

AntMiner: Mining More Bugs by Reducing Noise Interference

Bin Liang1,2, Pan Bian1,2, Yan Zhang1,2, Wenchang Shi1,2, Wei You1,2 Yan Cai3

1 Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), MOE, Beijing, China
2 School of Information, Renmin University of China, Beijing, China

{liangb, bianpan, annazhang, wenchang, youwei}@ruc.edu.cn
3 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

ycai.mail@gmail.com

ABSTRACT
Detecting bugs with code mining has proven to be an effective

approach. However, the existing methods suffer from reporting

serious false positives and false negatives. In this paper, we de-

veloped an approach called AntMiner to improve the precision of

code mining by carefully preprocessing the source code. Specifi-

cally, we employ the program slicing technique to decompose the

original source repository into independent sub-repositories, tak-

ing critical operations (automatically extracted from source code)

as slicing criteria. In this way, the statements irrelevant to a criti-

cal operation are excluded from the corresponding sub-repository.

Besides, various semantics-equivalent representations are normal-

ized into a canonical form. Eventually, the mining process can be

performed on a refined code database, and false positives and

false negatives can be significantly pruned. We have implemented

AntMiner and applied it to detect bugs in the Linux kernel. It re-

ported 52 violations that have been either confirmed as real bugs

by the kernel development community or fixed in new kernel

versions. Among them, 41 cannot be detected by a widely used

representative analysis tool Coverity. Besides, the result of a com-

parative analysis shows that our approach can effectively improve

the precision of code mining and detect subtle bugs that have

previously been missed.

CCS Concepts

• Software and its engineering ➝ Automated static analysis.

Keywords

Bug detection; Code mining; Program slicing

1. INTRODUCTION
In recent years, various code mining approaches have been pro-

posed to automatically extract implicit programming rules from

source code repositories [5, 8, 11, 24-28, 30, 31, 34-38, 41, 42, 48,

49]. In particular, such approaches on bug detection have been

proven to be very effective [25, 36, 38, 42, 48, 49]. For example,

PR-Miner [25] has detected many real bugs in large-scale systems,

including Linux kernels, Apache HTTP Server, and PostgreSQL

database. Most of these bugs violate complex implicit program-

ming rules, which are hard to be detected by traditional approach-

es as they need well documented rules [13, 20]. Currently, some

commercial bug detection systems have also employed the idea of

programming rules extraction. For example, Coverity [3], one of

the most widely used bug detection tools, leverages the statistical

approach to automatically extract implicit programming rules and

detects related bugs in some of its checkers (e.g., the

NULL_RETURNS checker).

Generally, detecting bugs with code mining involves three steps:

(1) Preprocessing the source code repository to generate a data-

base (called code database in this paper) suitable for mining,

in which each record is mapped from a program unit (e.g., a

function definition).

(2) Applying data mining algorithms to extract frequent patterns

in the code database as programming rules.

(3) Detecting any violations to the extracted programming rules

(often on the code database) as potential bugs.

Among three steps, the first one is the key step. It, to a large ex-

tent, determines whether a set of precise programming rules could

be mined in the second step and how many false positives and

false negatives are reported in the third step.

Like traditional bug detection approaches [13, 20, 46], detecting

bugs with code mining also suffers from reporting false positives

and false negatives, and may produce worse results than tradition-

al ones. Although some works could be adapted to reduce these

false positives and false negatives [25, 30, 34, 38], they mainly

focus on reducing the imprecisions of the second and third steps.

However, few works focus on the first step. According to our

empirical investigation (see Section 2 for some examples), a large

number of false positives and false negatives are introduced in the

first step due to the following two reasons.

First, in a program that involves a certain (implicit) programming

rule, there often exist statements that are irrelevant to the rule

except those implementing it. If such statements are not excluded

in the first step, they may confuse the data mining algorithms

adopted in the second step. As a result, rules that contain irrele-

vant statements may be mined; but such rules are usually useless

in practical coding. More seriously, if the irrelevant statements

have similar forms with those in the rule, the detection algorithm

in the third step may be misled. Therefore, real violations to the

rule may be missed (see §2.1), resulting in false negatives.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, or repub-

lish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permis-
sions@acm.org.

ICSE '16, May 14-22, 2016, Austin, TX, USA

© 2016 ACM. ISBN 978-1-4503-3900-1/16/05...$15.00

DOI: http://dx.doi.org/10.1145/2884781.2884870

http://cn.bing.com/dict/search?q=to&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=a&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=large&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=extent&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=extent&FORM=BDVSP6&mkt=zh-cn

Second, programmers may adopt different ways to implement a

same logic. If we do not transform them into a same form when

generating the code database, the mining and detecting algorithms

may mistake them as different programming patterns. Therefore,

the supports and confidences of the mined rules may be improper-

ly calculated. Some interested rules may even be ignored if their

supports and confidences are much lower than that they are

deemed to have. Previous works [11, 25] have noticed this prob-

lem. But their solutions are insufficient, and may also result in

some other problems (see Section 2).

To ease our presentation, we refer to the statements that are either

irrelevant to interested programming rules or semantics-equivalent

but are implemented in different forms as noise.

In this paper, we propose an approach called AntMiner to address

the above issues. AntMiner carefully preprocesses the source code

to eliminate the two kinds of noises in the code database as much

as possible. First, it employs a divide-and-conquer code mining

approach to reduce noise introduced by irrelevant statements.

Specifically, the whole program is decomposed into different sub-

repositories according to a set of critical operations (misusing

them tends to cause bugs). As a result, program statements irrele-

vant to the critical operations are excluded; that is, all remaining

statements in each sub-repository are highly relevant to certain

rules. On mining programming rules, AntMiner only works on

each sub-repository rather than on the whole repository. However,

how to effectively identify critical operations is not a trivial task.

In this paper, we propose a method to automatically extract them

from the source code (see §3.3).

Second, when converting a sub-repository to a code database,

AntMiner carefully normalizes program statements such that dif-

ferent implementation forms of the same logic are normalized.

Currently, it focuses on the variants of basic elements of a pro-

gram, including variable names, expressions, and control struc-

tures. Hence, most common semantics-equivalent representation

forms that might interfere with the mining algorithms are normal-

ized into a same canonical representation form, and the precision

of code mining could be significantly improved accordingly.

We have implemented AntMiner as a prototype tool to evaluate its

bug detection ability. We applied it to the Linux kernel (v2.6.39)

and compared it with a widely used bug detection tool Coverity.

Although the Linux kernel has been heavily analyzed previously

for bug detections [24, 25, 28, 36], AntMiner is still able to detect

a set of 52 real bugs (violations). Among these bugs, 24 of them

were directly confirmed as unknown bugs by kernel developers [1]

(see Table 3 and Table 5), and 28 of them have been fixed in new

kernel versions before we submitted these 52 bugs to the Bugzilla.

In addition to the above confirmed bugs, there are also 9 suspects

waiting for confirmation by Linux kennel developers. As a com-

parison, there are 41 out of the 52 confirmed bugs cannot be de-

tected by Coverity, whose checkers also adopt the implicit rules

extraction technique to detect bugs, in addition to doing this based

on well-defined bug detection rules. Besides, it should be noted

that, among those 24 bugs confirmed by kernel developers, there

are 2 bugs having existed in Linux kernel for more than 8 years

(one was introduced in v2.6.5 and the other was introduced in

v2.6.14); and other 17 bugs have existed since Linux kernel 2.6.34

released in May 2010. We further conducted a comparative evalu-

ation; and the result shows that, without our method, about 73%

(22 out of 30) bugs were not detected, and the imprecision of the

mined rules increased from 24.5% to 87.9%.

The evaluation result shows that our approach can effectively

improve the precision of code mining and detect subtle bugs that

have previously been missed.

This paper makes the following main contributions.

 A divide-and-conquer code mining method. The program

slicing technique is employed to decompose the source code

repository into a series of independent sub-repositories. Rule

mining and violation detecting on a sub-repository can survive

from the noise items caused by irrelevant statements.

 A simple but effective statement normalization method. With

this method, the most common semantics-equivalent represen-

tations that might interfere with the mining algorithms can be

transformed to a canonical representation form.

 A bug detection prototype system. It can be applied to real

world large systems. The evaluation result shows that the sys-

tem can effectively detect a number of subtle bugs that have

previously been missed.

