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ABSTRACT 
Detecting bugs with code mining has proven to be an effective 

approach. However, the existing methods suffer from reporting 

serious false positives and false negatives. In this paper, we de-

veloped an approach called AntMiner to improve the precision of 

code mining by carefully preprocessing the source code. Specifi-

cally, we employ the program slicing technique to decompose the 

original source repository into independent sub-repositories, tak-

ing critical operations (automatically extracted from source code) 

as slicing criteria. In this way, the statements irrelevant to a criti-

cal operation are excluded from the corresponding sub-repository. 

Besides, various semantics-equivalent representations are normal-

ized into a canonical form. Eventually, the mining process can be 

performed on a refined code database, and false positives and 

false negatives can be significantly pruned. We have implemented 

AntMiner and applied it to detect bugs in the Linux kernel. It re-

ported 52 violations that have been either confirmed as real bugs 

by the kernel development community or fixed in new kernel 

versions. Among them, 41 cannot be detected by a widely used 

representative analysis tool Coverity. Besides, the result of a com-

parative analysis shows that our approach can effectively improve 

the precision of code mining and detect subtle bugs that have 

previously been missed. 
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1. INTRODUCTION 
In recent years, various code mining approaches have been pro-

posed to automatically extract implicit programming rules from 

source code repositories [5, 8, 11, 24-28, 30, 31, 34-38, 41, 42, 48, 

49]. In particular, such approaches on bug detection have been 

proven to be very effective [25, 36, 38, 42, 48, 49]. For example, 

PR-Miner [25] has detected many real bugs in large-scale systems, 

including Linux kernels, Apache HTTP Server, and PostgreSQL 

database. Most of these bugs violate complex implicit program-

ming rules, which are hard to be detected by traditional approach-

es as they need well documented rules [13, 20]. Currently, some 

commercial bug detection systems have also employed the idea of 

programming rules extraction. For example, Coverity [3], one of 

the most widely used bug detection tools, leverages the statistical 

approach to automatically extract implicit programming rules and 

detects related bugs in some of its checkers (e.g., the 

NULL_RETURNS checker). 

Generally, detecting bugs with code mining involves three steps:  

(1) Preprocessing the source code repository to generate a data-

base (called code database in this paper) suitable for mining, 

in which each record is mapped from a program unit (e.g., a 

function definition).  

(2) Applying data mining algorithms to extract frequent patterns 

in the code database as programming rules. 

(3) Detecting any violations to the extracted programming rules 

(often on the code database) as potential bugs.  

Among three steps, the first one is the key step. It, to a large ex-

tent, determines whether a set of precise programming rules could 

be mined in the second step and how many false positives and 

false negatives are reported in the third step. 

Like traditional bug detection approaches [13, 20, 46], detecting 

bugs with code mining also suffers from reporting false positives 

and false negatives, and may produce worse results than tradition-

al ones. Although some works could be adapted to reduce these 

false positives and false negatives [25, 30, 34, 38], they mainly 

focus on reducing the imprecisions of the second and third steps. 

However, few works focus on the first step. According to our 

empirical investigation (see Section 2 for some examples), a large 

number of false positives and false negatives are introduced in the 

first step due to the following two reasons. 

First, in a program that involves a certain (implicit) programming 

rule, there often exist statements that are irrelevant to the rule 

except those implementing it. If such statements are not excluded 

in the first step, they may confuse the data mining algorithms 

adopted in the second step. As a result, rules that contain irrele-

vant statements may be mined; but such rules are usually useless 

in practical coding. More seriously, if the irrelevant statements 

have similar forms with those in the rule, the detection algorithm 

in the third step may be misled. Therefore, real violations to the 

rule may be missed (see §2.1), resulting in false negatives. 
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Second, programmers may adopt different ways to implement a 

same logic. If we do not transform them into a same form when 

generating the code database, the mining and detecting algorithms 

may mistake them as different programming patterns. Therefore, 

the supports and confidences of the mined rules may be improper-

ly calculated. Some interested rules may even be ignored if their 

supports and confidences are much lower than that they are 

deemed to have. Previous works [11, 25] have noticed this prob-

lem. But their solutions are insufficient, and may also result in 

some other problems (see Section 2). 

To ease our presentation, we refer to the statements that are either 

irrelevant to interested programming rules or semantics-equivalent 

but are implemented in different forms as noise.   

In this paper, we propose an approach called AntMiner to address 

the above issues. AntMiner carefully preprocesses the source code 

to eliminate the two kinds of noises in the code database as much 

as possible. First, it employs a divide-and-conquer code mining 

approach to reduce noise introduced by irrelevant statements. 

Specifically, the whole program is decomposed into different sub-

repositories according to a set of critical operations (misusing 

them tends to cause bugs). As a result, program statements irrele-

vant to the critical operations are excluded; that is, all remaining 

statements in each sub-repository are highly relevant to certain 

rules. On mining programming rules, AntMiner only works on 

each sub-repository rather than on the whole repository. However, 

how to effectively identify critical operations is not a trivial task. 

In this paper, we propose a method to automatically extract them 

from the source code (see §3.3). 

Second, when converting a sub-repository to a code database, 

AntMiner carefully normalizes program statements such that dif-

ferent implementation forms of the same logic are normalized. 

Currently, it focuses on the variants of basic elements of a pro-

gram, including variable names, expressions, and control struc-

tures. Hence, most common semantics-equivalent representation 

forms that might interfere with the mining algorithms are normal-

ized into a same canonical representation form, and the precision 

of code mining could be significantly improved accordingly. 

We have implemented AntMiner as a prototype tool to evaluate its 

bug detection ability. We applied it to the Linux kernel (v2.6.39) 

and compared it with a widely used bug detection tool Coverity. 

Although the Linux kernel has been heavily analyzed previously 

for bug detections [24, 25, 28, 36], AntMiner is still able to detect 

a set of 52 real bugs (violations). Among these bugs, 24 of them 

were directly confirmed as unknown bugs by kernel developers [1] 

(see Table 3 and Table 5), and 28 of them have been fixed in new 

kernel versions before we submitted these 52 bugs to the Bugzilla. 

In addition to the above confirmed bugs, there are also 9 suspects 

waiting for confirmation by Linux kennel developers. As a com-

parison, there are 41 out of the 52 confirmed bugs cannot be de-

tected by Coverity, whose checkers also adopt the implicit rules 

extraction technique to detect bugs, in addition to doing this based 

on well-defined bug detection rules. Besides, it should be noted 

that, among those 24 bugs confirmed by kernel developers, there 

are 2 bugs having existed in Linux kernel for more than 8 years 

(one was introduced in v2.6.5 and the other was introduced in 

v2.6.14); and other 17 bugs have existed since Linux kernel 2.6.34 

released in May 2010. We further conducted a comparative evalu-

ation; and the result shows that, without our method, about 73% 

(22 out of 30) bugs were not detected, and the imprecision of the 

mined rules increased from 24.5% to 87.9%. 

The evaluation result shows that our approach can effectively 

improve the precision of code mining and detect subtle bugs that 

have previously been missed. 

This paper makes the following main contributions. 

 A divide-and-conquer code mining method. The program 

slicing technique is employed to decompose the source code 

repository into a series of independent sub-repositories. Rule 

mining and violation detecting on a sub-repository can survive 

from the noise items caused by irrelevant statements. 

