
To appear in Software: Practice and Experience

In Quest of the Science in Statistical Fault Localization
†

W. K. Chan

City University of Hong Kong
Tat Chee Avenue

Kowloon Tong, Hong Kong

wkchan@cs.cityu.edu.hk

Yan Cai
City University of Hong Kong

Tat Chee Avenue
Kowloon Tong, Hong Kong

yancai2@student.cityu.edu.hk

Abstract

Many researchers employ various statistical methods to locate faults in faulty programs. Like

other researchers, we sometimes have made mistakes in the quest of making statistical fault

localization both practical and scientific. In this experience report, we reflect on our work

done on this topic, organize our isolated experiences in the format of models and errors, and

cast them in the context of statistics.

Keywords: statistical fault localization, mistakes, review, statistics.

1. Introduction
Program debugging aims to locate faults in faulty programs, repair them, and confirm the

identified faults having been removed [39]. Over the past few decades, a significant progress

in research has been achieved. Nonetheless, program debugging is still lengthy and labor-

intensive. Together with testing, they consume at least 30% of the total development budget

in a typical software development project [31]. Many researchers

[1][11][24][26][27][28][32][43][45][55] have proposed or are investigating various

automated or semi-automated methods with the aim of making this process more efficient,

precise, and scalable. Fault localization, which means to pinpoint the locations of the faults

in faulty software applications, is often deemed as a major bottleneck in this process. Diverse

approaches such as traditional gdb1-like debugging facilities, program slicing [2][42][50],

delta debugging [4][48], switching strategies [24][51], comparisons between a pair of peer

executions [3][32][37] or among multiple ones [1][7][26][27][28][53], as well as the

applications of formal analysis [10][44], to name a few, have been proposed.

In our investigation on this topic, we have made mistakes in the sake of making statistical

fault localization techniques both practical and scientific. In this experience report, we extend

our previous presentation [9] by revisiting, consolidating, and reflecting on the development

process of our ideas in statistical approaches to fault localization. In particular, we focus our

attention on the statistical aspect of this class of fault localization methods. Our observations

on our previous ideas as well as the ideas presented in the work done by other authors are

that there is still inadequate awareness of some well-known and general issues:

† This work is supported in part by General Research Grant of Research Grants Council of HKSAR

(project no. 111410).

1 www.gnu.org/s/gdb

 In Sections 4 and 5.1, we point out that many pieces of existing work do not address the

issue of coincidental correctness [40] (which, an execution of a program may not always

manifest into a failure even though a fault has been activated in the execution), even

though this issue is “well-known” [34] in the software testing community that can be

dated back to at least 1993. For instance, a fault may lie in a code library or fragment that

is popularly executed by many executions. As pointed out by Denmat et al. [13],

Tarantula [25], which relies on differencing the coverage achieved by a set of passed

and failing executions, is intrinsically difficult to locate such a fault. We have further

examined the 33 statement-level techniques summarized by Naish et al. [30], but could

not observe that they are intrinsically able to locate such a fault either. Interestingly,

many of the 33 techniques (and their variants) were proposed after 1993 and published in

software engineering publication venues. It appears to us that many software engineering

researchers (including us) recognize that coincidental correctness is a problem when

using execution profiles with test verdict indicting no failure, and yet, there is inadequate

awareness to address this problem in their fault localization techniques. Moreover,

although techniques such as [40][53][54] have been developed to address this problem,

yet we observe that later techniques may not learn from this experience.

 A technique may deliberately trade between precision and scalability [45]. In Section 5.2,

we show that it is possible to work from a model-based perspective to eliminate a class of

background noise inherent in such a tradeoff. Previous work has developed many

similarity coefficients (see Table 1 of [55] for example) that some capture noise-

reduction terms [45] in their similarity coefficients, yet subsequent work may not be

aware of the significance of such noise-reduction terms, and resolves to develop a new

similarity coefficient without them.

