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Abstract—Many web services represent their artifacts in the 

semi-structural format. Such artifacts may or may not be 

structurally complex. Many existing test case prioritization 

techniques however treat test cases of different complexity 

generically. In this paper, we exploit the insights on the 

structural similarity of XML-based artifacts between test 

cases, and propose a family of test case prioritization 

techniques that iteratively selects test case pairs without 

replacement. The validation experiment shows that these 

techniques can be more cost-effective than the studied 

existing techniques in exposing faults.  

Keywords—XML similarity, pariwse selection, adaptation.  

I. INTRODUCTION 

A WS-BPEL web service [13] may interact with other 
web services that collectively implement a function. Any 
maintenance or runtime adaptation of the web service may 
result in faults or cause incompatible interactions between 
this web service and its belonging composite services. To 
validate whether an evolved version of the web service 
conforms to its previously established functional behaviors, 
a testing agent (which can be a web service) may apply a 
test suite to check whether the evolved version of the web 
service correctly handles the test suite. However, two XML-
based messages sharing the same set of tags may structure 
these tags in quite different ways, potentially causing the 
same web service to produce radically different results for 
the two messages [13].  

This paper proposes a suite of similarity-based test case 
prioritization techniques [4][9][14] for the regression testing 
of web services based on the pairwise selection strategy. 
Pairwise comparison is a fundamental strategy to examine 
elements in a finite set. To the best of our knowledge, no 
existing test case prioritization techniques that are 
formulated directly on top of this type of strategy for the 
regression testing of web services has been proposed.  

Our techniques compute the structural similarity of 
XML-based artifacts between test cases. They progressively 

consider the XML-based artifacts in three levels: BPEL 
workflow process, WSDL interface specification, and 
XML-based messages [14]. Each technique assigns the 
execution priorities to the test cases in a regression test suite 
by assessing the similarity values of test case pairs via an 
iterative strategy. We have conducted an experiment to 
validate our techniques. The empirical results show that the 
proposed techniques can achieve higher rates of fault 
detection, in terms of APFD, than other studied techniques 
and random ordering. Interestingly, the results also show 
that a brute-force adaption of existing techniques to select 
test case pairs using XML documents fail to produce 
effective test case prioritization. Moreover, they may be 
even less effective than the random ordering of the test suite. 

The main contribution of this paper is twofold: (i) To the 
best of our knowledge, this paper is the first work that 
formulates a direct proposal using pairwise selection for test 
case prioritization techniques in the testing of web services. 
(ii) We report the first experiment that validates the 
effectiveness of pairwise test case selection strategy, and 
demonstrates that a simple extension of existing techniques 
to pairwise test case selection can be undesirable when 
testing WS-BPEL web services.  

The rest of this paper is organized as follows. Section II 
revisits the preliminaries. Section III gives an example to 
motivate the work. We present our techniques and the 
evaluations in Sections IV and V respectively. Section VI 
reviews the related work. Section VII concludes the paper. 

II. PRELIMINARIES 

A. Test Case Prioritization 

The problem of test case prioritization [5] is as follows: 

Given: T, a test suite; PT, the set of permutations of T; and f, 
a function from PT to the set of all real numbers. 

Problem: To find T’PT such that, ∀T’’PT f (T’) ≥ f (T’’). 

B. XML Distance and XML Set Similarity 

An XML document can be modeled as an ordered, 
labeled tree T [7][8]. Given two XML document trees T1 

and T2, the tree edit distance [8] between them, denoted by 
TDIST(T1, T2), is defined as the minimum cost sequence of 
tree edit operations (that are, node insertions, deletions, and 
label substitutions) on single tree nodes that are required to 
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Figure 1. Activity diagram of a WS-BPEL service  
(adapted from [14]). 

transform one tree to another. We use the algorithm from 
Guha et al. [8] to calculate TDIST (T1, T2). We extend an 
existing similarity measure [7] to define our similarity 
metric between two sets of XML documents in the spirit of 
the standard Jaccard similarity: Given two sets of XML 
documents S1 and S2, the similarity between them is 

defined by  (S1, S2) as follows: 

 









21

21

),(

),(

21
|)(|

),(

1),(π

SSVU

SSVU

VU

VUTDIST

SS


＝
 

(E-1) 

where U and V are XML documents and |U ∪ V| is the total 
number of unique XML node labels in U and V. We choose 
the Jaccard coefficient in this paper because of its 
generality. A generalization to the other coefficients is 
feasible.  

III. MOTIVATING EXAMPLE 

A. Scenario 

This example is taken from TripHandling [3]. We follow 
[14] to use a UML activity diagram to depict this business 
process in Figure 1(a). In brief, this process receives users’ 
hotel book request, then invokes web services to find the 
requested rooms. Finally, it replies the result to users. Figure 
1(b) further highlights a scenario of service evolution. In 
Figure 1, a node represents a workflow step, and a link 
represents a transition between two workflow steps. The 
nodes are annotated with information such as the input-output 
parameters and XPath queries [20] that are used to extract the 
required contents from the XML messages. We number the 
nodes as Ai (for i from 1 to 8) to ease the illustration. 

