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Abstract—Many happens-before based techniques for 

multithreaded programs implement vector clocks to track 

incrementally the causal relations among the synchronization 

operations acting on threads and locks. In these detectors, every 

such operation results in a vector-based assignment to a vector 

clock, even though the assigned value is the same as the value of 

the vector clock right before the assignment. The cost of such 

vector-based operations however grows with the number of 

threads and the amount of such operations. It is unclear to what 

extent redundant assignments can be removed. Whether two 

consecutive assignments to the same vector clock of a thread 

result in the same content critically depends on the operations on 

the locks occurred in between these assignments. In this paper, we 

systematically explore the said insight and quantify a sufficient 

condition that can soundly remove such operations without 

affecting the precision of such tracking. We applied our approach 

on FastTrack to formulate LOFT. We evaluate LOFT using the 

PARSEC benchmarking suite. The result shows that, on average, 

LOFT removes 58.0% of all such operations incurred by 

FastTrack, and runs 16.2% faster than the latter in tracking the 

causal relations among these operations. 

Keywords-data race detection; redundant operation optimization 

I. INTRODUCTION 

The advent of multi-core processors motivates 

programmers to develop multithreaded programs to improve 

the efficiency of their programs through parallel computations. 

However, any improper synchronization among threads in a 

multithreaded program may lead the program to produce a 

failure, such as a wrong output or crash. Unfortunately, 

debugging a multithreaded program can be intricate because a 

concurrency bug may merely manifest itself into a failure in 

some but not all interleaving sequences of threads even for the 

same input.  

A data race is said to occur if two or more threads 

accessing the same memory location in an undetermined order, 

and at least one of these accesses is a write operation [9]. If 

such a data race can lead the program to produce unexpected 

behavior, the race is said to be harmful. Detecting (harmful) 

data races in programs is one of the preventive measures to 

assure the reliability of multithreaded programs. 

In particular, many dynamic detectors have been 

proposed.  Examples include Goldilock [7], FastTrack [9], 

LiteRace [16], DJIT+ [19], Helgrind
+
[11], AccuLock [23], 

RaceTrack [24], and Eraser [22]. These detectors can be 

sub-classified into lockset based algorithms (e.g., [7][22]), 

happens-before based algorithms (e.g., [9][16][19]), and the 

hybrid of the former two (e.g., [11][23][24]). Lockset based 

algorithms in general run faster than, but are much less precise 

than the other two kinds of dynamic detectors. FastTrack, 

being a kind of happens-before based algorithm, recently 

demonstrated that this class of algorithm can be efficiently 

implemented. For instance, the mean efficiency of FastTrack 

can be comparable with that of lockset based algorithms (e.g., 

Eraser) in an empirical experiment using a suite of Java 

programs as subjects [9].  

We observe that almost all happens-before based dynamic 

detectors commonly implement vector clocks [14] to track the 

casual relationships among memory accesses, lock operations, 

and thread manipulation. In these detectors, every operation 

that tracks such relationships among lock operations and 

thread management must produce a vector join operation over 

two vector clocks, and the result of the join may further be 

assigned to at least one vector clock. For instance, although 

Pacer [3] applies a sampling approach to collect memory 

access operations to reduce the overhead for data race 

detection, yet it still needs to track the casual relationships 

among threads and locks in full, irrespective to whether or not 

these events occur in sampling periods.  

In this paper, we study the problem of precise reduction of 

vector clock updates for threads and locks in the on-the-fly 

tracking of the happens-before relations on an execution trace. 

We apply our result to dynamic happens-before based data 

race detectors. It is worth noting that our solution is general 

rather than restrictive to such detectors. 

The size of each vector clock in such a detector grows as 

the number of threads in a program increases. Hence, the time 

costs of the said join and assignment operations also change 

(linearly) with the number of threads in a program.  

Is it always necessary for a dynamic happens-before based 

detector to assign a new instance to a vector clock whenever 

an operation of the above kind is observed? If the answer is 

negative, how can a technique soundly identify those 

redundant operations? Moreover, to what extent can such a 

technique remove the involved redundant operations? There 

are wide applications of this kind of technique. For instance, if 

such a technique can remove a large amount of such redundant 

operations, the size of a corresponding operation log for 

post-mortem analyses or execution replay techniques can be 

reduced significantly. To the best of our knowledge, the above 

research questions have not been explored. † This work is supported in part by the General Research Fund of 

the Research Grant Council of Hong Kong (project no. 111410). 



We observe that whether two consecutive assignments to 

the same vector clock of a thread result in the same content 

critically depends on the operations for those lock occurred in 

between the two assignments. Let us consider the following 

example: Suppose that a thread t releases a lock m followed by 

acquiring it. Further suppose that in between this pair of 

operations, no thread acquires m or releases it. In this situation, 

a detector needs not to assign any value to m’s vector clock to 

reflect the lock acquisition operation. It is because the original 

value kept by m’s vector clock is still sufficient to reflect the 

latest causal relationship between t and m, and the visible 

timestamps of other threads from the viewpoint of t. To ease 

our presentation, we refer to such a “suppressed” vector-based 

operation (such as a comparison or an assignment) as a 

redundant operation.  

In this paper, we explore the above insight. We 

systematically and exhaustively analyze and characterize the 

above kinds of scenarios, and formulate the conditions that can 

soundly remove such redundant operations. We apply our 

approach to formulate an algorithm called LOFT, standing for 

Lock-Optimized FastTrack. We base our approach on 

FastTrack [9] because FastTrack represents the state of the art 

for dynamic happens-before based algorithms.  