 A simple but effective statement normalization method. With 

this method, the most common semantics-equivalent represen-

tations that might interfere with the mining algorithms can be 

transformed to a canonical representation form.  

 A bug detection prototype system. It can be applied to real 

world large systems. The evaluation result shows that the sys-

tem can effectively detect a number of subtle bugs that have 

previously been missed. 

2. MOTIVATING EXAMPLES 
In this section, we demonstrate the necessity on eliminating noise 

items from the code database by some program samples collected 

from the Linux kernel 2.6.39. 

2.1 Noise Introduced by Irrelevant Statements 
In Linux kernel programs, there is an implicit programming rule 

that the return value of the function snd_pcm_new() should be 

checked to make sure that a new snd_pcm instance is created suc-

cessfully before passing it to the function snd_pcm_set_ops(). 

Figure 1 shows a program that violate the above rule. That is, 

right after line 854, there is no checking on the returned value. 

Using a mining algorithm (e.g., frequent itemset mining), the fre-

quent pattern {err = snd_pcm_new(), if (err < 0), 

snd_pcm_set_ops()} can be extracted from the kernel code. The 

pattern are taken as a programming rule to detect related bugs, as 

done in [25]. Unfortunately, the program in Figure 1 actually con-

tains all elements of the rule. As a result, the program will be 

mistaken as a support rather than a violation to the rule. This false 

negative is actually caused by the conditional statement at line 

linux-2.6.39/sound/pci/lx6464es/lx6464es.c: 

839 static int __devinit lx_pcm_create (struct lx6464es *chip) 

840 { 

            ...... 

853        err = snd_pcm_new(chip->card, (char *)card_name, 0, 

854                          1, 1, &pcm); 

// if (err < 0) {… return err;} is neglected there! 

855        

856        pcm->private_data = chip; 

857 

858        snd_pcm_set_ops(pcm, …); 

              …… 
864        err = snd_pcm_lib_preallocate_pages_for_all(pcm, …,  

865                                                    snd_dma_pci_data(chip->pci), 

866                                                    size, size); 

867        if (err < 0) 

868                return err; 

              ...... 

873        return 0; 

874 } 
Figure 1. A violation to the implicit rule {err = snd_pcm_new(), if (err 

< 0), snd_pcm_set_ops ()}, lacking a necessary checking for the return 

value of the call to snd_pcm_new(). 



 

 

867 as the statement is irrelevant to both function snd_pcm_new() 

(at line 853) and snd_pcm_set_ops() (called at line 858). 

Methods based on order-sensitive data mining techniques, e.g., 

frequent subsequence mining [41, 42], may detect such a bug. 

However, if the irrelevant statements "err = f(); if (err < 0)" ap-

pear between line 853 and 858 (which is quite possible in prac-

tice), the methods would fail to detect the bug. Besides, such or-

der-sensitive methods have higher time complexity than itemset 

mining methods on extracting programming rules. To make them 

scalable to mine rules from large-scale software (e.g., the Linux 

kernel, which has tens of millions lines of code), a bigger mini-

mum support threshold should be set. However, this would miss 

rules with relatively small supports. 

The root cause of the false negative is that, the statement (at line 

867) irrelevant to the rule confuses the mining algorithm. There-

fore, we can detect the bug by actively removing the irrelevant 

statements before mapping the program into a code database. To 

achieve this goal, we have to identify which statements we do care 

about and which we do not care about. Note that, a bug often oc-

curs because of incorrectly performing some critical operations, 

such as calling a function (e.g., strcpy()) without satisfying its 

preconditions, or returning an improper value under certain condi-

tions. From this observation, we only care about statements that 

either directly perform a critical operation or impact the execution 

of a critical operation; and the other statements are regarded as 

irrelevant ones and are removed. Given a critical operation, the 

program slicing techniques [43] can help achieve this goal. On the 

example in Figure 1, assuming that the call to function 

snd_pcm_set_ops() is a critical operation (act as a slicing criteri-

on), the conditional statement (at line 867) can be excluded from 

the corresponding slice; hence, the detection algorithm is able to 

catch this violation. 

2.2 Noise Introduced by Relevant Statements 
In some cases, the interference can also be introduced by state-

ments that are relevant to the critical operations. In practice, a 

statement may have no effect on the logic of a programming rule 

even when there is a control or data dependence relationship be-

tween it and the critical operation. For example, in Linux kernel 

code, there is another implicit programming rule that the return 

value of the function nla_reserve() should be checked against 

NULL before it is passed to the function nla_data(). Figure 2 

shows a violation to this rule, where a necessary validation on the 

return value right after line 431 is missing. However, the call to 

the critical operation nla_data() at line 432 is directly control 

dependent on the statement at line 415. That is, the statement at 

line 415 is reserved even after program slicing. This also confuses 

the mining algorithms in a way similar to the example in Figure 1, 

resulting in a false negative. 

In essence, this false negative can be reduced if the mining algo-

rithm could distinguish the variable na used at line 415 from the 

one in the frequent pattern {na = nla_reserve(), if(!na), 

nla_data()}. In a previous work [25], variables are represented 

with their data types. However, to address the above problem, 

more semantic information needs to be introduced when renaming 

variables. In fact, the variable na in the above pattern keeps the 

return value from nla_reserve(), whereas the variable na used at 

line 415 keeps the value of an array element. If a variable is re-

named with a new canonical name which can reflect where its 

value comes from (see §3.5), the confusion will be avoided to a 

large extent. Therefore, the detection algorithm would not be in-

terfered, and can then detect the bug in Figure 2. 

2.3 Noise Introduced by Inconsistence 
The validation to the sensitive data is usually implemented with 

conditional statements. In general, missing effective validations 

may result in programming bugs. For example, the program 

shown in Figure 3(a) illustrates an effective validation to the actu-

al parameter of function tty_hangup(). However, in the program 

shown in Figure 3(b), an incorrect conditional expression (i.e., 

“C_CLOCAL(tty)” rather than “!C_CLOCAL(tty)”) is used to 

enforce the validation. This will result in a bug. On the other hand, 

programmers can use different or even opposite conditional ex-

pressions to enforce the same validation. For example, there are 

two validations for the return value of function dev_alloc_skb() 

shown in Figure 4(a) and (b) respectively. Although the two vali-

dations employ completely opposite conditional expressions, con-

sidering the contexts, both of them effectively guarantee that the 

return value is not NULL before passing to skb_reserve(). 

For these programs, if the mining algorithm is directly applied to 

them, we may miss the bug in Figure 3(b) or receive a false alarm 

on one of the two programs in Figure 4. A previous work [11] also 

noticed this problem, and proposed a method to simply make the 

similar expressions identical, e.g., replacing "!=" with "==" in the 

control points without considering the semantics of related control 

structures. However, this method is not suitable for processing the 

above samples. 