2. MOTIVATING EXAMPLES
In this section, we demonstrate the necessity on eliminating noise

items from the code database by some program samples collected

from the Linux kernel 2.6.39.

2.1 Noise Introduced by Irrelevant Statements
In Linux kernel programs, there is an implicit programming rule

that the return value of the function snd_pcm_new() should be

checked to make sure that a new snd_pcm instance is created suc-

cessfully before passing it to the function snd_pcm_set_ops().

Figure 1 shows a program that violate the above rule. That is,

right after line 854, there is no checking on the returned value.

Using a mining algorithm (e.g., frequent itemset mining), the fre-

quent pattern {err = snd_pcm_new(), if (err < 0),

snd_pcm_set_ops()} can be extracted from the kernel code. The

pattern are taken as a programming rule to detect related bugs, as

done in [25]. Unfortunately, the program in Figure 1 actually con-

tains all elements of the rule. As a result, the program will be

mistaken as a support rather than a violation to the rule. This false

negative is actually caused by the conditional statement at line

linux-2.6.39/sound/pci/lx6464es/lx6464es.c:

839 static int __devinit lx_pcm_create (struct lx6464es *chip)

840 {

853 err = snd_pcm_new(chip->card, (char *)card_name, 0,

854 1, 1, &pcm);

// if (err < 0) {… return err;} is neglected there!

855

856 pcm->private_data = chip;

857

858 snd_pcm_set_ops(pcm, …);

 ……
864 err = snd_pcm_lib_preallocate_pages_for_all(pcm, …,

865 snd_dma_pci_data(chip->pci),

866 size, size);

867 if (err < 0)

868 return err;

873 return 0;

874 }
Figure 1. A violation to the implicit rule {err = snd_pcm_new(), if (err

< 0), snd_pcm_set_ops ()}, lacking a necessary checking for the return

value of the call to snd_pcm_new().

867 as the statement is irrelevant to both function snd_pcm_new()

(at line 853) and snd_pcm_set_ops() (called at line 858).

Methods based on order-sensitive data mining techniques, e.g.,

frequent subsequence mining [41, 42], may detect such a bug.

However, if the irrelevant statements "err = f(); if (err < 0)" ap-

pear between line 853 and 858 (which is quite possible in prac-

tice), the methods would fail to detect the bug. Besides, such or-

der-sensitive methods have higher time complexity than itemset

mining methods on extracting programming rules. To make them

scalable to mine rules from large-scale software (e.g., the Linux

kernel, which has tens of millions lines of code), a bigger mini-

mum support threshold should be set. However, this would miss

rules with relatively small supports.

The root cause of the false negative is that, the statement (at line

867) irrelevant to the rule confuses the mining algorithm. There-

fore, we can detect the bug by actively removing the irrelevant

statements before mapping the program into a code database. To

achieve this goal, we have to identify which statements we do care

about and which we do not care about. Note that, a bug often oc-

curs because of incorrectly performing some critical operations,

such as calling a function (e.g., strcpy()) without satisfying its

preconditions, or returning an improper value under certain condi-

tions. From this observation, we only care about statements that

either directly perform a critical operation or impact the execution

of a critical operation; and the other statements are regarded as

irrelevant ones and are removed. Given a critical operation, the

program slicing techniques [43] can help achieve this goal. On the

example in Figure 1, assuming that the call to function

snd_pcm_set_ops() is a critical operation (act as a slicing criteri-

on), the conditional statement (at line 867) can be excluded from

the corresponding slice; hence, the detection algorithm is able to

catch this violation.

2.2 Noise Introduced by Relevant Statements
In some cases, the interference can also be introduced by state-

ments that are relevant to the critical operations. In practice, a

statement may have no effect on the logic of a programming rule

even when there is a control or data dependence relationship be-

tween it and the critical operation. For example, in Linux kernel

code, there is another implicit programming rule that the return

value of the function nla_reserve() should be checked against

NULL before it is passed to the function nla_data(). Figure 2

shows a violation to this rule, where a necessary validation on the

return value right after line 431 is missing. However, the call to

the critical operation nla_data() at line 432 is directly control

dependent on the statement at line 415. That is, the statement at

line 415 is reserved even after program slicing. This also confuses

the mining algorithms in a way similar to the example in Figure 1,

resulting in a false negative.

In essence, this false negative can be reduced if the mining algo-

rithm could distinguish the variable na used at line 415 from the

one in the frequent pattern {na = nla_reserve(), if(!na),

nla_data()}. In a previous work [25], variables are represented

with their data types. However, to address the above problem,

more semantic information needs to be introduced when renaming

variables. In fact, the variable na in the above pattern keeps the

return value from nla_reserve(), whereas the variable na used at

line 415 keeps the value of an array element. If a variable is re-

named with a new canonical name which can reflect where its

value comes from (see §3.5), the confusion will be avoided to a

large extent. Therefore, the detection algorithm would not be in-

terfered, and can then detect the bug in Figure 2.

2.3 Noise Introduced by Inconsistence
The validation to the sensitive data is usually implemented with

conditional statements. In general, missing effective validations

may result in programming bugs. For example, the program

shown in Figure 3(a) illustrates an effective validation to the actu-

al parameter of function tty_hangup(). However, in the program

shown in Figure 3(b), an incorrect conditional expression (i.e.,

“C_CLOCAL(tty)” rather than “!C_CLOCAL(tty)”) is used to

enforce the validation. This will result in a bug. On the other hand,

programmers can use different or even opposite conditional ex-

pressions to enforce the same validation. For example, there are

two validations for the return value of function dev_alloc_skb()

shown in Figure 4(a) and (b) respectively. Although the two vali-

dations employ completely opposite conditional expressions, con-

sidering the contexts, both of them effectively guarantee that the

return value is not NULL before passing to skb_reserve().

For these programs, if the mining algorithm is directly applied to

them, we may miss the bug in Figure 3(b) or receive a false alarm

on one of the two programs in Figure 4. A previous work [11] also

noticed this problem, and proposed a method to simply make the

similar expressions identical, e.g., replacing "!=" with "==" in the

control points without considering the semantics of related control

structures. However, this method is not suitable for processing the

above samples.

A better solution is to normalize the control structure to a canoni-

cal form, ensuring that the predicate, which must be satisfied

when executing a critical operation, is explicitly specified in its

linux-2.6.39/net/bluetooth/rfcomm/tty.c:

626 if (dev->tty && !C_CLOCAL(dev->tty))

627 tty_hangup(dev->tty);
(a) Effective validation

linux-2.6.39/drivers/tty/moxa.c:

1362 tty = tty_port_tty_get(&p->port);

1363 if (tty && C_CLOCAL(tty) && !dcd)

1364 tty_hangup(tty);

(b) Ineffective validation

Figure 3. Two validation samples to the actual parameter of function

tty_hangup()

linux-2.6.39/kernel/taskstats.c:

403 static int cgroupstats_user_cmd (…, struct genl_info *info)

404 {

408 struct nlattr *na;

414 na = info->attrs[CGROUPSTATS_CMD_ATTR_FD];
415 if (!na)

416 return -EINVAL;

425 rc = prepare_reply(info, CGROUPSTATS_CMD_NEW, &rep_skb,

426 size);

427 if (rc < 0)

428 goto err;
429

430 na = nla_reserve(rep_skb, CGROUPSTATS_TYPE_CGROUP_STATS,

431 sizeof(struct cgroupstats));

 // if (!na) {… return -EMSGSIZE;} is neglected there!

432 stats = nla_data(na);

433 memset(stats, 0, sizeof(*stats));

446 }
Figure 2. A violation to the rule {na=nla_reserve(), if (!na),

nla_data()}, lacking a necessary checking for the return value of the

call to nla_reserve().

http://cn.bing.com/dict/search?q=to&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=a&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=large&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=extent&FORM=BDVSP6&mkt=zh-cn

conditional expression (see §3.5). For example, for the program

shown in Figure 4(b), the conditional expression (at line 856) can

be standardized to "skb = dev_alloc_skb (...)" to explicitly specify

that the return value has been checked against null before passing

it to the function skb_reserve(). On the other hand, the control

structures in Figure 3 remain their original forms. As a result, the

bug in Figure 3(b) can be detected, and no false positives are pro-

duced for the programs in Figure 4.