In the experiment, we evaluated, via LOFT, to what extent 

our approach can eliminate vector clock updates for 

synchronization operations acting on threads and locks without 

compromising the precision of data race detection of 

FastTrack on the PARSEC benchmarking suite [2][6][11]. 

The experimental result showed that on average, LOFT 

removed 58.0% of all such operations needed by FastTrack 

without any loss in detection precision, and ran 16.2% faster 

than FastTrack in tracking all causal relationships among the 

synchronization operations acting on threads and locks in the 

executions of these subjects.  

The main contribution of this paper is threefold: (1) We 

identify and characterize a class of thread-centric scenarios 

that each involves a consecutive pair of lock operations. We 

formulate the first sufficient condition that redundant 

operations can be soundly removed without affecting the 

precision of the causal relations being tracked on the fly. Our 

solution on the elimination of the redundant vector clock 

updates is general and not restrictive to a particular correctness 

criterion (e.g., data race freedom) used in pair with our 

solution. (2) It proposes a data race detector (LOFT), which 

implements our approach. (3) It reports an experiment that 

validates the feasibility of our approach, and compares LOFT 

with FastTrack. The experimental result show a significant 

amount of vector clock updates induced by synchronization 

operations can be removed. The result also shows that the time 

cost to maintain the data structure for the above sufficient 

condition and the checking itself are well-compensated by the 

reduced amount of vector clock updates.  

The rest of the paper is organized as follows. Section II 

presents a motivating example. Section III elaborates the 

preliminaries of happens-before based data race detection. 

Section IV presents our analysis and LOFT. Section V reports 

an experiment that validates our approach. Section VI reviews 

related work. Section VII concludes the paper.  

II. MOTIVATING EXAMPLE  

Figure 1(a) shows a motivating example adapted from the 

classic Producer and Consumer Problem. It shows a shared 

location pool, which is protected by a shared lock m, and two 

threads (Producer and Consumer). The Producer thread 

repetitively produces a datum, and puts it into pool. The 

Consumer thread repetitively fetches a datum from pool.  

 Figure 1(b), from top to bottom, shows a possible 

execution that interleaves between the two threads, as 

indicated by the rightmost and the leftmost columns of Figure 

1(b). The Producer thread firstly acquires and releases the 

lock m twice. Then, the Consumer thread also acquires and 

releases the lock twice. Finally, the Producer thread acquires 

and releases the lock. In total, the execution involves five lock 

acquires and five lock releases. 

Let us use FastTrack [9] on the above execution to 

illustrate our point. The algorithm firstly sets up three vector 

clocks for m, Producer, and Consumer, respectively, as 

shown in Figure 1(b) under the vector clock column. To 

track each lock acquire or release operation on the fly, the 

algorithm needs to perform two vector-based operations, one 

for comparing two vector clock instances and another for 

updating the vector clock of m, Producer, or Consumer to 

Shared variables 

int pool[1000]; 

bool isPoolEmpty; 

Lock m; 

bool isPoolFull; 
Consumer Producer 

while(true) 

{ 
while(isPoolEmpty)wait(100); 

Acquire(m); 

//fetch a datum from pool 

… 

Release(m); 

} 

while(true) 

{ 
while(isPoolFull) wait(100); 

Acquire(m); 

//add a datum to pool 

… 

Release(m); 

} 

(a) The code 

Possible interleaving 

(for brevity, we only show acquire and release operations) 
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Release(m); 

… 
 

(b) Analysis on vector clock instances on a possible execution 

 Figure 1. An example consumer and producer example  



keep another instance. Therefore, FastTrack needs in total 10 

such (vector clock) operations. Every such operation takes O(n) 

time, where n is the size of a vector clock, which is also the 

number of threads in the example (i.e., 2). The values of the 

three vector clocks are also shown in Figure 1(b). 

We observe that many such lock acquire (release, 

respectively) operations marked with the star “*” symbols 

(“-”, respectively) in Figure 1(b) need either no vector-based 

operation at all or merely an assignment of a value to one 

entry of one vector clock. In the figure, they are shown as 

shaded vector clocks and shaded entries, respectively. The 

underlying reason is as follows: the lock is consecutively 

acquired or released by the same thread. Because the lock is 

only used by the same thread (say Producer), updating the 

vector clock of the thread to collect the timestamp of another 

thread is unnecessary.  

Owing to the above reason, the involved vector-based 

operations for these “* “ and “-” operations can be either 

safely removed or replaced by an assignment with a scalar 

value, which only takes O(1) time. Consequently, in an ideal 

case, only the operations marked with the plus “+” need to 

take vector-based operations. Hence, to track the causal 

relationships as illustrated in Figure 1(b), a good algorithm can 

use three vector clock operations to complete the tracking of 

all these vector clock instances. In summary, seven operations 

are redundant, which can be substituted by scalar operations, 

such as updating the value in the initialized vector clock 

instance of the lock m from “1” to “2” on the second release of 

the Producer thread. Our approach explores this insight. 

III. PRELIMINARIES 

A. Events  

A data race detector typically monitors a set of critical 

operations, such as read (rd) from or write (wr) to a memory 

location v; acquire (acq) or release (rel) a lock m; fork or join 

a thread t. Like many existing work, our model does not 

consider nested locks because the handling of such locks or 

reentrance locks can be extended. Following [9], for brevity, 

we only present how our model handles the above set of six 

critical operations. We assume that we can obtain the standard 

execution information such as the identity of each thread and 

the related program statement associated with each operation. 