 In Section 5.3, this report revisits the needs of using distribution-free statistical inferences

[55]. It further points out that it is not always possible for every feature instance (e.g.,

every executed statement in a program over a given test suite) to receive a sufficient

number of samples to scientifically apply the same statistical inference technique with an

assumed underlying or prior distribution on the samples. This experience report also

argues that sometimes, the amount of samples for a subset of feature instances can be so

inadequate that even applying an non-parametric approach is problematic. Without

knowing whether an inference on every feature instances can be applied with confidence

to draw a statistical assertion, a technique may generate a list of feature instances (e.g.,

statements) that are associated with some inference values with diverse degrees of

confidence intervals, and yet some of the feature instances in the list may not be reliably

used. If this is the case, suggesting the list to the users poses a huge risk on the reliability

of the suggest locations of the faults. For instance, SOBER [28] and DES [56] did not

validate whether each predicate may apply their “z-value” hypothesis testing formulas.

It is worth noting that the target of this experience report is not to concisely summarize

the previously developed techniques or point out their imperfections. Rather, this report aims

to raise the awareness of the research community about the scientific issues when developing

techniques that solve practical problems. Hence, for brevity, in the sequel, this experience

report only summarizes the intuitive ideas of individual work.

The rest of this report is organized as follows. Section 2 gives the preliminaries of

statistical fault localization. It provides a basis for our discussion on how a statistical

instrument may affect the precision of a chosen fault localization idea that uses statistical

inferences to suggest faulty positions in programs with confidence. Section 3 outlines a code-

based example to ease us to discuss on various program debugging issues in the subsequent

two sections. Section 4 explains the needs to develop statistical structural models to better

understand fault localization for program debugging, which further leads us, in Section 5, to

discuss on some issues about errors in the fault localization process. In particular, we show

how such a model addresses the problem of coincidental correctness in Section 4, and we

look at the errors that may be introduced in fault localization during the process of data

collection in Section 5.1, data measurement in Section 5.2, and the application of statistical

inference in Section 5.3. Finally, Section 6 concludes the report.

2. Statistical Fault Localization: Preliminaries
In this paper, we generally refer to the use of statistical methods as the major devices in

tackling the fault localization problem as statistical fault localization. As explained by Liu et

al. [28], SOBER [28], Tarantula [15], and CBI [27] require the collections of the statistics

from executions. In [15], Eagan et al. also explain that Tarantula was developed in the

background of having a large test suite. Because of the statistical nature, if there is

inadequate amount of samples, a statistical test may draw a raw false negative conclusion due

to inadequate statistical power. Hence, we argue that it is inappropriate to apply such a

strategy on a set of data that contains an inadequate amount of samples such as merely

having one failure sample and one non-failure sample. We firstly assume that we are given

with a fairly large amount of samples, and later in Section 5.3, we revisit this assumption.

We firstly define a basic strategy to locate faults statistically, followed by discussing a

few more subtle issues that exist in program debugging, which separate our discussion from a

discussion on merely applying a statistical approach on a dataset. In a simplest form, a basic

strategy coined as BasicStrategy to locate faults in a faulty program P relies on a dataset D,

in which each element is an execution profile (e.g., [49]) about P that captures some

information about a particular execution path and its test verdict.

A test verdict is to dictate whether the corresponding execution profile is earmarked as

failed. We refer such an execution with a failed test verdict as a failing execution, and non-

failing otherwise. In practice, a check on the program outputs or a detected violation of some

assertions or invariant constraints can be used to determine such a test verdict. For instance,

one may mark the test verdict of an execution as failed if a trustworthy failure report about

the execution is available.

In many existing statistical fault localization techniques, various program entities such as

statements [15][25], branches [53], predicates [27][28], path fragments [11][40], information

flow [29], or their combinations [36] of a program exercised by an execution can be collected

in an execution profile. To ease our subsequent discussion, we refer to each type of program

entity (including its possible subtypes or supertypes) as a feature. In relation to this, every

particular program entity in a program is called a feature instance. For instance, the

statement s9 in Figure 1 can be regarded as a feature instance by a strategy.

Based on D, BasicStrategy may directly pick a similarity coefficient [22][30] or

multiple ones [12][36] to measure the strength of co-occurrence between the presence of an

object indicated by the test verdicts and the presence of an element indicated by the captured

execution profiles. For instance, one may initialize BasicStrategy by choosing the Jaccard

index [21] as its similarity coefficient and the statement coverage achieved by each execution

[15] as the samples for conducting statistical inference over D.