A better solution is to normalize the control structure to a canoni-

cal form, ensuring that the predicate, which must be satisfied 

when executing a critical operation, is explicitly specified in its 

linux-2.6.39/net/bluetooth/rfcomm/tty.c: 

626                if (dev->tty && !C_CLOCAL(dev->tty)) 

627                        tty_hangup(dev->tty); 
(a) Effective validation 

linux-2.6.39/drivers/tty/moxa.c: 

1362                tty = tty_port_tty_get(&p->port); 

1363                if (tty && C_CLOCAL(tty) && !dcd) 

1364                        tty_hangup(tty); 

(b)  Ineffective validation 

Figure 3. Two validation samples to the actual parameter of function 

tty_hangup() 

linux-2.6.39/kernel/taskstats.c: 

403 static int cgroupstats_user_cmd (…, struct genl_info *info) 

404 { 

             ...... 

408       struct nlattr *na; 

             ...... 

414       na = info->attrs[CGROUPSTATS_CMD_ATTR_FD]; 
415       if (!na) 

416               return -EINVAL; 

              ...... 

425       rc = prepare_reply(info, CGROUPSTATS_CMD_NEW, &rep_skb, 

426                               size); 

427       if (rc < 0) 

428               goto err; 
429 

430       na = nla_reserve(rep_skb, CGROUPSTATS_TYPE_CGROUP_STATS, 

431                                sizeof(struct cgroupstats)); 

              // if (!na) {… return -EMSGSIZE;} is neglected there! 

432       stats = nla_data(na); 

433       memset(stats, 0, sizeof(*stats)); 

              ...... 

446 } 
Figure 2. A violation to the rule {na=nla_reserve(), if (!na), 

nla_data()}, lacking a necessary checking for the return value of the 

call to nla_reserve(). 
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conditional expression (see §3.5). For example, for the program 

shown in Figure 4(b), the conditional expression (at line 856) can 

be standardized to "skb = dev_alloc_skb (...)" to explicitly specify 

that the return value has been checked against null before passing 

it to the function skb_reserve(). On the other hand, the control 

structures in Figure 3 remain their original forms. As a result, the 

bug in Figure 3(b) can be detected, and no false positives are pro-

duced for the programs in Figure 4. 

3. AntMiner APPROACH 

3.1 Overview 
Compared with most traditional code mining approaches, 

AntMiner does not directly handle the whole source code of the 

target system. Instead, it decomposes the source repository into a 

set of independent sub-repositories on preprocessing source code. 

The code mining is then independently performed on these sub-

repositories one by one. 

Figure 5 shows an overview of AntMiner. First, the source code is 

parsed into parse trees, and a program dependence graph (PDG) 

is generated for each function definition. Second, it extracts criti-

cal operations from the source code itself without human in-

volvement. Third, according to the critical operations, the pro-

gram slicing technique is employed to generate a series of sub-

repositories. A sub-repository consists of the program slices asso-

ciated with a specific type of critical operations. Fourth, the pro-

gram slices are normalized, and then every sub-repository is con-

verted to an itemset database. Fifth, a frequent sub-itemset mining 

algorithm is applied to the databases one by one to extract fre-

quent patterns and generate programming rules. Finally, violations 

to these rules are detected and reported as potential bugs.   

3.2 Parsing Source Code 
AntMiner uses a modified GCC compiler [33] frontend to parse 

the source code. The source code is parsed and represented in 

GIMPLE, which is a language-independent, tree based representa-

tion. It should be noted that complex expressions are split into a 

three-address code in GIMPLE. The rest of this subsection re-

views the preliminary knowledge, mainly about the PDG. Readers 

who are familiar with it may skip the rest of this subsection. 

A PDG is computed for each function definition by using an im-

proved algorithm proposed in [16]. In a PDG, a node represents a 

GIMPLE statement, and an edge represents the dependency in-

formation between two nodes. A PDG consists of a control de-

pendence subgraph (CDS) and a data dependence subgraph 

(DDS): 

 The CDS describes the control dependencies among state-

ments. In CDS, if a statement s2 is control dependent on a 

condition statement s1, there is a control dependence edge 

from s1 to s2 labeled with either T or F, indicating that s2 is 

executed on the True or False branch of s1, respectively. They 

are denoted as s1, s2, T or s1, s2, F, respectively. 

 The DDS describes the data dependencies among statements. 

A statement s2 is data dependent on a statement s1 if there is a 

variable x defined in s1, used at s2, and an executable path 

from s1 to s2 along which there is no intervening definitions of 

x. In the DDS, there is a data dependence edge from s1 to s2 

labeled with x to indicate the dependence relationship, denot-

ed as s1, s2, x. In our implementation, a variable is regarded 

to be defined at a statement if it is explicitly assigned to a val-

ue or it is passed to a function by reference. For example, in 

Figure 1, both variables err and pcm are defined at the state-

ment at line 853. Variable pcm is used at line 858. Thus, the 

data dependence edge 853, 858, pcm is added in the DDS. 

3.3 Extracting Critical Operations 
Bugs or vulnerabilities often stem from incorrectly performing 

some critical operations. Currently, without loss of generality, 

AntMiner mainly concerns two types of critical operations. 

Bug-prone function calls. A function can be regarded as bug-

prone if an inappropriate invocation to it tends to cause a program 

bug. In practice, the call to a bug-prone function often acts as the 

key element of a programming rule. In fact, in the Common 

Weakness Enumeration (CWE, a list of software weaknesses) [2], 

the sinks of many weaknesses are calls to some security-sensitive 

functions. For example, the call to function strcpy() is a bug-prone 

operation. Note that many bug-prone functions are not well-

known like strcpy(). In many cases, they may even be undocu-

mented.  

It is unreasonable to take all function calls as critical operations 

because some functions may hardly cause a bug. For example, the 
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Figure 5. An overview of AntMiner. 

linux-2.6.39/drivers/isdn/i4l/isdn_v110.c: 

422        if ((skb = dev_alloc_skb(v->framelen + v->skbres))) { 

423                skb_reserve(skb, v->skbres); 

424                memcpy(skb_put(skb, v->framelen), ...); 

425        } 

(a) Effective validation 

linux+v2.6.39/drivers/media/dvb/dvb-core/dvb_net.c: 

856        if (!(skb = dev_alloc_skb(pkt_len - 4 - 12 + 14 + 2 - snap))) { 

                      // do something 

859                return; 

860       } 
861       skb_reserve(skb, 2);    /* longword align L3 header */ 
(b) Another effective validation with different condition expression 

Figure 4. Two effective validations for the return value of function 

skb_reserve(). 

http://en.wikipedia.org/wiki/Expression_%28programming%29
http://en.wikipedia.org/wiki/Three_address_code


 

 

call to function isdigit() (a function in C language to check wheth-

er a character is a decimal digit) should not be treated as a bug-

prone operation. 

One way to collect bug-prone functions is to identify them by 

manually analyzing the system documents or even the source code. 

However, it is very difficult and tedious, if not impossible, to 

manually identify the undocumented application-specific bug-

prone functions from a large-scale system (e.g., the Linux kernel). 

To address this issue, we design a heuristic method to automati-

cally extract potential bug-prone operations from source code. 

In practice, a bug-prone function call usually produces an error 

when one or more of its parameters hold illegal values. In a prac-

tical system, to make sure that the system works correctly, these 

sensitive parameters are often validated before passing them to the 

bug-prone function. In programming, a validation to sensitive data 

is generally implemented as a conditional comparison. To this end, 

our approach to identifying bug-prone functions is based on the 

intuition: before a bug-prone function is called, one or more of its 

parameters should be directly or indirectly checked by a condi-

tional statement; and the function should not be executed if the 

check fails. 