Suppose that a self-adaptation occurs to the WS-BPEL 
service in Figure 1(a), which in finding a good adapted 
service composition, the service changes to a candidate 
service shown in Figure 1(b). It is however unknown whether 
this candidate service can be functionally compatible with the 
other services in the original service composition (even after a 
successful service selection procedure). This problem urges 
for a runtime validation, which is a round of regression 
testing in this scenario. 

This adaptation changes the precondition at node A4 in 
Figure 1(a) to that at node A4 in Figure 1(b), and adds a 
validation at node A5 to guarantee that the room number 
information (“roomno”) is non-empty. This adaptation 
attempts to allow customers to select any room that can 
provide accommodation for the requested number of people.  

However, the evolved version of the business process only 
changes the precondition in the XPath (namely, changing 
“and” to “or”). Although such adaptations aim to provide 
customers more choices, yet this particular evolved version 
does not support the intention. For example, it may 
immediately proceed to book rooms, but is unable to provide 
options for customers to select. It is desirable to detect the 
failures from the candidate version, which allows the self-
adaption procedure to discard this candidate version and try 
other candidates as soon as possible.  

We use six test cases (i.e., t1 to t6 [14]) to illustrate how our 

techniques reorder the test set and apply them to test the 
candidate service. Each test case gives an input of the variable 
BookRequest at node A1. To save space, we use the price 
value of the variable Price and the numerical value of the 
variable Num to stand for the variables, rather than using the 
original XML formats.  

                        Price, Num                 Price, Num 

Test case 1 (t1): 200, 1     Test case 2 (t2): 150, 2  

Test case 3 (t3): 125, 3     Test case 4 (t4): 100, 2 

Test case 5 (t5):   50, 1     Test case 6 (t6):   –1, 1 

We note that there are messages sent and received at both 
node A3 and node A7. Figure 3 shows an XML schema in a 
WSDL document that defines the message type for the 
messages replied by the service HotelPriceService (at A3). 

Moreover, message contents are used in various workflow 
activities. For example, the messages used at A4 for t1 to t6 are 
listed in Figure 2. 

Let us further consider how these messages are used at A3. 
When running the candidate version (Figure 1(b)) over t1 to t6, 
t1 extracts a right room price; t4 to t6 extract no price value; 
both t2 and t3 extract the price 105 of the single room, while 
they indeed aim to book a double room and a family suite, 
respectively. We also find that both t2 and t3 can detect the 
fault in the evolved candidate service presented in Figure 1(b). 

B. Coverage Analysis and Problems 

Suppose that the workflow branch coverage achieved by 
each test case over the original version (Figure 1(a)) is 

shown as in Table I. We use a solid dot “” to refer to an 
item covered by the respective test case. For instance, t1 
covers six workflow branches (shown as edges in Figure 

1(a)): A1, A2, A2, A3, A3, A4, A4, A5, A5, A7 and A7, 

A8. Table II further presents an example on how t1 to t6 
cover the WSDL elements of the original version (Figure 
1(a)). We record the coverage of WSDL elements in the first 



 

 

part (annotated with an asteria “*”) in Table II and the 
coverage of the tags in XML message in the second part 
(annotated with “**”). Both parts are reported by collecting 
the XML messages of the original service over the 
respective test cases. 

We show below a few possible selection orders on the 
set of test cases by applying the additional (or addtl for 
short) and total coverage strategies [5] on the workflow 
branches (Table I), the combination of the workflow 
branches and WSDL elements (Table II, part *), and the 
combination of the workflow branches, WSDL elements, 
and XML messages (Table II, part * & part **), respectively. 
We choose these techniques because the additional and total 
coverage strategies [5] are consistently reported to be very 
effective test case prioritization strategies in the literature. 
The Total-Workflow-Coverage and Addtl-Workflow-

Coverage techniques are also known as the Total-CM1 and 
Addtl-CM1 techniques reported by Mei et al. [14]. 

Techniques           Test case orderings 
(in descending order of priority) 

Addtl-Workflow-Coverage:   t1, t5, t4, t6, t2, t3  

Total-Workflow-Coverage:    t1, t4, t6, t3, t5, t2  

Addtl-Workflow-WSDL-Coverage:  t1, t6, t4, t3, t2, t5  

Total-Workflow-WSDL-Coverage:  t1, t4, t3, t2, t6, t5  

Addtl-Workflow-XML-Coverage:  t1, t6, t2, t4, t3, t5  

Total-Workflow-XML-Coverage:  t1, t2, t3, t6, t4, t5  

None of these techniques effectively prioritizes t2 or t3. 
That is, they rely on their tie breaking strategies instead of 
the intrinsic ability of such a technique to assign either test 
case with high priority. The test suite contains quite a 
number of test cases that are similar to them. Using a bin 
counting approach or a traditional test case clustering 
approach may not help iron out them effectively. 