3. AntMiner APPROACH

3.1 Overview
Compared with most traditional code mining approaches,

AntMiner does not directly handle the whole source code of the

target system. Instead, it decomposes the source repository into a

set of independent sub-repositories on preprocessing source code.

The code mining is then independently performed on these sub-

repositories one by one.

Figure 5 shows an overview of AntMiner. First, the source code is

parsed into parse trees, and a program dependence graph (PDG)

is generated for each function definition. Second, it extracts criti-

cal operations from the source code itself without human in-

volvement. Third, according to the critical operations, the pro-

gram slicing technique is employed to generate a series of sub-

repositories. A sub-repository consists of the program slices asso-

ciated with a specific type of critical operations. Fourth, the pro-

gram slices are normalized, and then every sub-repository is con-

verted to an itemset database. Fifth, a frequent sub-itemset mining

algorithm is applied to the databases one by one to extract fre-

quent patterns and generate programming rules. Finally, violations

to these rules are detected and reported as potential bugs.

3.2 Parsing Source Code
AntMiner uses a modified GCC compiler [33] frontend to parse

the source code. The source code is parsed and represented in

GIMPLE, which is a language-independent, tree based representa-

tion. It should be noted that complex expressions are split into a

three-address code in GIMPLE. The rest of this subsection re-

views the preliminary knowledge, mainly about the PDG. Readers

who are familiar with it may skip the rest of this subsection.

A PDG is computed for each function definition by using an im-

proved algorithm proposed in [16]. In a PDG, a node represents a

GIMPLE statement, and an edge represents the dependency in-

formation between two nodes. A PDG consists of a control de-

pendence subgraph (CDS) and a data dependence subgraph

(DDS):

 The CDS describes the control dependencies among state-

ments. In CDS, if a statement s2 is control dependent on a

condition statement s1, there is a control dependence edge

from s1 to s2 labeled with either T or F, indicating that s2 is

executed on the True or False branch of s1, respectively. They

are denoted as s1, s2, T or s1, s2, F, respectively.

 The DDS describes the data dependencies among statements.

A statement s2 is data dependent on a statement s1 if there is a

variable x defined in s1, used at s2, and an executable path

from s1 to s2 along which there is no intervening definitions of

x. In the DDS, there is a data dependence edge from s1 to s2

labeled with x to indicate the dependence relationship, denot-

ed as s1, s2, x. In our implementation, a variable is regarded

to be defined at a statement if it is explicitly assigned to a val-

ue or it is passed to a function by reference. For example, in

Figure 1, both variables err and pcm are defined at the state-

ment at line 853. Variable pcm is used at line 858. Thus, the

data dependence edge 853, 858, pcm is added in the DDS.

3.3 Extracting Critical Operations
Bugs or vulnerabilities often stem from incorrectly performing

some critical operations. Currently, without loss of generality,

AntMiner mainly concerns two types of critical operations.

Bug-prone function calls. A function can be regarded as bug-

prone if an inappropriate invocation to it tends to cause a program

bug. In practice, the call to a bug-prone function often acts as the

key element of a programming rule. In fact, in the Common

Weakness Enumeration (CWE, a list of software weaknesses) [2],

the sinks of many weaknesses are calls to some security-sensitive

functions. For example, the call to function strcpy() is a bug-prone

operation. Note that many bug-prone functions are not well-

known like strcpy(). In many cases, they may even be undocu-

mented.

It is unreasonable to take all function calls as critical operations

because some functions may hardly cause a bug. For example, the

Sub-

repository

Parsing

Slicing

Mining rules

Detecting violationsViolations

PDGs

Parse trees

Programming rules

Critical operations

…

Source

repository

Sub-

repository

Sub-

repository

Itemset

Database

Itemset

Database
Itemset

Database

Normalizing & hashing

…

Figure 5. An overview of AntMiner.

linux-2.6.39/drivers/isdn/i4l/isdn_v110.c:

422 if ((skb = dev_alloc_skb(v->framelen + v->skbres))) {

423 skb_reserve(skb, v->skbres);

424 memcpy(skb_put(skb, v->framelen), ...);

425 }

(a) Effective validation

linux+v2.6.39/drivers/media/dvb/dvb-core/dvb_net.c:

856 if (!(skb = dev_alloc_skb(pkt_len - 4 - 12 + 14 + 2 - snap))) {

 // do something

859 return;

860 }
861 skb_reserve(skb, 2); /* longword align L3 header */
(b) Another effective validation with different condition expression

Figure 4. Two effective validations for the return value of function

skb_reserve().

http://en.wikipedia.org/wiki/Expression_%28programming%29
http://en.wikipedia.org/wiki/Three_address_code

call to function isdigit() (a function in C language to check wheth-

er a character is a decimal digit) should not be treated as a bug-

prone operation.

One way to collect bug-prone functions is to identify them by

manually analyzing the system documents or even the source code.

However, it is very difficult and tedious, if not impossible, to

manually identify the undocumented application-specific bug-

prone functions from a large-scale system (e.g., the Linux kernel).

To address this issue, we design a heuristic method to automati-

cally extract potential bug-prone operations from source code.

In practice, a bug-prone function call usually produces an error

when one or more of its parameters hold illegal values. In a prac-

tical system, to make sure that the system works correctly, these

sensitive parameters are often validated before passing them to the

bug-prone function. In programming, a validation to sensitive data

is generally implemented as a conditional comparison. To this end,

our approach to identifying bug-prone functions is based on the

intuition: before a bug-prone function is called, one or more of its

parameters should be directly or indirectly checked by a condi-

tional statement; and the function should not be executed if the

check fails.

Specifically, we perform a dependence flow analysis on the PDGs

(see §3.2) to identify potential bug-prone functions. First, a set of

validated variables (VVS) is computed for each conditional state-

ment. A VVS contains all variables that are directly or indirectly

checked by a certain conditional statement. To compute VVS, the

DDS of the PDG is backward traversed starting from the condi-

tional statement, and labels (i.e., variables) of edges visited during

the traversal are added into the VVS. Second, every function call is

examined to see whether it is control dependent on a conditional

statement by backward traversing the CDS of the PDG. If there

exists such a conditional statement, we further examine whether

there are parameters protected by the conditional statements. A

variable v is protected by a conditional statement if either it be-

longs to the VVS of the conditional statement or there is another

variable v' used in the definition statement of v and v' is protected

by the conditional statement. If there exists such a parameter p,

the function is identified as a bug-prone function candidate, and a

protected-counter for p (each parameter with a protected-counter)

is increased by one. Finally, for every candidate, a simple statisti-

cal method is applied to determine whether it is bug-prone. As-

suming that the function f() is called for T times and the protected-

counter of one of its parameter p is t. If the ratio t/T is larger than

a predefined threshold λ (e.g., 70% in this paper), function f() is

then considered as a bug-prone function on p.

For example, in Figure 4(a), the VVS of the conditional statement

at line 422 is {skb, v->framelen, v->skbres, v}. The function call

to skb_reserve() at line 423 is control dependent on the condition-

al statement at line 422, and its two actual parameters skb and v-

>skbres belong to the VVS of the conditional statement. Therefore,

function skb_reserve() is taken as a bug-prone function candidate

and the protected-counters of its two parameters are increased by

one respectively. After scanning the whole kernel code, we find

that skb_reserve() is called 503 times in total, among which 491

times its first parameter is checked by conditional statements, and

the corresponding t/T is about 97.61%. Consequently, the function

skb_reserve() is identified as a bug-prone function with respect to

its first parameter.

Based on the above method, AntMiner automatically collects

potential bug-prone functions, without requiring any prior

knowledge on the target system. In our empirical study, it finds

thousands of bug-prone functions from the Linux kernel in about

30 minutes, which saves a great deal of human efforts.

Function returns. Function return statements are very common in

programming, but very subtle bugs may be caused if they return

improper values. When the return value cannot correctly reflect

the execution result of a function on a certain path, its callers is no

way to know what actually happens in the callee. For example, in

Linux kernel, programmers may incorrectly set the error code to

zero rather than -ENOMEM when a function fails to allocate a

requested memory. The callers may believe an allocated memory

space is ready for subsequent operations. This may cause memory

access errors and even crash the system. In practice, how to cor-

rectly set the return values is often undocumented. As a result, it is

very difficult to detect improper return bugs with traditional tools.

