
LOFT: Redundant Synchronization Event Removal for Data Race Detection
†

Yan Cai
Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

yancai2@student.cityu.edu.hk

W.K. Chan
Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

Abstract—Many happens-before based techniques for

multithreaded programs implement vector clocks to track

incrementally the causal relations among the synchronization

operations acting on threads and locks. In these detectors, every

such operation results in a vector-based assignment to a vector

clock, even though the assigned value is the same as the value of

the vector clock right before the assignment. The cost of such

vector-based operations however grows with the number of

threads and the amount of such operations. It is unclear to what

extent redundant assignments can be removed. Whether two

consecutive assignments to the same vector clock of a thread

result in the same content critically depends on the operations on

the locks occurred in between these assignments. In this paper, we

systematically explore the said insight and quantify a sufficient

condition that can soundly remove such operations without

affecting the precision of such tracking. We applied our approach

on FastTrack to formulate LOFT. We evaluate LOFT using the

PARSEC benchmarking suite. The result shows that, on average,

LOFT removes 58.0% of all such operations incurred by

FastTrack, and runs 16.2% faster than the latter in tracking the

causal relations among these operations.

Keywords-data race detection; redundant operation optimization

I. INTRODUCTION

The advent of multi-core processors motivates

programmers to develop multithreaded programs to improve

the efficiency of their programs through parallel computations.

However, any improper synchronization among threads in a

multithreaded program may lead the program to produce a

failure, such as a wrong output or crash. Unfortunately,

debugging a multithreaded program can be intricate because a

concurrency bug may merely manifest itself into a failure in

some but not all interleaving sequences of threads even for the

same input.

A data race is said to occur if two or more threads

accessing the same memory location in an undetermined order,

and at least one of these accesses is a write operation [9]. If

such a data race can lead the program to produce unexpected

behavior, the race is said to be harmful. Detecting (harmful)

data races in programs is one of the preventive measures to

assure the reliability of multithreaded programs.

In particular, many dynamic detectors have been

proposed. Examples include Goldilock [7], FastTrack [9],

LiteRace [16], DJIT+ [19], Helgrind
+
[11], AccuLock [23],

RaceTrack [24], and Eraser [22]. These detectors can be

sub-classified into lockset based algorithms (e.g., [7][22]),

happens-before based algorithms (e.g., [9][16][19]), and the

hybrid of the former two (e.g., [11][23][24]). Lockset based

algorithms in general run faster than, but are much less precise

than the other two kinds of dynamic detectors. FastTrack,

being a kind of happens-before based algorithm, recently

demonstrated that this class of algorithm can be efficiently

implemented. For instance, the mean efficiency of FastTrack

can be comparable with that of lockset based algorithms (e.g.,

Eraser) in an empirical experiment using a suite of Java

programs as subjects [9].

We observe that almost all happens-before based dynamic

detectors commonly implement vector clocks [14] to track the

casual relationships among memory accesses, lock operations,

and thread manipulation. In these detectors, every operation

that tracks such relationships among lock operations and

thread management must produce a vector join operation over

two vector clocks, and the result of the join may further be

assigned to at least one vector clock. For instance, although

Pacer [3] applies a sampling approach to collect memory

access operations to reduce the overhead for data race

detection, yet it still needs to track the casual relationships

among threads and locks in full, irrespective to whether or not

these events occur in sampling periods.

In this paper, we study the problem of precise reduction of

vector clock updates for threads and locks in the on-the-fly

tracking of the happens-before relations on an execution trace.

We apply our result to dynamic happens-before based data

race detectors. It is worth noting that our solution is general

rather than restrictive to such detectors.

The size of each vector clock in such a detector grows as

the number of threads in a program increases. Hence, the time

costs of the said join and assignment operations also change

(linearly) with the number of threads in a program.

Is it always necessary for a dynamic happens-before based

detector to assign a new instance to a vector clock whenever

an operation of the above kind is observed? If the answer is

negative, how can a technique soundly identify those

redundant operations? Moreover, to what extent can such a

technique remove the involved redundant operations? There

are wide applications of this kind of technique. For instance, if

such a technique can remove a large amount of such redundant

operations, the size of a corresponding operation log for

post-mortem analyses or execution replay techniques can be

reduced significantly. To the best of our knowledge, the above

research questions have not been explored. † This work is supported in part by the General Research Fund of

the Research Grant Council of Hong Kong (project no. 111410).

We observe that whether two consecutive assignments to

the same vector clock of a thread result in the same content

critically depends on the operations for those lock occurred in

between the two assignments. Let us consider the following

example: Suppose that a thread t releases a lock m followed by

acquiring it. Further suppose that in between this pair of

operations, no thread acquires m or releases it. In this situation,

a detector needs not to assign any value to m’s vector clock to

reflect the lock acquisition operation. It is because the original

value kept by m’s vector clock is still sufficient to reflect the

latest causal relationship between t and m, and the visible

timestamps of other threads from the viewpoint of t. To ease

our presentation, we refer to such a “suppressed” vector-based

operation (such as a comparison or an assignment) as a

redundant operation.

In this paper, we explore the above insight. We

systematically and exhaustively analyze and characterize the

above kinds of scenarios, and formulate the conditions that can

soundly remove such redundant operations. We apply our

approach to formulate an algorithm called LOFT, standing for

Lock-Optimized FastTrack. We base our approach on

FastTrack [9] because FastTrack represents the state of the art

for dynamic happens-before based algorithms.

In the experiment, we evaluated, via LOFT, to what extent

our approach can eliminate vector clock updates for

synchronization operations acting on threads and locks without

compromising the precision of data race detection of

FastTrack on the PARSEC benchmarking suite [2][6][11].