The application of a similarity coefficient may not be straightforward. For instance, the

Jaccard index [21] is defined as Jaccard(X, Y) = | X  Y|  |X  Y|, where

both X and Y are sets. Suppose that the feature instances are statements. In essence, the

Jaccard index measures the proportion of statements that are commonly executed by X and Y.

The empirical results and discussions reported in [26][32] on a technique coined as set-

intersection show that using such a strategy is significantly less effective to locate faults than

the other techniques reported in the same experiments.

Some existing proposals such as [1][22] use an alternative formulation for the

comparison for objects that their attributes are restricted to be binary. Such formulation can

be clarified with the aid of a contingency table [46] as shown in

Table 12, in which Object X refers to as the coverage achieved by all execution profiles on

a particular feature instance, and Object Y refers to as the test verdicts of the executions on

the same feature instance. In brief, the values a, b, c, and d refer to the total numbers of

matched cases in the four possible combinations of whether or not a feature instance is

covered and whether or not a corresponding execution profile is failing, respectively. In data

mining [17], the Jaccard coefficient can be expressed as (b + c)  (a + b + c),

which is the same as 1 – a  (a + b + c). Hence, without the loss of generality, the

Jaccard coefficient can be simply referred to as a  (a + b + c). For instance, the

Jaccard technique described in [1] uses this reversed form.

According to Han et al. [17], this coefficient is said to be useful for asymmetric data, that

is, under the assumption that the presence of data is more interesting than their absence. In

fault localization, the presence of a program entity in an execution and the presence of failure

associated with the same execution are more interesting than the opposite combination. The

Jaccard coefficient accounts for this asymmetric property by excluding the component d

from its formula. With this understanding, we firstly let s be a + b + c + d, and rewrite

the Jaccard coefficient into (a/s)  (a/s + b/s + c/s). Each term in the Jaccard

coefficient can be regarded as the probability of the occurrence of the corresponding event in

the sense of frequency probability, and therefore, a composition of four such probabilities.

Hence, an alternative view is that the Jaccard coefficient uses the parameters a, b, and c to

characterize D. We use this alternate view to link it to our discussion on distribution-free

hypothesis testing in Section 5.3.3

2 It is worth noting that contingency table is also known as crosstab, which has been directly

used for statistical fault localization (e.g., [43]).

3 For simplicity, in this paper, we do not go into the Bayesian probability theory to estimate

and adjust the prior probabilities of event occurrences so that a technique may further be

adapted to handle multiple faults in a program.

Table 1. Contingency table for binary data: Suppose that the feature instance in question is s. The terms a, b, c,

and d refer to the number of executions that each covers s and is failing, does not cover s and is failing, covers s

and is non-failing, and does not cover s and is non-failing, respectively.

 Object X

 Covered Not Covered Sum

Object Y

Failed A B a + b

Not Failed C D c + d

Sum a + c b + d

Once the above strategy computes the strengths of the above correlations, the next

procedure is to organize (or prioritize) the corresponding feature instances with the aim of

presenting the corresponding program entities that can help developers to locate faults most

effectively first. In many empirical studies of statistical fault localization research (e.g.,

[24][26]), this procedure is approximated by a measurement on the relative rank of the first

statement or predicate that is nearest to a fault position of each fault in a program. To make

our paper more focused, the ranking part of statistical fault localization techniques is not

within the scope of this experience report.

Nonetheless, if we want to present some empirical results, we are unavoidable to discuss

on the ranking effectiveness of statistical fault localization techniques. We use the

interpretation of code examination effort for this purpose.

In many validation experiments, the amount of code examination effort is measured via a

metric known as expense [24]. Supposed that the feature intsances used by a technique in an

experiment are statements, then this metric (i.e., expense) is defined as the ratio of the

executable statements received the same or higher ranks than an executable statement that is

nearest to the fault position over the total number of executable statements in D. In other

words, the higher this metric indicated, the better a technique in relation to the other

techniques in the same experiment is. It is worth noting that the use of expense can only

measure one particular aspect of the fault localization effectiveness of a technique. It is also

still unclear whether this metric maintains a linear relationship with the original target of

measuring code examination effort. Furthermore, a difference of, say, 10% in different ranges

of code examination efforts to locate the same faults or the same amount of faults may not be

directly comparable. Despite its limitations, in the rest of this article, we simply use this

metric to stand for code examination effort when we discuss on empirical data.