Specifically, we perform a dependence flow analysis on the PDGs 

(see §3.2) to identify potential bug-prone functions. First, a set of 

validated variables (VVS) is computed for each conditional state-

ment. A VVS contains all variables that are directly or indirectly 

checked by a certain conditional statement. To compute VVS, the 

DDS of the PDG is backward traversed starting from the condi-

tional statement, and labels (i.e., variables) of edges visited during 

the traversal are added into the VVS. Second, every function call is 

examined to see whether it is control dependent on a conditional 

statement by backward traversing the CDS of the PDG. If there 

exists such a conditional statement, we further examine whether 

there are parameters protected by the conditional statements. A 

variable v is protected by a conditional statement if either it be-

longs to the VVS of the conditional statement or there is another 

variable v' used in the definition statement of v and v' is protected 

by the conditional statement. If there exists such a parameter p, 

the function is identified as a bug-prone function candidate, and a 

protected-counter for p (each parameter with a protected-counter) 

is increased by one. Finally, for every candidate, a simple statisti-

cal method is applied to determine whether it is bug-prone. As-

suming that the function f() is called for T times and the protected-

counter of one of its parameter p is t. If the ratio t/T is larger than 

a predefined threshold λ (e.g., 70% in this paper), function f() is 

then considered as a bug-prone function on p. 

For example, in Figure 4(a), the VVS of the conditional statement 

at line 422 is {skb, v->framelen, v->skbres, v}. The function call 

to skb_reserve() at line 423 is control dependent on the condition-

al statement at line 422, and its two actual parameters skb and v-

>skbres belong to the VVS of the conditional statement. Therefore, 

function skb_reserve() is taken as a bug-prone function candidate 

and the protected-counters of its two parameters are increased by 

one respectively. After scanning the whole kernel code, we find 

that skb_reserve() is called 503 times in total, among which 491 

times its first parameter is checked by conditional statements, and 

the corresponding t/T is about 97.61%. Consequently, the function 

skb_reserve() is identified as a bug-prone function with respect to 

its first parameter. 

Based on the above method, AntMiner automatically collects 

potential bug-prone functions, without requiring any prior 

knowledge on the target system. In our empirical study, it finds 

thousands of bug-prone functions from the Linux kernel in about 

30 minutes, which saves a great deal of human efforts. 

Function returns. Function return statements are very common in 

programming, but very subtle bugs may be caused if they return 

improper values. When the return value cannot correctly reflect 

the execution result of a function on a certain path, its callers is no 

way to know what actually happens in the callee. For example, in 

Linux kernel, programmers may incorrectly set the error code to 

zero rather than -ENOMEM when a function fails to allocate a 

requested memory. The callers may believe an allocated memory 

space is ready for subsequent operations. This may cause memory 

access errors and even crash the system. In practice, how to cor-

rectly set the return values is often undocumented. As a result, it is 

very difficult to detect improper return bugs with traditional tools. 

The return value may be improperly set at every return point of a 

program. Hence, all return statements are directly selected as po-

tential critical operations. 

3.4 Slicing Source Code 
The original definition of program slicing was proposed by 

Weiser [43]. By introducing the notion of PDG, Ottenstein et al. 

[29] converted the slicing problem into a reachability problem in a 

dependence graph representation of the program. Based on their 

study, several algorithms are proposed for effective slices compu-

ting [16, 22]. Based on these algorithms, a program slice consists 

of all statements which may affect the values at some points of 

interest (i.e., slicing criterion) or determine whether it should be 

executed. 

Identifying Slicing Criteria. To compute program slices for a 

critical operation, the corresponding slicing criteria should be 

identified firstly. For a bug-prone function, nodes that call this 

function in the PDG can be directly taken as slicing criteria. For 

example, in Figure 4(b), the function skb_reserve() is bug-prone 

on its first parameter and is called at line 861. Therefore, 861, 

{skb} is used as a slicing criterion, where skb is the interested 

parameter at line 856. 

For the return statements (i.e., the second type of our critical oper-

ations), they are not directly taken as the slicing criteria. It is be-

cause a return statement is usually a merging point of multiple 

execution paths of a function. And the return value may also rep-

resent multiple execution results of the function. In practice, dif-

ferent execution results often represent different runtime logics. 

To reduce the noise introduced by such runtime logics that are 

irrelevant to a certain return value as much as possible, the pro-

gram points where the return values are actually determined are 

taken as the slicing criteria. 

However, the slicing result may not be what we desire when the 

return value is implicitly defined. For example, in Figure 6(a), 

variable err keeps the return value and is initialized with zero (at 

1   err = 0; 

2   x = malloc(); 

3   if (!x) { 

4      err = -ENOMEM; 

5   } 

6   else { 

      // do something 

7   } 

8   return err; 

 

 

 

1   err = 0; 

2   x = malloc(); 

3   if (!x) { 

4      err = -ENOMEM; 

5   } 

6   else { 
7      err = err; 

          // do something 

8   } 

9   return err; 

(a)  (b) 

Figure 6. An example of inserting dummy statements. 

 

http://cn.bing.com/dict/search?q=minutes&FORM=BDVSP6


 

 

line 1). When the call to malloc() (at line 2) fails (checked at line 

3), err is set to -ENOMEM (at line 4). Otherwise, the value of err 

remains zero. The logic of this program is “-ENOMEM should be 

returned when the call to malloc() fails; otherwise, zero should be 

returned”. When directly taking statements that explicitly set the 

value of err (i.e., line 1 and line 4) as the slicing criteria, the slic-

ing result is no way to capture the logic “zero should be returned 

when the call to malloc() succeeds”. 

To address the above issue, we insert dummy statements that reset 

return values into the original program. For every conditional 

statement, if the return value (e.g., kept in variable err) is only 

explicitly defined on one of its two branches, a dummy statement 

(i.e., "err = err;") will be added to the beginning of the other 

branch. Then, on the PDG of the modified program, a backward 

dataflow analysis can be performed to identify desirable slicing 

criteria. A statement (may be a dummy one) is regarded as a slic-

ing criterion if there exists a data dependence edge from it to a 

return statement. 

For example, in Figure 6(a), the dummy statement "err = err;" is 

inserted into the "else" branch of the conditional statement "if 

(!x)" (at line 3), because the return value is only explicitly defined 

on the other branch. The modified program is shown in Figure 

6(b), and in the PDG of it, there exists two data dependence edges 

to the return statement (at line 9): one from the statement at line 4, 

and the other from the statement at line 7. Therefore, the state-

ments at line 4 and line 7 are identified as slicing criteria. 

Slicing for Every Criterion. For each slicing criterion of return 

statements, the PDG is traversed backward from it, and the en-

countered nodes are marked. All the marked nodes make up the 

program slice of the slicing criterion. 

The above slicing algorithm is suitable for slicing criteria of return 

statements. However, when a slicing criterion is a call to a bug-

prone function, the traversing strategy should be slightly adapted. 