A trace  is the projection of an execution of a program 

on this set of critical operations. We assume that the program 

being monitored is sequentially consistent [17]. Moreover, we 

assume that a lock can only be acquired by at most one thread 

at a time.  

B. Happens-before Relations and Data Race 

A happens-before relation, denoted by 
  
→ , is a partial 

order relation among events in a multi-threaded program or 

concurrent system [14]. It is defined by the following three 

rules: (a) Program order: If   and   are two events (i.e., 

two critical operations described above) performed by the 

same thread, and   precedes  , then we write  
  
→  . (b) 

Release and acquire: If   is a release operation of a lock m, 

and   is an acquire operation of the same lock m performed 

by a thread different from the one performing  , and   

precedes  , then we write  
  
→  . (c) Transitivity: if  

  
→   and 

 
  
→  , then  

  
→  . 

A data race is formally defined as follows: Suppose that 

two events   and   accessing the same shared location v in 

a trace, and at least one of them is a write. If neither  
  
→   nor 

 
  
→  , then ( ,  ) forms a racing pair. We consider that both 

( ,  ) and ( ,  ) refer to the same racing pair. Similarly, we 

consider that (statement( ), statement( )) is also the same 

racing pair as ( ,  ), where statement(x) is the program 

statement that is associated with the event x. The shared 

location v is said to be in race.  

An algorithm for dynamic data race detection outputs a 

set of event pairs or a set of locations based on a set of traces. 

An event pair is said to be a false positive if the reported pair 

is not a racing pair. Similarly, a location v is said to be a false 

positive if v is not in race on any such trace, and yet the 

algorithm does not include the location in its output. An 

algorithm is said to be precise if any reported racing pair or 

location is not a false positive.  

C. Vector Clock and DJIT+ 

We use DJIT+ [19] to illustrate data race detections. 

A timestamp is a number. A vector clock is a finite array 

of timestamps. DJIT+ assigns one vector clock    to each 

thread t. This vector clock logs the thread’s current timestamp 

as well as the other threads’ timestamps visible to the thread t. 

DJIT+ also assigns one vector clock    to each lock m. For 

each memory location v, it assigns two vector clocks    and 

Algorithm: DJIT+ 

On initialization: 

1. For each thread t,   [i] =1, where i is from 1 to n. 

2. For each memory location v,   [i] =   [i] = 0, where i is 

from 1 to n. 

3. For each lock m,   [i] = 0, where i is from 1 to n. 

On acquiring a lock m for thread t: 

4.   [i] = max {  [i],   [i]}, where i is from 1 to n. 

On releasing a lock m for thread t: 

5.   [t] =   [t] +1. 

6.   [i] = max {  [i],   [i]}, where i is from 1 to n. 

On the first read to a memory location v in the current 

timestamp for thread t: 

7.   [t] =   [t]. 

8. For each thread i (where i≠t), if            , report a 

write–read data race, where i is from 1 to n. 

On the first write to a memory location v in the current 

timestamp for thread t: 

9.   [t] =   [t]. 

10. For each thread i (where i≠t), if          [i], report a 

write–write data race, where i is from 1 to n. 

11. For each thread i (where i≠t), if         [i], report a 

read–write data race, where i is from 1 to n. 

 
Figure 2. The DJIT+ algorithm 



    for the write and read operations on v, respectively.  

Each thread t has its own timestamp variable that is 

incremented on each release operation performed by t.    

records the current timestamps of the thread t and others 

threads gotten from    on acquiring the lock m by t.     

records a snapshot of    when t releases the lock m.  

To maintain its data structure, DJIT+ uses the following 

strategies. For every acquire operation on the lock m 

performed by the thread t, DJIT+ updates    to be a vector 

instance, in which each entry is the maximum of the 

corresponding entries in    and    (i.e.,   =       , see 

   [9]). For every release operation of a lock m, DJIT+ 

increments the timestamp kept at       by one (while all the 

other values kept by    remain unchanged), followed by 

updating    to be a vector instance, in which each entry is 

the maximum of the corresponding entries in    and    (i.e., 

  =      ).  

Moreover, for every write (read, respectively) operation 

to a memory location v performed by a thread t, DJIT+ 

updates       (     , respectively) to be the contents of t’s 

vector clock (i.e.,            ). Immediately after each 

read operation (by a thread t) from the location v, DJIT+ 

compares    with    to determine whether any thread, say i 

(where i   ), recorded in these two vector clock instances 

violates the following condition             . If this is the 

case, a write-read data race is said to have been detected. 

Similarly, immediately after each write operation to v, in 

addition to the above comparison for the purpose of detecting 

write-write data races, DJIT+ further compares    with    

to determine whether any thread, say i (where    ), recorded 

in these two vector clock instances violates the following 

condition             . If this is the case, a read-write data 

race is said to have been detected.   

Figure 2 shows the DJIT+ algorithm (where n is the 

number of threads). DJIT+ slows down a program execution 

significantly, especially if the execution involves many 

concurrently running threads. This is because DJIT+ needs one 

vector-to-vector comparison for every read or write operation 

on every memory location and every lock acquire or release 

operation, which is O(n) in time complexity each.  

