
To appear in International Journal of Web Services Research (JWSR)

 1

Test Pair Selection for Test Case Prioritization in Regression

Testing for WS-BPEL Programs

Lijun Mei
1
, Yan Cai

2
, Changjiang Jia

2
, Bo Jiang

3†
, W.K. Chan

2
,

1
 IBM Research - China, Beijing, China

2
City University of Hong Kong, Tat Chee Avenue, Hong Kong

3
 School of Computer Science and Engineering, Beihang University, Beijing, China

{meilijun@cn.ibm.com, y.cai@my.cityu.edu.hk, cjj.cs@my.cityu.edu.hk,

jiangbo@buaa.edu.cn, wkchan@cityu.edu.hk}

ABSTRACT:
Many web services not only communicate through XML-based messages, but also may

dynamically modify their behaviors by applying different interpretations on XML messages

through updating the associated XML Schemas or XML-based interface specifications. Such

artifacts are usually complex, allowing XML-based messages conforming to these specifications

structurally complex. Testing should cost-effectively cover all scenarios. Test case prioritization

is a dimension of regression testing that assures a program from unintended modifications by

reordering the test cases within a test suite. However, many existing test case prioritization

techniques for regression testing treat test cases of different complexity generically. In this paper,

we exploit the insights on the structural similarity of XML-based artifacts between test cases in

both static and dynamic dimensions, and propose a family of test case prioritization techniques

that selects pairs of test case without replacement in turn. To the best of our knowledge, it is the

first test case prioritization proposal that selects test case pairs for prioritization. We validate our

techniques by a suite of benchmarks. The empirical results show that when incorporating all

dimensions, some members of our technique family can be more effective than conventional

coverage-based techniques.
1

KEY WORDS:
XML similarity, pairwise selection, adaption, test case prioritization, service evolution

INTRODUCTION

A WS-BPEL web service (WS-BPEL Version 2.0, 2007) may interact with other web services

that collectively implement a function. Any maintenance or runtime adaptation of the web service

may potentially result in faults or cause incompatible interactions between this web service and

its belonging composite services. To validate whether an evolved version of the web service

conforms to its previously established functional behaviors, a testing agent (which can be a web

service) may apply a test suite to check whether the evolved version of the web service correctly

handles the test suite.

A WS-BPEL web service consists of a WSDL document and a workflow process. A WSDL

document (W3C WSDL 1.1, 2001) is an XML-based document. It contains the specifications that

define both web service descriptions and message data types specified in XML schemas (Fu, et al.

† Correspondence Author

To appear in International Journal of Web Services Research (JWSR)

 2

2004). A web service description provides a locator of a web service, and represents a web service

as a collection of operations. Individual workflow steps in a workflow process may apply

different specifications defined in WSDL (dubbed WSDL specifications) to different portions of

the same or different XML documents. Workflow programs (e.g., a BPEL program) are popular to

be encoded in XML form as well (BPEL Repository, 2006; Oracle BPEL Process Manager 10.1.2,

2007; WS-BPEL Version 2.0, 2007).

However, two XML-based documents sharing the same set of tags may structure these tags in

quite different ways, potentially causing the same web service to produce radically different

results for the two messages (Mei et al. 2011). An XML document can be modeled as an ordered,

labeled tree (Garofalakis et al. 2005; Guha, et al. 2002; Mei et al. 2011). A mathematical property

of such a tree is that a given tree must subsume every sub-tree or any resultant tree generated by

removing any sub-trees from the given tree. We thus observe that the element coverage with

respect to an XML document may not help reveal the coverage characteristics in relation to the

internal structure of an XML document.

A regression testing technique that does not consider these characteristics can be less effective

to assure WS-BPEL web service. For instance, an online hotel booking application may use the

booking service provided by a hotel to handle every room booking request. Without further

manipulation of a message, this application may relay the booking result returned by the hotel

back to the client service. Multiple program executions may simply exercise the same workflow

steps, irrespective to the contents of the returned XML messages (e.g., indicating successful

booking or not), which may require different program logics to handle them.

This paper proposes a suite of similarity-based test case prioritization techniques for the

regression testing of WS-BPEL web services based on the pairwise selection strategy. Pairwise

comparison is a fundamental strategy to examine elements and pick associations between

elements in a finite set. To the best of our knowledge, no existing test case prioritization

techniques formulated directly on top of this type of strategy has been proposed for the regression

testing of web services. Our techniques compute the structural similarity of XML-based artifacts

between test cases. They progressively consider the XML-based artifacts in three levels: WSDL

interface specification, XML-based messages, and BPEL workflow process. Each technique

assigns the execution priorities to the test cases in a regression test suite by assessing the

similarity values of test case pairs. They select test pairs either iteratively or following a heuristic

order. We have conducted an experiment to validate our techniques. The empirical results show

that some of the proposed techniques can achieve higher rates of fault detection, in terms of

APFD, than other studied techniques and random ordering when using all levels of XML-based

artifacts.

The preliminary version (Mei et al. 2013) of this paper has presented the basic idea of our

techniques. In this paper, we propose two new similarity-based techniques (M5 and M6) based on

the iterative similarity strategy, elaborate the design rationale of all proposed test case

prioritization techniques, and strengthen the experiment by conducting more data analysis

including hypothesis testing to validate the observations.

The main contribution of this paper, together with its preliminary version, is twofold: (i) To the

best of our knowledge, this paper is the first work that formulates pairwise test case prioritization

techniques for the regression testing of web services. (ii) We report an experiment that validates

the feasibility of our proposal.

The rest of the paper is organized as follows. The next section reviews the preliminaries. After

that, we discuss the challenges of test case prioritization for WS-BPEL web service through a

motivating example. Our prioritization techniques are then presented, followed by an

experimental evaluation. After the evaluation, we review the related work. Finally, we conclude

To appear in International Journal of Web Services Research (JWSR)

 3

this paper and outline the future work.

PRELIMINARIES

This section reviews the technical preliminaries that lay the foundations of our proposal.

Test Case Prioritization

Test case prioritization (Elbaum et al. 2002) is a kind of regression testing technique. Many

previous projects (Li et al. 2007; Krishnamoorthi et al. 2009; Li et al. 2010) show that test case

prioritization is important to regression testing. For instance, improving the rate of fault detection

of a test suite can aid software quality assurance by improving the chance of earlier execution of

failure-causing test cases, providing earlier feedback on the system, and enabling earlier

debugging (Elbaum et al. 2002). The problem of test case prioritization (Elbaum et al. 2002) is

formulated as follows:

Given: T, a test suite; PT, the set of permutations of T; and f, a function from PT to the set of all
real numbers.

Problem: To find T’PT such that, ∀T’’PT f (T’) ≥ f (T’’).

XML Distance and XML Set Similarity

This section introduces the XML distance and XML set similarity that measure the distance

between two XML documents and the similarity between two XML document sets. An XML

document can be modeled as an ordered, labeled tree T (Garofalakis et al. 2005; Guha et al.

2002). Given two XML document trees T1 and T2, the tree edit distance (Guha et al. 2002)

between them, denoted by TDIST(T1, T2), is defined as the minimum cost sequence of tree edit

operations (that are, node insertions, deletions, and label substitutions) on single tree nodes that

are required to transform one tree to another.

We use the algorithm proposed by Guha et al. (2002) to calculate TDIST (T1, T2). An example

(Figure 1) adopted from their paper shows how to calculate tree edit distance. The node transform

is depicted with dotted lines. Nodes that are not transformed need either insertions or deletions;

and nodes that are transformed may need relabeling. The value of TDIST (T1, T2) is 3 (covering

the deletion of node B, the insertion of node H, and the relabeling of C to I).

A

B C

D E F G

A

D H

E I

F G

T1 T2

Figure 1. Example of tree node mapping.

We further extend this existing similarity measure to define our similarity metric between two

sets of XML documents in the spirit of the standard Jaccard similarity: Given two sets of XML

documents S1 and S2, the similarity between them is defined by  (S1, S2) as follows:










21

21

),(

),(

21
|)(|

),(

1),(π

SSVU

SSVU

VU

VUTDIST

SS


＝
 (E-1)

To appear in International Journal of Web Services Research (JWSR)

 4

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

RoomPrice = XQ(HotelInformation,

//room[@price≤’Price’ and
persons≥‘Num’]/price)

if XQ(HotelInformation, //roomno/) ≠ null

&& RoomPrice ≤ Priceif RoomPrice ≥ 0
&& RoomPrice ≤ Price

No

RoomPrice = XQ(HotelInformation,

//room[@price≤’Price’ and
@persons=‘Num’]/price)

Yes

Input:

RoomPrice

Output:

BookingResult

Input: BookRequest

A5:

Validate

Price

A7: Invoke HotelBookService

A8: Reply BookingResult

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

Input: Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

(a) Original Program (b) Changed Program - 1 (c) Changed Program - 2

No
Input:

RoomPrice

Output:

BookingResult

if XQ(HotelInformation, //roomno/) ≠ null
&& RoomPrice ≥ 0

&& RoomPrice ≤ Price

Input: BookRequest

A5:

Validate

Price

A7: Invoke HotelBookService

A8: Reply BookingResult

Input: Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

RoomPrice = XQ(HotelInformation,

//room[@price≤’Price’ or

@persons≥‘Num’]/price)

No Yes
Input:

RoomPrice

Output:

BookingResult

Input: BookRequest

A5:

Validate

Price

A7: Invoke HotelBookService

A8: Reply BookingResult

Input: Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

A6: Fault
Handling

A6: Fault
Handling

A6: Fault
Handling

Yes

Figure 2. Activity diagram of a WS-BPEL application.

where U and V are XML documents and |U ∪ V| is the total number of unique XML node labels in

U and V. We choose the Jaccard coefficient because of its generality. A generalization to the other

coefficients is feasible.