Otherwise, some statements causing noise may not be thoroughly 

excluded from the slice. For example, in Figure 7, taking 7, {x} 

(bug-prone function sensitive_op1() is called at line 7 with x) as a 

slicing criterion, the conditional statement at line 5 (i.e., "if (len > 

MAX_LEN)") remains in the obtained slice. This is because the 

function call is control dependent on it. However, this conditional 

statement does check the input to the call to sensitive_op2(y) (at 

line 8) rather than that to sensitive_op1(). If the statement remains 

in the slice, it may be incorrectly taken as a checking for sensi-

tive_op1(x) by the mining algorithm. 

In essence, this issue is caused by the fact that the semantic rela-

tionship between two statements may still be weak even if there is 

a control dependence relationship between them. To address this 

issue, we design a more aggressive slicing algorithm for slicing 

criteria that call bug-prone functions. Our algorithm also back-

ward traverses the PDG paths starting from the statement invok-

ing the bug-prone function (e.g. sensitive_op1()), and marks the 

encountered statements to compute the program slice. The differ-

ence is that a conditional statement is not marked if it is not ho-

mologous to the statement of the slicing criterion. Two statements 

s1 and s2 are homologous if either (1) s1 and s2 are data depend-

ent on the same statement s3, or (2) s1 (or s2) is control dependent 

on statement s3, and s2 (or s1) and s3 are homologous. In this way, 

the conditional statement that has only control dependence rela-

tionship with the slicing criterion is not taken as a potential vali-

dation to the function and, hence, is not added into the slice. For 

example, in Figure 7, the conditional statement at line 5 (i.e. "if 

(len > MAX_LEN)") is homologous to the statement at line 8, but 

not the statement at line 7. As a result, statement 5 is marked for 

the slicing criterion 8, {y}, but is not marked for 7, {x}. 

Constructing Sub-repositories. The program slices for a bug-

prone function make up an independent sub-repository for it. For 

return statements, program slices with the same return type are 

clustered into a sub-repository. 

3.5 Normalizing and Hashing Statements 
Every sub-repository is converted to an itemset database suitable 

for the adopted data mining algorithm [18]. Every statement is 

converted to a string and hashed to a number using an existing 

hash function hashpjw [7]. The hash numbers of the statements in 

a program slice will constitute an itemset (a bag of numbers). 

Before that, statements are normalized by the following three 

methods: 

Renaming Variables. In practice, names of variables in similar 

contexts may vary greatly. To reduce the differences in naming, 

variables in every statement are given new canonical names. Spe-

cifically, (1) for each variable that either accepts a return value of 

a function or is taken as a reference parameter of a function is 

renamed as the function name plus a suffix. The string “ret” is 

used as a suffix for the former case, and an integer i is used for the 

latter case where the integer i indicates that the variable is taken as 

the i-th parameter of the function. (2) In other cases, each variable 

is renamed as its data type. For example, in Figure 8, in the state-

ment at line 3 (i.e., "if (a < b)"), variable a keeps the return value 

of foo() (called at line 1), and variable b is a reference parameter 

of foo(). Thus, variable a is renamed as "foo-ret", while variable b 

is renamed as "foo-1" (b is the first parameter of foo()). Because 

the value of variable c in "d = c + a;" is not assigned by a function, 

it is renamed as its data type, i.e. "int". 

 

Rewriting Expressions. Expressions in different forms may repre-

sent the same semantics. For example, "a + b" is equivalent to "b 

+ a" in semantics. In theory, it is impossible to recognize and 

normalize all kinds of semantics-equivalent representations. In 

this paper, considering the significance of conditional statements 

and assignment statements for identifying programming rules, we 

mainly concern with the normalization of them. Thanks to the 

GIMPLE representation, this work can be focused on how to 

normalize binary expressions. For a binary expression "v1 op v2": 

 If the operator op has a commutative property (i.e., "+", "*", 

"&", "|", "==", "!=") and the data type name of operand v1 is 

lexicographically after that of v2, the expression is trans-

 

1  c = 10; 

2  a = foo (&b); 
3  if (a < b) 

4       return; 

5  d = c + a; 
6  bugprone_op (d); 

Figure 8. An example for illustrating statements normalizing 

1   x = get_input(); 

2   y = get_input(); 

3   len = get_length (x); 

4   len = get_length (y); 

5   if (len > MAX_LEN) 
6      return; 

7   sensitive_op1 (x); 

8   sensitive_op2 (y); 

Figure 7. A noise example that may remain in the slice. 



 

 

formed into "v2 op v1". For example, for an expression "int + 

char", because "int" is lexicographically after "char", the re-

sulting expression is "char + int". 

 If the operator op is a non-commutative relational operator 

(i.e., ">", "<", ">=", and "<=") and the data type name of op-

erand v1 is lexicographically after that of v2, the positions of 

the two operands are exchanged, and the operator op is syn-

chronously changed to op' (i.e., the complement operation of 

op) to preserve the semantic. For example, for a given expres-

sion "int >= char", the resulting expression is "char <= int". 

Rearranging Control Structures. The same program logic may be 

implemented in different control structures. For example, pro-

grams in Figure 4(a) and Figure 4(b) are different in form, but 

they both follow the constraint that “the first parameter of 

skb_reserve() should not be NULL”. To reduce the differences in 

form, the control structures are rearranged as follows: if a critical 

operation is called only when a predicate p evaluates to false, it is 

negated to p' (e.g., the negation of "a > b" is "a <= b"); according-

ly, the two branches of the control structure are exchanged such 

that the critical operation is called only when predicate p' evalu-

ates to true. In this way, the validation modes about critical opera-

tions are unified without alerting the original validation logic. For 

example, in Figure 4(b), the critical operation skb_reserve() is 

executed only when the predicate (at line 856) evaluates to false. 

The related control structure is rearranged, as shown in Figure 9. 

By doing so, all conditional predicates, which determine whether 

the bug-prone operation is executed or not, will be normalized to a 

standard form as far as possible, making the mining algorithm 

more likely to be able to extract potential frequent programming 

patterns. 

3.6 Mining Rules and Detecting Violations 
AntMiner adopts the data mining algorithm FPclose [18] to dis-

cover closed frequent sub-itemsets from the itemset database. For 

a given sub-itemset, the number of itemsets that contain all its 

items is called the support of it. A sub-itemset is considered to be 

frequent if its support is bigger than or equal to a specified thresh-

old (min_support). A frequent sub-itemset A is closed if there is 

no frequent sub-itemset B where B is a proper subset of A and 

support(A) = support(B), where the function support(P) computes 

the support of P. 

We then mine association rules as programming rules from the 

extracted closed frequent sub-itemsets. An association rule has the 

form A => B, where A and B are closed frequent sub-itemsets, 

and support(B) ÷  support(A) × 100% (i.e., confidence of the rule) 

is larger than or equal to a given threshold min_confidence. The 

association rule A => B indicates: if an itemset in the database 

contains all statements in A, it should also contain all statements 

in B. And a violation to the rule is an itemset that contains all the 

items in A but not all the items in B. 

Detecting violations is straightforward. A trivial method to detect 

the violations is to inspect all itemsets in the database and exam-

ine which is a superset of A but not of B. However, given a data-

base with a large number of itemsets, this method might be time-

consuming. To speed up violation detecting, we slightly modified 

FPclose such that when it discovers a closed frequent sub-itemset 

X, the itemsets that support X are also recorded, denoted as sup-

porter(X). By doing so, any violations to an association rule A => 

B can be easily computed via supporter(A) – supporter(B). 

