
To appear in Proceedings of International Conference on Web Services 2013 (Research Track)

Prioritizing Structurally Complex Test Pairs for Validating WS-BPEL Evolutions
†

Lijun Mei

IBM Research - China

Beijing, China

meilijun@cn.ibm.com

Yan Cai
City University of Hong Kong

Tat Chee Avenue, Hong Kong
yancai2-c@my.cityu.edu.hk

Changjiang Jia
City University of Hong Kong

Tat Chee Avenue, Hong Kong

cjj.cs@my.cityu.edu.hk

Bo Jiang
‡

School of Computer Science and Engineering

Beihang University, Beijing, China

jiangbo@buaa.edu.cn

W.K. Chan

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cityu.edu.hk

Abstract—Many web services represent their artifacts in the

semi-structural format. Such artifacts may or may not be

structurally complex. Many existing test case prioritization

techniques however treat test cases of different complexity

generically. In this paper, we exploit the insights on the

structural similarity of XML-based artifacts between test

cases, and propose a family of test case prioritization

techniques that iteratively selects test case pairs without

replacement. The validation experiment shows that these

techniques can be more cost-effective than the studied

existing techniques in exposing faults.

Keywords—XML similarity, pariwse selection, adaptation.

I. INTRODUCTION

A WS-BPEL web service [13] may interact with other
web services that collectively implement a function. Any
maintenance or runtime adaptation of the web service may
result in faults or cause incompatible interactions between
this web service and its belonging composite services. To
validate whether an evolved version of the web service
conforms to its previously established functional behaviors,
a testing agent (which can be a web service) may apply a
test suite to check whether the evolved version of the web
service correctly handles the test suite. However, two XML-
based messages sharing the same set of tags may structure
these tags in quite different ways, potentially causing the
same web service to produce radically different results for
the two messages [13].

This paper proposes a suite of similarity-based test case
prioritization techniques [4][9][14] for the regression testing
of web services based on the pairwise selection strategy.
Pairwise comparison is a fundamental strategy to examine
elements in a finite set. To the best of our knowledge, no
existing test case prioritization techniques that are
formulated directly on top of this type of strategy for the
regression testing of web services has been proposed.

Our techniques compute the structural similarity of
XML-based artifacts between test cases. They progressively

consider the XML-based artifacts in three levels: BPEL
workflow process, WSDL interface specification, and
XML-based messages [14]. Each technique assigns the
execution priorities to the test cases in a regression test suite
by assessing the similarity values of test case pairs via an
iterative strategy. We have conducted an experiment to
validate our techniques. The empirical results show that the
proposed techniques can achieve higher rates of fault
detection, in terms of APFD, than other studied techniques
and random ordering. Interestingly, the results also show
that a brute-force adaption of existing techniques to select
test case pairs using XML documents fail to produce
effective test case prioritization. Moreover, they may be
even less effective than the random ordering of the test suite.

The main contribution of this paper is twofold: (i) To the
best of our knowledge, this paper is the first work that
formulates a direct proposal using pairwise selection for test
case prioritization techniques in the testing of web services.
(ii) We report the first experiment that validates the
effectiveness of pairwise test case selection strategy, and
demonstrates that a simple extension of existing techniques
to pairwise test case selection can be undesirable when
testing WS-BPEL web services.

The rest of this paper is organized as follows. Section II
revisits the preliminaries. Section III gives an example to
motivate the work. We present our techniques and the
evaluations in Sections IV and V respectively. Section VI
reviews the related work. Section VII concludes the paper.

II. PRELIMINARIES

A. Test Case Prioritization

The problem of test case prioritization [5] is as follows:

Given: T, a test suite; PT, the set of permutations of T; and f,
a function from PT to the set of all real numbers.

Problem: To find T’PT such that, ∀T’’PT f (T’) ≥ f (T’’).

B. XML Distance and XML Set Similarity

An XML document can be modeled as an ordered,
labeled tree T [7][8]. Given two XML document trees T1

and T2, the tree edit distance [8] between them, denoted by
TDIST(T1, T2), is defined as the minimum cost sequence of
tree edit operations (that are, node insertions, deletions, and
label substitutions) on single tree nodes that are required to

__

† This work is supported in part by the General Research Fund of the
Research Grants Council of Hong Kong (project nos. 111410, 123512,

and 717811) and the National Natural Science Foundation of China

(project no. 61202077).

‡ Correspondence Author

if RoomPrice ≥ 0
&& RoomPrice ≤ Price

No

RoomPrice = XQ(HotelInformation,

//room[@price≤’Price’ and
@persons=‘Num’]/price)

Yes

Input:

RoomPrice

Output:

BookingResult

Input: BookRequest

A5:

Validate

Price

A7: Invoke HotelBookService

A8: Reply BookingResult

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

Input: Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

(a) Original Program

A6: Fault
Handling

if XQ(HotelInformation, //roomno/)≠null
&& RoomPrice ≥ 0

&& RoomPrice ≤ Price

RoomPrice = XQ(HotelInformation,

//room[@price≤’Price’ or

@persons≥‘Num’]/price)

(b) A Candidate Evolved Version

Figure 1. Activity diagram of a WS-BPEL service
(adapted from [14]).

transform one tree to another. We use the algorithm from
Guha et al. [8] to calculate TDIST (T1, T2). We extend an
existing similarity measure [7] to define our similarity
metric between two sets of XML documents in the spirit of
the standard Jaccard similarity: Given two sets of XML
documents S1 and S2, the similarity between them is

defined by  (S1, S2) as follows:










21

21

),(

),(

21
|)(|

),(

1),(π

SSVU

SSVU

VU

VUTDIST

SS


＝

(E-1)

where U and V are XML documents and |U ∪ V| is the total
number of unique XML node labels in U and V. We choose
the Jaccard coefficient in this paper because of its
generality. A generalization to the other coefficients is
feasible.