Last, but not the least, we should be aware of the underlying inspiration of applying such

a technique to fault localization for program debugging: A program spectrum is a

distribution of data [16] on a feature instance such as path or statement derived from the

execution profiles [33]. Raps et al. [33] pointed out that contrasting such a pair of path

spectra generated by two versions of the same program (e.g., intuitively, two “closely

related” programs both in terms of program structures and semantics) by a similarity

coefficient provides insights on the program behaviors between the two versions to facilitate

software maintenance. Harrolds et al. [16] generalized the concept of path spectra to program

spectra, and empirically compared different types of program spectra and their individual

correlations to program misbehavior in between a program and its modified program. Later,

Eagan et al. [15] combined the concept of program spectrum and fault localization to

formulate Taranulta. The fault localization effectiveness of Taranulta was first reported in

[25], which is probably the first empirical evidence in the public literature that contrasting

two program spectra derived from a set of non-failing executions and a set of failing

executions, respectively, of the same program can be valuable to locate faults in the program.

3. Running Example
Is it adequate to merely having a strong fault-failure correlation [54] between the

execution information associated with a feature instance and the test verdicts? Let us

consider the piece of code fragment shown in Figure 1 first.

In Figure 1, the program always crashes when any of its executions exercises the line s9

due to the occurrence of a null pointer exception. Let us hypothesize that the root cause of

this failure is at line s3, which is supposedly assigned a value from pGiven, but is

mistakenly implemented to receive a null value
4
. This null value is kept by the variable pA at

s3; and the corresponding infected state of this variable in an execution may not necessarily

infect a memory location pointed by the variable pB at line s6, which is further referenced at

line s9, triggering a failure as a result.

On the one hand, the fault is at s3, and yet some executions of the program may exercise

s3 only (e.g., skipping s6 and s9). It means that some executions do not result in null

pointer exceptions at s9. On the other hand, every execution that exercises s9 must

associate with a failure. The line s9 strongly correlates with the failures indicated by D, but

the line s3 does not.

The prime utility of statistical fault localization is to pinpoint s3, which is the root cause

of the failure. However, in the example, s9 is determined to be more failure relevant than s3

based on the relative strengths of the measured correlations. Perhaps, this “correlation

inversion” scenario could not be perfectly solved.

Figure 1. A simple program

4
 For instance, an alternative fault hypothesis is that the fault is due to an omission of

statements right before s9, which misses to implement a guard of referencing a possible

null value of pB before using the pointer at s9 because pGiven can be a null value.

s1. int foo(int a, int b, POINT pGiven)
s2. {
s3. POINT pA = null; // fault
s4. …
s5. if () {
s6. POINT pB = pA;
s7. …
s8. if () {
s9. pB[3] = 0;
s10. …
s11. }
s12. }
s13. }

Let us further look at how an ordinary developer may debug this program. We recall that

the class of failure is the null pointer exception. Starting from assessing s9, a developer may

follow the control flow and data flow of the program to find out that this problematic

occurrence of null value is assigned at s6, which is originated from s3. If this is the case, the

developer successfully locates the fault. Based on the finding, the developer can also explain

the failures observed at s9.

One may further deem such a correlation value as a statistical explanation of the observed

failures in D. Hence, apart from merely increasing the correlation values of s3 by some

means to maximize the above utility of statistical fault localization, another concern is to

provide a scientific explanation to developers: Why and how is such a failure relevant value

observed at s9 related to (or explain) another such value observed at s3?

We argue that a second utility of statistical fault localization is to provide a statistical

model or framework that can help explain how a fault manifests into a failure of the faulty

program as observed in D. The way may mimic how the above “ordinary developer” locates

s3 from s9, and explains the failures. Nonetheless, unlike the above developer, who locates

the fault based on the unique fault signature of “null pointer exception”, such a model or

framework should be general.

From the above example, readers may further observe that even though s3 is faulty,

some infected states generated by executing s3 may not lead the program to misbehave. For

instance, if the decision outcome of an execution at s5 is false, the above null pointer

exceptions cannot be observed. This phenomenon is generally referred to as coincidental

correctness [40], which affects the test verdict assignments in the execution profiles captured

by D. For instance, some non-failing executions may contain many prolific data that are

failure relevant but non-observable due to the presence of coincidental correctness.