Before reporting any violations to programmers, they are ranked 

by an empirical method. In our experience, the violation that miss 

conditional statements is more likely to be a bug than those that 

miss function call statements. Besides, the fewer statements a 

violation misses, the more likely it is a bug. For that, all violations 

are firstly categorized into three categories: missing conditional 

statements, missing function call statements, and the others. 

Among these three categories, violations in the first category are 

ranked with a highest priority, followed by violations from the 

second category, and violations from the third category have a 

lowest priority. Within each category, a violation that misses few-

er statements is ranked with a higher priority; and if any two vio-

lations miss the same number of statements, they are ranked by 

the confidences of their violated rules (i.e., violations with higher 

confidences are ranked with higher priority). 

4. EVALUATION 

4.1 Experiment Setup 
We implemented AntMiner based on GCC compiler [33] (V4.5.0) 

and evaluated it on the Linux kernel 2.6.39. The kernel includes 

about 16,300 C files, and 110,000 functions. The Linux kernel has 

been scanned by dozens of bug detection tools [3, 15, 23, 24, 25, 

28, 36]. The main reason for choosing the Linux kernel as the 

evaluation target is that we want to demonstrate the effectiveness 

of our approach by revealing some new bugs that are difficult to 

detect previously on real-world large-scale systems. 

In our experiment, AntMiner runs on a machine with a Core i5-

2520M, 2.5GHZ Intel processor and 4GB memory. Three parame-

ters need to be specified: λ, min_support, and min_confidence. In 

our evaluation, we empirically determine reasonable parameters 

by performing a sampling analysis to the results of several exper-

iments with different parameters settings. Specifically, we set λ to 

70%, min_support to 10, and min_confidence to 85% respectively. 

4.2 Experiments 

In the evaluation, we firstly performed two independent experi-

ments to automatically extract programming rules and detect re-

lated bugs for the two types of critical operations (i.e., bug-prone 

function calls, and function returns). The results of the two exper-

iments are shown in §4.2.1 and §4.2.2, respectively. As a compar-

ison, we also applied Coverity to detect bugs in the Linux kernel 

2.6.39, to determine whether AntMiner can effectively discover 

the bugs missed by Coverity. For highlighting the effectiveness of 

AntMiner on reducing noise introduced by irrelevant statements 

and inconsistent implementations, we further evaluated AntMiner 

by disabling its program slicing and normalizing to perform a 

comparative analysis. The result is illustrated in §4.2.3. 

Table 1. Classification of violations detected by AntMiner 

# of total 

violations: 

38 

12 (~32%) Already fixed. Real bugs 

18 (~47%) Confirmed as unknown bugs. Real bugs 

5 (~13%) Regarded as false positives. False positives 

3 (~8%)  Waiting for confirmation. Unknown 
 

        if ((skb = dev_alloc_skb(pkt_len - 4 - 12 + 14 + 2 - snap))) { 

                      skb_reserve(skb, 2);    /* longword align L3 header */ 

       } 

       else { 

// do something 

return; 
} 

Figure 9. Rearranged program of the one in Figure 4(b). 



 

 

4.2.1 Detecting Misusages of Bug-Prone Functions 
This experiment ran about 145 minutes. In total, 1,984 bug-prone 

functions were automatically extracted from the source code. For 

all these bug-prone functions, 3,524 programming rules are gener-

ated. Violations to these rules were detected. 

Similar to all other static analysis tools [e.g. 3, 4], violations de-

tected by AntMiner also need to be identified manually. In this 

study, for each bug-prone function, the top ranked rules (at most 

10) and the violations to these rules were manually audited. It 

spent one of us about 16 hours to audit the results. The cost of 

manual work is acceptable on large-scale systems like the Linux 

kernel. Eventually, we found 38 violations that were most likely 

to be real bugs. Table 1 summarizes these 38 violations. To verify 

these violations, we firstly checked the kernel archive and found 

that 12 of them have already been fixed in the new kernel versions 

(e.g., v3.17). This means that these 12 violations (shown in Table 

2) are real bugs. We then reported the other 26 violations to Linux 

kernel Bugzilla (the kernel development community) [1]. And so 

far, 18 of them have been confirmed as previously unknown bugs 

(i.e., real bugs) as shown in Table 3. Among the rest 8 violations, 

5 are regarded as false positives by kernel developers, and the 

other 3 are still waiting for confirmation. 

We further surveyed when the 18 confirmed bugs were introduced 

in the Linux kernel. We found 15 of them were introduced before 

kernel 2.6.34 (released in May 2010). To our surprise, the bug 

44491 was introduced in kernel 2.6.5 (released in April 2004), it 

has been latent for 8 years until it is detected by AntMiner. This 

bug has been fixed now after we reported it. It should be noted 

that AntMiner can successfully detect some deeply hidden bugs 

with the help of program slicing and statement normalization, 

such as the three bugs presented in §2.1, §2.2 and §2.3 respective-

ly (BugzillaID: 44541, 44621, and 49911). 

We also applied Coverity on the same kernel source code. Coveri-

ty can only reported 11 of above 30 real bugs (i.e., 12 + 18) found 

by AntMiner. In other words, Coverity neglected 19 (63%) real 

bugs. Among the 11 bugs hit by Coverity, 10 of them were detect-

ed by the NULL_RETURNS checker, and the rest one was detect-

ed by the CHECKED_RETURN checker. Both of the two check-

ers can automatically infer the implicit program rules for the un-

modeled function (e.g., alloc_skb()) to detect related bugs. For 

example, the NULL_RETURNS checker can infer the rule “al-

loc_skb() may return NULL and its return should be checked 

against NULL before dereferencing” by scanning the code and 

computing how frequently the function return is checked against 

NULL. According to the rule, Coverity can detect a real bug 

(BugzillaID: 44431) in function st_int_recv(). 

Because Coverity directly infers the implicit programming rules 

from the original source code, its precision is heavily interfered by 

the noise statements (as discussed in Section 2). As a result, some 

implicit programming rules and related bugs may be neglected. 

For example, it can’t discover all the three subtle bugs presented 

in Section 2, which should be covered by its corresponding check-

ers (e.g., NULL_RETURNS checker). 

4.2.2 Detecting Improper Return Values 
As mentioned in §3.4, program slices with the same return type 

are clustered into a sub-repository. In kernel, when an unexpected 

event occurs in a function, an error code should be returned. In the 

kernel development, a number of subtle bugs caused by incorrect 

error code assigning [19, 32]. In practice, an error code is often 

represented by an integer. Therefore, we are especially interested 

in the sub-repository consists of program slices involving error 

code returns. 

 

The experiment ran about 120 minutes, and 6,366 programming 

rules were mined. Considering the sub-repository about error 

codes consists of much more slices than those sub-repositories 

about bug-prone functions, we manually inspected the top 200 

rules and their violations. Eventually, we found 28 violations were 

most likely to be real bugs. Table 4 summarizes these 28 viola-

tions. By checking the kernel archive, we found 16 of them have 

been fixed in the new kernel versions (e.g., v3.17). This means 

Table 4. Classification of violations detected by AntMiner 

# of total 

violations: 

28 

16 (~57%) Already fixed. Real bugs 

6 (~21%) Confirmed as unknown bugs. Real bugs 

6 (~21%) Waiting for confirmation. Unknown  

 

Table 2. This table describes the profile of the found bugs that have 

been fixed in the new versions. The first column shows the function 

that contains the bug; the second shows the bug-prone function; and 

the last labels whether the bug is detected by Coverity. 