III. MOTIVATING EXAMPLE

A. Scenario

This example is taken from TripHandling [3]. We follow
[14] to use a UML activity diagram to depict this business
process in Figure 1(a). In brief, this process receives users’
hotel book request, then invokes web services to find the
requested rooms. Finally, it replies the result to users. Figure
1(b) further highlights a scenario of service evolution. In
Figure 1, a node represents a workflow step, and a link
represents a transition between two workflow steps. The
nodes are annotated with information such as the input-output
parameters and XPath queries [20] that are used to extract the
required contents from the XML messages. We number the
nodes as Ai (for i from 1 to 8) to ease the illustration.

Suppose that a self-adaptation occurs to the WS-BPEL
service in Figure 1(a), which in finding a good adapted
service composition, the service changes to a candidate
service shown in Figure 1(b). It is however unknown whether
this candidate service can be functionally compatible with the
other services in the original service composition (even after a
successful service selection procedure). This problem urges
for a runtime validation, which is a round of regression
testing in this scenario.

This adaptation changes the precondition at node A4 in
Figure 1(a) to that at node A4 in Figure 1(b), and adds a
validation at node A5 to guarantee that the room number
information (“roomno”) is non-empty. This adaptation
attempts to allow customers to select any room that can
provide accommodation for the requested number of people.

However, the evolved version of the business process only
changes the precondition in the XPath (namely, changing
“and” to “or”). Although such adaptations aim to provide
customers more choices, yet this particular evolved version
does not support the intention. For example, it may
immediately proceed to book rooms, but is unable to provide
options for customers to select. It is desirable to detect the
failures from the candidate version, which allows the self-
adaption procedure to discard this candidate version and try
other candidates as soon as possible.

We use six test cases (i.e., t1 to t6 [14]) to illustrate how our

techniques reorder the test set and apply them to test the
candidate service. Each test case gives an input of the variable
BookRequest at node A1. To save space, we use the price
value of the variable Price and the numerical value of the
variable Num to stand for the variables, rather than using the
original XML formats.

 Price, Num Price, Num

Test case 1 (t1): 200, 1 Test case 2 (t2): 150, 2

Test case 3 (t3): 125, 3 Test case 4 (t4): 100, 2

Test case 5 (t5):  50, 1 Test case 6 (t6):  –1, 1

We note that there are messages sent and received at both
node A3 and node A7. Figure 3 shows an XML schema in a
WSDL document that defines the message type for the
messages replied by the service HotelPriceService (at A3).

Moreover, message contents are used in various workflow
activities. For example, the messages used at A4 for t1 to t6 are
listed in Figure 2.

Let us further consider how these messages are used at A3.
When running the candidate version (Figure 1(b)) over t1 to t6,
t1 extracts a right room price; t4 to t6 extract no price value;
both t2 and t3 extract the price 105 of the single room, while
they indeed aim to book a double room and a family suite,
respectively. We also find that both t2 and t3 can detect the
fault in the evolved candidate service presented in Figure 1(b).

B. Coverage Analysis and Problems

Suppose that the workflow branch coverage achieved by
each test case over the original version (Figure 1(a)) is

shown as in Table I. We use a solid dot “” to refer to an
item covered by the respective test case. For instance, t1
covers six workflow branches (shown as edges in Figure

1(a)): A1, A2, A2, A3, A3, A4, A4, A5, A5, A7 and A7,

A8. Table II further presents an example on how t1 to t6
cover the WSDL elements of the original version (Figure
1(a)). We record the coverage of WSDL elements in the first

part (annotated with an asteria “*”) in Table II and the
coverage of the tags in XML message in the second part
(annotated with “**”). Both parts are reported by collecting
the XML messages of the original service over the
respective test cases.

We show below a few possible selection orders on the
set of test cases by applying the additional (or addtl for
short) and total coverage strategies [5] on the workflow
branches (Table I), the combination of the workflow
branches and WSDL elements (Table II, part *), and the
combination of the workflow branches, WSDL elements,
and XML messages (Table II, part * & part **), respectively.
We choose these techniques because the additional and total
coverage strategies [5] are consistently reported to be very
effective test case prioritization strategies in the literature.
The Total-Workflow-Coverage and Addtl-Workflow-

Coverage techniques are also known as the Total-CM1 and
Addtl-CM1 techniques reported by Mei et al. [14].

Techniques Test case orderings
(in descending order of priority)

Addtl-Workflow-Coverage:  t1, t5, t4, t6, t2, t3 

Total-Workflow-Coverage:  t1, t4, t6, t3, t5, t2 

Addtl-Workflow-WSDL-Coverage:  t1, t6, t4, t3, t2, t5 

Total-Workflow-WSDL-Coverage:  t1, t4, t3, t2, t6, t5 

Addtl-Workflow-XML-Coverage:  t1, t6, t2, t4, t3, t5 

Total-Workflow-XML-Coverage:  t1, t2, t3, t6, t4, t5 

None of these techniques effectively prioritizes t2 or t3.
That is, they rely on their tie breaking strategies instead of
the intrinsic ability of such a technique to assign either test
case with high priority. The test suite contains quite a
number of test cases that are similar to them. Using a bin
counting approach or a traditional test case clustering
approach may not help iron out them effectively.