MOTIVATING EXAMPLE

Scenario

This example is originated from the business process HotelBooking from the TripHandling

project (BPEL Repository, 2006). For the ease of presentation, we follow (Mei et al. 2008) to use

an UML activity diagram to depict this business process (Figure 2 (a)). Two modified versions are

also listed in Figure 2 (b) and Figure 2 (c), respectively. We use a more traditional way to present

the program modification so that readers with less experience on regression testing of WS-BPEL

web services may follow our work more easily.

In Figure 2, a node represents a workflow step, and a link represents a transition between two

workflow steps. The nodes are annotated with information such as the input-output parameters and

XPath queries that are used to extract the required contents from the XML messages. We number

the nodes as Ai (for i from 1 to 8) to ease the illustration. To make this paper self-contained, we

revisit the descriptions of Figure 2 (a) as follows:

(a) A1 receives a hotel-booking request from a user, and stores this user request in the variable

BookRequest.

(b) A2 extracts the inputted room price and the number of persons via XPath //price/ and //persons/

from BookRequest, and stores them in the variables Price and Num, respectively.

(c) A3 invokes HotelPriceService to select available hotel rooms with prices not exceeding Price

(i.e., within budget), and keeps the reply in HotelInformation.

(d) A4 assigns RoomPrice using the price extracted via the XPath //room[@price≤’Price’ and

@persons=’Num’]/price/.

(e) A5 verifies that the price in HotelInformation should not exceed the inputted price (i.e., the

variable Price).

(f) If the verification at A5 passes, A7 will execute HotelBookService to book a room, and A8 returns

To appear in International Journal of Web Services Research (JWSR)

 5

the result to the customer.

(g) If RoomPrice is erroneous or HotelBookService (A7) produces a failure, A6 will invoke a fault

handler (i.e., executing A5, A6 and A7, A6, respectively).

Let us consider two regression faults that are introduced during the program modification. First,

suppose a software engineer Andy decides that the precondition at node A4 in Figure 2 (a) should be

changed to that at node A4 in Figure 2 (b), and a validation should be added at node A5 to guarantee

that the room number information (roomno) is non-empty. He attempts to allow customers to select

any room that can provide accommodation for the requested number of people. However, he

wrongly changes the precondition in the XPath (namely, changing “and” to “or”). While he intends

to provide customers more choices, the process does not support his intention. For example, the

process is designed to immediately proceed to book rooms, rather than providing choices for

customers to select. This is the first fault.

Next, suppose another engineer Kathy wants to correct this fault. She plans to change node A4 in

Figure 2 (b) back to that in Figure 2 (a). However, she considers that the precondition at node A5 is

redundant (i.e., no need to require RoomPrice ≥ 0). Therefore, she changes the node A5 in Figure 2

(b) to become the node A5 in Figure 2 (c), and forgets to handle a potential scenario (Price < 0).

After her modification, another fault is brought into the modified program.

We use six test cases (i.e., t1 to t6) to illustrate how different techniques reorder the test set and

apply them to test the modified program. Each test case gives an input of the variable BookRequest

at node A1. To save space, we only show the price value of the variable Price and the value of the

variable Num, rather than the original XML document in full.

 Price, Num Price, Num

Test case 1 (t1): 200, 1 Test case 2 (t2): 150, 2

Test case 3 (t3): 125, 3 Test case 4 (t4): 100, 2

Test case 5 (t5):  50, 1 Test case 6 (t6):  –1, 1

There are messages sent and received at both nodes A3 and A7. For example, the messages used at

A4 for t1 to t6 are listed in Figure 3. Let us further consider how these messages are used at A3.

<hotel>

 <name>Hilton

Hotel</name>

 <room>

<roomno>R106</roomno>

 <price>105</Price>

 <persons>1<persons>

 </room>

 <room>

<roomno>R101</roomno>

 <price>150</price>

 <persons>3<persons>

 </room>

</hotel >

<hotel>

 <name>Hilton

Hotel</name>

 <room>

<roomno>R106</roomno>

 <price>105</Price>

 <persons>1<persons>

 </room>

 <room>

 <roomno>R101</roomno>

 <price>150</price>

 <persons>3<persons>

 </room>

</hotel >

<hotel>

 <name>Hilton

Hotel</name>

 <room>

 <roomno>R106</roomno>

 <price>105</Price>

 <persons>1<persons>

 </room>

</hotel>

Test Case 1 Test Case 2 Test Case 3
<hotel>

 <room>

 <roomno></roomno>

 <price>100</Price>

 <persons>2<persons>

 </room>

</hotel >

<hotel>

</hotel>

<hotel>

 <room>

 <price>-1</Price>

 <persons>1<persons>

 </room>

<error>InvalidPrice<error>

</hotel >

Test Case 4 Test Case 5 Test Case 6

Figure 3. XML messages for XQ(HotelInformation, //room[@price  ’Price’ and @persons = ’Num’]/price/).

To appear in International Journal of Web Services Research (JWSR)

 6

Let us first present the failure-causing test cases (with respect to either modified program). When

running the first modified version over t1 to t6 (Figure 2 (b)), t1 extracts a right room price; t4 to t6

extract no price value; both t2 and t3 extract the price 105 of the single room, while they indeed aim

to book a double room and a family suite, respectively. We also find that, t2 and t3 can detect the

regression fault in Figure 2 (b). Similarly, for the second modified version (Figure 2 (c)), t1 and t2

extract the right room prices; t3 to t5 extract no price value; t6 extracts a room price –1, however, it

should not represent any realistic price. Among t1 to t6, only t6 can detect the second regression fault

in Figure 2 (c).

1 <xsd:complexType name="hotel">

2 <xsd:element name="name" type="xsd:string"/>

3 <xsd:element name="room" type="xsd:RoomType"/>

4 <xsd:element name="error" type="xsd:string"/>

5 </xsd:complexType>

6 <xsd:complexType name="RoomType">

7 <xsd:element name="roomno" type="xsd:int" />

8 <xsd:element name="price" type="xsd:int"/>

9 <xsd:element name="persons" type="xsd:int"/>

10 </xsd:complexType>

Figure 4. Part of WSDL document: XML schema of hotel.

Figure 4 shows the XML schema that defines the messages replied by the service

HotelPriceService (at A3).

Coverage Analysis and Problems

We summarize the branch coverage achieved by each test case over a preceding version of the

workflow program (Figure 2 (a)). We use a “” to refer to an item covered by the respective test

case. For instance, test case t1 covers six workflow branches (shown as edges in Figure 2 (a)):

A1, A2, A2, A3, A3, A4, A4, A5, A5, A7 and A7, A8.

TABLE 1. WORKFLOW BRANCH COVERAGE FOR t1 TO t6

Branch t1 t2 t3 t4 t5 t6

A1, A2      

A2, A3      

A3, A4      

A4, A5      

A5, A6    

A5, A7  

A7, A6

A7, A8  

Total 6 5 5 6 5 5

We observe from Table 1 that the coverage information for test cases t2, t3, t5, and t6 are

identical (test cases t1 and t4 are also identical). For such a tie case, to the best of our knowledge,

many existing test case prioritization techniques simply randomly pick one to resolve it.

To appear in International Journal of Web Services Research (JWSR)

 7

Table 2 presents an example on how t1 to t6 cover the WSDL elements of the preceding version

(Figure 2 (a)). The XML schema contained in the WSDL document is presented in Figure 4. We

record the coverage of static WSDL elements in the first part (annotated with a “*”) in Table 2,

and the coverage of the raw data in XML message in the second part (annotated with “**”) in

Table 2. We generate both parts by collecting the XML messages of the program over the

respective test cases.

TABLE 2. STATISTICS OF WSDL ELEMENTS FOR t1 TO t6

 XML schema t1 t2 t3 t4 t5 t6

W
S

D
L

 a
rt

if
a
ct

 w
it

h

X
M

L
 m

es
sa

g
e

(*
) hotel      

name   

room     

roomno    

price     

persons     

error 

D
y
n

a
m

ic
 X

M
L

M
es

sa
g
e

(*
*
) val(name)   

val(roomno)   

val(price)     

val(persons)     

val(error) 

Total 10 10 10 7 1 8

We observe that merely using the static WSDL elements cannot distinguish the tie cases

because the entire schema (e.g., Figure 4) will be used by every test execution. Therefore, if we

only use the artifacts containing program elements, statements, or interface types, rather than run-

time artifacts, we cannot distinguish such tie cases in this scenario. When dynamic data values

(i.e., part * and part **) are considered, we can distinguish such tie cases, and thus may achieve

better results.

As we have discussed in the introduction section, an XML tree subsumes all its sub-trees. To

reorder test cases that use XML information properly, we need a strategy to reveal different sub-

tree structure in an XML-document. Moreover, XML messages can be regarded as non-intrusive

information because we need not to examine the program structure (e.g., source code). Intuitively,

purely using such non-intrusive information can be less effective than also using white-box

information. Thus, apart from the ability to distinguish sub-tree structures, a technique also needs

a strategy to integrate different types of information (homogeneously).