The return value may be improperly set at every return point of a

program. Hence, all return statements are directly selected as po-

tential critical operations.

3.4 Slicing Source Code
The original definition of program slicing was proposed by

Weiser [43]. By introducing the notion of PDG, Ottenstein et al.

[29] converted the slicing problem into a reachability problem in a

dependence graph representation of the program. Based on their

study, several algorithms are proposed for effective slices compu-

ting [16, 22]. Based on these algorithms, a program slice consists

of all statements which may affect the values at some points of

interest (i.e., slicing criterion) or determine whether it should be

executed.

Identifying Slicing Criteria. To compute program slices for a

critical operation, the corresponding slicing criteria should be

identified firstly. For a bug-prone function, nodes that call this

function in the PDG can be directly taken as slicing criteria. For

example, in Figure 4(b), the function skb_reserve() is bug-prone

on its first parameter and is called at line 861. Therefore, 861,

{skb} is used as a slicing criterion, where skb is the interested

parameter at line 856.

For the return statements (i.e., the second type of our critical oper-

ations), they are not directly taken as the slicing criteria. It is be-

cause a return statement is usually a merging point of multiple

execution paths of a function. And the return value may also rep-

resent multiple execution results of the function. In practice, dif-

ferent execution results often represent different runtime logics.

To reduce the noise introduced by such runtime logics that are

irrelevant to a certain return value as much as possible, the pro-

gram points where the return values are actually determined are

taken as the slicing criteria.

However, the slicing result may not be what we desire when the

return value is implicitly defined. For example, in Figure 6(a),

variable err keeps the return value and is initialized with zero (at

1 err = 0;

2 x = malloc();

3 if (!x) {

4 err = -ENOMEM;

5 }

6 else {

 // do something

7 }

8 return err;

1 err = 0;

2 x = malloc();

3 if (!x) {

4 err = -ENOMEM;

5 }

6 else {
7 err = err;

 // do something

8 }

9 return err;

(a) (b)

Figure 6. An example of inserting dummy statements.

http://cn.bing.com/dict/search?q=minutes&FORM=BDVSP6

line 1). When the call to malloc() (at line 2) fails (checked at line

3), err is set to -ENOMEM (at line 4). Otherwise, the value of err

remains zero. The logic of this program is “-ENOMEM should be

returned when the call to malloc() fails; otherwise, zero should be

returned”. When directly taking statements that explicitly set the

value of err (i.e., line 1 and line 4) as the slicing criteria, the slic-

ing result is no way to capture the logic “zero should be returned

when the call to malloc() succeeds”.

To address the above issue, we insert dummy statements that reset

return values into the original program. For every conditional

statement, if the return value (e.g., kept in variable err) is only

explicitly defined on one of its two branches, a dummy statement

(i.e., "err = err;") will be added to the beginning of the other

branch. Then, on the PDG of the modified program, a backward

dataflow analysis can be performed to identify desirable slicing

criteria. A statement (may be a dummy one) is regarded as a slic-

ing criterion if there exists a data dependence edge from it to a

return statement.

For example, in Figure 6(a), the dummy statement "err = err;" is

inserted into the "else" branch of the conditional statement "if

(!x)" (at line 3), because the return value is only explicitly defined

on the other branch. The modified program is shown in Figure

6(b), and in the PDG of it, there exists two data dependence edges

to the return statement (at line 9): one from the statement at line 4,

and the other from the statement at line 7. Therefore, the state-

ments at line 4 and line 7 are identified as slicing criteria.

Slicing for Every Criterion. For each slicing criterion of return

statements, the PDG is traversed backward from it, and the en-

countered nodes are marked. All the marked nodes make up the

program slice of the slicing criterion.

The above slicing algorithm is suitable for slicing criteria of return

statements. However, when a slicing criterion is a call to a bug-

prone function, the traversing strategy should be slightly adapted.

Otherwise, some statements causing noise may not be thoroughly

excluded from the slice. For example, in Figure 7, taking 7, {x}

(bug-prone function sensitive_op1() is called at line 7 with x) as a

slicing criterion, the conditional statement at line 5 (i.e., "if (len >

MAX_LEN)") remains in the obtained slice. This is because the

function call is control dependent on it. However, this conditional

statement does check the input to the call to sensitive_op2(y) (at

line 8) rather than that to sensitive_op1(). If the statement remains

in the slice, it may be incorrectly taken as a checking for sensi-

tive_op1(x) by the mining algorithm.

In essence, this issue is caused by the fact that the semantic rela-

tionship between two statements may still be weak even if there is

a control dependence relationship between them. To address this

issue, we design a more aggressive slicing algorithm for slicing

criteria that call bug-prone functions. Our algorithm also back-

ward traverses the PDG paths starting from the statement invok-

ing the bug-prone function (e.g. sensitive_op1()), and marks the

encountered statements to compute the program slice. The differ-

ence is that a conditional statement is not marked if it is not ho-

mologous to the statement of the slicing criterion. Two statements

s1 and s2 are homologous if either (1) s1 and s2 are data depend-

ent on the same statement s3, or (2) s1 (or s2) is control dependent

on statement s3, and s2 (or s1) and s3 are homologous. In this way,

the conditional statement that has only control dependence rela-

tionship with the slicing criterion is not taken as a potential vali-

dation to the function and, hence, is not added into the slice. For

example, in Figure 7, the conditional statement at line 5 (i.e. "if

(len > MAX_LEN)") is homologous to the statement at line 8, but

not the statement at line 7. As a result, statement 5 is marked for

the slicing criterion 8, {y}, but is not marked for 7, {x}.

Constructing Sub-repositories. The program slices for a bug-

prone function make up an independent sub-repository for it. For

return statements, program slices with the same return type are

clustered into a sub-repository.

3.5 Normalizing and Hashing Statements
Every sub-repository is converted to an itemset database suitable

for the adopted data mining algorithm [18]. Every statement is

converted to a string and hashed to a number using an existing

hash function hashpjw [7]. The hash numbers of the statements in

a program slice will constitute an itemset (a bag of numbers).

Before that, statements are normalized by the following three

methods:

Renaming Variables. In practice, names of variables in similar

contexts may vary greatly. To reduce the differences in naming,

variables in every statement are given new canonical names. Spe-

cifically, (1) for each variable that either accepts a return value of

a function or is taken as a reference parameter of a function is

renamed as the function name plus a suffix. The string “ret” is

used as a suffix for the former case, and an integer i is used for the

latter case where the integer i indicates that the variable is taken as

the i-th parameter of the function. (2) In other cases, each variable

is renamed as its data type. For example, in Figure 8, in the state-

ment at line 3 (i.e., "if (a < b)"), variable a keeps the return value

of foo() (called at line 1), and variable b is a reference parameter

of foo(). Thus, variable a is renamed as "foo-ret", while variable b

is renamed as "foo-1" (b is the first parameter of foo()). Because

the value of variable c in "d = c + a;" is not assigned by a function,

it is renamed as its data type, i.e. "int".

Rewriting Expressions. Expressions in different forms may repre-

sent the same semantics. For example, "a + b" is equivalent to "b

+ a" in semantics. In theory, it is impossible to recognize and

normalize all kinds of semantics-equivalent representations. In

this paper, considering the significance of conditional statements

and assignment statements for identifying programming rules, we

mainly concern with the normalization of them. Thanks to the

GIMPLE representation, this work can be focused on how to

normalize binary expressions. For a binary expression "v1 op v2":

 If the operator op has a commutative property (i.e., "+", "*",

"&", "|", "==", "!=") and the data type name of operand v1 is

lexicographically after that of v2, the expression is trans-

1 c = 10;

2 a = foo (&b);
3 if (a < b)

4 return;

5 d = c + a;
6 bugprone_op (d);

Figure 8. An example for illustrating statements normalizing

1 x = get_input();

2 y = get_input();

3 len = get_length (x);

4 len = get_length (y);

5 if (len > MAX_LEN)
6 return;

7 sensitive_op1 (x);

8 sensitive_op2 (y);

Figure 7. A noise example that may remain in the slice.

formed into "v2 op v1". For example, for an expression "int +

char", because "int" is lexicographically after "char", the re-

sulting expression is "char + int".