IV. OUR APPROACH: XSP

A. Test Case Similarity

From a test execution on XML-manipulating services,
one may collect the coverage information on service code
and WSDL documentation, and collect XML messages.
Moreover, many researchers consider that services can be
black-box, and thus the service structure (i.e., BPEL code)
may not be available for testing. Therefore, we first use
WSDL documents, then add XML messages, and finally
include BPEL code in case code can be available.

To ease the presentation, we define a container (see
Definition 1) to hold different kinds of XML documents
used in a test case.

1 <xsd:complexType name="hotel">

2 <xsd:element name="name" type="xsd:string"/>

3 <xsd:element name="room" type="xsd:RoomType"/>

4 <xsd:element name="error" type="xsd:string"/>

5 </xsd:complexType>

6 <xsd:complexType name="RoomType">

7 <xsd:element name="roomno" type="xsd:int" />

8 <xsd:element name="price" type="xsd:int"/>

9 <xsd:element name="persons" type="xsd:int"/>

10 </xsd:complexType>

Figure 3. WSDL document fragment: XML schema of hotel.

TABLE I. WORKFLOW BRANCH COVERAGE FOR T1 TO T6 ON

THE ORIGINAL SERVICE

Branch t1 t2 t3 t4 t5 t6

A1, A2      

A2, A3      

A3, A4      

A4, A5      

A5, A6    

A5, A7  

A7, A6

A7, A8  

Total 6 5 5 6 5 5

TABLE II. STATISTICS OF WSDL ELEMENTS FOR T1 TO T6.

 XML schema t1 t2 t3 t4 t5 t6

W
S

D
L

 a
rt

if
ac

t

w
it

h
 X

M
L

 m
es

sa
g
e

(*
)

hotel      

name   

room     

roomno    

price     

persons     

error 

D
y
n
am

ic
 X

M
L

M
es

sa
g
e

(*
*
)

val(name)   

val(roomno)   

val(price)     

val(persons)     

val(error) 

Total 10 10 10 7 1 8

<hotel>

<name>Hilton Hotel</name>

<room>

<roomno>R106</roomno>

<price>105</Price>

<persons>1<persons>

</room>

<room>

<roomno>R101</roomno>

<price>150</price>

<persons>3<persons>

</room>

</hotel >

Test Case 1 Test Case 2 Test Case 3

Test Case 5

<hotel>

<room>

<price>-1</Price>

<persons>1<persons>

</room>

<error>InvalidPrice<error>

</hotel >

Test Case 4 Test Case 6

<hotel>

</hotel >

<hotel>

<name>Hilton Hotel</name>

<room>

<roomno>R106</roomno>

<price>105</Price>

<persons>1<persons>

</room>

</hotel >

<hotel>

<room>

<roomno></roomno>

<price>100</Price>

<persons>2<persons>

</room>

</hotel >

<hotel>

<name>Hilton Hotel</name>

<room>

<roomno>R106</roomno>

<price>105</Price>

<persons>1<persons>

</room>

<room>

<roomno>R101</roomno>

<price>150</price>

<persons>3<persons>

</room>

</hotel >

Figure 2. XML messages for XQ(HotelInformation, //room[@price 

’Price’ and @persons = ’Num’]/price/).

Definition 1. W3-Set (or W3S). A W3-Set with respect to a

test case t is a set of triples {w1, m1, b1, w2, m2, b2, …,

wN, mN, bN}, where a triple wi, mi, bi is a workflow
module bi, an XML message mi, and a WSDL specification
wi for the module bi and it defines the type for the message
mi. Let W(t)={w1, w2, …, wN}, M(t)={m1, m2, …, mN}, and
B(t)={b1, b2, …, bN} represent the set of WSDL
specifications, the set of XML messages, and the set of
workflow modules, used or exercised in the execution of t,
respectively. 

A workflow module (such as Ai in Figure 2) may also be
encoded in the XML format [3][16][18]. Take the test case t1
in Section III for example: M (t1) and W (t1) are given in
Figure 2 and Figure 3, respectively. B (t1) is {A1, A2, A3, A4,
A5, A7, A8}. We call an XML node label in either W (t), M (t),
or B (t) an element covered by a test case t. We further
define the concept of test case similarity in Definition 2.

Definition 2. Test Case Similarity (or W3-Similarity). We
define three levels of similarity metrics between two test
cases ti and tj (namely W3-Similarity). (i) Similarity of
WSDL specification (W-I). (ii) Similarity of WSDL
specification and WSDL-governed XML message (W-II).
(iii) Similarity of WSDL specification, WSDL-governed
XML message, and Workflow module (W-III). 

For a test case t, we call the set of elements covered by t
using W-I, W-II, and W-III as WE-I (t), WE-II (t), and WE-III
(t), respectively. These sets satisfy the equations:

WE-I(t) = W (t)

WE-II(t) = W (t) ∪ M (t)

WE-III(t) = W (t) ∪ M (t) ∪ B (t)

Let the W3-Set of test cases ti and tj be Wi, Mi, Bi and

Wj, Mj, Bj, respectively. Let the similarity between XML
messages, between WSDL specifications, and between

workflow modules for ti and tj be  (Mi, Mj),  (Wi, Wj), and

 (Bi, Bj), respectively. There are many ways to define the
similarity metrics. In our approach, we use the XML
similarity metric to produce a percentage value of similarity
between two sets of XML messages. Meanwhile, we use the
Geometric Mean (GM) to define the three metrics of W3-
Similarity for ti and tj as follows. It is because one piece of
code may associate with many XML Schemas, and one
XML Schema may govern contents of many XML messages.
Because of this multi-level one-to-many relationship, we
use GM rather than other means to combine data from
different dimensions.