We show a possible selection order of test cases by applying additional (addtl) and total

coverage techniques (Elbaum et al. 2002) on workflow branches (see Table 1), the combination of

workflow branches and WSDL elements (see Table 2, part *), and the combination of workflow

branches, WSDL elements, and XML messages (see Table 2, part * and part **), respectively. We

observe that none of these techniques starts with t2 or t3:

Techniques Test Case Orderings (in descending order of priority)

Addtl-Workflow-Coverage:  t1, t5, t4, t6, t2, t3 

Total-Workflow-Coverage:  t1, t4, t6, t3, t5, t2 

Addtl-Workflow-WSDL-Coverage:  t1, t6, t4, t3, t2, t5 

Total-Workflow-WSDL-Coverage:  t1, t4, t3, t2, t6, t5 

Addtl-Workflow-XML-Coverage:  t1, t6, t2, t4, t3, t5 

Total-Workflow-XML-Coverage:  t1, t2, t3, t6, t4, t5 

To appear in International Journal of Web Services Research (JWSR)

 8

None of these techniques effectively prioritizes t2 or t3. That is, they rely on their tie breaking
strategies instead of the intrinsic ability of such a technique to assign either test case with high
priority. The test suite contains quite a number of test cases similar to them. Using a bin counting
approach or a traditional test case clustering approach may not help iron out them effectively.

OUR TEST CASE PRIORITIZATION

In this section, we present our family of test case prioritization techniques.

Test Case Similarity

From a test execution on a WS-BPEL web service, one may obtain the coverage information

on service code and WSDL documents, and collect the involved XML messages. Moreover, many

researchers consider that services can be opaque, and thus the service structure (i.e., BPEL code)

may not be available for testing. Therefore, we first use WSDL documents, then add XML

messages, and finally include the BPEL code in case the BPEL code can be available. To ease the

presentation, we define a container (see Definition 1) to hold different kinds of XML documents

used in a test case execution.

Definition 1. W3-Set (or W3S). A W3-Set with respect to a test case t is a set of triples {w1, m1,

b1, w2, m2, b2, …, wN, mN, bN}, where a triple wi, mi, bi is a workflow module bi, an XML
message mi, and a WSDL specification wi for the module bi and it defines the type for the
message mi. Let W(t)={w1, w2, …, wN}, M(t)={m1, m2, …, mN}, and B(t)={b1, b2, …, bN}
represent the set of WSDL specifications, the set of XML messages, and the set of workflow
modules, used or exercised in the execution of t, respectively.

A workflow module (such as Ai in Figure 2) may also be encoded in the XML format (BPEL

Repository, 2006; WS-BPEL Version 2.0, 2007). Take the test case t1 in the previous section for
example: M (t1) and W (t1) are given in Figures 3 and 4, respectively. B (t1) is {A1, A2, A3, A4, A5,
A7, A8}. We call an XML node label in either W (t), M (t), or B (t) an element covered by a test
case t. We further define the concept of test case similarity in Definition 2.

Definition 2. Test Case Similarity (or W3-Similarity). We define three levels of similarity metrics

between two test cases ti and tj (namely W3-Similarity). (i) Similarity of WSDL specification
(W-I). (ii) Similarity of WSDL specification and WSDL-governed XML message (W-II). (iii)
Similarity of WSDL specification, WSDL-governed XML message, and Workflow module
(W-III).

For a test case t, we call the set of elements covered by t using W-I, W-II, and W-III as WE-I (t),

WE-II (t), and WE-III (t), respectively. These sets satisfy the equations:

WE-I(t) = W (t)

WE-II(t) = W (t) ∪ M (t)

WE-III(t) = W (t) ∪ M (t) ∪ B (t)

Let the W3-Set of test cases ti and tj be Bi, Wi, Mi and Bj, Wj, Mj, respectively. Let the

similarity between workflow modules, between XML messages, and between WSDL

specifications for ti and tj be  (Bi, Bj),  (Mi, Mj), and  (Wi, Wj), respectively. There are many

ways to define the similarity metrics. In this paper, we use the Geometric Mean (GM) to define

the three metrics of W3-Similarity for ti and tj as follows. (GM is more appropriate than the

arithmetic means to describe the growth of percentage.) In our approach, we use the XML

To appear in International Journal of Web Services Research (JWSR)

 9

similarity metric to produce a percentage value of similarity between two sets of XML messages.

In the presented model, there are multiple dimensions to measure such percentages between a pair

of test cases. Thus, we choose to use GM to combine them to produce an integrated similarity

score.

W-I = (Wi, Wj) (E-2)

W-II = √() 

 (E-3)

W-III = √()  ()

 (E-4)

We note that although we illustrate our techniques using three levels, it is not hard to

generalize the above similarity metric to handle more than three levels. We summarize the

similarity values of every two different test cases (t1-t6 in the motivating example) using E-2, E-3,

and E-4 in Tables 3, 4, and 5, respectively.

TABLE 3. TEST CASE SIMILARITY VALUES FOR t1 TO t6 USING E-2

Test Case t1 t2 t3 t4 t5 t6

t1 ━

t2 1.0000 ━

t3 1.0000 1.0000 ━

t4 0.8333 0.8333 0.8333 ━

t5 0.1667 0.1667 0.1667 0.2000 ━

t6 0.5714 0.5714 0.5714 0.6667 0.2000 ━

TABLE 4. TEST CASE SIMILARITY VALUES FOR t1 TO t6 USING E-3

Test Case t1 t2 t3 t4 t5 t6

t1 ━

t2 1.0000 ━

t3 1.0000 1.0000 ━

t4 0.7637 0.7637 0.7637 ━

t5 0.1291 0.1291 0.1291 0.1691 ━

t6 0.5345 0.5345 0.5345 0.6667 0.1581 ━

TABLE 5. TEST CASE SIMILARITY VALUES FOR t1 TO t6 USING E-4

Test Case t1 t2 t3 t4 t5 t6

t1 ━

t2 0.8298 ━

t3 0.8298 1.0000 ━

t4 0.8355 0.6933 0.6933 ━

t5 0.2118 0.2554 0.2554 0.2535 ━

t6 0.5465 0.6586 0.6586 0.6333 0.2924 ━

We observe from Tables 3, 4 and 5 that, the similarity values between pairs of test cases using

the dynamic data are more different from not using them. For example, the similarity of t1, t4 is

0.8333 in Table 3 (which is same as that of t2, t4), and becomes 0.7637 in Table 4, and further

becomes 0.8355 in Table 5, which becomes different from the similarity of t2, t4. (Here is

another example: the pairs of test cases t1, t2, t1, t3 and t2, t3 have the same similarity value

To appear in International Journal of Web Services Research (JWSR)

 10

(1.000) in Table 4. Then in Table 5, t1, t2 and t1, t3 have a different similarity value comparing

to t2, t3 (0.8298 vs. 1.000).

The similarity values provide the alternative and useful information to distinguish test cases

that would reveal no difference using conventional coverage-based techniques. Let us use an

example to illustrate how a similarity-based technique differs from the conventional additional

strategy (Elbaum et al. 2002) as well. Suppose that ta, tb, and tc, have covered the same number of

program elements (e.g., branches), that is |ta| = |tb| =|tc|. Moreover, ta and tb cover the same set of

program elements, while ta covers a different set of program elements. When reordering test

cases, our similarity-based technique can achieve the ordering ta, tc, tb or ta, tb, tc; whereas, by

using the additional strategy method, it is infeasible to have the ordering ta, tb, tc, because ta and

tb cover the same set of elements, and thus, an additional strategy should select tc in between ta

and tb. In the next section, we design a family of prioritization techniques using these test
case similarity metrics.

Test Case Prioritization Techniques

To study our techniques, we introduce two control techniques: random (C1) and optimal (C2).

We also present two other techniques adopted from conventional total (addtl)-branch techniques

(Elbaum et al. 2002) that use WE-i (i{I, III, III}), which we refer to as C3 and C4, respectively.

Finally, we use W-i (i{I, II, III}) to denote one of the three metrics in W3-Similarity. They all do

not use the pairwise selection strategy.

Benchmark techniques

C1: Random ordering (Elbaum et al. 2002). This technique randomly orders the test cases in a

test suite T.

C2: Optimal prioritization (Elbaum et al. 2002). C2 iteratively selects test case by the ability of

exposing the most faults not yet exposed. C2 repeats such selection until the selected test cases

are able to expose all faults.

As pointed out by many authors (Elabum et al. 2002; Jiang et al. 2009), C2 is only an

approximation to the optimal case. Moreover, C2 is unrealistic because it needs to know which

particular test cases will reveal which particular fault. However, it can be served as a reference of

an upper bound of a test case prioritization technique may achieve in an experiment.

Next, we introduce two “imported” techniques (C3 and C4) that directly make use of W3S

(using WE-I, WE-II, and WE-III). C3 and C4 are adapted from the conventional total-branch and

addlt-branch test case prioritization techniques (Elbaum et al. 2002).

C3: Total WE-i coverage prioritization (Total-WE-Coverage) (adapted from total-branch

proposed by Elabum et al. (2002)). C3 sorts the test cases in the descending order of the total

number of elements that each test case t has covered (i.e., the number of elements in WE-i(t)).

If multiple test cases cover the same number of elements, C3 will order these test cases

randomly.