 If the operator op is a non-commutative relational operator

(i.e., ">", "<", ">=", and "<=") and the data type name of op-

erand v1 is lexicographically after that of v2, the positions of

the two operands are exchanged, and the operator op is syn-

chronously changed to op' (i.e., the complement operation of

op) to preserve the semantic. For example, for a given expres-

sion "int >= char", the resulting expression is "char <= int".

Rearranging Control Structures. The same program logic may be

implemented in different control structures. For example, pro-

grams in Figure 4(a) and Figure 4(b) are different in form, but

they both follow the constraint that “the first parameter of

skb_reserve() should not be NULL”. To reduce the differences in

form, the control structures are rearranged as follows: if a critical

operation is called only when a predicate p evaluates to false, it is

negated to p' (e.g., the negation of "a > b" is "a <= b"); according-

ly, the two branches of the control structure are exchanged such

that the critical operation is called only when predicate p' evalu-

ates to true. In this way, the validation modes about critical opera-

tions are unified without alerting the original validation logic. For

example, in Figure 4(b), the critical operation skb_reserve() is

executed only when the predicate (at line 856) evaluates to false.

The related control structure is rearranged, as shown in Figure 9.

By doing so, all conditional predicates, which determine whether

the bug-prone operation is executed or not, will be normalized to a

standard form as far as possible, making the mining algorithm

more likely to be able to extract potential frequent programming

patterns.

3.6 Mining Rules and Detecting Violations
AntMiner adopts the data mining algorithm FPclose [18] to dis-

cover closed frequent sub-itemsets from the itemset database. For

a given sub-itemset, the number of itemsets that contain all its

items is called the support of it. A sub-itemset is considered to be

frequent if its support is bigger than or equal to a specified thresh-

old (min_support). A frequent sub-itemset A is closed if there is

no frequent sub-itemset B where B is a proper subset of A and

support(A) = support(B), where the function support(P) computes

the support of P.

We then mine association rules as programming rules from the

extracted closed frequent sub-itemsets. An association rule has the

form A => B, where A and B are closed frequent sub-itemsets,

and support(B) ÷ support(A) × 100% (i.e., confidence of the rule)

is larger than or equal to a given threshold min_confidence. The

association rule A => B indicates: if an itemset in the database

contains all statements in A, it should also contain all statements

in B. And a violation to the rule is an itemset that contains all the

items in A but not all the items in B.

Detecting violations is straightforward. A trivial method to detect

the violations is to inspect all itemsets in the database and exam-

ine which is a superset of A but not of B. However, given a data-

base with a large number of itemsets, this method might be time-

consuming. To speed up violation detecting, we slightly modified

FPclose such that when it discovers a closed frequent sub-itemset

X, the itemsets that support X are also recorded, denoted as sup-

porter(X). By doing so, any violations to an association rule A =>

B can be easily computed via supporter(A) – supporter(B).

Before reporting any violations to programmers, they are ranked

by an empirical method. In our experience, the violation that miss

conditional statements is more likely to be a bug than those that

miss function call statements. Besides, the fewer statements a

violation misses, the more likely it is a bug. For that, all violations

are firstly categorized into three categories: missing conditional

statements, missing function call statements, and the others.

Among these three categories, violations in the first category are

ranked with a highest priority, followed by violations from the

second category, and violations from the third category have a

lowest priority. Within each category, a violation that misses few-

er statements is ranked with a higher priority; and if any two vio-

lations miss the same number of statements, they are ranked by

the confidences of their violated rules (i.e., violations with higher

confidences are ranked with higher priority).

4. EVALUATION

4.1 Experiment Setup
We implemented AntMiner based on GCC compiler [33] (V4.5.0)

and evaluated it on the Linux kernel 2.6.39. The kernel includes

about 16,300 C files, and 110,000 functions. The Linux kernel has

been scanned by dozens of bug detection tools [3, 15, 23, 24, 25,

28, 36]. The main reason for choosing the Linux kernel as the

evaluation target is that we want to demonstrate the effectiveness

of our approach by revealing some new bugs that are difficult to

detect previously on real-world large-scale systems.

In our experiment, AntMiner runs on a machine with a Core i5-

2520M, 2.5GHZ Intel processor and 4GB memory. Three parame-

ters need to be specified: λ, min_support, and min_confidence. In

our evaluation, we empirically determine reasonable parameters

by performing a sampling analysis to the results of several exper-

iments with different parameters settings. Specifically, we set λ to

70%, min_support to 10, and min_confidence to 85% respectively.

4.2 Experiments

In the evaluation, we firstly performed two independent experi-

ments to automatically extract programming rules and detect re-

lated bugs for the two types of critical operations (i.e., bug-prone

function calls, and function returns). The results of the two exper-

iments are shown in §4.2.1 and §4.2.2, respectively. As a compar-

ison, we also applied Coverity to detect bugs in the Linux kernel

2.6.39, to determine whether AntMiner can effectively discover

the bugs missed by Coverity. For highlighting the effectiveness of

AntMiner on reducing noise introduced by irrelevant statements

and inconsistent implementations, we further evaluated AntMiner

by disabling its program slicing and normalizing to perform a

comparative analysis. The result is illustrated in §4.2.3.

Table 1. Classification of violations detected by AntMiner

of total

violations:

38

12 (~32%) Already fixed. Real bugs

18 (~47%) Confirmed as unknown bugs. Real bugs

5 (~13%) Regarded as false positives. False positives

3 (~8%) Waiting for confirmation. Unknown

 if ((skb = dev_alloc_skb(pkt_len - 4 - 12 + 14 + 2 - snap))) {

 skb_reserve(skb, 2); /* longword align L3 header */

 }

 else {

// do something

return;
}

Figure 9. Rearranged program of the one in Figure 4(b).

4.2.1 Detecting Misusages of Bug-Prone Functions
This experiment ran about 145 minutes. In total, 1,984 bug-prone

functions were automatically extracted from the source code. For

all these bug-prone functions, 3,524 programming rules are gener-

ated. Violations to these rules were detected.

Similar to all other static analysis tools [e.g. 3, 4], violations de-

tected by AntMiner also need to be identified manually. In this

study, for each bug-prone function, the top ranked rules (at most

10) and the violations to these rules were manually audited. It

spent one of us about 16 hours to audit the results. The cost of

manual work is acceptable on large-scale systems like the Linux

kernel. Eventually, we found 38 violations that were most likely

to be real bugs. Table 1 summarizes these 38 violations. To verify

these violations, we firstly checked the kernel archive and found

that 12 of them have already been fixed in the new kernel versions

(e.g., v3.17). This means that these 12 violations (shown in Table

2) are real bugs. We then reported the other 26 violations to Linux

kernel Bugzilla (the kernel development community) [1]. And so

far, 18 of them have been confirmed as previously unknown bugs

(i.e., real bugs) as shown in Table 3. Among the rest 8 violations,

5 are regarded as false positives by kernel developers, and the

other 3 are still waiting for confirmation.

We further surveyed when the 18 confirmed bugs were introduced

in the Linux kernel. We found 15 of them were introduced before

kernel 2.6.34 (released in May 2010). To our surprise, the bug

44491 was introduced in kernel 2.6.5 (released in April 2004), it

has been latent for 8 years until it is detected by AntMiner. This

bug has been fixed now after we reported it. It should be noted

that AntMiner can successfully detect some deeply hidden bugs

with the help of program slicing and statement normalization,

such as the three bugs presented in §2.1, §2.2 and §2.3 respective-

ly (BugzillaID: 44541, 44621, and 49911).

We also applied Coverity on the same kernel source code. Coveri-

ty can only reported 11 of above 30 real bugs (i.e., 12 + 18) found

by AntMiner. In other words, Coverity neglected 19 (63%) real

bugs. Among the 11 bugs hit by Coverity, 10 of them were detect-

ed by the NULL_RETURNS checker, and the rest one was detect-

ed by the CHECKED_RETURN checker. Both of the two check-

ers can automatically infer the implicit program rules for the un-

modeled function (e.g., alloc_skb()) to detect related bugs. For

example, the NULL_RETURNS checker can infer the rule “al-

loc_skb() may return NULL and its return should be checked

against NULL before dereferencing” by scanning the code and

computing how frequently the function return is checked against

NULL. According to the rule, Coverity can detect a real bug

(BugzillaID: 44431) in function st_int_recv().