We consider W (t), M (t), or B (t) as three dimensions that
describe a test case t. Hence, each test case t can be regarded
as an axis-aligned cube with edge length equal to one in the
three dimensional space formed by dimension W, M, and B.
If ti and tj do not completely differ, the two cubes should
overlap and overlap is a cuboid. The similarity values along
three dimensions can be represented by the edge lengths of

the cuboid, namely  (Wi, Wj),  (Mi, Mj), and  (Bi, Bj). Let

the volume of overlap cuboid be V =  (Wi, Wj) ×  (Mi, Mj)

×  (Bi, Bj). However, the unit of the volume is cube

percentage. Hence, we compute cube root of V, as W-III
shown by (E-4) to describe the similarity between ti and tj.
We can see that W-III is actually the GM of the similarity

metrics  (Wi, Wj),  (Mi, Mj), and  (Bi, Bj). The formula
(E-4) considers three dimensions, the formula (E-2)
considers only one dimension W, and the formula (E-3)
considers two dimensions W and M, shown as follows.

W-I = (Wi, Wj) (E-2)

W-II = √() 

 (E-3)

W-III = √()  ()

 (E-4)

 We note that although we illustrate our techniques using
three levels, generalizing them to handle more than three
levels is simple.

B. Test Case Prioritization Techniques

We use W-i (where i{I, II, III}) to denote the three
metrics in W3-Similarity used in our techniques. Moreover,
to help evaluate them in Section V, we compare them with
random (C1) and another technique adopted from
conventional total-branch techniques [5] that use WE-i

(where i{I, III, III}) as the source of coverage data, which
we denote it by C2. Moreover, we include two adapted
techniques C3 and C4. C3 is just an adaptation of C2 by
using W-i rather than WE-i as the metrics, and C4 is just
adapts from C3 slightly. We choose then to validate whether
a simple extension of existing techniques may be adequate.
We further propose two techniques (M1 and M2) that
formulate our idea. We present all of them in this section.

We firstly define an auxiliary function: Let T be a test
suite. We partition all pairs of distinct test cases into K
groups, each containing all those pairs with the same W-i
similarity value. We denote each group by Gk (1 ≤ k ≤ K),
where k is known as the group index. All test case pairs in
Gk have the same W-i similarity value gk, such that a smaller
group index k indicates a larger W-i similarity value gk. We
refer to such handling as the grouping function GF.

We categorize the 15 test case pairs among t1 to t6 into
different groups, and the results are shown in the leftmost
columns in Tables IV-VI. The rightmost two columns of
each table show one possible ordering of test case pairs for
C3, C4, M1, and M2 each, and the corresponding selected
pairs. We mark the selection sequence in the “Seq.” columns
of these three tables. We will explain them in the following
sub-sections.

(1) Benchmark Techniques

C1: Random ordering [5]. This technique randomly

orders the test cases in a test suite T.

The “imported” techniques (C2) directly use W3S (using

WE-I, WE-II, and WE-III) to prioritize test cases. We

adapted it from [14].

C2: Total WE-i coverage prioritization (Total-WE-

Coverage). C2 sorts the test cases in descending order of the

total number of elements that each test case t has covered

(i.e., the number of elements in WE-i(t)). If multiple test

cases cover the same number of elements, C2 will order

these test cases randomly.

C3 prioritizes the most similar test cases in pairs to be

executed first. Turning C3 the other way round, we also use

C4 to select the least similar test cases in pairs to have

higher priorities.

C3: Maximum W-i Similarity prioritization (Total-W-

Similarity). The technique invokes the grouping function

GF using W-i. The technique selects a pair of test cases with

the greatest similarity value (i.e., g1) using W-i, and

randomly chooses one test case t in this pair. The technique

continues to select all pairs of test cases containing t from

the same group. If multiple test case pairs contain t, the

technique randomly selects one pair to break the tie. C3

discards any test case in a selected pair if the test case has

been included by a previously selected pair. C3 repeats the

above selection process first for the group, and once all test

cases in the group have been selected, then among the

remaining groups in the ascending order of the group index

(i.e., from G2 to GM) until every unique test case has been

selected.

The test cases selected by C3 using W-I are highlighted

under the “C3” column in Table III. Other columns in Table

IV and Table V can be interpreted similarly.

C4: Minimum W-i similarity prioritization (Total-W-

Dissimilarity). This technique is the same as C3 except that

it first selects a pair of test cases with the minimum

similarity value using W-i (rather than the maximum W-i

similarity value according to C3), and C4 repeats the

selection process among the remaining groups in ascending

order of the group index.

For example, the test cases selected by C4 using W-I

are highlighted under the “C4” column in Table III.

Similarity Metric

<<bind>>

<<generalize>> <<generalize>>

<<invert>>

<<aggregate>>

W-I W-II W-II

Similarity

Group
XSP Similarity

XSP Iterative

Similarity

XSP Iterative

Dissimilarity

1*

<<bind>>

Figure 4. The relations between XSP (dis)similarity and their metrics.