C4: Additional WE-i coverage prioritization (Addtl-WE-Coverage) (adapted from addtl-

branch proposed by Elabum et al. (2002)). C4 iteratively selects a test case t that yields the

greatest cumulative element coverage with respect to WE-i(t) (if more than one test case has

the same coverage, C4 randomly selects one). After selecting a test case, C4 removes the

covered elements from the coverage information of remaining test cases. Additional iterations

To appear in International Journal of Web Services Research (JWSR)

 11

are conducted until all elements have been covered by at least one test case. After that, C4

resets the coverage information of each remaining test case to its initial value, and then

reapplies the same procedure on the remaining test cases.

Our Test Case Prioritization Techniques: XSP

Our techniques use XML, Similarity metric, and Pairs of test cases. We therefore refer our

techniques to as XSP. Figure 5 shows the schematic relationships among XSP (dis)similarity and

their metrics. Intuitively, a larger similarity value between two test cases suggests that they have a

higher chance in covering the same set of XML document structures. For instance, a program

may have higher chance to interpret data by using similar XML Schemas in executing the test

cases of a highly similar pair.

Similarity Metric

<<bind>>

<<generalize>> <<generalize>>

<<invert>>

<<aggregate>>

W-I W-II W-II

Similarity

Group
XSP Similarity

XSP Iterative

Similarity

XSP Iterative

Dissimilarity

1*

<<bind>>

Figure 5. The relations between XSP (dis)similarity and their metrics.

To ease our presentation, we first define an auxiliary function: Let m be the size of test suite T.

We partition all pairs of distinct test cases into K groups, each containing pairs with the same W-i

similarity value. We denote each group by Gk (1 ≤ k ≤ K), where k is known as the group index.

All test case pairs in Gk have a W-i similarity value gk, such that a smaller group index k indicates

a larger W-i similarity value gk. We refer to such handling as the grouping function GF.

We use Tables 6, 7, and 8 to show the result of grouping function and the differences among

techniques (M1 to M6, to be introduced in the rest part of this section) in selecting test case pairs

from these groups. We categorize the 15 test case pairs of t1 to t6 into different groups according

to their similarity values, as shown in the leftmost columns of Table 6, Table 7, and Table 8. The

rightmost columns of these three tables show one possible ordering of test case pairs for each

technique from M1–M6. We show the test case pairs selected by each prioritization technique. We

mark the selection sequence in the “Seq.” columns of these three tables.

We propose M1 that records the most similar test cases to execute first. Turning M1 the other

way round, we also propose M2 that selects the least similar test cases to execute first.

M1: Maximum W-i Similarity prioritization (XPS-Total-Similarity). The technique invokes the

grouping function GF using W-i. The technique selects a pair of test cases with the greatest

similarity value (i.e., g1) using W-i, and randomly chooses one test case t in this pair. The

technique continues to select all pairs of test cases containing t from the same group. If

multiple test case pairs contain t, the technique randomly selects one pair to break the tie. M1

discards any test case in a selected pair if the test case has been included by a previously

selected pair. M1 repeats the above selection process first for the group, and once all test cases

in the group have been selected, then among the remaining groups in the ascending order of

the group index (i.e., from G2 to GM) until every unique test case has been selected.

To appear in International Journal of Web Services Research (JWSR)

 12

TABLE 6. STATISTICS OF TEST CASE SIMILARITIES (W-I)

Similarity
Group Selected Test Pairs in Order

Index Test Case Pairs Seq. M1 M2 M3 M4 M5 M6

1.000 G1 (t1, t2), (t1, t3), (t2, t3)
1

2

(t1, t2)

(t1, t3)

(t1, t5)

(t2, t5)

 (t1, t5)

(t4, t5)

(t1, t2)

(t2, t4)

(t1, t5)

(t4, t5)

(t1, t2)

(t2, t4)

0.833 G2 (t1, t4), (t2, t4), (t3, t4)
3

4

(t2, t3)

(t1, t4)

(t3, t5)

(t5, t6)

 (t1, t6)

(t4, t6)

(t4, t6)

(t3, t6)

(t1, t6)

(t1, t4)

(t1, t6)

(t2, t5)

0.667 G3 (t4, t6) 5 (t2, t4), (t4, t5) (t3, t4) (t5, t6) (t1, t2) (t1, t3)

0.571 G4 (t1, t6), (t2, t6), (t3, t6)
6

7

(t3, t4)

(t4, t6)

(t2, t3)

(t3, t5)

0.200 G5 (t4, t5), (t5, t6) 8 (t1, t6)

0.167 G6 (t1, t5), (t2, t5), (t3, t5)

9 (t2, t6)

10

11

(t3, t6)

(t4, t5)

TABLE 7. STATISTICS OF TEST CASE SIMILARITIES (W-II)

Similarity
Group Selected Test Pairs in Order

Index Test Case Pairs Seq. M1 M2 M3 M4 M5 M6

1.00 G1
(t1, t2), (t1, t3),

(t2, t3)

1

2

(t1, t2)

(t1, t3)

(t1, t5)

(t2, t5)

(t1, t5)

(t5, t6)

(t1, t2)

(t2, t4)

(t1, t5)

(t5, t6)

(t1, t2)

(t2, t4)

0.76 G2
(t1, t4), (t2, t4),

(t3, t4)

3

4

(t2, t3)

(t3, t4)

(t3, t5)

(t5, t6)

 (t4, t5)

(t2, t6)

(t4, t6)

(t3, t6)

(t1, t6)

(t1, t4)

(t1, t6)

(t2, t5)

0.67 G3 (t4, t6) 5 (t2, t4) (t4, t5) (t4, t6) (t4, t5) (t1, t3) (t2, t3)

0.53 G4
(t1, t6), (t2, t6),

(t3, t6)

6

7

(t1, t4)

(t4, t6)

(t3, t4)

(t2, t5)

0.17 G5 (t4, t5) 8 (t1, t6)

0.16 G6 (t5, t6) 9 (t2, t6)

0.13 G7
(t1, t5), (t2, t5),

(t3, t5)

10

11

(t3, t6)

(t4, t5)

TABLE 8. STATISTICS OF TEST CASE SIMILARITIES (W-III)

Similarity
Group Selected Test Pairs in Order

Index Test Case Pairs Seq. M1 M2 M3 M4 M5 M6

1.00 G1 (t2, t3) 1 (t2, t3) (t1, t5) (t1, t5) (t2, t3) (t1, t5) (t2, t3)

0.84 G2 (t1, t4) 2 (t1, t4) (t4, t5) (t4, t5) (t1, t4) (t4, t5) (t1, t2)

0.83 G3 (t1, t2), (t1, t3) 3 (t1, t2) (t2, t5) (t2, t5) (t1, t2) (t2, t5) (t2, t4)

0.69 G4 (t2, t4), (t3, t4) 4 (t1, t3) (t3, t5) (t5, t6) (t2, t4) (t5, t6) (t2, t6)

0.66 G5 (t2, t6), (t3, t6) 5 (t3, t4) (t5, t6) (t1, t6) (t3, t6) (t1, t3) (t2, t5)

0.63 G6 (t4, t6) 6 (t2, t4) (t4, t6) (t4, t6)

0.55 G7 (t1, t6) 7 (t3, t6) (t3, t6) (t1, t6)

0.29 G8 (t5, t6) 8 (t2, t6) (t5, t6)

0.26 G9 (t2, t5), (t3, t5) 9 (t4, t6)

0.25 G10 (t4, t5) 10 (t1, t6)

0.21 G11 (t1, t5) 11 (t5, t6)

To appear in International Journal of Web Services Research (JWSR)

 13

M2: Minimum W-i similarity prioritization (XPS-Total-Dissimilarity). This technique is the

same as M1 except that it first selects a pair of test cases with the minimum similarity value

using W-i (rather than the maximum W-i similarity value according to M1), and M2 repeats the

selection process among the remaining groups in ascending order of the group index.

We further propose M3 and M4, each of which selects one test case pair from each group in

turn until the group has been exhausted. M3 and M4 sample the groups in ascending and

descending orders (i.e., from G1 to GM, and from GM to G1), respectively, of the group index.

M3: Ascending W-i similarity prioritization (XPS-Iterative-Dissimilarity). The technique

invokes the grouping function GF using W-i. Then the technique samples all groups G1, …,

Gk, …, GM in ascending order of the group index k by selecting one pair of test cases, if any,

from each group in turn. The technique discards any test case in a selected pair if the test case

has been selected. The technique then removes the selected pair from the group. M3 repeats

the selection process among the non-empty groups until all the test cases have been selected.

M4: Descending W-i similarity prioritization (XPS-Iterative-Similarity). This technique is the

same as M3 except that it samples the groups GM, …, Gk, …, G1 in descending order of the

group index k, rather than in ascending order.

We further observe that there are no relations between two consecutive test pairs selected by

M1-M4. Therefore, we propose M5 and M6 to study the impact of the test pair relations, as a

refinement of M3 and M4.

M5: Refined ascending W-i similarity prioritization (XPS-Refined-Iterative-Dissimilarity).

The technique invokes the grouping function GF using W-i. Afterwards, the technique samples

the group G1 by selecting one pair of test cases (ta, tb), and then samples all the remaining

groups G2, …, Gk, …, GM in ascending order of the group index k by selecting one pair of test

cases that contain either ta or tb, if any, from each group in turn. The technique discards any

test case in a selected pair if the test case has been selected. The technique then removes the

selected pair from the group. M5 repeats the selection process among the non-empty groups

until all the test cases have been selected.

M6: Refined descending W-i similarity prioritization (XPS-Refined-Iterative-Similarity). This

technique is the same as M5 except that it first samples the group GM, and then samples the

remaining groups GM-1, …, Gk, …, G1 in descending order of the group index k, rather than in

ascending order.