The experimental result showed that on average, LOFT

removed 58.0% of all such operations needed by FastTrack

without any loss in detection precision, and ran 16.2% faster

than FastTrack in tracking all causal relationships among the

synchronization operations acting on threads and locks in the

executions of these subjects.

The main contribution of this paper is threefold: (1) We

identify and characterize a class of thread-centric scenarios

that each involves a consecutive pair of lock operations. We

formulate the first sufficient condition that redundant

operations can be soundly removed without affecting the

precision of the causal relations being tracked on the fly. Our

solution on the elimination of the redundant vector clock

updates is general and not restrictive to a particular correctness

criterion (e.g., data race freedom) used in pair with our

solution. (2) It proposes a data race detector (LOFT), which

implements our approach. (3) It reports an experiment that

validates the feasibility of our approach, and compares LOFT

with FastTrack. The experimental result show a significant

amount of vector clock updates induced by synchronization

operations can be removed. The result also shows that the time

cost to maintain the data structure for the above sufficient

condition and the checking itself are well-compensated by the

reduced amount of vector clock updates.

The rest of the paper is organized as follows. Section II

presents a motivating example. Section III elaborates the

preliminaries of happens-before based data race detection.

Section IV presents our analysis and LOFT. Section V reports

an experiment that validates our approach. Section VI reviews

related work. Section VII concludes the paper.

II. MOTIVATING EXAMPLE

Figure 1(a) shows a motivating example adapted from the

classic Producer and Consumer Problem. It shows a shared

location pool, which is protected by a shared lock m, and two

threads (Producer and Consumer). The Producer thread

repetitively produces a datum, and puts it into pool. The

Consumer thread repetitively fetches a datum from pool.

 Figure 1(b), from top to bottom, shows a possible

execution that interleaves between the two threads, as

indicated by the rightmost and the leftmost columns of Figure

1(b). The Producer thread firstly acquires and releases the

lock m twice. Then, the Consumer thread also acquires and

releases the lock twice. Finally, the Producer thread acquires

and releases the lock. In total, the execution involves five lock

acquires and five lock releases.

Let us use FastTrack [9] on the above execution to

illustrate our point. The algorithm firstly sets up three vector

clocks for m, Producer, and Consumer, respectively, as

shown in Figure 1(b) under the vector clock column. To

track each lock acquire or release operation on the fly, the

algorithm needs to perform two vector-based operations, one

for comparing two vector clock instances and another for

updating the vector clock of m, Producer, or Consumer to

Shared variables

int pool[1000];

bool isPoolEmpty;

Lock m;

bool isPoolFull;
Consumer Producer

while(true)

{
while(isPoolEmpty)wait(100);

Acquire(m);

//fetch a datum from pool

…

Release(m);

}

while(true)

{
while(isPoolFull) wait(100);

Acquire(m);

//add a datum to pool

…

Release(m);

}

(a) The code

Possible interleaving

(for brevity, we only show acquire and release operations)

Consumer
vector clock

Producer
Consumer m Producer

 <1, 1> <0, 0> <1, 1>

+

-

*
-

Acquire(m);
Release(m);

Acquire(m);

Release(m);

…

<1, 2>
<2, 2>

<2, 2>

<3, 2>

<0, 0>

<1, 1>
<1, 1>

<1, 2>

<1, 2>
<1, 2>

<1, 2>

<2, 2>
<2, 2>

<2, 3>

<1, 1>

<1, 2>
<1, 2>

<1, 3>

<2, 3>

<2, 4>

*

+
*
-

+
-

Acquire(m);

Release(m);
Acquire(m);

Release(m);

Acquire(m);

Release(m);

…

(b) Analysis on vector clock instances on a possible execution

 Figure 1. An example consumer and producer example

keep another instance. Therefore, FastTrack needs in total 10

such (vector clock) operations. Every such operation takes O(n)

time, where n is the size of a vector clock, which is also the

number of threads in the example (i.e., 2). The values of the

three vector clocks are also shown in Figure 1(b).

We observe that many such lock acquire (release,

respectively) operations marked with the star “*” symbols

(“-”, respectively) in Figure 1(b) need either no vector-based

operation at all or merely an assignment of a value to one

entry of one vector clock. In the figure, they are shown as

shaded vector clocks and shaded entries, respectively. The

underlying reason is as follows: the lock is consecutively

acquired or released by the same thread. Because the lock is

only used by the same thread (say Producer), updating the

vector clock of the thread to collect the timestamp of another

thread is unnecessary.

Owing to the above reason, the involved vector-based

operations for these “* “ and “-” operations can be either

safely removed or replaced by an assignment with a scalar

value, which only takes O(1) time. Consequently, in an ideal

case, only the operations marked with the plus “+” need to

take vector-based operations. Hence, to track the causal

relationships as illustrated in Figure 1(b), a good algorithm can

use three vector clock operations to complete the tracking of

all these vector clock instances. In summary, seven operations

are redundant, which can be substituted by scalar operations,

such as updating the value in the initialized vector clock

instance of the lock m from “1” to “2” on the second release of

the Producer thread. Our approach explores this insight.

III. PRELIMINARIES

A. Events

A data race detector typically monitors a set of critical

operations, such as read (rd) from or write (wr) to a memory

location v; acquire (acq) or release (rel) a lock m; fork or join

a thread t. Like many existing work, our model does not

consider nested locks because the handling of such locks or

reentrance locks can be extended. Following [9], for brevity,

we only present how our model handles the above set of six

critical operations. We assume that we can obtain the standard

execution information such as the identity of each thread and

the related program statement associated with each operation.

A trace  is the projection of an execution of a program

on this set of critical operations. We assume that the program

being monitored is sequentially consistent [17]. Moreover, we

assume that a lock can only be acquired by at most one thread

at a time.