Because Coverity directly infers the implicit programming rules

from the original source code, its precision is heavily interfered by

the noise statements (as discussed in Section 2). As a result, some

implicit programming rules and related bugs may be neglected.

For example, it can’t discover all the three subtle bugs presented

in Section 2, which should be covered by its corresponding check-

ers (e.g., NULL_RETURNS checker).

4.2.2 Detecting Improper Return Values
As mentioned in §3.4, program slices with the same return type

are clustered into a sub-repository. In kernel, when an unexpected

event occurs in a function, an error code should be returned. In the

kernel development, a number of subtle bugs caused by incorrect

error code assigning [19, 32]. In practice, an error code is often

represented by an integer. Therefore, we are especially interested

in the sub-repository consists of program slices involving error

code returns.

The experiment ran about 120 minutes, and 6,366 programming

rules were mined. Considering the sub-repository about error

codes consists of much more slices than those sub-repositories

about bug-prone functions, we manually inspected the top 200

rules and their violations. Eventually, we found 28 violations were

most likely to be real bugs. Table 4 summarizes these 28 viola-

tions. By checking the kernel archive, we found 16 of them have

been fixed in the new kernel versions (e.g., v3.17). This means

Table 4. Classification of violations detected by AntMiner

of total

violations:

28

16 (~57%) Already fixed. Real bugs

6 (~21%) Confirmed as unknown bugs. Real bugs

6 (~21%) Waiting for confirmation. Unknown

Table 2. This table describes the profile of the found bugs that have

been fixed in the new versions. The first column shows the function

that contains the bug; the second shows the bug-prone function; and

the last labels whether the bug is detected by Coverity.

Function Bug-prone Function Coverity

btrfs_real_readdir() btrfs_next_leaf() 

btrfs_insert_dir_item() btrfs_release_path() 

picolcd_init_framebuffer() framebuffer_release() 

pstore_mkfile() d_add() 

nl80211_remain_on_channe

l()
genlmsg_end() 

nl80211_tx_mgmt() genlmsg_end() 

nl80211_get_key() genlmsg_end() 

l2tp_nl_session_send() genlmsg_end() 

l2tp_nl_tunnel_send() genlmsg_end() 

l2tp_nl_cmd_noop() genlmsg_end() 

efs_iget() unlock_new_inode() 

bfs_iget() unlock_new_inode() 

Table 3. This table describes the profile of the confirmed bugs. The first

column lists the bug’s ID in the Linux kernel Bugzilla; the second

shows name of the function that contains the bug; the third shows the

bug-prone function that the bug violates a rule about; and the last

labels whether the bug is detected by Coverity.

Bugzilla

ID
Function Bug-prone Function Coverity

44431 st_int_recv() skb_reserve() 

44441 ldisc_open() register_netdevice() 

44461 sfb_dump() nla_nest_end() 

44471 tmiofb_probe() ioremap() 

44491 setup_isurf() pnp_port_start() 

44541 lx_pcm_create() snd_pcm_set_ops() 

44551 poseidon_audio_init() snd_pcm_set_ops() 

44561 pcf50633_probe() platform_device_add() 

44571 dcbnl_ieee_set() nla_parse_nested() 

44621 cgroupstats_user_cmd() nla_data() 

44671
ocfs2_create_refcount_tree

()

ocfs2_set_new_buffer_upt

odate()



44681 ocfs2_create_xattr_block()
ocfs2_set_new_buffer_upt

odate()



44691 lkdtm_debugfs_read() free_pages() 

49851
ipw_packet_received_skb(
)

skb_reserve() 

49861
wl1271_debugfs_update_st

ats()
wl1271_ps_elp_sleep()



49871
omninet_read_bulk_callba
ck()

tty_flip_buffer_push()


49911 moxa_new_dcdstate() tty_hangup() 

49921 btree_write_block() logfs_put_write_page() 

that these 16 violations are real bugs. We submitted the rest 12

suspected bugs to the kernel development community [1], and so

far, 6 of them have been confirmed to be real bugs and will be

fixed in later versions. These 6 bugs are shown in Table 5. The

other 6 suspects are still waiting for confirmation (however, none

has been confirmed as a false positive).

For example, in Figure 10, when the call to register_netdev() at

line 766 fails, the returned error code should be further propagated

upward to the callers of function mkiss_open(). However, the

programmer forgot to set the value of err when register_netdev()

fails, and zero is returned. This misleads the callers into believing

mkiss_open() runs normally, even some unexpected events have

occurred. AntMiner successfully extracted the rule that “when a

call to register_netdev() fails, its return value rather than zero

should be propagated upward”. According to the rule, AntMiner
successfully detected this bug that has been confirmed by kernel

developers (BugzillaID: 98561). Again, compared to the results of

Coverity, none of these 22 real bugs were reported by Coverity. In

fact, inferring this kind of rules is not supported by Coverity.

Note that, 5 of the 6 confirmed bugs were introduced before ker-

nel 2.6.34. In particular, the bug 98561 was introduced in the

kernel 2.6.14 (released in October 2005), it has been latent for

almost 10 years until it is detected it by AntMiner.

4.2.3 Comparative Analysis
To highlight the effectiveness of AntMiner in reducing false nega-

tives and false positives, we conducted another experiment to

directly mine rules for bug-prone functions from the original

source repository. We refer to this experiment as AntMiner--. As

suggested by its name, AntMiner-- is based on AntMiner but

without program slicing and statement normalizing.

This experiment ran about 264 minutes and 458,905 programming

rules were mined. To evaluate AntMiner--, we manually inspected

the reported violations, and found that 22 of the 30 real bugs were

not reported. That is, 73% bugs were missed. For example, the

bug (ID: 44621) shown in Figure 1 is detected by AntMiner but

missed by AntMiner-- (where the reason was explained in §2.1).

Note that, theoretically, AntMiner may fail to report some bugs

detected by AntMiner--; however, we have not found such an

instance in the experiment. That is, all (confirmed) real bugs de-

tected by AntMiner-- were detected by AntMiner.

To evaluate the ability of AntMiner on reducing false positives,

we collected and further analyzed the mined rules for the 21 bug-

prone functions listed in Table 2 and Table 3 respectively. As

shown in Table 6, AntMiner-- mined 2,159 rules related to these

bug-prone functions. For each function, its top ranked rules (at

most 10) were manually verified to see whether they are correct.

A rule is correct if it should be followed, and if violated, bugs

may occur. For example, AntMiner-- mined 30 rules related to the

bug-prone function nla_nest_end(). We inspected the top 10 of

these 30 rules manually, and found only one of them was a correct

rule. In total, 149 rules were inspected, and only 18 of them were

confirmed to be correct ones. The false positive rate is up to

87.9%. In most cases, we found that elements of incorrect rules

are irrelevant or weakly relevant to each other. Violations to such

rules are always false positives. Similar analysis was performed

on the result of the experiment in §4.2.2. From Table 6, it can be

seen that the false positives were greatly reduced by applying our

method, i.e., 24.5%. At the same time, more correct rules were

extracted by AntMiner(i.e., 80 vs. 18 by AntMiner--).

4.3 Summary

From the first two experiments, AntMiner successfully finds 52

bugs from the Kernel 2.6.39. It is well demonstrated that

AntMiner can detect a number of subtle bugs that are difficult to

be found by other detection tools (e.g., Coverity). The third exper-

iment further illustrates that introducing program slicing and

statement normalizing is significant for reducing both false nega-

tives and false positives.

5. DISCUSSION
While AntMiner is effective in revealing bugs that may be missed

previously, there are still some limitations that we need to consid-

er in our future works.

Critical Operations. Currently, AntMiner mainly concerns two

types of critical operations. However, other operations may also

be critical to detecting bug, such as reading or overwriting some

fields of a specific type structure. How to cover such operations is

an important problem that we need to address in the future. Intui-

tively, a direct solution is to transform such operations into a spe-

cial type of function call. To this end, it may be helpful to intro-

Table 6. Statistics of extracted rules related to the bug-prone func-

tions listed in Table 1 and 2.

