 

Java, see Section 5.2). As a result, Grail may incur a larger over-

head than GA on some benchmarks.  

5.3.3 Detailed Discussion  
DB Maintain and Bank Trans. These two benchmarks are 

simple ones like our example deadlock D1. All three techniques 

correctly fixed them. On DB Maintain, no additional overhead 

was incurred by all techniques. However, on Bank Trans, the 
two threads acquire their first locks twice before they acquire their 

second lock, i.e., "acq(m); acq(m); acq(n)" (here no self-deadlock 
exists as two threads use recursive locking of Pthread). Besides, 
the two threads only acquire their second lock in less than half of 
all cases. As a result, the deadlock seldom occurs before fixing 

(without sleep). However, GA and Grail completely serialized 

two threads from their first acquisitions, resulting in heavy over-

head (184.4% by GA and 300% by Grail). DFixer only selected 

one thread to pre-acquire its second lock together with its first 
acquisition; and if the thread takes another branch, it immediately 
releases the pre-acquired locks, only incurred 3.1% overhead.  

Dining Philo. This benchmark includes five threads t1 to t5 
(to simulate five philosophers) and each thread ti acquires two 

locks li and li+1 (l6 = l0). The deadlock occurs when each thread 

ti acquires lock li and waits for lock li+1. Both GA and DFixer 

were able to fix it. However, Grail only targets to fix deadlocks 
with two threads. Therefore, it was unable to fix this deadlock. 

(Note that, for deadlocks involving more than two threads, Grail 
might generate a gate lock based on all these locks, which is fea-

sible on Dining Philo. but may fail on other deadlocks (e.g., 

MySQL-4 discussed later)). After fixing, GA incurred 106.8% 
overhead as it completely serialized all executions of five threads; 

whereas, DFixer only incurred 0.6% overhead as it serialized only 
two threads by selecting only one thread to pre-acquire a lock.  

Hawknl and OpenLDAP. On these two real-world benchmarks, all 
three techniques were able to fix them correctly. Note that, alt-

hough one thread from OpenLDAP involves a lock acquisition on 

a third lock as shown in Table 1, DFixer fixed it by selecting the 

second thread to perform a pre-acquisition only. Actually, by 

selecting the first thread, DFixer was also able to fix it. On the 

performance, on Hawknl, Grail incurred the largest overhead 

(i.e., 27.1%), followed by GA incurring 11.2% overhead; DFixer 

incurred only 1.9% overhead. On OpenLDAP, both Grail and GA 

incurred larger overheads (i.e., 2.9% and 2.0%, respectively) than 

that by DFixer (i.e., 0.5%).  

SQLite. The two deadlocks from this benchmark occur when a 

data race occurs on a variable inMutex. DFixer correctly fixed 

both deadlocks. However, both GA and Grail failed to fix them. 

On their 100 runs, there were exactly 100 occurrences of a new 
deadlock. The original deadlock is like our example deadlock D2. 
In the original program, two threads of each deadlock acquire two 

locks mutex1 and mutex2 in a reversed order; however, a thread 

sometimes does not release lock mutex2 (controlled by the varia-

ble inMutex). After fixing by GA and Grail, a gate lock G was 

inserted, resulting in two lock orders G ↝ mutex1 and G ↝ 

mutex2. However, when one of two threads does not release lock 

mutex2 and if it later re-acquires lock mutex1, it has to acquire 

the inserted gate lock G, resulting in a lock order mutex2 ↝ G. 

This lock order, together with the lock order G ↝ mutex2 from 

another thread, forms a new deadlock. DFixer successfully fixed 
two deadlocks via pre-acquisition. Of course, it had to fix the 
control flows as its fixing on deadlock D2 shown in Figure 8.  