B. Happens-before Relations and Data Race

A happens-before relation, denoted by

→ , is a partial

order relation among events in a multi-threaded program or

concurrent system [14]. It is defined by the following three

rules: (a) Program order: If and are two events (i.e.,

two critical operations described above) performed by the

same thread, and precedes , then we write

→ . (b)

Release and acquire: If is a release operation of a lock m,

and is an acquire operation of the same lock m performed

by a thread different from the one performing , and

precedes , then we write

→ . (c) Transitivity: if

→ and

→ , then

→ .

A data race is formally defined as follows: Suppose that

two events and accessing the same shared location v in

a trace, and at least one of them is a write. If neither

→ nor

→ , then (,) forms a racing pair. We consider that both

(,) and (,) refer to the same racing pair. Similarly, we

consider that (statement(), statement()) is also the same

racing pair as (,), where statement(x) is the program

statement that is associated with the event x. The shared

location v is said to be in race.

An algorithm for dynamic data race detection outputs a

set of event pairs or a set of locations based on a set of traces.

An event pair is said to be a false positive if the reported pair

is not a racing pair. Similarly, a location v is said to be a false

positive if v is not in race on any such trace, and yet the

algorithm does not include the location in its output. An

algorithm is said to be precise if any reported racing pair or

location is not a false positive.

C. Vector Clock and DJIT+

We use DJIT+ [19] to illustrate data race detections.

A timestamp is a number. A vector clock is a finite array

of timestamps. DJIT+ assigns one vector clock to each

thread t. This vector clock logs the thread’s current timestamp

as well as the other threads’ timestamps visible to the thread t.

DJIT+ also assigns one vector clock to each lock m. For

each memory location v, it assigns two vector clocks and

Algorithm: DJIT+

On initialization:

1. For each thread t, [i] =1, where i is from 1 to n.

2. For each memory location v, [i] = [i] = 0, where i is

from 1 to n.

3. For each lock m, [i] = 0, where i is from 1 to n.

On acquiring a lock m for thread t:

4. [i] = max { [i], [i]}, where i is from 1 to n.

On releasing a lock m for thread t:

5. [t] = [t] +1.

6. [i] = max { [i], [i]}, where i is from 1 to n.

On the first read to a memory location v in the current

timestamp for thread t:

7. [t] = [t].

8. For each thread i (where i≠t), if , report a

write–read data race, where i is from 1 to n.

On the first write to a memory location v in the current

timestamp for thread t:

9. [t] = [t].

10. For each thread i (where i≠t), if [i], report a

write–write data race, where i is from 1 to n.

11. For each thread i (where i≠t), if [i], report a

read–write data race, where i is from 1 to n.

Figure 2. The DJIT+ algorithm

 for the write and read operations on v, respectively.

Each thread t has its own timestamp variable that is

incremented on each release operation performed by t.

records the current timestamps of the thread t and others

threads gotten from on acquiring the lock m by t.

records a snapshot of when t releases the lock m.

To maintain its data structure, DJIT+ uses the following

strategies. For every acquire operation on the lock m

performed by the thread t, DJIT+ updates to be a vector

instance, in which each entry is the maximum of the

corresponding entries in and (i.e., = , see

 [9]). For every release operation of a lock m, DJIT+

increments the timestamp kept at by one (while all the

other values kept by remain unchanged), followed by

updating to be a vector instance, in which each entry is

the maximum of the corresponding entries in and (i.e.,

 =).

Moreover, for every write (read, respectively) operation

to a memory location v performed by a thread t, DJIT+

updates (, respectively) to be the contents of t’s

vector clock (i.e.,). Immediately after each

read operation (by a thread t) from the location v, DJIT+

compares with to determine whether any thread, say i

(where i ), recorded in these two vector clock instances

violates the following condition . If this is the

case, a write-read data race is said to have been detected.

Similarly, immediately after each write operation to v, in

addition to the above comparison for the purpose of detecting

write-write data races, DJIT+ further compares with

to determine whether any thread, say i (where), recorded

in these two vector clock instances violates the following

condition . If this is the case, a read-write data

race is said to have been detected.

Figure 2 shows the DJIT+ algorithm (where n is the

number of threads). DJIT+ slows down a program execution

significantly, especially if the execution involves many

concurrently running threads. This is because DJIT+ needs one

vector-to-vector comparison for every read or write operation

on every memory location and every lock acquire or release

operation, which is O(n) in time complexity each.

IV. OUR ANALYSIS AND LOFT

Figure 3 depicts an overview of our technique LOFT. The

component with a solid frame differentiates LOFT from other

data race detectors, in which LOFT implemented our analysis

result to remove some possible operations on vector clock

instances for threads manipulation and lock events.

FastTrack reduces the amount of vector creations and

usages incurred by DJIT+ to record the time that an execution

accesses memory locations (i.e., steps 7−11 in Figure 2). To

track their happens-before relations, these algorithms

(including FastTrack) commonly update the vector clock

instances for threads and locks by assigning them with other

vector clock instances whenever an event for thread

management or lock operations is observed. As we have

illustrated in the motivating example, every such event results

in at least one vector-based comparison or assignment (i.e., the

steps 4−6 in Figure 2) [9][16][19].

In this section, we analyze the scenarios for the steps 4−6

in Figure 2. As we have described in Section I, our approach is

generic. Specifically, we characterize lock acquire and release

operations by exhausting all possible scenarios in between a

pair of such consecutive operations performed by the same

thread. We present them as six cases as depicted by Figure 4.

We firstly present some auxiliary functions to ease our

subsequent presentation. Suppose that and are two

vector clock instances, and the number of elements in either

instance is n. If [i]  for 1  i  n, we denote this

condition by Similarly, if [i] = for 1  i  n,

we denote this condition by . We also define

to be a vector clock instance such that [i] = max([i],

 for 1  i  n, and the number of elements in the

instance is also n. We use (for j=1, 2 …) to denote critical

operations. We also define two functions: lastLock(t)

represents the most recent lock that the thread t has released,

and lastThread(m) represents the most recent thread that has

released the lock m. For instance, in the motivating example,

when the first occurrence of the acquire(m) event in the

Consumer column of Figure 1(b) occurs, the Consumer

thread did not acquire (hence did not release) any other lock.