(2) Our Test Case Prioritization Techniques: XSP

As mentioned in Section I, our techniques use XML,

Similarity metric, and Pairs of test cases. We therefore refer

our techniques to as XSP.

Figure 4 shows the schematic relationships among XSP

(dis)similarity and their metrics. Intuitively, a larger

similarity value between two test cases suggests that they

have a higher chance in covering the same set of XML

document structures.

TABLE III. STATISTICS OF TEST CASE SIMILARITIES (W-I).
S

im
il

a
ri

ty
 Group

Selected Test Cases in Order
In

d
e
x

Test Case Pairs

S
e
q

.

C3 C4 M1 M2

1.000 G1
(t1, t2), (t1, t3),

(t2, t3)

1

2

(t1, t2)

(t1, t3)

(t1, t5)

(t2, t5)

 (t1, t5)

(t4, t5)

(t1, t2)

(t2, t4)

0.833 G2
(t1, t4), (t2, t4),

(t3, t4)

3

4

(t2, t3)

(t1, t4)

(t3, t5)

(t5, t6)

 (t1, t6)

(t4, t6)

(t4, t6)

(t3, t6)

0.667 G3 (t4, t6) 5 (t2, t4), (t4, t5) (t3, t4) (t5, t6)

0.571 G4
(t1, t6), (t2, t6),

(t3, t6)

6

7

(t3, t4)

(t4, t6)

(t2, t3)

0.200 G5 (t4, t5), (t5, t6) 8 (t1, t6)

0.167 G6
(t1, t5), (t2, t5),

(t3, t5)

9

10

(t2, t6)
(t3, t6)

11 (t4, t5)

TABLE IV. STATISTICS OF TEST CASE SIMILARITIES (W-II).

S
im

il
a

ri
ty

 Group Selected Test Cases in Order

In
d

e
x

Test Case Pairs

S
e
q

.

C3 C4 M1 M2

1.00 G1
(t1, t2), (t1, t3),

(t2, t3)
1

2

(t1, t2)
(t1, t3)

(t1, t5)
(t2, t5)

(t1, t5)
(t5, t6)

(t1, t2)
(t2, t4)

0.76 G2
(t1, t4), (t2, t4),

(t3, t4)
3

4

(t2, t3)
(t3, t4)

(t3, t5)
(t5, t6)

 (t4, t5)
(t2, t6)

(t4, t6)
(t3, t6)

0.67 G3 (t4, t6) 5 (t2, t4) (t4, t5) (t4, t6) (t4, t5)

0.53 G4
(t1, t6), (t2, t6),

(t3, t6)

6

7

(t1, t4)

(t4, t6)

(t3, t4)

0.17 G5 (t4, t5) 8 (t1, t6)

0.16 G6 (t5, t6) 9

(t2, t6)

0.13 G7
(t1, t5), (t2, t5),

(t3, t5)
10

11

(t3, t6)
(t4, t5)

TABLE V. STATISTICS OF TEST CASE SIMILARITIES (W-III).

S
im

il
a

ri
ty

Group Selected Test Cases in Order

In
d

e
x

Test Case Pairs

S
e
q

.

C3 C4 M1 M2

1.00 G1 (t2, t3) 1 (t2, t3) (t1, t5) (t1, t5) (t2, t3)

0.84 G2 (t1, t4) 2 (t1, t4) (t4, t5) (t4, t5) (t1, t4)

0.83 G3 (t1, t2), (t1, t3) 3 (t1, t2) (t2, t5) (t2, t5) (t1, t2)

0.69 G4 (t2, t4), (t3, t4) 4 (t1, t3) (t3, t5) (t5, t6) (t2, t4)

0.66 G5 (t2, t6), (t3, t6) 5 (t3, t4) (t5, t6) (t1, t6) (t3, t6)

0.63 G6 (t4, t6) 6 (t2, t4) (t4, t6) (t4, t6)

0.55 G7 (t1, t6) 7 (t3, t6) (t3, t6) (t1, t6)

0.29 G8 (t5, t6) 8 (t2, t6) (t5, t6)

0.26 G9 (t2, t5), (t3, t5) 9 (t4, t6)

0.25 G10 (t4, t5) 10 (t1, t6)

0.21 G11 (t1, t5) 11 (t5, t6)

TABLE VII. PRIORITIZATION TECHNIQUES AND EXAMPLES.

Technique Index
Order of t1−t6

t1 t2 t3 t4 t5 t6

XSP-Iterative-Dissimilarity (W-I) M1 2 6 5 3 1 4

XSP-Iterative-Similarity (W-I) M2 1 2 5 3 6 4

XSP-Iterative-Dissimilarity (W-II) M1 1 5 6 4 2 3

XSP-Iterative-Similarity (W-II) M2 2 1 5 3 6 4

XSP-Iterative-Dissimilarity (W-III) M1 1 5 6 3 2 4

XSP-Iterative-Similarity (W-III) M2 3 1 2 4 6 5

We propose M1 and M2, each of which selects, in turn

and iteratively, one test case pair from each group in the

series of groups, skipping any group having been exhausted.

M1 and M2 sample the groups in ascending and descending

orders (i.e., from G1 to GM, and from GM to G1), respectively,

of the group index.