In addition to Tables 6-8, we also summarize the above techniques and examples in Table 9.

In this table, we provide a legitimate test case ordering for each technique. For C3 and C4, we

apply three coverage metrics (i.e., WE-I, WE-II, and WE-III) to generate the test case orders. For

each technique of M1 to M6, we apply the three similarity metrics (i.e., W-I, W-II, and W-III) to

generate the orders. These orderings of test cases can also be generated using the sequences of

test case pairs provided in Table 6, Table 7, and Table 8.

To appear in International Journal of Web Services Research (JWSR)

 14

TABLE 9. PRIORITIZATION TECHNIQUES AND EXAMPLES

Category Name Index
Order of Test Cases (t1-t6)

t1 t2 t3 t4 t5 t6

S
in

g
le

 T
es

t
C

as
e

S
el

ec
ti

o
n

 S
tr

at
eg

y
 Random C1 2 3 4 5 1 6

Optimal C2 5 1 3 4 6 2

Total-WE-Coverage (WE-I) C3 1 5 6 3 2 4

Addtl-WE-Coverage (WE-I) C4 1 6 4 2 5 3

Total-WE-Coverage (WE-II) C3 1 5 4 3 6 2

Addtl-WE-Coverage (WE-II) C4 1 4 3 2 6 5

Total-WE-Coverage (WE-III) C3 1 3 5 4 6 2

Addtl-WE-Coverage (WE-III) C4 1 2 3 5 6 4

T
es

t
P

ai
r

S
el

ec
ti

o
n
 S

tr
at

eg
y

XSP-Total-Similarity (W-I) M1 1 2 3 4 6 5

XSP-Total-Dissimilarity (W-I) M2 1 3 4 6 2 5

XSP-Iterative-Dissimilarity (W-I) M3 2 6 5 3 1 4

XSP-Iterative-Similarity (W-I) M4 1 2 5 3 6 4

XSP-Refined-Iterative-Dissimilarity (W-I) M5 1 5 6 3 2 4

XSP-Refined-Iterative-Similarity (W-I) M6 1 2 6 3 5 4

XSP-Total-Similarity (W-II) M1 1 2 3 4 6 5

XSP-Total-Dissimilarity (W-II) M2 1 3 4 6 2 5

XSP-Iterative-Dissimilarity (W-II) M3 1 5 6 4 2 3

XSP-Iterative-Similarity (W-II) M4 2 1 5 3 6 4

XSP-Refined-Iterative-Dissimilarity (W-II) M5 1 6 5 4 2 3

XSP-Refined-Iterative-Similarity (W-II) M6 1 2 6 3 5 4

XSP-Total-Similarity (W-III) M1 3 1 2 4 6 5

XSP-Total-Dissimilarity (W-III) M2 1 4 5 3 2 6

XSP-Iterative-Dissimilarity (W-III) M3 1 5 6 3 2 4

XSP-Iterative-Similarity (W-III) M4 3 1 2 4 6 5

XSP-Refined-Iterative-Dissimilarity (W-III) M5 1 4 6 3 2 5

XSP-Refined-Iterative-Similarity (W-III) M6 3 1 2 4 6 5

THE EXPERIMENT

This section reports our experimentation and analysis to validate our proposal techniques.

Experimental Design

Subject programs, versions, and test suites

We choose eight WS-BPEL applications (Bianculli et al. 2007; BPEL Repository, 2006; Oracle

BPEL Process Manager, 2009; Web Services Invocation Framework, 2009) to evaluate our

techniques. These applications and their statistics are shown in Table 10. We choose these

applications because they have also served as benchmarks or illustrative textbook examples, and

have been used in previous test case prioritization experiments (Mei et al. 2011; Mei et al. 2009).

This set of benchmarks is also larger than the one used in (Ni, et al., 2013). Like many

experiments on test case prioritization for regression testing, we used a set of known faults on the

modified versions and the test suites associated with the original version of these subjects to

evaluate each test case prioritization technique. The set of faults in the modified versions had

been reported by our previous experiment (Mei et al. 2009), in which the faults were created

following the methodology presented in (Hutchins, Foster, et al. 1994). Such a modified version

To appear in International Journal of Web Services Research (JWSR)

 15

setting was also adopted by the previous test case prioritization research studies (e.g., Elbaum et

al. 2002).

The leftmost column of Table 10 shows an index number for each application. The column

“Modified Version” shows the number of modified versions for the respective program. The

columns “Element” and “LOC” refer to the number of XML tags and the lines of code for each

application. The rightmost two columns show the number of WSDL specifications and the total

number of elements in these WSDL specifications. Although the numbers of WSDL

specifications in these applications are not large, as we will show later, the differences in

effectiveness presented in the experiment are already significant. We further followed (Elbaum et

al. 2002; Jiang et al. 2009) to discard a fault from our experiment if more than 20 percent of test

cases could detect failures from the modified version.

TABLE 10. SUBJECT PROGRAMS AND THEIR DESCRIPTIVE STATISTICS.

Ref. Applications
Modified

Versions
Element LOC

WSDL

Spec.

WSDL

Element

Used

Versions

A atm 8 94 180 3 12 5

B buybook 7 153 532 3 14 5

C dslservice 8 50 123 3 20 5

D gymlocker 7 23 52 1 8 5

E loanapproval 8 41 102 2 12 7

F marketplace 6 31 68 2 10 4

G purchase 7 41 125 2 10 4

H triphandling 9 94 170 4 20 8

 Total 60 527 1352 20 106 43

We used a random test case generation tool (Mei et al. 2008) to create random test suites for

each subject based on WSDL specifications, XPath queries, and workflow logics of the original

version of each subject. Each generated test suite ensured that all workflow branches, XRG

branches, and WSDL elements of the original versions are covered at least once, as what the

experiment in our previous work (Mei et al. 2008) did.

Specifically, we added a test case to a constructing test suite (initially empty) until the above-

mentioned criterion had been fulfilled. This procedure was similar to the test suite construction

presented in Elbaum et al. (2002) and Hutchins, Foster et al. (1994). Moreover, the set of XML

message received or generated by the original version of the subject program in question over the

test case was also recorded.

TABLE 11. STATISTICS OF THE GENERATED TEST SUITE SIZE.

 Ref.

Size
A B C D E F G H Avg.

Maximum 146 93 128 151 197 189 113 108 140.6

Average 95 43 56 80 155 103 82 80 86.8

Minimum 29 12 16 19 50 30 19 27 25.3

Using the above scheme, we successfully created 100 test suites for each subject program that

can detect at least one fault among the modified versions of the subject program. Table 11 shows

the maximum, average, and minimum sizes of the created test suites.

To appear in International Journal of Web Services Research (JWSR)

 16

Effectiveness measure

The metric “average percentage of faults detected” (APFD) (Elbaum et al. 2002) has been

widely adopted in evaluating test case prioritization techniques. We chose to use APFD because it

matches our objective to verify whether a technique supports service evolution.

Let T be a test suite containing n test cases, F be a set of m faults revealed by T, and TFi be the

first test case index in the reordered test suite T’ of T that reveals fault i. The following equation

gives the APFD value for a test suite T’.

nnm

TFTFTF
APFD m

2

1...
1 21 




(E-5)

Procedure

Our tool applied C1C4 and M1M6 to prioritize each constructed test suite for each subject

program. For C3C4, we used the three levels of information WE-i (for i = I, II, and III) in turn.

For M1M6, we used the three similarity metrics W-i (for i = I, II, and III) in turn.

We executed the reordered test suite on each modified version of the subject and collected each

TFi value for i-th fault (if the k-th test case in the reordered test suite is the first test case that can

detect the i-th fault, then TFi is set to k). We finally calculated the APFD value of this reordered

test suite (by E-5).

Data analysis

To ease the view of differences of these techniques, we summarize the results using the box

plots for each technique in Figure 6. Figure 6 shows that M3-M6 generally show an upward trend

(in terms of APFD) when the similarity metrics changes from W-I to W-II and from W-II to W-III.

On the contrary, M1-M2 shows a downward trend when the similarity metrics changes from W-I

to W-II, and from W-II to W-III. C3 and C4 only show a small change in different coverage

metrics in terms of the median APFD value.

C3 C4 M1 M2 M3 M4 M5 M6

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C1 C2 C3-I C3-
II

C3-
III

C4-I C4-
II

C4-
III

M1-I M1-
II

M1-
III

M2-I M2-
II

M2-
III

M3-I M3-
II

M3-
III

M4-I M4-
II

M4-
III

M5-I M5-
II

M5-
III

M6-I M6-
II

M6-
III

Figure 6. Average effectiveness of C1-C4 and M1-M6

The insensitiveness of C3-C4 and M1-M2 to a mixture of static and dynamic information is

quite surprising. It warrants further research. (On the other hand, we are interested in M3–M6,

To appear in International Journal of Web Services Research (JWSR)

 17

and thus, the in-depth study of C3-C4 and M1-M2 is not within the scope of this paper.) The

observations also show that the better results (in terms of APFD) cannot be achieved through

directly adopting traditional techniques to make use of test case similarity.

To further find the relative merits on individual techniques, we compute the difference in

effectiveness (by comparing the value TFi of each test suite on each fault version) between C1

and M3-M6. The result is shown in Table 12.