So, for this event, lastLock (Consumer) is null. At this

moment, m has been most recently released by the Producer

thread via the second occurrence of the release(m) event of

Producer. So, with respect to the above acquire(m) event,

lastThread (m) is Producer.

We are going to present six cases. In each case, the

condition refers to the condition when in the case occurs,

which is also the highlighted event for the corresponding case

in Figure 4.

When is Acquire (t, m)

Case 1. [when lastThread(m) = t].

Let be an event in a trace that t releases m such that

lastThread(m) = t, and be an event in the same trace

that t acquires m.

Consider the trace  , . When occurs,

we must have (as shown as the first arrow in

Pin

Program

LOFT

Redundant

events

removal

Track

Happens-before

relation

Data race

detection

Thread

events

Memory

accesses

Figure 3. An overview of LOFT (the solid part differentiates LOFT from other

data race detectors. Pin is a dynamic instrumentation tool, see Section V)

Case 1 of Figure 4). Moreover, when occurs,

must still remain unchanged. However, the values in

may or may not be incremented because t may acquire

some other lock(s) in between and ; otherwise,

must remain unchanged. In either situation, we have

 when occurs. So, for the tracking of
assigning the values from to does not change

the values kept in . Therefore, there is no need to

perform any comparison between . Hence, the

above assignment can be removed (which is shown as a

dotted arrow in Case 1 of Figure 4) when occurs.

Case 2. [when lastThread(m) ≠ t].

Let be an event that t acquires m.

Consider the trace  . When occurs,

because we have lastThread(m) ≠ t, there are two

sub-cases to consider: m must either have been released by

a thread t’ (where t’≠ t) or have not been updated since it

was initialized. In the former case, must once contain

a value the same as that of as shown by the first

arrow in Case 2 of Figure 4. In the latter case, the value of

 should be different from that of because all locks

are initialized as all 0s, whereas all threads are initialized

as all 1s (see steps 1 and 3 of Figure 2). Therefore, without

further checking, we cannot decide whether

holds when occurs. In this situation, when occurs,

such a comparison and its associated potential assignment

from to are necessary, and cannot be

removed (which is depicted by the second arrow in Case 2

of Figure 4).

When is Release (t, m)

Case 3. [when lastThread(m) = t and lastLock(t) = m].

Let be an event in a trace that t releases m such that

lastThread(m) = t and lastLock(t) = m, be an event

that t releases m, and be the corresponding acquire

operation by t with respect to .

Consider the trace  , , which is

depicted as Case 3 in Figure 4. The analysis for Case 3 is

straightforward: When occurs, we have . In

between and as well in between and , the

condition lastLock(t) = m implies that t has not acquired

or released any other lock after . Moreover, the

condition lastThread(m) = t implies that m has not been

acquired or released by any other thread after , These

two conditions respectively imply that and remain

unchanged when occurs. Therefore, we have

when occurs. Consequently, we have

carrying the same value as that kept by . Hence, there is

no need to update . When occurs, the involved

vector-based comparison between and and the

assignment to can be removed (which is depicted by

the third (dotted) arrow in Case 3 of Figure 4).

Case 4. [when lastThread(m) = t and lastLock(t) ≠ m].

Let be an event that t releases m such that

lastThread(m) = t, be an event that t releases m, and

 be the corresponding acquire operation of . These

three events are depicted as the first and the last two

operations in Case 4 of Figure 4.

Consider the trace  , . When

occurs, the condition lastThread(m) = t implies that m

has not been acquired and released by any other thread in

between and . Hence, remains unchanged since

the occurrence of . (Note that also because of this

condition, must have been updated at least once, and

hence, cannot stay at its initialized value.) However,

when occurs, the condition lastLock(t) ≠ m implies

that has been updated due to the thread’s acquisition of

some other lock(s) in between and (as illustrated

by the acq(l) operation in the example). This operation

may have incremented some timestamps kept by with

respect to the same vector clock at the time when

occurs. Therefore, the assignment from to

cannot be removed when occurs.

Case 5. [when lastThread(m) ≠ t and lastLock(t) = m].

Let be an event that t releases m such that

lastLock(t) = m, be an event that t releases m, and

be the corresponding lock acquire operation of . Similar

to Case 4, these three events are depicted as the first and

the last two operations in Case 5 of Figure 4.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

 s l t m

rel(m) rel(m) rel(m) rel(m) rel(m) rel(m)

*** acq(m) acq(m) acq(l) acq(m) acq(l)

acq(m)

 rel(m) rel(l) rel(m) rel(l)

 acq(m) acq(m) acq(m)

 rel(m) rel(m) rel(m)

Figure 4. Example scenarios of the six cases on acquiring or releasing a lock (where and are threads; and and are locks; rel(m) and acq(m) represent

release(m) and acquire(m), respectively. “→” is the direction for vector clock assignment between the corresponding thread and lock: (1) an arrow with a dot at the

end of the arrow shows an acq(m) or a rel(m) operation that satisfies the LRDB or LRG relation, (2) a dotted arrow shows a corresponding acq(m) or rel(m)

operation that violates the LRDB or LRG relation, (3) a gray arrow is just for the reference. “***” means that there may be additional pairs of acq(x) and rel(x)

where x is a lock).