M1: Ascending W-i similarity prioritization (XPS-

Iterative-Dissimilarity). The technique invokes the grouping

function GF using W-i. Then the technique samples all

groups G1, …, Gk, …, GM in ascending order of the group

index k by selecting one pair of test cases, if any, from each

group in turn. The technique discards any test case in a

selected pair if the test case has been selected. The

technique then removes the selected pair from the group.

M1 repeats the selection process among the non-empty

groups until all the test cases have been selected.

For example, the test cases selected by M1 using W-I as

the metric are highlighted under the “M1” column in Table

III. The columns for M1 in Table IV and Table V can be

interpreted similarly.

M2: Descending W-i similarity prioritization (XPS-

Iterative-Similarity). This technique is the same as M1

except that it samples the groups GM, …, Gk, …, G1 in

descending order of the group index k, rather than in

ascending order.

We summarize the result of M1 and M2 on the running

example in Table VII. The same result can also be manually

computed using the data in Table III, Table IV, and Table V.

V. EXPERIMENT

A. Experimental Design

(1) Subjects, Versions, and Test Suites

We choose eight WS-BPEL applications [3][16][19] to

evaluate our techniques, which are shown in Table II,

because these applications have also served as benchmarks

or illustrative textbook examples, and have been used in

previous test case prioritization experiments [13][14]. This

set of benchmarks is also larger than the one used by Ni et al.

[15]. Like many experiments on test case prioritization for

regression testing, we use a set of known faults on the

modified versions and the test suites associated with the

original version of these subjects to evaluate each test case

prioritization technique. The set of faults in the modified

versions have been reported by our previous experiment

[14], in which the faults are created following the

methodology presented by Hutchins et al. [10]. Such a

modified version setting was also adopted by the previous

test case prioritization research studies (e.g., [5]).

We use a random test case generation tool [14] to create

random test suites for each subject based on WSDL

specifications, XPath queries, and workflow logics of the

original version of each subject. Each generated test suite

ensures that all workflow branches, XRG branches, and

WSDL elements of the original versions are covered at least

once, as what the experiment from Mei et al. [14] did.

Specifically, we add a test case to a constructing test suite

(initially empty) until the above-mentioned criterion has

been fulfilled. This procedure is similar to the test suite

construction from Elbaum et al. [5] and Hutchins et al. [10].

Moreover, the set of XML message received or generated by

the original version of the subject in question over the test

case is also recorded.

Using the above scheme, we successfully created 100 test

suites for each subject that can detect at least one fault

among the modified versions of the subject. Table VIII

shows the maximum, average, and minimum sizes of the

created test suites.

TABLE VIII. STATISTICS OF THE GENERATED TEST SUITE SIZE.

 Size

Ref. A B C D E F G H Avg.

Max. 146 93 128 151 197 189 113 108 140.6

Avg. 95 43 56 80 155 103 82 80 86.8

Min. 29 12 16 19 50 30 19 27 25.3

(2) Effectiveness Measure

We choose to use APFD [5], a widely adopted metric in

evaluating test case prioritization techniques (see [9][14] for

example). It matches our objective to verify whether a

technique supports service evolution.

Let T be a test suite containing n test cases, F be a set of

m faults revealed by T, and TFi be the first test case index in

ordering T’ of T that reveals fault i. The following equation

gives the APFD value for a test suite T’.

TABLE VI. SUBJECTS AND THEIR DESCRIPTIVE STATISTICS.

R
ef

.

Applications

M
o
d

if
ie

d

V
er

si
o
n

s

E
le

m
en

t

L
O

C

W
S

D
L

S
p

ec
.

W
S

D
L

E
le

m
en

t

U
se

d

V
er

si
o
n

s

A atm [3] 8 94 180 3 12 5

B buybook [16] 7 153 532 3 14 5

C dslservice [19] 8 50 123 3 20 5

D gymlocker [3] 7 23 52 1 8 5

E loanapproval

[3]

8 41 102 2 12 7

F marketplace [3] 6 31 68 2 10 4

G purchase [3] 7 41 125 2 10 4

H triphandling [3] 9 94 170 4 20 8

 Total 60 527 1352 20 106 43

nnm

TFTFTF
APFD m

2

1...
1 21 


 (E-5)

(3) Procedure

Our tool applied C1C4 and M1M2 to prioritize each

constructed test suite for each subject. C2 used the three

levels of information WE-i (for i = I, II, and III) in turn. For

C3, C4, M1, and M2, they used the three similarity metrics

W-i (for i = I, II, and III) in turn. In essence, there are 16 (=

1 + 3 × 5) technique instances used in the experiment.

We executed the reordered test suite on each modified

version of the subject and collected each TFi value for i-th

fault (if the k-th test case in the reordered test suite is the

first test case that can detect the i-th fault, then TFi is set to

k). We finally calculated the APFD value of this reordered

test suite (by E-5).

B. Data Analysis

To ease the view on the differences among techniques

(especially techniques using various coverage/similarity

metrics), we summarize the 25
th

, 50
th

 (i.e., median), 75
th

percentiles and the standard deviations (the column of “SD”)

on all applications in Table VIII.

We have a number of interesting observations. Table IX

shows that, at each of the 25
th

 percentile, the median, and

the 75
th

 percentile APFD values, M1−M2 using W-II are

more effective than C1, C2 using WE-II, and C3C4 using

W-II. The same is true for M1−M2 using W-III when

comparing with the corresponding metric levels for C1C4.

The corresponding effectiveness of M1−M2 using W-I is

however close to these of C1−C4. The results show that

using runtime data as well as code coverage can improve the

effectiveness of M1−M2 more often than these of C2−C4.