Take the cell in column “M3−C1” (W-I) and row “>5%” as an example. It shows that, for 17%

of all the detected faulty versions, using M3 (W-I) to reveal a fault uses less test cases than that of

C1 by more than 5% (test suite size). Similarly, the row “<-5%” shows that, for only 0% of all the

detected faulty versions, using M3 (W-I) to reveal a fault uses more test cases than that of C1 by

more than 5% (test suite size). For 83% of the faulty versions, the effectiveness between M3 and

C1 cannot be distinguished at the 5% level.

We select three levels of difference (1%, 5%, and 10%) for comparison. Since Figure 6 already

shows that M1 and M2 using all three levels of similarity metrics are not better (or even worse)

than C1, we only compare M3-M6 with C1. We observe that, at both 1% and 5% levels, the

probability of M3-M6 using all three levels of similarity metrics are performing better than C1.

The experimental result shows that the probability of M3-M6 performing better than C1 is

consistently higher than that for the other way round.

TABLE 12. STATISTICS OF DIFFERENCE IN FAULT DETECTION

Technique

(x, y)

W-I (%) W-II (%) W-III (%)

M
3
-C

1

M
4
-C

1

M
5
-C

1

M
6
-C

1

M
3
-C

1

M
4
-C

1

M
5
-C

1

M
6
-C

1

M
3
-C

1

M
4
-C

1

M
5
-C

1

M
6
-C

1

<-1% 2 2 2 1 2 2 1 1 2 2 1 1
-1% to 1% 41 43 41 40 40 43 43 39 41 40 40 39

>1% 57 55 57 59 58 55 56 60 57 58 59 60

<-5% 0 0 0 0 0 0 0 0 0 0 0 0
-5% to 5% 83 83 83 83 83 84 83 83 83 82 82 83

>5% 17 17 17 17 17 16 17 17 17 18 18 17

<-10% 0 0 0 0 0 0 0 0 0 0 0 0
-10% to 10% 96 95 95 95 96 96 96 96 96 95 95 96

>10% 4 5 5 5 4 4 4 4 4 5 5 4

To verify the robustness of our techniques, we simulate some scenarios when the small

percentages (5%, 10%, and 20%) of XML messages have been lost (which are randomly chosen).

We also list the result achieved when there is no message lost (i.e., 0%) for comparison.

TABLE 13. MEAN APFDS OF DIFFERENT PERCENTAGES OF LOST MESSAGES

Percents M3 M4 M5 M6

W-II

0.00 0.859 0.865 0.859 0.866

0.05 0.866 0.865 0.858 0.868

0.10 0.867 0.869 0.864 0.867

0.20 0.869 0.879 0.869 0.871

W-III

0.00 0.901 0.903 0.899 0.900

0.05 0.901 0.901 0.904 0.904

0.10 0.904 0.906 0.904 0.905

0.20 0.904 0.909 0.903 0.907

To appear in International Journal of Web Services Research (JWSR)

 18

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

(a) Compared with M3 (b) Compared with M4 (c) Compared with M5 (d) Compared with M6

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

Figure 7. Multiple Comparisons of C1, C3, C4, M1-M4 using WE-I/W-I metrics
(x-axis is the APFD value, y-axis is test pair selection strategies)

c

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

(a) Compared with M3 (b) Compared with M4 (c) Compared with M5 (d) Compared with M6

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

M6

M5

M4

M3

M2

M1

C4

C3

C1

Figure 8. Multiple Comparisons of C1, C3, C4, M1-M4 using WE-II/W-II metrics
(x-axis is the APFD value, y-axis is test pair selection strategies)

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M6

M5

M4

M3

M2

M1

C4

C3

C1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M6

M5

M4

M3

M2

M1

C4

C3

C1

(a) Compared with M3 (b) Compared with M4 (c) Compared with M5 (d) Compared with M6

Figure 9. Multiple Comparisons of C1, C3, C4, M1-M4 using WE-III/W-III metrics
(x-axis is the APFD value, y-axis is test pair selection strategies)

Since W-I does not include the information on XML messages, we only show the results for the

other two coverage/ similarity metrics in Table 13. Moreover, since M1-M2 have reported no

better (or even worse) results than C1, and thus we only include M3-M6. Table 13 shows that

when there are a small number of messages lost, the result does not change much. The results

show that our techniques are robust when there are small percentages of message lost.

We further refer to (Li et al. 2007; Jiang et al. 2009) and adopt hypothesis testing to study the

differences between the above techniques. We perform the one-way ANOVA analysis using

MATLAB with the default alpha correction setting to find out whether the means of the APFD

distributions for different techniques (including each technique in M3–M6 on all three similarity

metrics) differ significantly. Since the optimal technique is unrealistic, we omit the comparison

with the optimal technique in the hypothesis testing.

The null hypothesis is that the means of APFD values for C1, C3–C4, and M1-M6 (when using

each metrics) are equal. To decide whether to accept or reject the null hypothesis, we set the

To appear in International Journal of Web Services Research (JWSR)

 19

significance level to 0.05. If the significance is smaller than 0.05, the difference among the

techniques is statistically significant. The ANOVA analysis returns a p-value that is much less than

0.05, which successfully rejects the null hypothesis at the 5% significance level.

Following (Jiang et al. 2009), we further conduct multiple comparison procedure to study the

means of which test case prioritization techniques differ significantly from each other at the 5%

significance level. We follow (Jiang et al. 2009) to present the multiple comparison results in

Figures 7-9. In these figures, the blue line represents the target technique that we want to compare

with other techniques. The red lines represent the techniques whose means differ significantly

from the target technique, and the grey lines represents techniques comparable to the target

technique.

We use M3-M6 using the similarity metrics W-I, W-II, and W-III as the target technique in

Figure 7(a)-(d), Figure 8(a)-(d), and Figure 9(a)-(d), respectively. We find that M3-M6 using all

three similarity metrics can significantly outperform C3 and M1, which are two total techniques

(Total-WE-Coverage and XPS-Total-Similarity). M3-M6 using W-III are all better than the

random testing. However, there is no significant differences between M3-M6 using W-I or W-II

and the random testing. These observations align with previous test case prioritization studies that

the code coverage information is important in test case prioritization.

M4 using W-III shows much better results than C1, C3-C4, and M1-M2. M3, M5-M6 shows

better results than C1, C3, and M1-M2. It is good to find that M4 can significantly outperform C4,

which has been reported to be an effective technique in (Elbaum et al. 2002). This finding shows

that the strategy of pairwise selection in test case prioritization can make our techniques more

effective (in terms of APFD) than conventional techniques.

Through comparing Figures 7-9 from W-I to W-III, we also find that each of M3–M6 is

increasingly more effective compared to C3-C4 or M1-M2. We also observe that C4 outperforms

C3 at the same coverage level, and M2 outperforms M1 at the same similarity level. The results

show that our techniques can be promising in scheduling test cases to reveal faults early. It also

shows that incorporating both static and run-time data (XML messages in our case) to facilitate

test case prioritization to conduct regression testing has good impacts on test suite effectiveness to

detect faults in a more cost-effective manner.

There are no significant differences between M3-M6 using all the three similarity metrics. The

results indicate that the same similarity metrics may have different effects on the various

prioritization techniques.

We further wonder if there is any significant difference between the same technique using

different similarity metrics. Therefore, we show the pairwise comparison results of the techniques

M1M6 using different similarity metrics in Table 14 (the significance level is also set as 0.05).

We use “” to indicate that there is no significant difference between two techniques, and use

“x<y” or “x>y” to indicate that y is significantly better or worse than x.

TABLE 14. PAIRWISE COMPARISONS (between W-I, W-II and W-III using Mi, i = 1 to 6)

Technique (x, y) W-I (x) vs. W-II (y) W-I (x) vs. W-III (y) W-II (x) vs. W-III (y)

M1, M1 x>y x>y x>y

M2, M2  x>y x>y

M3, M3  x<y x<y

M4, M4  x<y x<y

M5, M6  x<y x<y

M6, M6 x<y x<y x<y

To appear in International Journal of Web Services Research (JWSR)

 20

For the similarity metrics W-i (i = I, II, or III), when the level (i) increases (i.e., from I to II, II

to III, or I to III), we find that the performances of M1 show significantly worse results. M2 also

reports the same results as the level increases from II to III and from I to III. M3-M5 all show

better results when the level increases from II to III and from I to III. However, there is no

significant differences for M3-M5 using W-I and W-II. M6 consistently shows better results when

the level (i) increases (i.e., from I to II, II to III, or I to III).

The result shows that using a similarity metric that takes more types of artifacts into account

can be more effective in increasing the fault detection rate of the same technique. The result also

indicates that using WSDL documents and XML messages in test case prioritization can bring

significant advantages than without using such data. The test case pair selection strategy works

better for M3-M6 than M1-M2 in terms of mean APFD.

Threats to Validity

Threats to construct validity arise when measurement instruments do not adequately capture

the features that they should measure. We use APFD as the metrics to evaluate the proposed

prioritization techniques. Knowing the faults exposed by a test case in advance is normally

impractical, and therefore, software testers cannot estimate APFD before finishing testing.

However, APFD can serve as a measure to show the effectiveness of prioritization techniques

when testing has finished. Using other metrics such as HMFD (Zhai et al. to appear) may produce

different results. We have implemented our tool carefully and sampled the results of our

techniques to validate them manually. We have used previously evaluated benchmarks and testing

tools to conduct the experiment to minimize the chance of having an error. We have also

compared the results of our techniques with the results of random ordering and three other peer

techniques.