Approach
Related

Rules

Analyzed

Rules

Correct

Rules

False Positive

Rate

AntMiner 200 106 80 24.5%

AntMiner-- 2,159 149 18 87.9%

linux-2.6.39/drivers/net/hamradio/mkiss.c:

728 static int mkiss_open(struct tty_struct *tty)

729 {

762 if ((err = ax_open(ax->dev))) {
763 goto out_free_netdev;

764 }

765
766 if (register_netdev(dev))

 // forgot to set err to the return of register_netdev() !

767 goto out_free_buffers;

799 return 0;

800
801 out_free_buffers:

802 kfree(ax->rbuff);

803 kfree(ax->xbuff);
804

805 out_free_netdev:

806 free_netdev(dev);

807

808 out:

809 return err;
810 }

Figure 10. An example that returns improper values.

Table 5. This table describes the profile of the confirmed bugs that

return improper values. The first column lists the bug’s ID in the Linux

kernel Bugzilla; the second shows name of the function that contains

the bug; the last labels whether the bug is detected by Coverity.

Bugzilla ID Function Coverity

96741 atl2_probe() 

98551 mptfc_probe() 

98561 mkiss_open() 

98611 r592_probe() 

98671 mantis_dma_init() 

99011 myri10ge_probe() 

duce a little prior knowledge to identify which (types of) opera-

tions are critical ones, as done in [17, 36].

Data Mining Algorithms. In this study, we adopt the frequent

itemset mining algorithm to extract programming rules consider-

ing its scalability. For some types of programming patterns, others

mining algorithms may be more suitable. Programming logics can

be represented in forms of sequences [15, 41, 42], or even graphs

[11, 23, 48, 49]. Note that our approach is compatible with other

mining algorithms. Applying them on a refined code database will

produce better results. This will be one of our future works.

Normalization. In theory, even for a simple expression, complete-

ly recognizing all semantics-equivalent forms of it is not a trivial

task. In this study, AntMiner can handle some most common se-

mantics-equivalent representations. In fact, more bugs can be

found if more semantics-equivalent representations are covered.

In the future, we plan to employ deeper semantics analysis [40] to

normalize complicated semantics-equivalent representations that

cannot be handled in the current version of AntMiner.

Concurrency Bugs. Detecting concurrency bugs in multithreaded

programs is both significant and challenging [9, 10, 28]. There are

two main obstacles to finding concurrency bugs statically. First, it

is difficult to statically determine concurrent codes. Second, prior

knowledge about locks are not always available. We will try to

address above issues from the perspective of code mining.

6. RELATED WORK
Engler et al. [15] proposed a method to detect programming bugs

by employing statistical analysis to infer temporal rules from rule

templates such as “<a> must be paired with ”. They have

developed six checkers and detected hundreds of bugs in real

systems. The study proposes a promising direction to detect bugs

without specifying concrete rules. Kremenek et al. [23] proposed

a more general method that uses factor graphs to infer specifica-

tion from programs by incorporating disparate sources of infor-

mation. While these two approaches are inspiring, the types of

inferred rules are restricted to predetermined templates. This re-

quires users to specify some specific knowledge about the target.

Data mining techniques are introduced to extract more general

rules from real large systems [5, 11, 24-28, 30, 34, 36, 38, 41, 42,

48, 49]. All mining based methods along with those statistical-

based methods [15, 23] accept the reasonable assumption: in a

practical system, the coding is correct in most cases, and a small

number of anomalies are likely to be bugs. These methods firstly

infer frequently appeared patterns in the source code, such pat-

terns specify the (implicit) programming rules that should be fol-

lowed in coding. Then, programs that violate these rules are de-

tected and regarded as potential bugs.

Code mining methods can be categorized into four groups. (1)

Frequent sub-itemset based methods represent a rule as an itemset

[25, 28, 38], indicating that when a program executes some opera-

tions (e.g. call one or more functions), it should simultaneously

execute the other operations in the same itemset (e.g. verify the

function parameters). (2) Frequent sub-sequence based methods

represent a rule as a sequence of events [5, 27, 28, 31, 41, 42],

indicating that these events should be executed in order. (3) Fre-

quent sub-graph based methods represent a rule as a graph [11, 48,

49], indicating that the control flow and data flow should also be

correctly implemented. And (4) template-based methods [30, 34]

adapt the mined rules to templates provided by traditional static

analysis tools (e.g. Klocwork [4]), and then utilize these tools to

detect bugs. Among various mining methods, the frequent itemset

mining is most practical due to its scalability. Currently, AntMiner

mines frequent sub-itemset as programming rules, but it can be

easily extended to mine rules represented in sequences or graphs.

In theory, mining based methods can detect many types of bugs.

However, in practical, two types of bugs are often detected: (1)

one or more necessary function calls [5, 25, 27, 30, 41, 42] are

missed, and (2) some prerequisite conditions are neglected [11, 31,

36, 38, 48, 49]. AntMiner can detect both of them. In the studies

of Gunawi et al. [19] and Rubio-González et al. [32], they found

that error codes are often incorrectly propagated in file systems,

and such bugs are very hard to detect both statically and dynami-

cally. AntMiner provides an effective way to detect this kind of

bugs by mining the function return patterns.

If some domain knowledge can be introduced into mining rules,

better results may be produced. Some approaches have been spe-

cially designed to infer rules for critical APIs [5, 30, 38, 41, 42] or

security-sensitive functions [36, 49], and have gained great results.

AntMiner also mines rules for specific operations. However, it

does not require users to specify the interested operations, which

are automatically extracted from the source code.

It is noticed that code mining can be applied to not only the source

code but also other forms of software engineering data. Rules can

be mined from revision histories [26], execution paths [27], pro-

gram comments [35, 37], or even documentations written in natu-

ral language [44, 50]. The natural language processing (NLP)

technique is employed when extracting rules from comments and

documentations. NLP is also helpful for methods mining rules

from source code [15, 49]. We will leverage NLP to discover the

semantic information behind the names of program elements (e.g.

variables, functions). The information can be used to further im-

prove the statements normalization.

Program slicing was originally proposed by Weiser [43], and

Chen and Cheung [12] extended it to make the slicing process

effective in some circumstances, known as dynamic program

slicing. Program slicing is mainly used to help debugging or sim-

plifying testing [6, 21]. Agrawal et al. [6] applied program slicing

to locate known faults, while we employ program slicing to help

mining unknown bug in this study.

7. CONCLUSION
Many efforts have been paid to use various code mining methods

to extract programming rules and detect bugs. However, less at-

tention has been given to exclude the noise items from the code

database. This paper presents a novel approach AntMiner to im-

prove the precision of code mining. It reduces noises in code da-

tabase by (1) excluding statements that are irrelevant to certain

critical operations and (2) transforming statements with the same

logic into a same canonical representation form. We have imple-

mented AntMiner and applied it to some large-scale systems. The

evaluation results show that AntMiner effectively improved the

precision of code mining and detected a number of subtle bugs

that have been missed previously.

8. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their insightful comments. The work is supported by National

Natural Science Foundation of China (NSFC) under grants

61170240, 91418206, 61472429, and 61502465, National 973

program of China under grant 2014CB340702, and National Sci-

ence and Technology Major Project of China under grant

2012ZX01039-004.

9. REFERENCES
[1] Bugzilla for kernel, https://bugzilla.kernel.org.

[2] Common Weakness Enumeration, http://cwe.mitre.org.

[3] Coverity, http://www.coverity.com, v7.5.

[4] Klocwork, www.klocwork.com.

[5] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as

partial orders from source code: from usage scenarios to

specifications. In Proceedings of the 11th European Software

Engineering Conference Held Jointly with 15th ACM SIG-

SOFT International Symposium on Foundations of Software

Engineering, pages 163-173, 2007.

[6] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault

localization using execution slices and dataflow tests. In

Proceedings of International Symposium on Software Relia-

bility Engineering, pages 143-151, 1995.

[7] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles,

techniques, and tools. 1986.

[8] G. Ammons, R. Bodik, J. R. Larus. Mining specifications. In

Proceedings of the 29th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 4-16, 2002.

[9] Y. Cai, and L. Cao. Effective and precise dynamic detection

of hidden races for Java programs. In Proceedings of the

10th Joint Meeting on Foundations of Software Engineering,

pages 450-461, 2015.

[10] Y. Cai, and W.K. Chan. Magiclock: Scalable Detection of

Potential Deadlocks in Large-Scale Multithreaded Programs

[J]. IEEE Transactions on Software Engineering, 40(3), pag-

es 266-281, 2014.