Consider the trace  , . When

occurs, the condition lastLock(t) = m implies that t has

not acquired or released any lock other than m since

occurred. Therefore, in between and , remains

unchanged. The condition lastThread(m) ≠ t further

implies that, in between and , m must have been

acquired by other threads (as illustrated by the acq(m)

operation by the thread s in the example). Hence,

might have been updated (e.g., by the rel(m) operation of s

in the example). So, we must have in this period.

The condition lastThread(m) ≠ t also implies that,

when occurs, must be updated to be .

Hence, we have when occurs.

In between and , m cannot be acquired or

released by any other thread because m is being held by t.

Moreover, during this period, t cannot release a second

lock (otherwise, the condition lastLock(t) = m cannot

hold). Therefore, when occurs, the condition

still holds. Similar to Case 3, both the vector-based

comparison and the assignment can be removed.

Case 6. [when lastThread(m) ≠ t and lastLock(t) ≠ m].

In this case, we cannot infer anything between t and m.

Therefore, no vector-based comparison or assignment can

be removed. An example scenario is depicted as Case 6 in

Figure 4.

In the rest of the paper, we refer to the condition in Case

1 (i.e., lastThread(m) = t) on acquire(t, m) as LRDB(t, m),

which standing for “Last ReleaseD By”. Similarly, the

conditions in Case 3 and Case 5 can be combined into one

condition: lastLock(t) = m on Release(t, m), which we refer

to it as LRG(t, m), standing for “Last ReleasinG”.

LOFT State:

 C: Tid (VC, Lock) L: Lock (VC, Tid) W: Var Epoch R: Var (Epoch VC)

On Acquire (t, m)

[LRDB(t, m)]

[Otherwise]

On Release (t, m)

[LRG(t, m)]

[Otherwise]

Other rules of LOFT

On Reads(t, x):

[read same epoch]

[read shared]

[read exclusive]

[read share]

On Writes(t, x):

[write same epoch]

[write exclusive]

[write shared]

On Fork(t, u):

On Join(t, u)

Figure 5. LOFT and its comparison to FastTrack (shading lines show the differences between FastTrack and LOFT)

As a result, we formulate the following strategy: if

LRDB(t, m) holds on acquire(t, m), the corresponding

comparison between and and its associated vector

clock assignment from to can be removed.

Moreover, if LRG(t, m) holds on release(t, m), such a

comparison and the associated assignment from to

 can also be removed. In our empirical experiment to be

presented in the paper, this strategy can successfully remove

58.0% such operations.

Figure 5 shows our Lock-Optimized FastTrack (LOFT)

algorithm and its comparison with the FastTrack algorithm

(i.e., the rules without the shaded parts). Apart from

introducing the conditions, LOFT also extends FastTrack by

adding one variable to each thread and one variable to each

lock as shown in the State section of LOFT in Figure 5.

To ease our presentation, we use the same notations as

these used in [9]. Specifically, LOFT maintains an analysis

state (C, L, R, W) composing of four parts: (1) C maps each

thread t (identified by a unique identity Tid) to a vector clock

(VC) and a lock m (identified by a unique identity Lock),

where m is the most recent lock that the thread t has released.

(2) L maps each lock m to a vector clock and a thread t where t

is the last thread that releases m. (3) R maps a memory

location to an epoch [9] or a vector clock of this location. (4)

W maps a memory location to an epoch. We use to denote

the vector clock of the thread t, and to denote the vector

clock of the lock m. We also use and to

denote the lock m mapped from the thread t in and the

thread t mapped from the lock m in , respectively.

Initially, each thread is mapped to an empty lock and a

newly initialized vector clock instance with a value of “1” in

every entity. Moreover, each lock is mapped to an empty

thread and a newly initialized vector clock instance with a

value of “0” in every entity. The rest of the initial state is the

same as that of FastTrack.

Operations on Lock Acquisition: As shown in Figure 5,

on acquiring a lock m by a thread t, LOFT firstly checks

whether LRDB(t, m) holds (by). If this condition is

satisfied, LOFT does nothing. Otherwise,
 is performed as FastTrack does, where the notation

 means that is constructed from by

substituting the entry by x.

Operations on Lock Release: On releasing a lock m by a

thread t, LOFT firstly checks whether LRG(t, m) holds (by

). If this condition is satisfied,
 is performed; otherwise, is

performed as FastTrack does. Lastly, LOFT increases the

timestamp of the thread t (, where

 means). It also updates the

mapping between the lock m and the thread t by performing

both and .

V. EXPERIMENT

A. Implementation and Benchmark

Implementation. We implemented LOFT by adding a

32-bit integer to every lock and every thread to record the last

thread that releases the lock concerned and the most recent

lock released by the thread concerned, respectively. For a

program with n threads and k locks, the worst case space

complexity to keep the state for these threads and locks is O(n
2

+ kn), which is the same as that of the FastTrack. The

introduction of the additional integers in our technique does

not affect this worst case space complexity order.

We implemented both LOFT and FastTrack using Pin 2.9

[15], which is a program dynamic instrument analysis tool. To

implement such a data race detection tool, we needed to

shadow every memory location to a set of data (i.e., write

epoch, read epoch, and shared read vector clock). We adopted

a two level shadow implementation M0 described in [18]. For

each thread, because Pin supplies a thread-local storage (TLS)

per thread [15], we used this TLS to store a data set (i.e., a

vector clock) for each thread. For each lock, we used an

unordered map supplied by the GCC compiler to map the lock

to a set of data (i.e., a vector clock). Regarding events

monitoring, except the thread-starting event supplied by Pin,

we dynamically inserted event calls before or after the

interesting operations. Following [9], and to allow a fair

comparison, our implemented FastTrack and LOFT also

reported at most one race condition for each memory location.