IV. OUR APPROACH: XSP 

A. Test Case Similarity 

From a test execution on XML-manipulating services, 
one may collect the coverage information on service code 
and WSDL documentation, and collect XML messages. 
Moreover, many researchers consider that services can be 
black-box, and thus the service structure (i.e., BPEL code) 
may not be available for testing. Therefore, we first use 
WSDL documents, then add XML messages, and finally 
include BPEL code in case code can be available.  

To ease the presentation, we define a container (see 
Definition 1) to hold different kinds of XML documents 
used in a test case. 

1 <xsd:complexType name="hotel"> 

2     <xsd:element name="name" type="xsd:string"/> 

3     <xsd:element name="room" type="xsd:RoomType"/> 

4     <xsd:element name="error" type="xsd:string"/> 

5 </xsd:complexType> 

6 <xsd:complexType name="RoomType"> 

7     <xsd:element name="roomno" type="xsd:int" /> 

8     <xsd:element name="price" type="xsd:int"/> 

9     <xsd:element name="persons" type="xsd:int"/> 

10 </xsd:complexType> 

Figure 3. WSDL document fragment: XML schema of hotel. 

TABLE I. WORKFLOW BRANCH COVERAGE FOR T1 TO T6 ON 

THE ORIGINAL SERVICE 

Branch t1 t2 t3 t4 t5 t6 

A1, A2       

A2, A3       

A3, A4       

A4, A5       

A5, A6       

A5, A7       

A7, A6       

A7, A8       

Total 6 5 5 6 5 5 
 

 
TABLE II. STATISTICS OF WSDL ELEMENTS FOR T1 TO T6. 

 XML schema t1 t2 t3 t4 t5 t6 
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hotel       

name       

room       

roomno       

price       

persons       

error       
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val(name)       

val(roomno)       

val(price)       

val(persons)       

val(error)       

Total 10 10 10 7 1 8 

 

<hotel>

<name>Hilton Hotel</name>   

<room>

<roomno>R106</roomno>

<price>105</Price>

<persons>1<persons>

</room>  

<room>

<roomno>R101</roomno>

<price>150</price>

<persons>3<persons>

</room>

</hotel >

Test Case 1 Test Case 2 Test Case 3

Test Case 5

<hotel>

<room>

<price>-1</Price>

<persons>1<persons>

</room>

<error>InvalidPrice<error>

</hotel >

Test Case 4 Test Case 6

<hotel>

</hotel >

<hotel>

<name>Hilton Hotel</name>

<room>

<roomno>R106</roomno>

<price>105</Price>

<persons>1<persons>

</room>

</hotel >

<hotel>

<room>

<roomno></roomno>

<price>100</Price>

<persons>2<persons>

</room>

</hotel >

<hotel>

<name>Hilton Hotel</name>

<room>

<roomno>R106</roomno>

<price>105</Price>

<persons>1<persons>

</room>

<room>

<roomno>R101</roomno>

<price>150</price>

<persons>3<persons>

</room>

</hotel >

 

Figure 2. XML messages for XQ(HotelInformation, //room[@price  

’Price’ and @persons = ’Num’]/price/). 



 

 

Definition 1. W3-Set (or W3S). A W3-Set with respect to a 

test case t is a set of triples {w1, m1, b1, w2, m2, b2, …, 

wN, mN, bN}, where a triple wi, mi, bi is a workflow 
module bi, an XML message mi, and a WSDL specification 
wi for the module bi and it defines the type for the message 
mi. Let W(t)={w1, w2, …, wN}, M(t)={m1, m2, …, mN}, and 
B(t)={b1, b2, …, bN} represent the set of WSDL 
specifications, the set of XML messages, and the set of 
workflow modules, used or exercised in the execution of t, 
respectively.  

A workflow module (such as Ai in Figure 2) may also be 
encoded in the XML format [3][16][18]. Take the test case t1 
in Section III for example: M (t1) and W (t1) are given in 
Figure 2 and Figure 3, respectively. B (t1) is {A1, A2, A3, A4, 
A5, A7, A8}. We call an XML node label in either W (t), M (t), 
or B (t) an element covered by a test case t. We further 
define the concept of test case similarity in Definition 2. 

Definition 2. Test Case Similarity (or W3-Similarity). We 
define three levels of similarity metrics between two test 
cases ti and tj (namely W3-Similarity). (i) Similarity of 
WSDL specification (W-I). (ii) Similarity of WSDL 
specification and WSDL-governed XML message (W-II). 
(iii) Similarity of WSDL specification, WSDL-governed 
XML message, and Workflow module (W-III).  