IV. OUR ANALYSIS AND LOFT 

Figure 3 depicts an overview of our technique LOFT. The 

component with a solid frame differentiates LOFT from other 

data race detectors, in which LOFT implemented our analysis 

result to remove some possible operations on vector clock 

instances for threads manipulation and lock events. 

FastTrack reduces the amount of vector creations and 

usages incurred by DJIT+ to record the time that an execution 

accesses memory locations (i.e., steps 7−11 in Figure 2). To 

track their happens-before relations, these algorithms 

(including FastTrack) commonly update the vector clock 

instances for threads and locks by assigning them with other 

vector clock instances whenever an event for thread 

management or lock operations is observed. As we have 

illustrated in the motivating example, every such event results 

in at least one vector-based comparison or assignment (i.e., the 

steps 4−6 in Figure 2) [9][16][19].  

In this section, we analyze the scenarios for the steps 4−6 

in Figure 2. As we have described in Section I, our approach is 

generic. Specifically, we characterize lock acquire and release 

operations by exhausting all possible scenarios in between a 

pair of such consecutive operations performed by the same 

thread. We present them as six cases as depicted by Figure 4.  

We firstly present some auxiliary functions to ease our 

subsequent presentation. Suppose that    and    are two 

vector clock instances, and the number of elements in either 

instance is n. If   [i]        for 1  i  n, we denote this 

condition by         Similarly, if   [i] =       for 1  i  n, 

we denote this condition by      . We also define       

to be a vector clock instance    such that   [i] = max(   [i],  

       for 1  i  n, and the number of elements in the 

instance is also n. We use    (for j=1, 2 …) to denote critical 

operations. We also define two functions: lastLock(t) 

represents the most recent lock that the thread t has released, 

and lastThread(m) represents the most recent thread that has 

released the lock m. For instance, in the motivating example, 

when the first occurrence of the acquire(m) event in the 

Consumer column of Figure 1(b) occurs, the Consumer 

thread did not acquire (hence did not release) any other lock. 

So, for this event, lastLock (Consumer) is null. At this 

moment, m has been most recently released by the Producer 

thread via the second occurrence of the release(m) event of 

Producer. So, with respect to the above acquire(m) event, 

lastThread (m) is Producer.  

We are going to present six cases. In each case, the 

condition refers to the condition when    in the case occurs, 

which is also the highlighted event for the corresponding case 

in Figure 4.  

When    is Acquire (t, m)  

Case 1. [when lastThread(m) = t ].  

Let    be an event in a trace that t releases m such that 

lastThread(m) = t, and    be an event in the same trace 

that t acquires m.  

Consider the trace     ,       . When    occurs, 

we must have       (as shown as the first arrow in 
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Figure 3. An overview of LOFT (the solid part differentiates LOFT from other 

data race detectors. Pin is a dynamic instrumentation tool, see Section V) 



Case 1 of Figure 4). Moreover, when    occurs,    

must still remain unchanged. However, the values in    

may or may not be incremented because t may acquire 

some other lock(s) in between    and   ; otherwise,    

must remain unchanged. In either situation, we have 

      when    occurs. So, for the tracking of     
assigning the values from       to    does not change 

the values kept in   . Therefore, there is no need to 

perform any comparison between          . Hence, the 

above assignment can be removed (which is shown as a 

dotted arrow in Case 1 of Figure 4) when    occurs. 

Case 2. [when lastThread(m) ≠ t ]. 

Let    be an event that t acquires m.  

Consider the trace        . When    occurs, 

because we have lastThread(m) ≠ t, there are two 

sub-cases to consider: m must either have been released by 

a thread t’ (where t’≠ t) or have not been updated since it 

was initialized. In the former case,    must once contain 

a value the same as that of        as shown by the first 

arrow in Case 2 of Figure 4. In the latter case, the value of 

   should be different from that of    because all locks 

are initialized as all 0s, whereas all threads are initialized 

as all 1s (see steps 1 and 3 of Figure 2). Therefore, without 

further checking, we cannot decide whether       

holds when    occurs. In this situation, when    occurs, 

such a comparison and its associated potential assignment 

from       to    are necessary, and cannot be 

removed (which is depicted by the second arrow in Case 2 

of Figure 4). 

When    is Release (t, m)  

Case 3. [when lastThread(m) = t and lastLock(t) = m].  

Let    be an event in a trace that t releases m such that 

lastThread(m) = t and lastLock(t) = m,    be an event 

that t releases m, and    be the corresponding acquire 

operation by t with respect to   .  

Consider the trace     ,           , which is 

depicted as Case 3 in Figure 4. The analysis for Case 3 is 

straightforward: When    occurs, we have      . In 

between    and    as well in between   and   , the 

condition lastLock(t) = m implies that t has not acquired 

or released any other lock after   . Moreover, the 

condition lastThread(m) = t implies that m has not been 

acquired or released by any other thread after   , These 

two conditions respectively imply that    and    remain 

unchanged when    occurs. Therefore, we have       

when    occurs. Consequently, we have       

carrying the same value as that kept by   . Hence, there is 

no need to update   . When    occurs, the involved 

vector-based comparison between    and    and the 

assignment to    can be removed (which is depicted by 

the third (dotted) arrow in Case 3 of Figure 4). 

Case 4. [when lastThread(m) = t and lastLock(t) ≠ m]. 

Let    be an event that t releases m such that 

lastThread(m) = t,    be an event that t releases m, and 

   be the corresponding acquire operation of   . These 

three events are depicted as the first and the last two 

operations in Case 4 of Figure 4.  