Benchmarks. We selected the PARSEC benchmark suite

2.1 [2] to evaluate LOFT, which is a set of multithreaded

programs used in previous experiments (e.g., [4][6][11]). The

suite includes 13 benchmarks: blackscholes, bodytrack,

canneal, dedup, facesim, ferret, fluidanimate,

freqmine, raytrace, streamcluster, swaptions, vips,

and x264. Among these benchmarks, freqmine does not use

the standard Pthreads library, we discarded it because our

implementations are built on top of the standard Pthreads

library; ferret and fluidanimate crashed when we ran

them under the Pin environment. We used all the remaining 10

benchmarks in our experiment and executed them with the

simsmall input test.

Our experiment was performed on the Ubuntu 10.04

Linux configured with a 3.16GHz Duo2 processor and 3.25GB

physical memory. Each benchmark was run 100 times.

TABLE I shows the average number of vector operations

performed on synchronization events and time needed to

complete all such tracking on each benchmark (see the

columns Vector operations and Time, respectively). We

set each benchmark to have eight worker threads except vips

that were preset to have four (fixed) worker threads in the

downloaded suite.

B. Threats to Validity

In the experiment, we used the PARSEC benchmark suite

to validate LOFT. These benchmarks belong to either desktop

applications (blackscholes, bodytrack, facesim,

raytrace, swaptions, vips, and x264) or OS kernels

(cannel, dedup, and streamcluster). Further experiment

on widely used applications such as Firefox, and Apache

Web Server may strengthen the experiment.

Our tool used in this paper was implemented in C++. The

time measurement may be affected if other programming

languages were used for implementation.

We have carefully studied several C/C++ tools that use

the Pin framework, especially those related to thread

operations. We have compared our detected data races to those

detected by other tools (e.g., [13]) to help assure our tool.

C. Data Analysis

Summary of Results. TABLE I summarizes the results of

the experiment. The second and the third columns counting

from the left report the application domain [2] and the lines of

code for each benchmark, respectively. The fourth column

shows the number of threads used in the experiment. The

column “Vector operations” shows the number of vector

clock operations performed for FastTrack (FT) and LOFT, as

well as the ratio of LOFT to FastTrack in the column “(B) 

(A)”. The column “Time” shows the corresponding time

needed to complete all such tracking in microsecond (µs) for

FastTrack and LOFT, as well as the ratio of LOFT to

FastTrack in the column “(D)  (C)”. We note that the

reported time for LOFT has included the time overhead to

maintain the LRDB and LRG conditions. The last column is for

reference, which shows the number of detected data races on

each benchmark because our main focus is on the removal of

redundant operations related to threads and locks.

Precision. We find that FastTrack and LOFT reported the

same number of data races in each run on each benchmark,

except on x264. On x264, 77 data races were reported during

most of runs, and we took an average on 100 runs. The mean

results are shown in the rightmost column of TABLE I. From

the number of detected data races, we find that LOFT does not

compromise the precision of FastTrack.

Vector Operations Analysis. From TABLE I, we observe

that LOFT, on average, can remove 58.0% of all the vector

clock operations that are needed in FastTrack for lock

acquisition or release. If we consider the total amount of

operations that can be removed from the entire suite, LOFT

can remove 60.2% on top of FastTrack.

Such reduction can help a technique to reduce the size of

the operation log for subsequent analysis such as execution

reply, where such synchronization events play a key role in

determining the interleaving sequence among threads in a

replayed execution.

Time Analysis. From the column Time in TABLE I, we

observe that, on average, LOFT runs 16.2% faster than

FastTrack on completing these vector operations. On

examining the time needed for each benchmark, we find that

the variance in time is large among the set of runs for the same

technique. For example, on dedup, the mean time for

FastTrack is 8,337.9µs. However, we have experienced that

some runs on this subject take 2 to 3 folds of time than this

average value (e.g., 26,908µs, 11,219µs, and 19,108µs).

Therefore, in order to compare FastTrack and LOFT on the

time dimension more accurately, we present a graph in Figure

6 that compares FastTrack and LOFT using boxplot, where

the dataset is the same as that used to produce TABLE I.

In Figure 6, each sub-figure shows a boxplot graph for its

corresponding benchmark as marked in the title position,

where the x-axis represents FastTrack and LOFT, and the

y-axis represents the time needed in each of the 100 runs in

microsecond. The lines in each box show the lower quartile,

median and upper quartile time, respectively. Figure 6 shows

that the time variance for bodytrack, dedup, facesim, and

x264 can be large. However, we can still obviously see that

the lower quartile, the median, and the upper quartile of LOFT

are all lower than that of FastTrack, respectively, in each

sub-figure except the median value in the plot entitled

“blackscholes”.

We also compute the Mann-Whitney U Test result on the

raw data presented in Figure 6. The result is shown in TABLE

II. From TABLE II, we find that LOFT and FastTrack are

Benchmarks
Application

Domain

Size

(loc)

of
worker

threads

Vector operations Time (µs)
of data

races

FT (A) LOFT(B)
(B) 

(A)
FT(C) LOFT(D)

(D) 

(C)
FT LOFT

blackscholes Financial Analysis 1,665 8 3.0 1.0 0.33 1.7 1.3 0.76 0 0

bodytrack Computer Vision 11,891 8 6,520.4 3,205.0 0.49 2,819.4 2,283.4 0.81 5 5

canneal Engineering 4,526 8 61.0 11.0 0.18 25.3 21.3 0.84 0 0

dedup Enterprise Storage 3,704 8 17,545.9 14,276.1 0.81 9,661.3 8,337.9 0.86 0 0

facesim Animation 29,428 8 49,021.1 25,318.4 0.52 18,146.3 16,057.8 0.88 0 0

raytrace Rendering 13,323 8 291.1 112.8 0.39 113.6 97.0 0.85 13 13

streamcluster Data Mining 2,429 8 314,333.8 131,021.4 0.42 109,798.1 95,347.9 0.87 29 29

swaptions Financial Analysis 1,629 8 46.0 2.0 0.04 18.8 15.8 0.84 0 0

vips Media Processing 131,103 4 11,724.3 8,221.7 0.70 4,004.9 3,454.4 0.86 0 0

x264 Media Processing 37,526 8 1,601.6 1,251.8 0.78 671.2 517.4 0.77 76 76

Total - 235,559 - 799,613.9 318,477.8 0.398 276,575.6 239,000.2 0.864 123 123

Mean - - - - - 0.420 - - 0.838 - -

TABLE I. COMPARISONS ON ALL VECTOR CLOCK OPERATIONS (FT REFERRING TO FASTTRACK)

different significantly at the 0.05 significance level in all

benchmarks. The result indicates that the time cost needed to

maintain the additional data structure for the checking of our

sufficient condition in LOFT can be fully compensated.