Threats to internal validity are the influences that can affect the dependency of involved

experimental variables. In our experiment, the major internal validity is the quality of the distance

measurement between XML documents for computing the test case similarity. To address this

threat, we have adopted a representative metrics for calculating the distance between XML

documents (Garofalakis et al. 2005; Guha et al. 2002), which is based on tree edit distance. Our

experiment has allowed test cases of the same web service to be executed in any order. The

results obtained here may not be generalizable to scenarios that there are casual constraints

between test cases. Our benchmarks are not large in scale, but are likely to be larger than the

benchmarks used by Ni et al. (2013). Using more and larger real life benchmarks and their

evolutions will strengthen the results obtained; unfortunately, we have not found such publicly

released benchmarks.

The external validity addresses the threats to adapt our approach in a general way. We base our

study on a typical kind of XML-manipulating software, WS-BPEL programs, for illustration. The

three levels of information included in modeling the coverage information of a WS-BPEL

program represent the flow logics, the interfaces definitions, and messages. Our techniques can be

easily applied to other applications that manipulate XML documents in the same way with us (i.e.,

using XML documents to specify code base, data structure, and exchange messages). Our

experiment has allowed test cases of the same web service to be executed in any order. The

results obtained here may not be generalized to scenarios that there are casual constraints between

test cases.

To appear in International Journal of Web Services Research (JWSR)

 21

RELATED WORK

Firstly, we review service modeling in brief. Zhang et al. (2004) have proposed to use a Petri-

net based specification model for web services to facilitate verification and monitoring of web

service integration. Bianculli et al. (2007) have presented an approach based on the software

model checker Bogor, which can support the modeling of all BPEL4WS constructs. They aim to

verify the workflows described in BPEL4WS. Nitto et al. (2008) analyzed the possible ways to

build the highly dynamic and self-adaptive systems using services. Ni et al. (2011) proposed to

model the WS-BPEL program under test as a message-sequence graph (MSG). Message

sequences are further generated based on MSG to capture the order relationship in a message

sequence and the constraints on correlated messages imposed by WS-BPEL’s routing mechanism.

In this paper, we focus on modeling the interactions between individual workflow steps and XML

documents used in these workflow steps via WSDL specifications.

We further review the testing approaches that relate to services and service-oriented

applications. Wasikon et al. (2012) reviewed the current testing approaches for Semantic Web

Services based on semantic specification. Zhang (2004) proposed a mobile agent-based approach

to select the reliable web services components. Her approach can facilitate the testing of

reliability and interoperability of web services. Alsmadi and Alda (2012) proposed several

approaches for test case selection in regression testing of web services. They developed a pre-test

execution component to evaluate the generated test cases and optimize the test case selection.

They also proposed to utilize the historical usage sessions to direct and optimize test case

generation and execution. However, these approaches are not concerned with workflow logics.

Bai et al. (2008) had proposed an ontology-based approach for testing web services. They

defined a test ontology model to specify the test concepts, relationships, and semantics, and

discussed how to generate the sub-domains for input partition testing with the ontology

information. We use different levels of program information, rather than the ontology model.

Yu and Lau (2012) proposed the notion of fault-based test case prioritization. Their technique

directly utilizes the theoretical knowledge of the fault-detecting ability of test cases, and the

relationships among the test cases and the faults in the prescribed fault model, which is used to

generate test cases. Comparing to their technique, our techniques make use of source codes.

Zhai et al. (2010) have observed that that locations captured in the inputs and the expected

outputs of test cases are physically correlated by the LBS-enabled services, which heuristically

use estimated and imprecise locations for their computations. As such, these services tend to treat

locations in close proximity homogenously. Based on their observation, they have proposed

input-guided techniques and point-of-interest aware test case prioritization techniques.

Furthermore, Zhai et al. (to appear) further extensively examined the effectiveness of different

test case prioritization with respect to different category of service faults. In this paper, we do not

use location information.

Li et al. (2007) proposes search algorithms for test case prioritizations. Li et al. (2010) studied

five search algorithms for test case prioritization and compared the performance of these

algorithms via a simulation experiment.

You et al. (2011) considered the criteria of statement coverage and fault detection for time-

aware test case prioritization. They investigated that whether the time cost of each test case

affects the effectiveness of prioritization techniques, in terms of the rate of statement coverage

and the rate of fault detection. Our test case prioritization techniques are not time-aware, but can

be extended to time-aware techniques in the same way.

To appear in International Journal of Web Services Research (JWSR)

 22

Mei et al. (2008) tackle the complexity of XPath in integrating individual workflow steps in

service-oriented workflow applications. They propose to use the mathematical definitions of

XPath as rewriting rules, and develop a new data structure to record the intermediate rewriting

results and the final rewritten forms. They also develop an algorithm to compute such data

structures and propose a family of adequacy criteria for unit test. In this paper, we focus on

analyzing the WSDL specifications and XML messages, rather than XPath queries.

Chan et al. (2007) proposed a metamorphic testing technique for on-line service testing to

alleviate the test oracle problem of service testing. They use off-line testing to determine a set of

successful test cases and then construct their corresponding follow-up test cases for the online

testing. Sun et al. (2012) further proposed a metamorphic relation-based approach to testing

service without oracles. Different from Chan’s work, they take into account the unique features of

SOA to automate the testing framework. They also performed three case studies for evaluation. In

contract, our work uses the results of previous program versions as the test oracle, which is

readily available in regression testing scenario.

Becker et al. (2011) proposed an approach to automatic determination of compatibility in

evolving services. They describe a method to determine when two service descriptions are

backward compatible. Based on the compatibility information, developers can assess, control, and

validate the service evolutions.

Let us continue to review the dynamic nature of services in services testing. Bai et al. (2007)

studied the dynamic configuration management for testing services, and they developed a tool to

enable test agents to bind dynamically to each other and build up the runtime collaborations. They

also proposed adaptive techniques for facilitate services testing (Bai et al. 2007). Since such

changes may also affect WSDL specifications and XML messages, our techniques can also be

used for detecting potential faults.

Next, we review the clustering techniques for test case prioritization. (Carlson et al. 2011)

proposed to utilize code coverage, code complexity, and history data on real faults to incorporate

a clustering approach in prioritization. (Yoo et al. 2009) studied the use of clustering in enabling

the application of the interactive prioritization technique (AHP). They utilized dynamic execution

traces of each test case as the base to compute the test case similarity. They further proposed an

AHP-based prioritization technique. Our techniques focus on studying the extensive use of XML

in test case prioritization.

Finally, we review related approaches on test case prioritization for services. Conventional

coverage-based test case prioritization techniques (Elbaum et al. 2002) have been reviewed in

Section 2. Wang et al. (2010) proposed to vary the combination weights to achieve cost-effective

combinatorial test case prioritization. Mei et al. develop two families of test case prioritization

techniques (Mei et al. 2009; 2011). One family (Mei et al. 2009) is built on top of their earlier

model (Mei et al. 2008), and another family (Mei et al. 2011) is built to recognize the importance

of XML messages. None of them has explored the pairwise selection strategy. Chen et al.

proposed a dependence analysis based test case prioritization technique for regression testing of

services (Chen et al. 2010). They analyze the data- and control- flow information within an

orchestration language, perform impact analysis on weighted graph, and prioritize the test cases

to cover more modification-affected elements in the graph. Nguyen et al. proposed an information

retrieval based test case prioritization technique for audit testing of evolving web services

(Nguyen et al. 2011). Their approach matches a service change description with the code

executed by the relevant test cases, and prioritizes the test cases based on their relevance to the

service modification.

To appear in International Journal of Web Services Research (JWSR)

 23

CONCLUSION

Pairwise selection is a fundamental strategy to compare elements and pick associations

between elements in a finite set. Using the notion of structural similarity is attractive to spot the

differences in semi-structural artifacts like XML documents. In this paper, we have proposed test

case prioritization techniques based on this strategy for the regression testing of WS-BPEL web

services. Our techniques consider the structural relationships among workflow modules, WSDL

specifications, and XML messages associated with each pair of test cases. Based on such

quantification, we have developed a family of new prioritization techniques to reorder test cases.

Our techniques use not only the coverage information of design-time artifacts, but also the

dynamic coverage information of run-time data generated by such web service. We have

empirically demonstrated that our techniques are feasible, and some of them can be more

effective than existing techniques or random ordering in terms of APFD.

In terms of pairwise comparison, our techniques give an exact solution, but are NP-complete.

A further optimization such as the use of an approximation approach can be further developed.

Another extension is to study the n-way selection strategy. Our work only deals with a part of the

self-adaptation cycle needed for web service evolution. A more comprehensive study that deals

with self-adaptation is necessary.

AKNOWLEGMENT

This research is supported in part by grants of the Research Grants Council of Hong Kong (project

nos. 111410, 123512, 716612, 717811, and 717308) and the National Natural Science Foundation

of China (project no. 61202077).

REFERENCES

Alsmadi, I., Alda, S. (2012). Test cases reduction and selection optimization in testing web services. In

Proceedings of I.J. Information Engineering and Electronic Business, 4(5):1–8.

Bai, X., Chen, Y., Shao, Z. (2007). Adaptive Web Services Testing. In Proceedings of COMPSAC 2007,

(2): 233–236.

Bai, X., Lee, S., Tsai, W.-T., Chen, Y. (2008). Ontology-Based Test Modeling and Partition Testing of

Web Services. In Proceeding of ICWS 2008, pages 465–472.