Consider the trace     ,           . When    

occurs, the condition lastThread(m) = t implies that m 

has not been acquired and released by any other thread in 

between    and   . Hence,    remains unchanged since 

the occurrence of   . (Note that also because of this 

condition,    must have been updated at least once, and 

hence,    cannot stay at its initialized value.) However, 

when    occurs, the condition lastLock(t) ≠ m implies 

that    has been updated due to the thread’s acquisition of 

some other lock(s) in between    and    (as illustrated 

by the acq(l) operation in the example). This operation 

may have incremented some timestamps kept by    with 

respect to the same vector clock at the time when    

occurs. Therefore, the assignment from       to    

cannot be removed when    occurs.  

Case 5. [when lastThread(m) ≠ t and lastLock(t) = m]. 

Let    be an event that t releases m such that 

lastLock(t) = m,    be an event that t releases m, and    

be the corresponding lock acquire operation of   . Similar 

to Case 4, these three events are depicted as the first and 

the last two operations in Case 5 of Figure 4.  

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

        s     l t m               

rel(m)    rel(m) rel(m)   rel(m)  rel(m)      rel(m) 

***  acq(m)   acq(m)   acq(l)    acq(m)  acq(l)   

acq(m) 

 

    rel(m)   rel(l)    rel(m)  rel(l)   

        acq(m)  acq(m)    acq(m)   

        rel(m)  rel(m)    rel(m)   
                 

 
Figure 4. Example scenarios of the six cases on acquiring or releasing a lock (where    and   are threads; and   and   are locks; rel(m) and acq(m) represent 

release(m) and acquire(m), respectively. “→” is the direction for vector clock assignment between the corresponding thread and lock: (1) an arrow with a dot at the 

end of the arrow shows an acq(m) or a rel(m) operation that satisfies the LRDB or LRG relation, (2) a dotted arrow shows a corresponding acq(m) or rel(m) 

operation that violates the LRDB or LRG relation, (3) a gray arrow is just for the reference. “***” means that there may be additional pairs of acq(x) and rel(x) 

where x is a lock). 



Consider the trace     ,           . When    

occurs, the condition lastLock(t) = m implies that t has 

not acquired or released any lock other than m since    

occurred. Therefore, in between    and   ,    remains 

unchanged. The condition lastThread(m) ≠ t further 

implies that, in between    and   , m must have been 

acquired by other threads (as illustrated by the acq(m) 

operation by the thread s in the example). Hence,    

might have been updated (e.g., by the rel(m) operation of s 

in the example). So, we must have       in this period. 

The condition lastThread(m) ≠ t also implies that, 

when    occurs,     must be updated to be      . 

Hence, we have       when    occurs. 

In between    and   , m cannot be acquired or 

released by any other thread because m is being held by t. 

Moreover, during this period, t cannot release a second 

lock (otherwise, the condition lastLock(t) = m cannot 

hold). Therefore, when    occurs, the condition       

still holds. Similar to Case 3, both the vector-based 

comparison and the assignment can be removed.  

Case 6. [when lastThread(m) ≠ t and lastLock(t) ≠ m]. 

In this case, we cannot infer anything between t and m. 

Therefore, no vector-based comparison or assignment can 

be removed. An example scenario is depicted as Case 6 in 

Figure 4.  

In the rest of the paper, we refer to the condition in Case 

1 (i.e., lastThread(m) = t) on acquire(t, m) as LRDB(t, m), 

which standing for “Last ReleaseD By”. Similarly, the 

conditions in Case 3 and Case 5 can be combined into one 

condition: lastLock(t) = m on Release(t, m), which we refer 

to it as LRG(t, m), standing for “Last ReleasinG”.  
 

LOFT State:  

 C: Tid   (VC, Lock )  L: Lock   (VC, Tid )  W: Var   Epoch R: Var   (Epoch   VC) 

       

                               
 

              

                                
 

On Acquire (t, m) 

[LRDB(t, m)] 

 

[Otherwise] 

        
        

                     

                 

                                 
 

        
          

           

                 

                                 
 

On Release (t, m) 

[LRG(t, m)] 

[Otherwise] 

Other rules of LOFT  

       

                          
 

     
     

                   

                           
 

        
     

     

            

                           
 

      
     

                 

         

                           
 

On Reads(t, x): 

[read same epoch] 

[read shared] 

[read exclusive] 

[read share] 

       

                          
 

        
     

     

            

                           
 

     
     

     

            

           

                            
 

On Writes(t, x): 

[write same epoch] 

[write exclusive] 

[write shared] 

 

                         

                             
 

                         

                             
 

On Fork(t, u): 

On Join(t, u) 

 

 
Figure 5. LOFT and its comparison to FastTrack (shading lines show the differences between FastTrack and LOFT) 



As a result, we formulate the following strategy: if 

LRDB(t, m) holds on acquire(t, m), the corresponding 

comparison between    and    and its associated vector 

clock assignment from       to    can be removed. 

Moreover, if LRG(t, m) holds on release(t, m), such a 

comparison and the associated assignment from       to 

   can also be removed. In our empirical experiment to be 

presented in the paper, this strategy can successfully remove 

58.0% such operations.  

Figure 5 shows our Lock-Optimized FastTrack (LOFT) 

algorithm and its comparison with the FastTrack algorithm 

(i.e., the rules without the shaded parts). Apart from 

introducing the conditions, LOFT also extends FastTrack by 

adding one variable to each thread and one variable to each 

lock as shown in the State section of LOFT in Figure 5.  