As we have stated in the implementation paragraph,

compared to FastTrack, LOFT maintains one more variable

for every thread or lock. We conjecture that the number of

threads and locks in a real-life program is limited. The

addition of each variable only means an extra space of one

integer. The extra space needed for LOFT may be marginal.

We have not measured the size of an event log for

execution replay after applying our operation removal

technique. In the future, we will perform such an experiment.

VI. RELATED WORK

Existing data race detectors can be broadly classified into

three categories: static, dynamic, and hybrid. In general, a

static approach focuses on program analysis without executing

the program; whereas the dynamic ones analyze the observed

executions of the program to find data races or infer them, but

their scopes are limited to those observed executions. A hybrid

approach usually uses a static approach to find a candidate set

of data races, and then uses a dynamic approach to verify these

candidates. However, a dynamic or hybrid algorithm has other

limitations such as potential omissions of racing pairs on

program paths that have not been monitored. They are

inapplicable to a piece of code (e.g., a library) that is not in a

closed form or traces being unavailable. The three approaches

complement one another.

Lockset-based algorithms have the advantages of

interleaving insensitive when detecting races. For instance,

Eraser [22] is an early attempt to apply dynamic race

detection on multithreaded programs. It proposed to detect

races when the intersection of the locksets held by two threads

at an execution point is empty. A pure lockset-based algorithm

does not use vector clocks in their algorithms, whereas LOFT

removes redundant events on top of the tracking of such

relations. The analysis result used in LOFT has not been

explored by them.

Pozniansky and Schuster [19] developed MultiRace and

DJIT+. MultiRace is a hybrid of lockset-based technique and

happens-before based technique. It uses an Eraser-like

algorithm to detect spurious races on a variable, and then

invokes DJIT+ to check subsequent races. DJIT+ has been

extensively reviewed in Section III. MultitRace postpones the

time to use a precise happens-before based race detection

algorithm, and yet some races before the invocation of DJIT+

may be missed to be reported. Our analysis result can be

applied to optimize the DJIT+ phase of MultiRace. Rather than

using a lockset based and happens-before based approaches

separately, Yu et al. in RaceTrack [24] used them at the same

time, and reported a data race whenever the lockset of a

memory location becomes empty and multiple threads are still

active in accessing this location. GoldiLocks [7] refines the

traditional lockset based algorithm by also tracking the

happens-before relations among events. We are unsure

TABLE II. MANN-WHITNEY U TEST RESULT

Benchmarks
Mann-Whiney

U Test Result

blackscholes 0.000620

bodytrack < 0.000001

canneal < 0.000001

dedup < 0.000001

facesim < 0.000001

raytrace < 0.000001

streamcluster < 0.000001

swaptions < 0.000001

vips < 0.000001

x264 < 0.000001

0

0.5

1

1.5

2

2.5

3

FT LOFT

T
im

e
(µ

s)

blackscholes

0

2000

4000

6000

8000

10000

FT LOFT

T
im

e
(µ

s)

bodytrack

0

5

10

15

20

25

30

35

FT LOFT

T
im

e
(µ

s)

canneal

0

1

2

3

x 10
4

FT LOFT

T
im

e
(µ

s)

dedup

0

0.5

1

1.5

2

2.5

x 10
4

FT LOFT

T
im

e
(µ

s)

facesim

0

50

100

150

FT LOFT

T
im

e
(µ

s)

raytrace

0

2

4

6

8

10

12

x 10
4

FT LOFT

T
im

e
(µ

s)
streamcluster

0

5

10

15

20

25

FT LOFT

T
im

e
(µ

s)

swaptions

0

1000

2000

3000

4000

FT LOFT

T
im

e
(µ

s)

vips

0

500

1000

1500

2000

2500

3000

FT LOFT

T
im

e
(µ

s)

x264

Figure 6. Time comparisons between FastTrack and LOFT.

whether a LOFT-similar strategy can be integrated with

GoldiLocks.

Although LOFT is built on top of FastTrack [9], as

mentioned in Section IV, their focuses are different. Pacer [3]

used a sampling strategy that samples program execution at

the memory accesses (read or write) level to reduce time

overhead. LiteRace [16] maintained two copies of each

function in the source code, and dynamically turned on and off

the sampling of the read and write operations in a function.

Both techniques fully track the happens-before relations for

synchronization events in a program being monitored. LOFT

works on the manipulation of vector clock operations related

to threads and locks. Both LiteRace and Pacer did not explore

this dimension.

Helgrind
+
 [11] was also a combination of lockset based

and the happens-before based algorithms. Helgrind
+

considered that the conditional variables as a synchronization

idiom should also be monitored to track the happens-before

relations among events so as to reduce the amount of false

positives due to the lost signal problem [11]. It improved the

precision of Helgrind [13]. Like FastTrack, LOFT does not

detect condition variables.

AccuLock [23] was another detector that combines a

lockset based algorithm and a happens-before based algorithm.