For a test case t, we call the set of elements covered by t 
using W-I, W-II, and W-III as WE-I (t), WE-II (t), and WE-III 
(t), respectively. These sets satisfy the equations: 

 

WE-I(t)  = W (t) 

WE-II(t)  = W (t) ∪ M (t) 

WE-III(t)  = W (t) ∪ M (t) ∪ B (t) 

 

Let the W3-Set of test cases ti and tj be Wi, Mi, Bi and 

Wj, Mj, Bj, respectively. Let the similarity between XML 
messages, between WSDL specifications, and between 

workflow modules for ti and tj be  (Mi, Mj),  (Wi, Wj), and 

 (Bi, Bj), respectively. There are many ways to define the 
similarity metrics. In our approach, we use the XML 
similarity metric to produce a percentage value of similarity 
between two sets of XML messages. Meanwhile, we use the 
Geometric Mean (GM) to define the three metrics of W3-
Similarity for ti and tj as follows. It is because one piece of 
code may associate with many XML Schemas, and one 
XML Schema may govern contents of many XML messages. 
Because of this multi-level one-to-many relationship, we 
use GM rather than other means to combine data from 
different dimensions. 

We consider W (t), M (t), or B (t) as three dimensions that 
describe a test case t. Hence, each test case t can be regarded 
as an axis-aligned cube with edge length equal to one in the 
three dimensional space formed by dimension W, M, and B. 
If ti and tj do not completely differ, the two cubes should 
overlap and overlap is a cuboid. The similarity values along 
three dimensions can be represented by the edge lengths of 

the cuboid, namely  (Wi, Wj),  (Mi, Mj), and  (Bi, Bj). Let 

the volume of overlap cuboid be V =  (Wi, Wj) ×  (Mi, Mj) 

×  (Bi, Bj). However, the unit of the volume is cube 

percentage. Hence, we compute cube root of V, as W-III 
shown by (E-4) to describe the similarity between ti and tj. 
We can see that W-III is actually the GM of the similarity 

metrics  (Wi, Wj),  (Mi, Mj), and  (Bi, Bj). The formula 
(E-4) considers three dimensions, the formula (E-2) 
considers only one dimension W, and the formula (E-3) 
considers two dimensions W and M, shown as follows. 

 

W-I = (Wi, Wj) (E-2) 

W-II = √(     )         
 

 (E-3) 

W-III = √(     )          (     )
 

 (E-4) 

 

 We note that although we illustrate our techniques using 
three levels, generalizing them to handle more than three 
levels is simple. 

B. Test Case Prioritization Techniques 

We use W-i (where i{I, II, III}) to denote the three 
metrics in W3-Similarity used in our techniques. Moreover, 
to help evaluate them in Section V, we compare them with 
random (C1) and another technique adopted from 
conventional total-branch techniques [5] that use WE-i 

(where i{I, III, III}) as the source of coverage data, which 
we denote it by C2. Moreover, we include two adapted 
techniques C3 and C4. C3 is just an adaptation of C2 by 
using W-i rather than WE-i as the metrics, and C4 is just 
adapts from C3 slightly. We choose then to validate whether 
a simple extension of existing techniques may be adequate. 
We further propose two techniques (M1 and M2) that 
formulate our idea. We present all of them in this section. 

We firstly define an auxiliary function: Let T be a test 
suite. We partition all pairs of distinct test cases into K 
groups, each containing all those pairs with the same W-i 
similarity value. We denote each group by Gk (1 ≤ k ≤ K), 
where k is known as the group index. All test case pairs in 
Gk have the same W-i similarity value gk, such that a smaller 
group index k indicates a larger W-i similarity value gk. We 
refer to such handling as the grouping function GF.  

We categorize the 15 test case pairs among t1 to t6 into 
different groups, and the results are shown in the leftmost 
columns in Tables IV-VI. The rightmost two columns of 
each table show one possible ordering of test case pairs for 
C3, C4, M1, and M2 each, and the corresponding selected 
pairs. We mark the selection sequence in the “Seq.” columns 
of these three tables. We will explain them in the following 
sub-sections. 

(1) Benchmark Techniques 

C1: Random ordering [5]. This technique randomly 

orders the test cases in a test suite T. 

The “imported” techniques (C2) directly use W3S (using 

WE-I, WE-II, and WE-III) to prioritize test cases. We 

adapted it from [14]. 

C2: Total WE-i coverage prioritization (Total-WE-

Coverage). C2 sorts the test cases in descending order of the 



 

 

total number of elements that each test case t has covered 

(i.e., the number of elements in WE-i(t)). If multiple test 

cases cover the same number of elements, C2 will order 

these test cases randomly.  

C3 prioritizes the most similar test cases in pairs to be 

executed first. Turning C3 the other way round, we also use 

C4 to select the least similar test cases in pairs to have 

higher priorities. 