MySQL-1 and MySQL-2. There are totally 5 deadlocks within 

MySQL-6.0.4a. All three techniques correctly fixed the first 

four. However, for the last one (BugID=37080), both DFixer and 

GA fixed it but Grail failed. We simplified this deadlock in Figure 

9(a). The thread t2 firstly acquires a lock from a table table-

>syncObj and then acquires a global lock syncSec. The thread t1 
acquires the two locks in a reversed order. However, for thread t1, 
after it acquires the global lock syncSec, it has to iteratively ex-

plore a linked structure data via a pointer p in a for-loop (under-

lined). From the pointer p, a Dbb pointer dbb is fetched (via func-

tion getDbb()); then a Section pointer sec is fetched (via func-

tion findSec()). The pointer sec points to a memory containing 

a table pointer table and its lock table->syncObj. As a result, 

before executing findSec(), the table is unknown and hence, the 

lock syncObj is also unknown. Therefore, Grail failed to compute 

a gate lock from both locks syncSec and syncObj (which is un-

known). However, for DFixer, although the lock syncObj cannot 

be pre-acquired with lock syncSec by thread t1, the lock 

syncSec can be pre-acquired with lock table->syncObj by 

thread t2. Hence, DFixer fixed this deadlock.  

MySQL-3. The two deadlocks from this benchmark are actually 

our example deadlock D2. There are two locks thread_count 

and index. One of two threads acquires lock index if the value of 

the variable need_mutex is true in a function purge_logs(). 

However, this function may also be called from another function 

srv_printf_innodb_monitor(){ … }

lock_print_info_summary()
{acq(Kernel);}

thd_security_contex()
{acq(THDData);}

Thread t3
mysql_rm_table_part2()
{acq(Open); … }

trx_allocate_for_mysql()
{acq(Kernel);}

wait_for_locked_table_names()
{wait(Open);}

Thread t2






(b) Deadlock on MySQL-4 (BugID: 60682)







SRLUpdateRecords::commit()
{ acq(syncSec);

for(UCHAR* p=data; p<end; p+=len)
{ Dbb* dbb = log->getDbb(getInt(&p));

dbb->updateRecord(secId); …}
}

Table::treeFetch()
{acq(syncObj);}

Dbb::updateRecord(secId)
{ Section* sec = findSec(secId);
sec->updateRecord(); …}

Thread t1

(a) Deadlock on MySQL-2 (BugID: 37080)

truncateTable(Table* table)
{ acq(table->syncObj); …}

SRLDropTable::append()
{acq(syncSec);}

Thread t2

kill_one_thread()
{acq(THDData); … }

awake(){
acq(Open);
notify(Open);}

Thread t1

 

Figure 9. Two deadlocks simplified from MySQL-2 and MySQL-4. 



  

 

 

 

purge_first_log(). In this case, the lock index is acquired in 

purge_first_log(). Therefore, although Grail and GA fixed 

the original deadlock, they introduced a new deadlock if function 

purge_logs() is called in purge_first_log(). This produces 

a lock order index ↝ GateLock. Together with its reversed lock 

order GateLock ↝ index formed by another thread, a new re-

source deadlock is introduced. DFixer fixed this deadlock like its 

fixing to deadlock D2 without introducing new deadlocks. On this 

benchmark, GA incurred the largest overhead (i.e., 11.5%), fol-

lowed by Grail (i.e., 6.3%). DFixer only incurred 1.8% overhead.  

MySQL-4. The deadlocks from this benchmark are complex. Fig-
ure 9(b) shows one of them. This deadlock involves three threads 
and three locks as highlighted. However, like our deadlock D3, 

there is a pair of wait() and notify() on lock Open. Grail failed 

to fix this deadlock as locks Open and THDData are specified by a 

database; Grail failed to compute a gate lock. For GA, like its fix 

on D3, it introduced a communication deadlock as, after fixing, 

once thread t2 executes wait(Open), it holds the gate lock which 

prevents thread t1 from executing both acq(Open) and noti-
fy(Open). This newly introduced communication deadlock was 
identified by our manual inspection and was also triggered. For 

DFixer, like its fixing on D3, it fixed this deadlock by selecting 

thread t2 to perform its pre-acquisition on lock Kernel. Note, 

DFixer could not select thread t1 or thread t3 to perform a pre-

acquisition as both locks THDData and Open are specified by a 

database. GA, by serializing all three threads, incurred 43.5% 

overhead; whereas DFixer incurred only 4.1% overhead.  

On MySQL-4, we manually identified 6 potential deadlocks intro-

duced by GA which were also triggered. We suspect that more 

deadlocks were introduced by GA as there were many other paral-

lel executions like threads t1 and t2, which could result in dead-

lock occurrences with the gate locks inserted by GA. However, 

these potential deadlocks were not triggered in our experiment as 

they may require different test cases. We use symbol "" to indi-
cate this case in Table 2.  