[11] R-Y. Chang, A. Podgurski, and j. Yang. Finding what’s not

there: a new approach to revealing neglected conditions in

software. In Proceedings of the 2007 International Symposi-

um on Software Testing and Analysis, pages 163-173, 2007.

[12] T. Y. Chen and Y. Y. Cheung. Dynamic program dicing. In

Proceedings of the Conference on Software Maintenance,

pages 378-385, 1993.

[13] B. Chess and G. McGraw. Static analysis for security [J].

IEEE Security & Privacy, 2(6), pages 76-79, 2004.

[14] S. Christey. 2011 CWE/SANS Top 25 Most Dangerous

Software Errors. http://cwe.mitre.org/top25.

[15] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.

Bugs as deviant behavior: a general approach to inferring er-

rors in systems code. In Proceedings of the 18th ACM Sym-

posium on Operating System Principles, pages 57-72, 2001.

[16] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program

dependence graph and its use in optimization. In Proceedings

of ACM Transactions on Programming Languages and Sys-

tems, vol. 9, pages 319-349, 1987.

[17] V. Ganapathy, D. King, T. Jaeger, and S. Jha. Mining securi-

ty-sensitive operations in legacy code using concept analysis.

In Proceedings of the 29th international conference on Soft-

ware Engineering, pages 458-467, 2007.

[18] G. Grahne and J. Zhu. Efficiently using prefix-trees in min-

ing frequent itemsets. In Proceedings of Workshop on Fre-

quent Itemset Mining Implementations, 2003.

[19] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R.

H. Arpaci-Dusseau, and B. Liblit. EIO: Error handling is oc-

casionally correct. In 6th USENIX Conference on File and

Storage Technologies, pages 1-16, 2008.

[20] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and

language for building system-specific, static analysis. In

Proceedings of the ACM SIGPLAN 2002 Conference on

Programming language design and implementation, pages

69-82, 2002.

[21] M. Harman, S. Danicic. Using program slicing to simplify

testing [J]. Software Testing, Verification and Reliability,

5(3), pages 143-162, 1995.

[22] S. Horwitz, H. Reps, and D. Binkley. Interprocedural slicing

using dependence graphs. In Proceedings of ACM Transac-

tions on Programming Languages and Systems, vol. 12, pag-

es 26-60, 1990.

[23] T. Kremenek, P. Twohey, G. Back, A. Y. Ng, and D. Engler.

From uncertainty to belief: inferring the specification within.

In Proceedings of 7th Symposium on Operating Systems De-

sign and Implementation, pages 161-176, 2006.

[24] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: a tool for

finding copy-paste and related bugs in operating system code.

In Proceedings of 21st ACM SIGOPS symposium on Operat-

ing systems principles, pages 145-158, 2007.

[25] Z. Li and Y. Zhou. PR-Miner: automatically extracting im-

plicit programming rules and detecting violations in large

software code. In Proceedings of the 10th European software

engineering conference held jointly with 13th ACM SIG-

SOFT international symposium on Foundations of software

engineering, pages 306-315, 2005.

[26] B. Livshits and T. Zimmermann. DynaMine: finding com-

mon error patterns by mining software revision histories. In

Proceedings of the 10th European software engineering con-

ference held jointly with 13th ACM SIGSOFT international

symposium on Foundations of software engineering, pages

296-305, 2005.

[27] D. Lo, S-C. Khoo, C. Liu. Mining past-time temporal rules

from execution traces. In Proceedings of the 2008 interna-

tional workshop on dynamic analysis, pages 50-56, 2008.

[28] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa,

and Y. Zhou. MUVI: Automatically inferring multi-variable

access correlations and detecting related semantic and con-

currency bugs. In Proceedings of 21st ACM SIGOPS sympo-

sium on Operating systems principles, pages 103-116, 2007.

[29] K. J. Ottenstein, and L. M. Ottenstein. The program depend-

ence graph in a software develop environment. In Proceed-

ings of the ACM SIGSOFT/SIGPLAN Software Engineering

Symposium on Practical Software Development Environ-

ments, pages 177-184, 1984.

[30] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically

checking API protocol conformance with mined multi-object

specifications. In Proceedings of the 34th International Con-

ference on Software Engineering, pages 521-530, 2012.

[31] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static

specification inference using predicate mining. In Proceed-

ings of ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 123-134, 2007.

[32] C. Rubio-González, B. Liblit. Defective error/pointer interac-

tions in the linux kernel. In Proceedings of the 2011 Interna-

tional Symposium on Software Testing and Analysis, pages

111-121, 2011.

https://bugzilla.kernel.org/
http://cwe.mitre.org/
http://www.coverity.com/
file:///D:/代码挖掘/ICSE2016/v1.8.4/www.klocwork.com
http://cwe.mitre.org/top25

[33] R. M. Stallman and the GCC Developer Community. GNU

compiler collection internals (for GCC version 4.5.0),

http://gcc.gnu.org/onlinedocs/gcc-4.5.0/gccint.ps.gz, 2010.

[34] B. Sun, G. Shu, A. Podgurski, and B. Robinson. Extending

static analysis by mining project-specific rules. In Proceed-

ings of the 34th International Conference on Software Engi-

neering, pages 1054-1063, 2012.

[35] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* iComment:

Bugs or bad comments?*/. In In Proceedings of the 21st

ACM Symposium on Operating Systems Principles, pages

145-158, 2007.

[36] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES:

automatically inferring security specifications and detecting

violations. In Proceedings of USENIX Security Symposi-

um ’08, pages 379-394, 2008.

[37] L. Tan, Y. Zhou, and Y. Padioleau. aComment: mining anno-

tations from comments and code to detect interrupt related

concurrency bugs. In Proceedings of the 33rd International

Conference on Software Engineering, pages 11-20, 2011.

[38] S. Thummalapenta and T. Xie. Alattin: mining alternative

patterns for detecting neglected conditions. In Proceedings of

24th IEEE/ACM International Conference on Automated

Software Engineering, pages 283-294, 2009.

[39] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: reducing,

reusing and recycling constraints in program analysis. In

Proceedings of FSE, 2012.

[40] T. Wang, K. Wang, X. Su, and P. Ma. Detection of semanti-

cally similar code [J]. Frontiers of Computer Science, 8(6),

pages 996-1011, 2014.

[41] A. Wasylkowski and A. Zeller. Mining temporal specifica-

tions from object usage. In Proceedings of the 24th

IEEE/ACM International Conference on Automated Software

Engineering, pages 263-292, 2009.

[42] W. Weimer and G. C. Necula. Mining temporal specifica-

tions for error detection. In Proceedings of the 11th Interna-

tional Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, pages 461-476, 2005.

[43] M. Weiser. Program slicing. In Proceedings of the 5th Inter-

national Conference on Software Engineering, pages 439-

449, 1981.

[44] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie. Auto-

mated extraction of security policies from natural-language

software documents. In Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Soft-

ware Engineering, 2012.

[45] S. Xu, Y.S. Chee, Transformation-based diagnosis of student

programs for programming tutoring systems, In IEEE Trans.

Software Eng. 29 (4), pages 360–384, 2003.

[46] Z. Xu, J. Zhang, and Z. Xu. Melton: a practical and precise

memory leak detection tool for C programs [J]. Frontiers of

Computer Science, 9(1), pages 34-54, 2015.

[47] F. Yamaguchi, N. Golde, D. Arp, K. Rieck. Modeling and

discovering vulnerabilities with code property graphs. In

Proceedings of IEEE Symposium on Security and Privacy,

pages 590-604, 2014.

[48] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck. Automat-

ic inference of search patterns for taint-style vulnerabilities.

In Proceedings of IEEE Symposium on Security and Privacy,

pages 797-812, 2015.

[49] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck.

Chucky: Exposing missing checks in source code for vulner-

ability discovery. In Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, pages

499-510, 2013.

[50] H. Zhong, L. Zhang, and T. Xie, M. Hong. Inferring resource

specifications from natural language API documentation. In

Proceedings of the 2009 IEEE/ACM International Confer-

ence on Automated Software Engineering, pages 307-318,

2009.

http://gcc.gnu.org/onlinedocs/gcc-4.5.0/gccint.ps.gz