C3: Maximum W-i Similarity prioritization (Total-W-

Similarity). The technique invokes the grouping function 

GF using W-i. The technique selects a pair of test cases with 

the greatest similarity value (i.e., g1) using W-i, and 

randomly chooses one test case t in this pair. The technique 

continues to select all pairs of test cases containing t from 

the same group. If multiple test case pairs contain t, the 

technique randomly selects one pair to break the tie. C3 

discards any test case in a selected pair if the test case has 

been included by a previously selected pair. C3 repeats the 

above selection process first for the group, and once all test 

cases in the group have been selected, then among the 

remaining groups in the ascending order of the group index 

(i.e., from G2 to GM) until every unique test case has been 

selected.  

The test cases selected by C3 using W-I are highlighted 

under the “C3” column in Table III. Other columns in Table 

IV and Table V can be interpreted similarly.  

C4: Minimum W-i similarity prioritization (Total-W-

Dissimilarity). This technique is the same as C3 except that 

it first selects a pair of test cases with the minimum 

similarity value using W-i (rather than the maximum W-i 

similarity value according to C3), and C4 repeats the 

selection process among the remaining groups in ascending 

order of the group index.  

For example, the test cases selected by C4 using W-I 

are highlighted under the “C4” column in Table III. 

 

Similarity Metric

<<bind>>

<<generalize>> <<generalize>>

<<invert>>

<<aggregate>>

W-I W-II W-II

Similarity 

Group
XSP Similarity

XSP Iterative

Similarity

XSP Iterative

Dissimilarity

1*

<<bind>>

 
Figure 4. The relations between XSP (dis)similarity and their metrics. 

(2) Our Test Case Prioritization Techniques: XSP 

As mentioned in Section I, our techniques use XML, 

Similarity metric, and Pairs of test cases. We therefore refer 

our techniques to as XSP.  

Figure 4 shows the schematic relationships among XSP 

(dis)similarity and their metrics. Intuitively, a larger 

similarity value between two test cases suggests that they 

have a higher chance in covering the same set of XML 

document structures.  

TABLE III. STATISTICS OF TEST CASE SIMILARITIES (W-I). 
S

im
il

a
ri

ty
 Group 

Selected Test Cases in Order 
In

d
e
x
 

Test Case Pairs 

S
e
q

. 

C3 C4 M1 M2 

1.000 G1 
(t1, t2), (t1, t3),  

(t2, t3) 

1 

2 

(t1, t2) 

(t1, t3) 

(t1, t5) 

(t2, t5) 

 (t1, t5) 

(t4, t5) 

(t1, t2) 

(t2, t4)  

0.833 G2 
(t1, t4), (t2, t4),  

(t3, t4) 

3 

4 

(t2, t3) 

(t1, t4) 

(t3, t5) 

(t5, t6) 

 (t1, t6) 

(t4, t6) 

(t4, t6) 

(t3, t6)  

0.667 G3 (t4, t6) 5 (t2, t4), (t4, t5)  (t3, t4) (t5, t6)  

0.571 G4 
(t1, t6), (t2, t6),  

(t3, t6) 

6 

7 

(t3, t4) 

(t4, t6) 
 

(t2, t3) 

 
 

0.200 G5 (t4, t5), (t5, t6) 8 (t1, t6)    

0.167 G6 
(t1, t5), (t2, t5),  

(t3, t5) 

9 

10 

(t2, t6) 
(t3, t6) 

   

11 (t4, t5)    

 

TABLE IV. STATISTICS OF TEST CASE SIMILARITIES (W-II). 

S
im

il
a

ri
ty

 Group Selected Test Cases in Order 

In
d

e
x
 

Test Case Pairs 

S
e
q

. 

C3 C4 M1 M2 

1.00 G1 
(t1, t2), (t1, t3), 

(t2, t3) 
1 

2 

(t1, t2) 
(t1, t3) 

(t1, t5) 
(t2, t5) 

(t1, t5) 
(t5, t6) 

(t1, t2) 
(t2, t4) 

0.76 G2 
(t1, t4), (t2, t4), 

(t3, t4) 
3 

4 

(t2, t3) 
(t3, t4) 

(t3, t5) 
(t5, t6) 

 (t4, t5) 
(t2, t6) 

(t4, t6) 
(t3, t6)  

0.67 G3 (t4, t6) 5 (t2, t4) (t4, t5)  (t4, t6) (t4, t5)  

0.53 G4 
(t1, t6), (t2, t6),  

(t3, t6) 

6 

7 

 

(t1, t4) 

(t4, t6) 
 

(t3, t4) 

 
 

0.17 G5 (t4, t5) 8 (t1, t6)    

0.16 G6 (t5, t6) 9 

 
(t2, t6)    

0.13 G7 
(t1, t5), (t2, t5),  

(t3, t5) 
10 

11 

(t3, t6) 
(t4, t5) 

   

 

TABLE V. STATISTICS OF TEST CASE SIMILARITIES (W-III). 