Xie et al. observed that although the happens-before based

detectors were fast and can avoid reporting false positives,

they are sensitive to interleaving order among threads. Hence

such detectors can only detect data races existed in certain

execution. AccuLock used an improved lockset based

algorithm (Lock-Subset [23]) and a relaxed happens-before

relation (which discards the causal relations due to lock

acquisition and release) to infer data races. It suffered

imprecision to a certain extent. Because AccuLock did not

track any vector clock for any lock, our strategy cannot be

applied to it directly.

To iron out the thread-local memory locations from the

pool of all memory locations, using a state machine event filter

is popular in many detection detectors (e.g., Eraser [22],

MultiRace [19], RaceTrack [24], and MulticoreSDK [21]),

which not only improves the precision of the detectors, but

also reduces the slowdown. Our approach can also be

considered as an event filter. However, our approach retains

the resultant happens-before graph being sound and precise,

even after non-consecutive series of event removals on a trace.

Our model is based on the sequential consistency memory

model. If the memory accesses cannot be guaranteed to be

first-in-first-out, one may develop a similar strategy for

adversarial memory models [8].

VII. CONCLUSION

In this paper, we have studied the problem of vector clock

update reduction for the on-the-fly tracking of happens-before

relations on an execution trace. We have quantified a

sufficient condition that can soundly remove the involved

vector clock comparisons and assignment of vector clock

instances without affecting the precision of such tracking. We

have also applied our result to data race detection to formulate

LOFT. We have further conducted an experiment to validate

our approach. The result has shown that, on average, on top of

FastTrack, LOFT reduces 58.0% of all such vector

comparison and updates, and runs 16.2% faster in completing

the required tracking. We are generalizing the approach. It is

interesting to integrate it with a guided execution strategy.

REFERENCES

[1] G. Altekar and I. Stoica. ODR: Output-Deterministic Replay for
Multicore Debugging. In SOSP'09, pp 193–206, 2009.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In PACT’08, pp

72–81, 2008.

[3] M. D. Bond, K. E. Coons and K. S. Mckinley. PACER: Proportional
Detection of Data Races. In PLDI’10, pp 255–268, 2010.

[4] N.Barrow-Williams, C. Fensch and S. Moore. A Communication

Characterization of SPLASH-2 and PARSEC. In IISWC’09, pp 86–97,
2009.

[5] F. Chen, T. F. Serbanuta and G. Ruso. jPredictor: a Predictive Runtime

Analysis Tool for Java. In ICSE’08, pp 221–230, 2008.
[6] G. Contreras and M. Martonosi. Characterizing and Improving the

Performance of Intel Threading Building Blocks. In IISWC’08, pp 57–

66, 2008.
[7] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a Race and

Transaction-Aware Java Runtime. In PLDI’07, pp 245–255, 2007.

[8] C. Flanagan and S. N. Freund. Adversarial Memory for Detecting
Destructive Races. In PLDI’10, pp 244–254, 2010.

[9] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise

Dynamic Race Detection. In PLDI’09, pp 121–133, 2009.
[10] C. Flanagan and S. N. Freund. The RoadRunner Dynamic Analysis

Framework for Concurrent Programs. In PASTE’10, pp 1–8, 2010.

[11] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy. Helgrind+: An

Efficient Dynamic Race Detector. In IPDPS’09, pp 1–13, 2009.

[12] P. Joshi, M. Naik, C. S. Park, and K. Sen. Calfuzzer: an Extensible
Active Testing Framework for Concurrent Programs. In CAV’09, pp

675–681, 2009.
[13] Helgrind: a thread error detector. Available at: http://valgrind.org/

[14] L. Lamport. Time, Clocks, and the Ordering Of Events in a Distributed

System. Communications of the ACM 21(7):558–565, 1978.
[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.

Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized

Program Analysis Tools with Dynamic Instrumentation. In PLDI ‘05,
pp 191–200, 2005.

[16] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective

Sampling for Lightweight Data-Race Detection. In PLDI’09, pp 134–
143, 2009.

[17] D. Mosberger. Memory Consistency Models. ACM SIGOPS Operating

Systems Review 27(1):18−26, 1993.
[18] N. Nethercote and J. Seward. How to Shadow Every Byte of Memory

Used By a Program. In VEE’ 07, pp 65–74, 2007.

[19] E. Pozniansky and A. Schuster. Efficient on-the-fly Data Race
Detection in Multithreaded C++ Programs. In PPoPP’03, pp 179–190,

2003.

[20] C. von Praun and T. Gross. Static Conflict Analysis for Multithreaded
Object-Oriented Programs. In PLDI’03, pp 115–128, 2003.

[21] Y. Qi, R. Das, Z.D. Luo, and M. Trotter. MulticoreSDK: A Practical

and Efficient Data Race Detector for Real-World Applications. In
PADTAD’09, Article 5, 11 pages, 2009.

[22] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. Anderson.

Eraser: A Dynamic Data Race Detector for Multithreaded Programs.
ACM TOCS 15(4): 391–411, 1997.

[23] X.W. Xie and J.L. Xue. ACCULOCK: Accurate and Efficient

Detection of Data Races. In CGO’ 11, pp 201–212, 2011.
[24] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient Detection of

Data Race Conditions via Adaptive Tracking. In SOSP’05, pp 221–234,

2005.

	I. INTRODUCTION
	II. MOTIVATING EXAMPLE
	III. PRELIMINARIES
	A. Events
	B. Happens-before Relations and Data Race
	C. Vector Clock and DJIT+

	IV. OUR ANALYSIS AND LOFT
	V. EXPERIMENT
	A. Implementation and Benchmark
	B. Threats to Validity
	C. Data Analysis

	TABLE I. Comparisons on All Vector Clock Operations (FT referring to FastTrack)
	VI. RELATED WORK
	VII. CONCLUSION
	REFERENCES