Bai, X., Xu, D., Dai, G. (2007). Dynamic reconfigurable testing of service-oriented architecture. In

Proceedings of COMPSAC 2007, (1): 368–378.

Becker, K., Pruyne, J., Singhal, S., Lopes, A., & Milojicic, D. (2011). Automatic Determination of

Compatibility in Evolving Services. International Journal of Web Services Research (IJWSR), 8(1), 21-40.

Bianculli, D., Ghezzi, C., Spoletini, P. (2007). A model checking approach to verify BPEL4WS workflows.

In Proceedings of SOCA 2007, pages 13–20.

BPEL Repository. IBM, 2006. Available at http://www.alphaworks.ibm.com/tech/bpelrepository.

Carlson, R., Hyunsook, D., Denton, A. (2011). A clustering approach to improving test case prioritization:

An industrial case study. In Proceedings of ICSM 2011, pages 382–391.

Chan, W. K., Cheung, S. C., and Leung, K. R. (2007). A Metamorphic Testing Approach for Online

Testing of Service-Oriented Software Applications. International Journal of Web Services Research

(IJWSR), 4(2), 61-81.

To appear in International Journal of Web Services Research (JWSR)

 24

Chen, L., Wang Z., Xu, L., Lu H., Xu, B. (2010). Test Case Prioritization for Web Service Regression

Testing. In Proceedings of SOSE 2010, pages 173-178.

Elbaum, S., Malishevsky, A.G., Rothermel, G. (2002). Test case prioritization: A family of empirical

studies. IEEE Transactions on Software Engineering (IEEE TSE), 28(2): 159-182.

Fu, X., Bultan, T., Su, J. (2004). Model checking XML manipulating software. In Proceedings of ISSTA

2004, pages 252–262.

Garofalakis, M., Kumar, A. (2005). XML stream processing using tree-edit distance embeddings. ACM

Transactions on Database Systems (TODS), 30(1): 279–332.

Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T. (2002). Approximate XML Joins. In

Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, pages 287–

298.

Hutchins, M., Foster, H., Goradia, T., Ostrand, T. (1994). Experiments on the effectiveness of dataflow-

and controlflow-based test adequacy criteria. In Proceedings ICSE 1994, pages 191–200.

Jaccard Index. Available at http://en.wikipedia.org/wiki/Jaccard_index. (Last access on May 5, 2013)

Jiang, B., Zhang, Z., Chan, W.K., Tse, T.H. (2009). Adaptive random test case prioritization. In

Proceedings ASE 2009, pages 233–244.

Krishnamoorthi, R., Mary, S.A. (2009). Regression test suite prioritization using genetic algorithms.

International Journal of Hybrid Information Technology, 2(3):35–52.

Li, S., Bian, N., Chen, Z., You, D., He, Y. (2010). A simulation study on some search algorithms for

regression test case prioritization. In Proceedings of QSIC 2010, 72–81.

Li, Z., Harman, M., Hierons, R.M. (2007). Search algorithms for regression test case prioritization. Test

case prioritization. IEEE TSE, 33(4):225–237.

Mei, L., Chan, W.K., Tse, T.H. (2008). Data flow testing of service-oriented workflow applications. In

Proceedings of ICSE 2008, pages 371–380.

Mei, L., Chan, W.K., Tse, T.H., Merkel, R. G. (2011). XML-manipulating test case prioritization for XML-

manipulating services. Journal of Systems and Software 84(4): 603–619.

Mei, L., Zhang, Z., Chan, W.K., Tse, T.H. (2009). Test case prioritization for regression testing of service-

oriented business applications. In Proceedings of WWW 2009, pages 901–910.

Mei, L., Cai, Y., Jia, C., Jiang, B., Chan, W.K. (2013). Prioritizing Structurally Complex Test Pairs for

Validating WS-BPEL Evolutions. In Proceedings of ICWS 2013, forthcoming.

Nguyen, C.D., Marchetto, A., Tonella, P., Test Case Prioritization for Audit Testing of Evolving Web

Services Using Information Retrieval Techniques. In Proceedings of ICWS 2011, pages 636-643.

Ni, Y., Hou, S., Zhang, L., Zhu, J., Li, Z., Lan, Q., Mei, H., Sun, J. (2013). Effective message-sequence

generation for testing BPEL programs. IEEE Transactions on Services Computing, 6(1):7-19.

Nitto, E.D., Ghezzi, C., Metzger, A., Papazoglou, M.P., and Pohl, K. (2008). A journey to highly dynamic,

self-adaptive service-based applications. Automated Software Engineering, 15(3-4): 313–341.

Oracle BPEL Process Manager 10.1.2 (2007). Oracle Technology Network. Available at

http://www.oracle.com/technology/products/ias/bpel/. (Last access on May 5, 2013)

Sun, C., Wang, G., Mu, B., Liu, H., Wang, Z., and Chen, T. Y. (2012). A Metamorphic Relation-Based

Approach to Testing Web Services Without Oracles. International Journal of Web Services Research

(IJWSR), 9(1), 51-73.

W3C. Web Services Description Language (WSDL) 1.1. 2001. Available at http://www.w3.org/TR/wsdl.

Wang, Z., Xu, B., Chen, L., Chen, Z. (2010). Cost-effective combinatorial test case prioritization for

varying combination weights. In Proceedings of SEKE 2010, 273–278.

http://www.w3.org/TR/wsdl

To appear in International Journal of Web Services Research (JWSR)

 25

Wasikon, S.M., Kadir, W.M.N.W, Ghani, I. (2012). Semantic specification-based of web services testing –

a review. Information Technology & Computer Science. 1:869–875.

Web Services Business Process Execution Language Version 2.0 (2007). Available at http://www.oasis-

open.org/committees/ wsbpel/.

Web Services Invocation Framework: DSL provider sample application. Apache Software Foundation.

2006. Available at http://ws.apache.org/wsif/wsif_samples/index.html.

World Wide Web Consortium (2007). XML Path Language (XPath) Recommendation. Available at

http://www.w3.org/ TR/xpath20/.

Yang, M. S., Wu, K.L. (2004). A similarity-based robust clustering method. IEEE Transactions on Pattern

Analysis and Machine Intelligence (IEEE PAMI), 26(4): 434–448.

Yeung, D.S., Wang, X.Z. (2002). Improving performance of similarity-based clustering by feature weight

learning. IEEE PAMI, 24(4): 556–561.

Yoo, S., Harman, M., Tonella, P., Susi, A. (2009). Clustering test cases to achieve effective and scalable

prioritization incorporating expert knowledge. In Proceedings of ISSTA 2009, pages 201–212.

You, D., Chen, Z., Xu, B., Luo, B., Zhang, C. (2011). An empirical study on the effectiveness of time-

aware test case prioritization techniques. In Proceedings of SAC 2011, pages 1451–1456.

Yu, Y.T., Lau M.F. (2012). Fault-based test suite prioritization for specification-based testing. Information

& Software Technology, 54(2): 179–202.

Zhai, K., Jiang, B., Chan, W.K., and Tse T.H., Taking Advantages of Service Selection: A Study on the

Testing of Location-Based Web Services through Test Case Prioritization, In Proceedings of the 8th IEEE

International Conference on Web Services (ICWS 2010), pages 211-218.

Zhai, K., Jiang, B., and Chan, W.K. (to appear). Prioritizing test cases for regression testing of location-

based services: metrics, techniques and case study. IEEE Transactions on Services Computing.

Zhang, J. (2004). An approach to facilitate reliability testing of web services components. In Proceedings

of ISSRE 2004, pages 210–218.

Zhang, J., Chang, C.K., Chung, J.Y., Kim, S.W. (2004). WS-Net: a Petri-net based specification model for

Web services. In Proceedings of ICWS 2004, pages 420–427.

http://www.informatik.uni-trier.de/~ley/db/journals/infsof/infsof54.html#YuL12
http://www.informatik.uni-trier.de/~ley/db/journals/infsof/infsof54.html#YuL12

To appear in International Journal of Web Services Research (JWSR)

 26

ABOUT THE AUTHORS

Lijun Mei is a staff researcher at IBM Research – China. He obtained his PhD from The University of

Hong Kong. His research interest is to address the issues of program testing and testing management in the

business environment. He has conducted extensive research in testing service-based applications.

Yan Cai is a PhD student at Department of Computer Science, City University of Hong Kong. He received

his BEng degree in Computer Science and Technology from Shandong University, China, in 2009. His

research interest is software testing, concurrency bug detection and reproduction in multithreaded or

distributed systems, especially for large-scale applications.

Changjiang Jia is a PhD candidate at Department of Computer Science, City University of Hong Kong.

He received his BSc and MSc degrees from National University of Defense Technology, China. His

research interests are program analysis and failure diagnosis.

Bo Jiang is an assistant professor at Institute of Computer Architecture, School of Computer Science and

Engineering, Beihang University. He got his Ph.D. from Department of Computer Science of The

University of Hong Kong. His current research interests are software engineering in general, and embedded

software testing as well as program debugging in particular. Home Page: http://bojiang.buaa.edu.cn.

W.K. Chan is an assistant professor at City University of Hong Kong. His current main research interests

are program analysis and testing for concurrent software and systems. He is on the editorial board of the

Journal of Systems and Software. His research results have been reported in many international venues

such as TOSEM, TSE, TPDS, TSC, CACM, Computer, ICSE, FSE, ISSTA, ASE, WWW, ICWS, and

ICDCS.