6. RELATED WORK 

6.1 Deadlock Detection  
Detection of deadlocks is mainly based on detection of either 
cycles in lock order graphs [7][8][9][15][24][40][41][52][58] or 
cyclic lock dependencies on lock dependency relation [11][12] 
[29] statically or dynamically [7][15][41][48][52] [58].  

Static ones may report many false positives [58] compared to 
dynamic ones, even with various filters [41]. Although dynamic 
one are relatively precise, they also report false positives. Kahlon 
et al. [31] theoretically analyze whether two threads may form a 
deadlock occurrence through reachability checking. Other works, 
recently, focus on how to actually trigger occurrences of real-
world deadlocks by searching for possible scheduling 

[10][12][13][29][49]. DFixer focuses on how to fix deadlocks. It 

could be integrated with these techniques to fix their detected and 
triggered deadlocks as a subsequent action.  

There are also many works on synthesizing concurrency bugs 

once observed. ESD [61] synthesizes an execution from a core 

dump file of an execution with a deadlock occurrence. PENELO-
PE [53] also synthesizes part of execution to replay an observed 

atomicity violations or deadlocks. These techniques may fail due 
to the lack of thread interleaving and test cases.  

ConTeGe [45] targets to generate concurrent test cases so as to 

trigger an expected concurrency bug. OMEN [50] further synthe-

sizes executions for deadlock triggering based on ConTeGe. Sher-

lock [16] actively infers test cases based on interleaving con-

straints of threads involved in a targeted deadlock via concolic 
executions [51].  

Synthesis of executions and concurrent test cases may also help to 
verify the existence of a potential deadlock introduced by dead-
lock fixing approaches. However, unlike existing approaches, 

DFixer avoids introducing any new deadlocks by its design, no 
matter what test cases are given.  

Deadlocks may easily exist in database applications (e.g., most of 
deadlocks in our benchmarks were taken from MySQL Database 
Servers). These deadlocks could also be detected and prevented 
by analyzing hold-and-wait relations (i.e., cycles) among threads 

and locks [22][23]. DFixer also breaks such a hole-and-wait rela-

tion to fix a deadlock.  

6.2 Concurrency Bug Fixing and Recovery 
Many techniques have been proposed to fix concurrency bugs [14] 
[26][27][30][36][37][55][56][63]. However, almost all these 
techniques insert gate locks dynamically or statically to serialize 
executions of threads in a deadlock, which could introduce new 

deadlocks as discussed in this paper. DFixer distinguishes itself 

from all these works by its design to avoid introducing any new 
deadlocks.  

Among above techniques, both Gadara [55] and Dimmunity [30] 

aim to prevent previously detected deadlocks occurring. They 

adopt a strategy like GA except that they may not always invoke 

acquisitions on the inserted gate lock via context matching. How-
ever, context matching may introduce false positives, which fails 
to prevent a deadlock occurring.  

Recovery techniques could be integrated with deadlock detection 

and fixing. Sammati [46] aims to provide deadlock recovery by 

rolling back the executed operations, once a deadlock is detected. 

ConAir [62] tries to recover most concurrency bugs including 

deadlock. Lin et al. [35] propose to change lock acquisition primi-

tives (i.e., from acq() to tryAcq() or from tryAcq() to acq()) to 
partially fix a deadlock. They further propose to recover program 
executions once a deadlock occurs [47], which may incur high 
runtime overhead. Besides, recovery from deadlock occurrence 
might be infeasible as discussed in [35] (e.g., when a thread in-
volves file IO operations or accesses shared variables). Once 

DFixer fixes a deadlock, the deadlock never occurs. Therefore, 

there is no need for DFixer to adopt any recovery techniques.  

7. CONCLUSION  
Existing deadlock fixing strategies may easily introduce new 
deadlocks and may also incur high runtime overhead. We propose 

DFixer toward deadlock fixing without introducing any new dead-

locks via lock pre-acquisition. We have evaluated DFixer on a set 

of widely used benchmarks including 20 deadlocks and also com-
pared it with existing approaches. The experimental result shows 

that, compared to existing ones, DFixer not only fixed all dead-

locks but also introduced no new deadlocks; besides, DFixer only 

incurred about 2% overhead on average which is significantly 
lower than that of compared approaches.  
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