Moreover, M1 and M2 generally show an upward trend

in effectiveness (in terms of the 25
th

 percentile, the median,

and the 75
th

 percentile APFD values) and achieve smaller

standard deviations when the similarity metrics changes

from W-I to W-II, and from W-II to W-III. Surprisingly, the

standard deviation on the APFD values achieved by C2 is

even worse than that of random ordering.

C2−C4 are increasingly less effective as the coverage

level increases from W-I to W-II or from WE-I to WE-II.

Moreover, their corresponding standard deviations have no

consistent trend. Initially, we are surprised by these two.

Later, we realize that C2−C4 are insensitive to diversify the

testing efforts to test different scenarios captured in the test

suite. The result further indicates that these algorithms (best

for C programs [5] for example) have shown up their

problems when being adapted to use XML messages.

C3 and C4 are adapted from C2 by using the metrics that

are also used by M1 and M2. Either C3 or C4 technique

achieves better standard deviation than C2 in the experiment.

It appears to suggest that using W-i can be more predictable

than using WE-i in terms of APFD. Nonetheless, C3 and C4

are still less effective than M1 and M2 in terms of the 25
th

percentile, the median, and the 75
th

 percentile APFD values.

In the experiment, we find that neither C3 nor C4 is more

effective than either C1 or C2. The empirical result further

indicates that simply using W-i alone cannot achieve

effective permutation of test suites in terms of APFD.

C. Threats to Validity

Our benchmarks are not large in scale, but are likely to

be larger than the benchmarks used by Ni et al. [15]. Using

more and larger real life benchmarks and their evolutions

will strengthen the results obtained; unfortunately, we have

not found such publicly released benchmarks.

We used APFD as the metric. Using other metrics such as

HMFD [23] may produce different results. We have

implemented our tool carefully and sampled the results of

our techniques to validate them manually. We have used

previously evaluated benchmarks and testing tools to

conduct the experiment to minimize the chance of having an

error. We have also compared the results of our techniques

with the results of random ordering and three other peer

techniques.

Our experiment has allowed test cases of the same web

service to be executed in any order. The results obtained

here may not be generalized to scenarios that there are

casual constraints between test cases.

VI. RELATED WORK

We firstly review work on the unit testing and integration

testing of services. Bartolini et al. [2] proposed to collect

code coverage data for test runs from services so that

service consumers can know the progress of their testing.

Xu et al. [21] perturbed messages to test for the robustness

of web services. Their techniques are useful to support our

technique using the W-I metric.
Zhang [24] proposed an agent-based approach to

selecting reliable web services components efficiently. Zhai
et al. [22] kept a blacklist of services that failures have been
revealed in regression testing to improve the cost-

TABLE IX. AVERAGE EFFECTIVENESS OF C1C4 AND M1−M2 IN

DIFFERENT PERCENTILES AND STANDARD DEVIATIONS

Technique 25th 50th 75th SD

C1 0.7878 0.8659 0.9205 0.1227

C2 (WE-I) 0.8285 0.8863 0.9283 0.1178

C2 (WE-II) 0.7821 0.8325 0.8772 0.1520

C2 (WE-III) 0.7812 0.8354 0.8809 0.1540

C3 (W-I) 0.6464 0.7586 0.8468 0.1039

C3 (W-II) 0.5996 0.7088 0.7805 0.1034

C3 (W-III) 0.5859 0.7007 0.7872 0.0860

C4 (W-I) 0.7252 0.7841 0.9234 0.1084

C4 (W-II) 0.5836 0.7691 0.8751 0.0977

C4 (W-III) 0.6197 0.7582 0.8803 0.0765

M1 (W-I) 0.8393 0.8944 0.9377 0.1038

M1 (W-II) 0.8783 0.9173 0.9511 0.0993

M1 (W-III) 0.8669 0.9180 0.9506 0.0853

M2 (W-I) 0.8289 0.8807 0.9295 0.1119

M2 (W-II) 0.8718 0.9193 0.9478 0.1003

M2 (W-III) 0.8756 0.9174 0.9482 0.0862

effectiveness. Either work aims at reducing the number of
service invocations for testing. Our techniques have not
explored this area. Martin et al. [12] perturbed web-service
requests to test for the robustness of web services. Their
approach suffers from the functional test oracle problem
needed for regression test. Our technique does not modify
service messages, and use the regression test oracle
produced by the previous round of regression test. Bai et al.
[1] proposed to partition scenarios based on the ontology
associated with services. They used the logical relationship
to group test scenarios; whereas, our techniques use test
cases similarity but not semantic relations to group test
cases.

Hou et al. [9] proposed to consider the constraint on the
number of times that a web service may be invoked in the
test case prioritization for the regression testing of service-
centric applications. However, how a service applies WSDL
specifications to XML documents has not been studied.
Chen et al. [4] applied dependence analysis to prioritize test
cases according to the amount of modification-affected
elements per test case. Mei et al. developed a family of test
case prioritization techniques atop a multilevel coverage
model [14]. They also proposed techniques using tags
embedded in XML messages [13]. The use of runtime
artifacts (XML message) have been explored by Mei et al.
[14]. Zhai et al. [22][23] proposed prioritize test cases for
the testing of location-based services using the locational
information in the input and output of the test cases. Li et al.
[11] proposed to use the extensible BPEL flow graph to
model the changes of composite service in terms of
processes, bindings, and interfaces. They further performed
control flow analysis based on such graphs to identify the
changes within the composite services. All the above
reviewed techniques have only considered test cases one by
one or the whole test suite without any breakdown. They
have not systematically considered test case pairs.