To ease our presentation, we use the same notations as 

these used in [9]. Specifically, LOFT maintains an analysis 

state (C, L, R, W) composing of four parts: (1) C maps each 

thread t (identified by a unique identity Tid) to a vector clock 

(VC) and a lock m (identified by a unique identity Lock), 

where m is the most recent lock that the thread t has released. 

(2) L maps each lock m to a vector clock and a thread t where t 

is the last thread that releases m. (3) R maps a memory 

location to an epoch [9] or a vector clock of this location. (4) 

W maps a memory location to an epoch. We use    to denote 

the vector clock of the thread t, and    to denote the vector 

clock of the lock m. We also use        and       to 

denote the lock m mapped from the thread t in   and the 

thread t mapped from the lock m in  , respectively. 

Initially, each thread is mapped to an empty lock and a 

newly initialized vector clock instance with a value of “1” in 

every entity. Moreover, each lock is mapped to an empty 

thread and a newly initialized vector clock instance with a 

value of “0” in every entity. The rest of the initial state is the 

same as that of FastTrack.  

Operations on Lock Acquisition: As shown in Figure 5, 

on acquiring a lock m by a thread t, LOFT firstly checks 

whether LRDB(t, m) holds (by        ). If this condition is 

satisfied, LOFT does nothing. Otherwise,        
       is performed as FastTrack does, where the notation 

         means that    is constructed from   by 

substituting the entry      by x.  

Operations on Lock Release: On releasing a lock m by a 

thread t, LOFT firstly checks whether LRG(t, m) holds (by 

        ). If this condition is satisfied,             
          is performed; otherwise,            is 

performed as FastTrack does. Lastly, LOFT increases the 

timestamp of the thread t (                  , where 

        means               ). It also updates the 

mapping between the lock m and the thread t by performing 

both          and          .  

V. EXPERIMENT 

A. Implementation and Benchmark 

Implementation. We implemented LOFT by adding a 

32-bit integer to every lock and every thread to record the last 

thread that releases the lock concerned and the most recent 

lock released by the thread concerned, respectively. For a 

program with n threads and k locks, the worst case space 

complexity to keep the state for these threads and locks is O(n
2 

+ kn), which is the same as that of the FastTrack. The 

introduction of the additional integers in our technique does 

not affect this worst case space complexity order.  

We implemented both LOFT and FastTrack using Pin 2.9 

[15], which is a program dynamic instrument analysis tool. To 

implement such a data race detection tool, we needed to 

shadow every memory location to a set of data (i.e., write 

epoch, read epoch, and shared read vector clock). We adopted 

a two level shadow implementation M0 described in [18]. For 

each thread, because Pin supplies a thread-local storage (TLS) 

per thread [15], we used this TLS to store a data set (i.e., a 

vector clock) for each thread. For each lock, we used an 

unordered map supplied by the GCC compiler to map the lock 

to a set of data (i.e., a vector clock). Regarding events 

monitoring, except the thread-starting event supplied by Pin, 

we dynamically inserted event calls before or after the 

interesting operations. Following [9], and to allow a fair 

comparison, our implemented FastTrack and LOFT also 

reported at most one race condition for each memory location. 

Benchmarks. We selected the PARSEC benchmark suite 

2.1 [2] to evaluate LOFT, which is a set of multithreaded 

programs used in previous experiments (e.g., [4][6][11]). The 

suite includes 13 benchmarks: blackscholes, bodytrack, 

canneal, dedup, facesim, ferret, fluidanimate, 

freqmine, raytrace, streamcluster, swaptions, vips, 

and x264. Among these benchmarks, freqmine does not use 

the standard Pthreads library, we discarded it because our 

implementations are built on top of the standard Pthreads 

library; ferret and fluidanimate crashed when we ran 

them under the Pin environment. We used all the remaining 10 

benchmarks in our experiment and executed them with the 

simsmall input test.  

Our experiment was performed on the Ubuntu 10.04 

Linux configured with a 3.16GHz Duo2 processor and 3.25GB 

physical memory. Each benchmark was run 100 times. 

TABLE I shows the average number of vector operations 

performed on synchronization events and time needed to 

complete all such tracking on each benchmark (see the 

columns Vector operations and Time, respectively). We 

set each benchmark to have eight worker threads except vips 

that were preset to have four (fixed) worker threads in the 

downloaded suite. 

B. Threats to Validity 

In the experiment, we used the PARSEC benchmark suite 

to validate LOFT. These benchmarks belong to either desktop 

applications (blackscholes, bodytrack, facesim, 



raytrace, swaptions, vips, and x264) or OS kernels 

(cannel, dedup, and streamcluster). Further experiment 

on widely used applications such as Firefox, and Apache 

Web Server may strengthen the experiment. 

Our tool used in this paper was implemented in C++. The 

time measurement may be affected if other programming 

languages were used for implementation.  

We have carefully studied several C/C++ tools that use 

the Pin framework, especially those related to thread 

operations. We have compared our detected data races to those 

detected by other tools (e.g., [13]) to help assure our tool.  