Function Bug-prone Function Coverity 

btrfs_real_readdir() btrfs_next_leaf()  

btrfs_insert_dir_item() btrfs_release_path()  

picolcd_init_framebuffer() framebuffer_release()  

pstore_mkfile() d_add()  

nl80211_remain_on_channe

l() 
genlmsg_end()  

nl80211_tx_mgmt() genlmsg_end()  

nl80211_get_key() genlmsg_end()  

l2tp_nl_session_send() genlmsg_end()  

l2tp_nl_tunnel_send() genlmsg_end()  

l2tp_nl_cmd_noop() genlmsg_end()  

efs_iget() unlock_new_inode()  

bfs_iget() unlock_new_inode()  

 

Table 3. This table describes the profile of the confirmed bugs. The first 

column lists the bug’s ID in the Linux kernel Bugzilla; the second 

shows name of the function that contains the bug; the third shows the 

bug-prone function that the bug violates a rule about; and the last 

labels whether the bug is detected by Coverity. 

Bugzilla 

ID 
Function Bug-prone Function Coverity 

44431 st_int_recv() skb_reserve()  

44441 ldisc_open() register_netdevice()  

44461 sfb_dump() nla_nest_end()  

44471 tmiofb_probe() ioremap()  

44491 setup_isurf() pnp_port_start()  

44541 lx_pcm_create() snd_pcm_set_ops()  

44551 poseidon_audio_init() snd_pcm_set_ops()  

44561 pcf50633_probe() platform_device_add()  

44571 dcbnl_ieee_set() nla_parse_nested()  

44621 cgroupstats_user_cmd() nla_data()  

44671 
ocfs2_create_refcount_tree

() 

ocfs2_set_new_buffer_upt

odate() 

 

44681 ocfs2_create_xattr_block() 
ocfs2_set_new_buffer_upt

odate() 

 

44691 lkdtm_debugfs_read() free_pages()  

49851 
ipw_packet_received_skb(
) 

skb_reserve()  

49861 
wl1271_debugfs_update_st

ats() 
wl1271_ps_elp_sleep() 

 

49871 
omninet_read_bulk_callba
ck() 

tty_flip_buffer_push() 
 

49911 moxa_new_dcdstate() tty_hangup()  

49921 btree_write_block() logfs_put_write_page()  

 



 

 

that these 16 violations are real bugs. We submitted the rest 12 

suspected bugs to the kernel development community [1], and so 

far, 6 of them have been confirmed to be real bugs and will be 

fixed in later versions. These 6 bugs are shown in Table 5. The 

other 6 suspects are still waiting for confirmation (however, none 

has been confirmed as a false positive).   

For example, in Figure 10, when the call to register_netdev() at 

line 766 fails, the returned error code should be further propagated 

upward to the callers of function mkiss_open(). However, the 

programmer forgot to set the value of err when register_netdev() 

fails, and zero is returned. This misleads the callers into believing 

mkiss_open() runs normally, even some unexpected events have 

occurred. AntMiner successfully extracted the rule that “when a 

call to register_netdev() fails, its return value rather than zero 

should be propagated upward”. According to the rule, AntMiner 
successfully detected this bug that has been confirmed by kernel 

developers (BugzillaID: 98561). Again, compared to the results of 

Coverity, none of these 22 real bugs were reported by Coverity. In 

fact, inferring this kind of rules is not supported by Coverity. 

Note that, 5 of the 6 confirmed bugs were introduced before ker-

nel 2.6.34. In particular, the bug 98561 was introduced in the 

kernel 2.6.14 (released in October 2005), it has been latent for 

almost 10 years until it is detected it by AntMiner. 

4.2.3 Comparative Analysis 
To highlight the effectiveness of AntMiner in reducing false nega-

tives and false positives, we conducted another experiment to 

directly mine rules for bug-prone functions from the original 

source repository. We refer to this experiment as AntMiner--. As 

suggested by its name, AntMiner-- is based on AntMiner but 

without program slicing and statement normalizing. 

This experiment ran about 264 minutes and 458,905 programming 

rules were mined. To evaluate AntMiner--, we manually inspected 

the reported violations, and found that 22 of the 30 real bugs were 

not reported. That is, 73% bugs were missed. For example, the 

bug (ID: 44621) shown in Figure 1 is detected by AntMiner but 

missed by AntMiner-- (where the reason was explained in §2.1). 

Note that, theoretically, AntMiner may fail to report some bugs 

detected by AntMiner--; however, we have not found such an 

instance in the experiment. That is, all (confirmed) real bugs de-

tected by AntMiner-- were detected by AntMiner. 

To evaluate the ability of AntMiner on reducing false positives, 

we collected and further analyzed the mined rules for the 21 bug-

prone functions listed in Table 2 and Table 3 respectively. As 

shown in Table 6, AntMiner-- mined 2,159 rules related to these 

bug-prone functions. For each function, its top ranked rules (at 

most 10) were manually verified to see whether they are correct. 

A rule is correct if it should be followed, and if violated, bugs 

may occur. For example, AntMiner-- mined 30 rules related to the 

bug-prone function nla_nest_end(). We inspected the top 10 of 

these 30 rules manually, and found only one of them was a correct 

rule. In total, 149 rules were inspected, and only 18 of them were 

confirmed to be correct ones. The false positive rate is up to 

87.9%. In most cases, we found that elements of incorrect rules 

are irrelevant or weakly relevant to each other. Violations to such 

rules are always false positives. Similar analysis was performed 

on the result of the experiment in §4.2.2. From Table 6, it can be 

seen that the false positives were greatly reduced by applying our 

method, i.e., 24.5%. At the same time, more correct rules were 

extracted by AntMiner(i.e., 80 vs. 18 by AntMiner--). 

 

4.3 Summary 

From the first two experiments, AntMiner successfully finds 52 

bugs from the Kernel 2.6.39. It is well demonstrated that 

AntMiner can detect a number of subtle bugs that are difficult to 

be found by other detection tools (e.g., Coverity). The third exper-

iment further illustrates that introducing program slicing and 

statement normalizing is significant for reducing both false nega-

tives and false positives. 

5. DISCUSSION 
While AntMiner is effective in revealing bugs that may be missed 

previously, there are still some limitations that we need to consid-

er in our future works. 

Critical Operations. Currently, AntMiner mainly concerns two 

types of critical operations. However, other operations may also 

be critical to detecting bug, such as reading or overwriting some 

fields of a specific type structure. How to cover such operations is 

an important problem that we need to address in the future. Intui-

tively, a direct solution is to transform such operations into a spe-

cial type of function call. To this end, it may be helpful to intro-

 

Table 6. Statistics of extracted rules related to the bug-prone func-

tions listed in Table 1 and 2. 