S
im

il
a

ri
ty

 

Group Selected Test Cases in Order 

In
d

e
x
 

Test Case Pairs 

S
e
q

. 

C3 C4 M1 M2 

1.00 G1 (t2, t3) 1 (t2, t3) (t1, t5) (t1, t5) (t2, t3)  

0.84 G2 (t1, t4) 2 (t1, t4) (t4, t5) (t4, t5) (t1, t4)  

0.83 G3 (t1, t2), (t1, t3) 3 (t1, t2) (t2, t5) (t2, t5) (t1, t2)  

0.69 G4 (t2, t4), (t3, t4) 4 (t1, t3) (t3, t5) (t5, t6) (t2, t4)  

0.66 G5 (t2, t6), (t3, t6) 5 (t3, t4) (t5, t6) (t1, t6) (t3, t6)  

0.63 G6 (t4, t6) 6 (t2, t4)  (t4, t6) (t4, t6)  

0.55 G7 (t1, t6) 7 (t3, t6)  (t3, t6) (t1, t6) 

0.29 G8 (t5, t6) 8 (t2, t6)   (t5, t6) 

0.26 G9 (t2, t5), (t3, t5) 9 (t4, t6)    

0.25 G10 (t4, t5) 10 (t1, t6)    

0.21 G11 (t1, t5) 11 (t5, t6)    
 

 



 

 

TABLE VII. PRIORITIZATION TECHNIQUES AND EXAMPLES. 

Technique Index 
Order of t1−t6 

t1 t2 t3 t4 t5 t6 

XSP-Iterative-Dissimilarity (W-I) M1 2 6 5 3 1 4 

XSP-Iterative-Similarity (W-I) M2 1 2 5 3 6 4 

XSP-Iterative-Dissimilarity (W-II) M1 1 5 6 4 2 3 

XSP-Iterative-Similarity (W-II) M2 2 1 5 3 6 4 

XSP-Iterative-Dissimilarity (W-III) M1 1 5 6 3 2 4 

XSP-Iterative-Similarity (W-III) M2 3 1 2 4 6 5 

 

We propose M1 and M2, each of which selects, in turn 

and iteratively, one test case pair from each group in the 

series of groups, skipping any group having been exhausted. 

M1 and M2 sample the groups in ascending and descending 

orders (i.e., from G1 to GM, and from GM to G1), respectively, 

of the group index. 

M1: Ascending W-i similarity prioritization (XPS-

Iterative-Dissimilarity). The technique invokes the grouping 

function GF using W-i. Then the technique samples all 

groups G1, …, Gk, …, GM in ascending order of the group 

index k by selecting one pair of test cases, if any, from each 

group in turn. The technique discards any test case in a 

selected pair if the test case has been selected. The 

technique then removes the selected pair from the group. 

M1 repeats the selection process among the non-empty 

groups until all the test cases have been selected. 

For example, the test cases selected by M1 using W-I as 

the metric are highlighted under the “M1” column in Table 

III. The columns for M1 in Table IV and Table V can be 

interpreted similarly. 

M2: Descending W-i similarity prioritization (XPS-

Iterative-Similarity). This technique is the same as M1 

except that it samples the groups GM, …, Gk, …, G1 in 

descending order of the group index k, rather than in 

ascending order.  

We summarize the result of M1 and M2 on the running 

example in Table VII. The same result can also be manually 

computed using the data in Table III, Table IV, and Table V.  

V. EXPERIMENT 

A. Experimental Design 

(1) Subjects, Versions, and Test Suites 

We choose eight WS-BPEL applications [3][16][19] to 

evaluate our techniques, which are shown in Table II, 

because these applications have also served as benchmarks 

or illustrative textbook examples, and have been used in 

previous test case prioritization experiments [13][14]. This 

set of benchmarks is also larger than the one used by Ni et al. 

[15]. Like many experiments on test case prioritization for 

regression testing, we use a set of known faults on the 

modified versions and the test suites associated with the 

original version of these subjects to evaluate each test case 

prioritization technique. The set of faults in the modified 

versions have been reported by our previous experiment 

[14], in which the faults are created following the 

methodology presented by Hutchins et al. [10]. Such a 

modified version setting was also adopted by the previous 

test case prioritization research studies (e.g., [5]). 

We use a random test case generation tool [14] to create 

random test suites for each subject based on WSDL 

specifications, XPath queries, and workflow logics of the 

original version of each subject. Each generated test suite 

ensures that all workflow branches, XRG branches, and 

WSDL elements of the original versions are covered at least 

once, as what the experiment from Mei et al. [14] did. 

Specifically, we add a test case to a constructing test suite 

(initially empty) until the above-mentioned criterion has 

been fulfilled. This procedure is similar to the test suite 

construction from Elbaum et al. [5] and Hutchins et al. [10]. 

Moreover, the set of XML message received or generated by 

the original version of the subject in question over the test 

case is also recorded. 