C. Data Analysis 

Summary of Results. TABLE I summarizes the results of 

the experiment. The second and the third columns counting 

from the left report the application domain [2] and the lines of 

code for each benchmark, respectively. The fourth column 

shows the number of threads used in the experiment. The 

column “Vector operations” shows the number of vector 

clock operations performed for FastTrack (FT) and LOFT, as 

well as the ratio of LOFT to FastTrack in the column “(B)  

(A)”. The column “Time” shows the corresponding time 

needed to complete all such tracking in microsecond (µs) for 

FastTrack and LOFT, as well as the ratio of LOFT to 

FastTrack in the column “(D)  (C)”. We note that the 

reported time for LOFT has included the time overhead to 

maintain the LRDB and LRG conditions. The last column is for 

reference, which shows the number of detected data races on 

each benchmark because our main focus is on the removal of 

redundant operations related to threads and locks.  

Precision. We find that FastTrack and LOFT reported the 

same number of data races in each run on each benchmark, 

except on x264. On x264, 77 data races were reported during 

most of runs, and we took an average on 100 runs. The mean 

results are shown in the rightmost column of TABLE I. From 

the number of detected data races, we find that LOFT does not 

compromise the precision of FastTrack.  

Vector Operations Analysis. From TABLE I, we observe 

that LOFT, on average, can remove 58.0% of all the vector 

clock operations that are needed in FastTrack for lock 

acquisition or release. If we consider the total amount of 

operations that can be removed from the entire suite, LOFT 

can remove 60.2% on top of FastTrack.  

Such reduction can help a technique to reduce the size of 

the operation log for subsequent analysis such as execution 

reply, where such synchronization events play a key role in 

determining the interleaving sequence among threads in a 

replayed execution. 

Time Analysis. From the column Time in TABLE I, we 

observe that, on average, LOFT runs 16.2% faster than 

FastTrack on completing these vector operations. On 

examining the time needed for each benchmark, we find that 

the variance in time is large among the set of runs for the same 

technique. For example, on dedup, the mean time for 

FastTrack is 8,337.9µs. However, we have experienced that 

some runs on this subject take 2 to 3 folds of time than this 

average value (e.g., 26,908µs, 11,219µs, and 19,108µs). 

Therefore, in order to compare FastTrack and LOFT on the 

time dimension more accurately, we present a graph in Figure 

6 that compares FastTrack and LOFT using boxplot, where 

the dataset is the same as that used to produce TABLE I.  

In Figure 6, each sub-figure shows a boxplot graph for its 

corresponding benchmark as marked in the title position, 

where the x-axis represents FastTrack and LOFT, and the 

y-axis represents the time needed in each of the 100 runs in 

microsecond. The lines in each box show the lower quartile, 

median and upper quartile time, respectively. Figure 6 shows 

that the time variance for bodytrack, dedup, facesim, and 

x264 can be large. However, we can still obviously see that 

the lower quartile, the median, and the upper quartile of LOFT 

are all lower than that of FastTrack, respectively, in each 

sub-figure except the median value in the plot entitled 

“blackscholes”.  

We also compute the Mann-Whitney U Test result on the 

raw data presented in Figure 6. The result is shown in TABLE 

II. From TABLE II, we find that LOFT and FastTrack are 

Benchmarks  
Application 

Domain 

Size 

(loc) 

# of 
worker 

threads 

Vector operations Time (µs) 
# of data 

races 

FT (A) LOFT(B) 
(B)  

(A) 
FT(C) LOFT(D) 

(D)  

(C) 
FT LOFT 

blackscholes Financial Analysis 1,665 8 3.0 1.0 0.33 1.7 1.3 0.76 0 0 

bodytrack Computer Vision 11,891 8 6,520.4 3,205.0 0.49 2,819.4 2,283.4 0.81 5 5 

canneal Engineering 4,526 8 61.0 11.0 0.18 25.3 21.3 0.84 0 0 

dedup Enterprise Storage 3,704 8 17,545.9 14,276.1 0.81 9,661.3 8,337.9 0.86 0 0 

facesim Animation 29,428 8 49,021.1 25,318.4 0.52 18,146.3 16,057.8 0.88 0 0 

raytrace Rendering 13,323 8 291.1 112.8 0.39 113.6 97.0 0.85 13 13 

streamcluster Data Mining 2,429 8 314,333.8 131,021.4 0.42 109,798.1 95,347.9 0.87 29 29 

swaptions Financial Analysis 1,629 8 46.0 2.0 0.04 18.8 15.8 0.84 0 0 

vips Media Processing 131,103 4 11,724.3 8,221.7 0.70 4,004.9 3,454.4 0.86 0 0 

x264 Media Processing 37,526 8 1,601.6 1,251.8 0.78 671.2 517.4 0.77 76 76 

Total - 235,559  - 799,613.9 318,477.8 0.398 276,575.6 239,000.2 0.864 123 123 

Mean - - - - - 0.420 - - 0.838 - - 

 

TABLE I. COMPARISONS ON ALL VECTOR CLOCK OPERATIONS (FT REFERRING TO FASTTRACK) 

 



different significantly at the 0.05 significance level in all 

benchmarks. The result indicates that the time cost needed to 

maintain the additional data structure for the checking of our 

sufficient condition in LOFT can be fully compensated. 

As we have stated in the implementation paragraph, 

compared to FastTrack, LOFT maintains one more variable 

for every thread or lock. We conjecture that the number of 

threads and locks in a real-life program is limited. The 

addition of each variable only means an extra space of one 

integer. The extra space needed for LOFT may be marginal.  

We have not measured the size of an event log for 

execution replay after applying our operation removal 

technique. In the future, we will perform such an experiment.  