Approach 
Related 

Rules 

Analyzed 

Rules 

Correct 

Rules 

False Positive 

Rate 

AntMiner 200 106 80 24.5% 

AntMiner-- 2,159 149 18 87.9% 

 

linux-2.6.39/drivers/net/hamradio/mkiss.c: 

728 static int mkiss_open(struct tty_struct *tty) 

729 { 

 ...... 

762 if ((err = ax_open(ax->dev))) { 
763       goto out_free_netdev; 

764 } 

765  
766 if (register_netdev(dev)) 

                       // forgot to set err to the return of register_netdev() ! 

767      goto out_free_buffers; 
 ...... 

799 return 0; 

800  
801 out_free_buffers: 

802 kfree(ax->rbuff); 

803 kfree(ax->xbuff); 
804  

805 out_free_netdev: 

806 free_netdev(dev); 

807  

808 out: 

809 return err; 
810 } 

Figure 10. An example that returns improper values. 

Table 5. This table describes the profile of the confirmed bugs that 

return improper values. The first column lists the bug’s ID in the Linux 

kernel Bugzilla; the second shows name of the function that contains 

the bug; the last labels whether the bug is detected by Coverity. 

Bugzilla ID Function Coverity 

96741 atl2_probe()  

98551 mptfc_probe()  

98561 mkiss_open()  

98611 r592_probe()  

98671 mantis_dma_init()  

99011 myri10ge_probe()  
 



 

 

duce a little prior knowledge to identify which (types of) opera-

tions are critical ones, as done in [17, 36]. 

Data Mining Algorithms. In this study, we adopt the frequent 

itemset mining algorithm to extract programming rules consider-

ing its scalability. For some types of programming patterns, others 

mining algorithms may be more suitable. Programming logics can 

be represented in forms of sequences [15, 41, 42], or even graphs 

[11, 23, 48, 49]. Note that our approach is compatible with other 

mining algorithms. Applying them on a refined code database will 

produce better results. This will be one of our future works. 

Normalization. In theory, even for a simple expression, complete-

ly recognizing all semantics-equivalent forms of it is not a trivial 

task. In this study, AntMiner can handle some most common se-

mantics-equivalent representations. In fact, more bugs can be 

found if more semantics-equivalent representations are covered. 

In the future, we plan to employ deeper semantics analysis [40] to 

normalize complicated semantics-equivalent representations that 

cannot be handled in the current version of AntMiner. 

Concurrency Bugs. Detecting concurrency bugs in multithreaded 

programs is both significant and challenging [9, 10, 28]. There are 

two main obstacles to finding concurrency bugs statically. First, it 

is difficult to statically determine concurrent codes. Second, prior 

knowledge about locks are not always available. We will try to 

address above issues from the perspective of code mining. 

6. RELATED WORK 
Engler et al. [15] proposed a method to detect programming bugs 

by employing statistical analysis to infer temporal rules from rule 

templates such as “<a> must be paired with <b>”. They have 

developed six checkers and detected hundreds of bugs in real 

systems. The study proposes a promising direction to detect bugs 

without specifying concrete rules. Kremenek et al. [23] proposed 

a more general method that uses factor graphs to infer specifica-

tion from programs by incorporating disparate sources of infor-

mation. While these two approaches are inspiring, the types of 

inferred rules are restricted to predetermined templates. This re-

quires users to specify some specific knowledge about the target. 

Data mining techniques are introduced to extract more general 

rules from real large systems [5, 11, 24-28, 30, 34, 36, 38, 41, 42, 

48, 49]. All mining based methods along with those statistical-

based methods [15, 23] accept the reasonable assumption: in a 

practical system, the coding is correct in most cases, and a small 

number of anomalies are likely to be bugs. These methods firstly 

infer frequently appeared patterns in the source code, such pat-

terns specify the (implicit) programming rules that should be fol-

lowed in coding. Then, programs that violate these rules are de-

tected and regarded as potential bugs. 

Code mining methods can be categorized into four groups. (1) 

Frequent sub-itemset based methods represent a rule as an itemset 

[25, 28, 38], indicating that when a program executes some opera-

tions (e.g. call one or more functions), it should simultaneously 

execute the other operations in the same itemset (e.g. verify the 

function parameters). (2) Frequent sub-sequence based methods 

represent a rule as a sequence of events [5, 27, 28, 31, 41, 42], 

indicating that these events should be executed in order. (3) Fre-

quent sub-graph based methods represent a rule as a graph [11, 48, 

49], indicating that the control flow and data flow should also be 

correctly implemented. And (4) template-based methods [30, 34] 

adapt the mined rules to templates provided by traditional static 

analysis tools (e.g. Klocwork [4]), and then utilize these tools to 

detect bugs. Among various mining methods, the frequent itemset 

mining is most practical due to its scalability. Currently, AntMiner 

mines frequent sub-itemset as programming rules, but it can be 

easily extended to mine rules represented in sequences or graphs. 

In theory, mining based methods can detect many types of bugs. 

However, in practical, two types of bugs are often detected: (1) 

one or more necessary function calls [5, 25, 27, 30, 41, 42] are 

missed, and (2) some prerequisite conditions are neglected [11, 31, 

36, 38, 48, 49]. AntMiner can detect both of them. In the studies 

of Gunawi et al. [19] and Rubio-González et al. [32], they found 

that error codes are often incorrectly propagated in file systems, 

and such bugs are very hard to detect both statically and dynami-

cally. AntMiner provides an effective way to detect this kind of 

bugs by mining the function return patterns. 

If some domain knowledge can be introduced into mining rules, 

better results may be produced. Some approaches have been spe-

cially designed to infer rules for critical APIs [5, 30, 38, 41, 42] or 

security-sensitive functions [36, 49], and have gained great results. 

AntMiner also mines rules for specific operations. However, it 

does not require users to specify the interested operations, which 

are automatically extracted from the source code. 

It is noticed that code mining can be applied to not only the source 

code but also other forms of software engineering data. Rules can 

be mined from revision histories [26], execution paths [27], pro-

gram comments [35, 37], or even documentations written in natu-

ral language [44, 50]. The natural language processing (NLP) 

technique is employed when extracting rules from comments and 

documentations. NLP is also helpful for methods mining rules 

from source code [15, 49]. We will leverage NLP to discover the 

semantic information behind the names of program elements (e.g. 

variables, functions). The information can be used to further im-

prove the statements normalization. 

Program slicing was originally proposed by Weiser [43], and 

Chen and Cheung [12] extended it to make the slicing process 

effective in some circumstances, known as dynamic program 

slicing. Program slicing is mainly used to help debugging or sim-

plifying testing [6, 21]. Agrawal et al. [6] applied program slicing 

to locate known faults, while we employ program slicing to help 

mining unknown bug in this study. 

7. CONCLUSION 
Many efforts have been paid to use various code mining methods 

to extract programming rules and detect bugs. However, less at-

tention has been given to exclude the noise items from the code 

database. This paper presents a novel approach AntMiner to im-

prove the precision of code mining. It reduces noises in code da-

tabase by (1) excluding statements that are irrelevant to certain 

critical operations and (2) transforming statements with the same 

logic into a same canonical representation form. We have imple-

mented AntMiner and applied it to some large-scale systems. The 

evaluation results show that AntMiner effectively improved the 

precision of code mining and detected a number of subtle bugs 

that have been missed previously. 
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