Using the above scheme, we successfully created 100 test 

suites for each subject that can detect at least one fault 

among the modified versions of the subject. Table VIII 

shows the maximum, average, and minimum sizes of the 

created test suites. 

TABLE VIII. STATISTICS OF THE GENERATED TEST SUITE SIZE. 

 Size 

Ref. A B C D E F G H Avg. 

Max. 146 93 128 151 197 189 113 108 140.6 

Avg. 95 43 56 80 155 103 82 80 86.8 

Min. 29 12 16 19 50 30 19 27 25.3 

(2) Effectiveness Measure 

We choose to use APFD [5], a widely adopted metric in 

evaluating test case prioritization techniques (see [9][14] for 

example). It matches our objective to verify whether a 

technique supports service evolution.  

Let T be a test suite containing n test cases, F be a set of 

m faults revealed by T, and TFi be the first test case index in 

ordering T’ of T that reveals fault i. The following equation 

gives the APFD value for a test suite T’. 

TABLE VI. SUBJECTS AND THEIR DESCRIPTIVE STATISTICS. 
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Applications 
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A atm [3] 8 94 180 3 12 5 

B buybook [16] 7 153 532 3 14 5 

C dslservice [19] 8 50 123 3 20 5 

D gymlocker [3] 7 23 52 1 8 5 

E loanapproval 

[3] 

8 41 102 2 12 7 

F marketplace [3] 6 31 68 2 10 4 

G purchase [3] 7 41 125 2 10 4 

H triphandling [3] 9 94 170 4 20 8 

 Total 60 527 1352 20 106 43 
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(3) Procedure 

Our tool applied C1C4 and M1M2 to prioritize each 

constructed test suite for each subject. C2 used the three 

levels of information WE-i (for i = I, II, and III) in turn. For 

C3, C4, M1, and M2, they used the three similarity metrics 

W-i (for i = I, II, and III) in turn. In essence, there are 16 (= 

1 + 3 × 5) technique instances used in the experiment. 

We executed the reordered test suite on each modified 

version of the subject and collected each TFi value for i-th 

fault (if the k-th test case in the reordered test suite is the 

first test case that can detect the i-th fault, then TFi is set to 

k). We finally calculated the APFD value of this reordered 

test suite (by E-5). 

B. Data Analysis 

To ease the view on the differences among techniques 

(especially techniques using various coverage/similarity 

metrics), we summarize the 25
th

, 50
th

 (i.e., median), 75
th

 

percentiles and the standard deviations (the column of “SD”) 

on all applications in Table VIII. 

We have a number of interesting observations. Table IX 

shows that, at each of the 25
th

 percentile, the median, and 

the 75
th

 percentile APFD values, M1−M2 using W-II are 

more effective than C1, C2 using WE-II, and C3C4 using 

W-II. The same is true for M1−M2 using W-III when 

comparing with the corresponding metric levels for C1C4. 

The corresponding effectiveness of M1−M2 using W-I is 

however close to these of C1−C4. The results show that 

using runtime data as well as code coverage can improve the 

effectiveness of M1−M2 more often than these of C2−C4. 

Moreover, M1 and M2 generally show an upward trend 

in effectiveness (in terms of the 25
th

 percentile, the median, 

and the 75
th

 percentile APFD values) and achieve smaller 

standard deviations when the similarity metrics changes 

from W-I to W-II, and from W-II to W-III. Surprisingly, the 

standard deviation on the APFD values achieved by C2 is 

even worse than that of random ordering.  

C2−C4 are increasingly less effective as the coverage 

level increases from W-I to W-II or from WE-I to WE-II. 

Moreover, their corresponding standard deviations have no 

consistent trend. Initially, we are surprised by these two. 

Later, we realize that C2−C4 are insensitive to diversify the 

testing efforts to test different scenarios captured in the test 

suite. The result further indicates that these algorithms (best 

for C programs [5] for example) have shown up their 

problems when being adapted to use XML messages.   

C3 and C4 are adapted from C2 by using the metrics that 

are also used by M1 and M2. Either C3 or C4 technique 

achieves better standard deviation than C2 in the experiment. 

It appears to suggest that using W-i can be more predictable 

than using WE-i in terms of APFD. Nonetheless, C3 and C4 

are still less effective than M1 and M2 in terms of the 25
th
 

percentile, the median, and the 75
th

 percentile APFD values. 

In the experiment, we find that neither C3 nor C4 is more 

effective than either C1 or C2. The empirical result further 

indicates that simply using W-i alone cannot achieve 

effective permutation of test suites in terms of APFD.  

C. Threats to Validity 

Our benchmarks are not large in scale, but are likely to 

be larger than the benchmarks used by Ni et al. [15]. Using 

more and larger real life benchmarks and their evolutions 

will strengthen the results obtained; unfortunately, we have 

not found such publicly released benchmarks. 