VI. RELATED WORK 

Existing data race detectors can be broadly classified into 

three categories: static, dynamic, and hybrid. In general, a 

static approach focuses on program analysis without executing 

the program; whereas the dynamic ones analyze the observed 

executions of the program to find data races or infer them, but 

their scopes are limited to those observed executions. A hybrid 

approach usually uses a static approach to find a candidate set 

of data races, and then uses a dynamic approach to verify these 

candidates. However, a dynamic or hybrid algorithm has other 

limitations such as potential omissions of racing pairs on 

program paths that have not been monitored. They are 

inapplicable to a piece of code (e.g., a library) that is not in a 

closed form or traces being unavailable. The three approaches 

complement one another.  

Lockset-based algorithms have the advantages of 

interleaving insensitive when detecting races.  For instance, 

Eraser [22] is an early attempt to apply dynamic race 

detection on multithreaded programs. It proposed to detect 

races when the intersection of the locksets held by two threads 

at an execution point is empty. A pure lockset-based algorithm 

does not use vector clocks in their algorithms, whereas LOFT 

removes redundant events on top of the tracking of such 

relations. The analysis result used in LOFT has not been 

explored by them.  

Pozniansky and Schuster [19] developed MultiRace and 

DJIT+. MultiRace is a hybrid of lockset-based technique and 

happens-before based technique. It uses an Eraser-like 

algorithm to detect spurious races on a variable, and then 

invokes DJIT+ to check subsequent races. DJIT+ has been 

extensively reviewed in Section III. MultitRace postpones the 

time to use a precise happens-before based race detection 

algorithm, and yet some races before the invocation of DJIT+ 

may be missed to be reported. Our analysis result can be 

applied to optimize the DJIT+ phase of MultiRace. Rather than 

using a lockset based and happens-before based approaches 

separately, Yu et al. in RaceTrack [24] used them at the same 

time, and reported a data race whenever the lockset of a 

memory location becomes empty and multiple threads are still 

active in accessing this location. GoldiLocks [7] refines the 

traditional lockset based algorithm by also tracking the 

happens-before relations among events. We are unsure 

TABLE II. MANN-WHITNEY U TEST RESULT 

Benchmarks  
Mann-Whiney 

U Test Result 

blackscholes 0.000620 

bodytrack < 0.000001 

canneal < 0.000001 

dedup < 0.000001 

facesim < 0.000001 

raytrace < 0.000001 

streamcluster < 0.000001 

swaptions < 0.000001 

vips < 0.000001 

x264 < 0.000001 
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Figure 6. Time comparisons between FastTrack and LOFT. 



whether a LOFT-similar strategy can be integrated with 

GoldiLocks.  

Although LOFT is built on top of FastTrack [9], as 

mentioned in Section IV, their focuses are different. Pacer [3] 

used a sampling strategy that samples program execution at 

the memory accesses (read or write) level to reduce time 

overhead. LiteRace [16] maintained two copies of each 

function in the source code, and dynamically turned on and off 

the sampling of the read and write operations in a function. 

Both techniques fully track the happens-before relations for 

synchronization events in a program being monitored. LOFT 

works on the manipulation of vector clock operations related 

to threads and locks. Both LiteRace and Pacer did not explore 

this dimension.  

Helgrind
+
 [11] was also a combination of lockset based 

and the happens-before based algorithms. Helgrind
+
 

considered that the conditional variables as a synchronization 

idiom should also be monitored to track the happens-before 

relations among events so as to reduce the amount of false 

positives due to the lost signal problem [11]. It improved the 

precision of Helgrind [13]. Like FastTrack, LOFT does not 

detect condition variables. 

AccuLock [23] was another detector that combines a 

lockset based algorithm and a happens-before based algorithm. 

Xie et al. observed that although the happens-before based 

detectors were fast and can avoid reporting false positives, 

they are sensitive to interleaving order among threads. Hence 

such detectors can only detect data races existed in certain 

execution. AccuLock used an improved lockset based 

algorithm (Lock-Subset [23]) and a relaxed happens-before 

relation (which discards the causal relations due to lock 

acquisition and release) to infer data races. It suffered 

imprecision to a certain extent. Because AccuLock did not 

track any vector clock for any lock, our strategy cannot be 

applied to it directly. 

To iron out the thread-local memory locations from the 

pool of all memory locations, using a state machine event filter 

is popular in many detection detectors (e.g., Eraser [22], 

MultiRace [19], RaceTrack [24], and MulticoreSDK [21]), 

which not only improves the precision of the detectors, but 

also reduces the slowdown. Our approach can also be 

considered as an event filter. However, our approach retains 

the resultant happens-before graph being sound and precise, 

even after non-consecutive series of event removals on a trace. 

Our model is based on the sequential consistency memory 

model. If the memory accesses cannot be guaranteed to be 

first-in-first-out, one may develop a similar strategy for 

adversarial memory models [8]. 

VII. CONCLUSION 

In this paper, we have studied the problem of vector clock 

update reduction for the on-the-fly tracking of happens-before 

relations on an execution trace. We have quantified a 

sufficient condition that can soundly remove the involved 

vector clock comparisons and assignment of vector clock 

instances without affecting the precision of such tracking. We 

have also applied our result to data race detection to formulate 

LOFT. We have further conducted an experiment to validate 

our approach. The result has shown that, on average, on top of 

FastTrack, LOFT reduces 58.0% of all such vector 

comparison and updates, and runs 16.2% faster in completing 

the required tracking. We are generalizing the approach. It is 

interesting to integrate it with a guided execution strategy.  
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