VII. CONCLUSION

Pairwise selection is a fundamental strategy to compare
elements in a finite set. Using the notion of structural
similarity is attractive to spot the differences in semi-
structural artifacts like XML documents. In this paper, we
have proposed test case prioritization techniques based on
this strategy for the regression testing of web services. We
have empirically demonstrated that our techniques are
feasible, and they can be more effective than existing
techniques or random ordering in terms of APFD.

In terms of pairwise comparison, our techniques give an
exact solution, but are NP-complete. A further optimization
such as the use of an approximation approach can be further
developed. Another extension is to study the n-way
selection strategy. Our work only deals with a part of the
self-adaptation cycle needed for web service evolution. A
more comprehensive study that deals with self-adaptation is
necessary.

REFERENCES

[1] X. Bai, S. Lee, W.-T. Tsai, and Y. Chen. Ontology-Based Test
Modeling and Partition Testing of Web Services. In Proceeding of
ICWS 2008, pages 465–472, 2008.

[2] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti. Whitening
SOA testing. In Proceedings of FSE 2009, pages 161–170, 2009.

[3] BPEL Repository, IBM, 2006. Available at
http://www.alphaworks.ibm.com/tech/bpelrepository.

[4] L. Chen, Z. Wang, L. Xu, H. Lu, and B. Xu. Test case prioritization
for web service regression testing. In Proceedings of SOSE 2010,
pages 173–178, 2010.

[5] S. Elbaum, A. G. Malishevsky, G. Rothermel. Test case prioritization:
A family of empirical studies. IEEE TSE, 28(2): 159–182. 2002.

[6] X. Fu, T. Bultan, and J. Su. Model checking XML manipulating
software. In Proceedings of ISSTA 2004, pages 252–262. 2004.

[7] M. Garofalakis and A. Kumar. XML stream processing using tree-
edit distance embeddings. ACM TODS, 30(1): 279–332. 2005.

[8] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and T. Yu.
Approximate XML Joins. In Proceedings of SIGMOD 2002, pages
287–298, 2002.

[9] S. Hou, L. Zhang, T. Xie, and J. Sun. Quota-constraint test-case
prioritization for regression testing of service-centric systems. In
Proceedings of ICSM 2008, pages 257–266, 2008.

[10] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on
the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In Proceedings of ICSE 1994, pages 191–200, 1994.

[11] B. Li, D. Qiu, H. Leung, D. Wang, Automatic test case selection for
regression testing of composite service based on extensible BPEL
flow graph. In Journal of Systems and Software, 85(6):1300–1324,
2012.

[12] E. Martin, S. Basu, and T. Xie. Automated testing and response
analysis of web services. In Proceedings of ICWS 2007, pages 647–
654. 2007.

[13] L. Mei, W.K. Chan, T.H. Tse, and R.G. Merkel. XML-manipulating
test case prioritization for XML-manipulating services. In Journal of

Systems and Software, 84(4):603619, 2011.

[14] L. Mei, Z. Zhang, W.K. Chan, and T.H. Tse. Test case prioritization
for regression testing of service-oriented business applications. In
Proceedings of WWW 2009, pages 901–910. 2009.

[15] Y. Ni, S.S. Hou, L. Zhang, J. Zhu, Z. Li, Q. Lan, H. Mei, and J.S.
Sun, Effective Message-Sequence Generation for Testing BPEL
Programs. To appear in IEEE Transactions on Services Computing.

[16] Oracle BPEL Process Manager. Oracle Technology Network.
Available at http://www.oracle.com/technology/products/ias/bpel/.

[17] W3C. Web Services Description Language (WSDL) 1.1. 2001.
Available at http://www.w3.org/TR/wsdl.

[18] Web Services Business Process Execution Language Version 2.0.
2007. Available at http://www.oasis-open.org/committees/wsbpel/.

[19] Web Services Invocation Framework: DSL provider sample
application. Apache Software Foundation. 2006. Available at
http://ws.apache.org/wsif/wsif_samples/index.html.

[20] World Wide Web Consortium. XML Path Language (XPath)
Recommendation. 2007. Available at
http://www.w3.org/TR/xpath20/.

[21] W.Xu, J.Offutt, and J. Luo. Testing Web Services by XML
Perturbation. In Proceedings of ISSRE 2005, pages 257–266, 2005.

[22] K. Zhai, B. Jiang, W.K. Chan, and T.H. Tse. Taking advantages of
service selection: a study on the testing of location-based web
services through test case prioritization. In Proceeding of ICWS 2010,

pages 211218, 2010.

[23] K. Zhai, B. Jiang, and W.K. Chan. Prioritizing test cases for
regression testing of location-based services: metrics, techniques and
case study. To appear in IEEE Transactions on Services Computing.

[24] J. Zhang. An approach to facilitate reliability testing of web services
components. In Proceedings of ISSRE 2004, pages 210–218, 2004.

http://portal.acm.org/citation.cfm?id=506205&dl=GUIDE&coll=GUIDE&CFID=55607813&CFTOKEN=57277030
http://portal.acm.org/citation.cfm?id=506205&dl=GUIDE&coll=GUIDE&CFID=55607813&CFTOKEN=57277030
http://www.icsm2008.org/
http://www.w3.org/TR/wsdl