We used APFD as the metric. Using other metrics such as 

HMFD [23] may produce different results. We have 

implemented our tool carefully and sampled the results of 

our techniques to validate them manually. We have used 

previously evaluated benchmarks and testing tools to 

conduct the experiment to minimize the chance of having an 

error. We have also compared the results of our techniques 

with the results of random ordering and three other peer 

techniques. 

Our experiment has allowed test cases of the same web 

service to be executed in any order. The results obtained 

here may not be generalized to scenarios that there are 

casual constraints between test cases. 

VI. RELATED WORK 

We firstly review work on the unit testing and integration 

testing of services. Bartolini et al. [2] proposed to collect 

code coverage data for test runs from services so that 

service consumers can know the progress of their testing. 

Xu et al. [21] perturbed messages to test for the robustness 

of web services. Their techniques are useful to support our 

technique using the W-I metric. 
Zhang [24] proposed an agent-based approach to 

selecting reliable web services components efficiently. Zhai 
et al. [22] kept a blacklist of services that failures have been 
revealed in regression testing to improve the cost-

TABLE IX. AVERAGE EFFECTIVENESS OF C1C4 AND M1−M2 IN 

DIFFERENT PERCENTILES AND STANDARD DEVIATIONS  

Technique 25th 50th 75th SD 

C1 0.7878 0.8659 0.9205 0.1227 

C2 (WE-I) 0.8285 0.8863 0.9283 0.1178 

C2 (WE-II) 0.7821 0.8325 0.8772 0.1520 

C2 (WE-III) 0.7812 0.8354 0.8809 0.1540 

C3 (W-I) 0.6464 0.7586 0.8468 0.1039 

C3 (W-II) 0.5996 0.7088 0.7805 0.1034 

C3 (W-III) 0.5859 0.7007 0.7872 0.0860 

C4 (W-I) 0.7252 0.7841 0.9234 0.1084 

C4 (W-II) 0.5836 0.7691 0.8751 0.0977 

C4 (W-III) 0.6197 0.7582 0.8803 0.0765 

M1 (W-I) 0.8393 0.8944 0.9377 0.1038 

M1 (W-II) 0.8783 0.9173 0.9511 0.0993 

M1 (W-III) 0.8669 0.9180 0.9506 0.0853 

M2 (W-I) 0.8289 0.8807 0.9295 0.1119 

M2 (W-II) 0.8718 0.9193 0.9478 0.1003 

M2 (W-III) 0.8756 0.9174 0.9482 0.0862 

 



 

 

effectiveness. Either work aims at reducing the number of 
service invocations for testing. Our techniques have not 
explored this area. Martin et al. [12] perturbed web-service 
requests to test for the robustness of web services. Their 
approach suffers from the functional test oracle problem 
needed for regression test. Our technique does not modify 
service messages, and use the regression test oracle 
produced by the previous round of regression test. Bai et al. 
[1] proposed to partition scenarios based on the ontology 
associated with services. They used the logical relationship 
to group test scenarios; whereas, our techniques use test 
cases similarity but not semantic relations to group test 
cases. 

Hou et al. [9] proposed to consider the constraint on the 
number of times that a web service may be invoked in the 
test case prioritization for the regression testing of service-
centric applications. However, how a service applies WSDL 
specifications to XML documents has not been studied. 
Chen et al. [4] applied dependence analysis to prioritize test 
cases according to the amount of modification-affected 
elements per test case. Mei et al. developed a family of test 
case prioritization techniques atop a multilevel coverage 
model [14]. They also proposed techniques using tags 
embedded in XML messages [13]. The use of runtime 
artifacts (XML message) have been explored by Mei et al. 
[14]. Zhai et al. [22][23] proposed prioritize test cases for 
the testing of location-based services using the locational 
information in the input and output of the test cases. Li et al. 
[11] proposed to use the extensible BPEL flow graph to 
model the changes of composite service in terms of 
processes, bindings, and interfaces. They further performed 
control flow analysis based on such graphs to identify the 
changes within the composite services. All the above 
reviewed techniques have only considered test cases one by 
one or the whole test suite without any breakdown. They 
have not systematically considered test case pairs. 

VII. CONCLUSION 

Pairwise selection is a fundamental strategy to compare 
elements in a finite set. Using the notion of structural 
similarity is attractive to spot the differences in semi-
structural artifacts like XML documents. In this paper, we 
have proposed test case prioritization techniques based on 
this strategy for the regression testing of web services. We 
have empirically demonstrated that our techniques are 
feasible, and they can be more effective than existing 
techniques or random ordering in terms of APFD.  

In terms of pairwise comparison, our techniques give an 
exact solution, but are NP-complete. A further optimization 
such as the use of an approximation approach can be further 
developed. Another extension is to study the n-way 
selection strategy. Our work only deals with a part of the 
self-adaptation cycle needed for web service evolution. A 
more comprehensive study that deals with self-adaptation is 
necessary. 
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