In the above sense, there are errors in the construction process of D. Are there errors in

executing the other parts of typical statistical fault localization strategies? In the next two

sections, we are going to share our experience further and discuss on these issues.

4. Modeling Fault-Failure Structure Statistically
 A dataset D can be initialized to contain much information such as the consecutive pairs

of statements executed or a sub-path for each execution. Based on such “link” information,

one may construct a structural model that describes the fault-failure correlations distributed

among the program entities of a program concerned. With such a structure, a network-based

inference on the structure (as we are going to describe in this section) can be used to alleviate

the problem of locating faults that are popularly executed by the executions in D.

We first hypothesize that a measured fault-failure correlation value via a similarity

coefficient represents a statistical fact presented in D about the observed failures. Although a

strategy can apply any similarity coefficient in practice, yet under this hypothesis, we argue

that it is preferential to apply those similarity coefficients that can be linked to the probability

theory and have clear physical meanings.

For instance, in [53], the mean occurrence frequency of an edge for failing executions is

contrasted with that of the same edge for non-failing executions in D. In [27], a variant of the

former kind is compared to that in the whole set of executions, which is probably the first

work that contributes to this kind of modeling concept in statistical fault localization for

program debugging. In essence, the ideas of these two pieces of work are to measure and

specify the change in the probability of the same program entity occurred between the two

sets of execution profiles used in their corresponding models. Because each specified change

is a component in a model, we refer to such a change as an infected state.

Simply specifying the infected states of a model is insufficient because such states may

associate with different flows of information along the execution paths in a program. To

model such flows collectively, one may consider constructing a graph to denote how such the

corresponding program entities are organized in the faulty program and how such infected

states may be related to them.

For instance, we may take the set of such statistical facts (i.e., the observed infected

states) on “links” as a starting point. We may connect an end node of one link and a start

node of another link if the labels on these two nodes refer to the same basic blocks in the

code of the faulty program that D bases on. If every link represents a control-based

dependence of a program, then a resultant graph is a control flow graph, in which each edge

is superimposed with the above-mentioned statistical facts [53]. Similarly, if every link is a

definition-use association of a program, it becomes a data flow graph. Other superimposed

dependence graphs can be constructed similarly (e.g., see Baah et al. [5] for an alternate

formulation).

There are challenges in using such a graph for fault localization. Let us consider a simple

example that such a graph G comprises of three nodes {a, b, c} and three directed edges {(a,

b), (b, c), (c, a)}. Suppose also that the three edges are earmarked with non-identical values

and they represent control flow edges.

One way to “execute” G statistically is to “follow the edges” to visit its nodes in turn.

Similar to how an error in an execution may propagate from a program state to the other

program states in the execution, the error on one edge may propagate from one edge to

another edge when a program execution is simulated on G. Hence, the measured statistical

fact of every such node should represent the sum of the original statistical facts of the node

and the fractional original statistical facts of the nodes propagated via the graph and reached

this node. In other words, if one simply uses the measured statistical fact on a node (or edge)

as if it were the original statistical fact for the node (or edge), this is an error in such

approximation.

To iron out the fault-failure correlations of individual nodes more precisely, we apportion

the measured statistical facts of one node to all those nodes that are directly connected by the

incoming edges of the former node, which is analogous to rewinding the above “execution”

on G [53][54]. In the example, the graph G is cyclic. Hence, at the end, the proportion of the

statistical fact of a node apportioned to the other nodes reaches the node itself. Moreover, the

node also receives the proportions from the other two nodes as well. Through Gaussian

elimination [41] or its approximation such as dynamic programming, finally, all the three

nodes on G receive the same fault-failure correlation values. Readers may observe that such a

propagation method is (1) not only capable of re-distributing the fault-failure correlations

among nodes in a network-based model (2) but also uncover the next level of “facts” for

further statistical analysis. In general, such a network-based motif is a general directed graph,

and the correlation values after propagation may be non-identical. Intuitively, the set of

equations generated via such a propagation model can help model how a failure observed at a

node (e.g., statement s9 in Figure 1) can be backtracked to another node (e.g., s6 in Figure

1) statistically.

However, for program debugging, the situation can be more complicated. An execution

may crash at a particular program state. A consequence is that one should not simply follow

the edges to apportion the statistical facts without considering whether such a propagation

carries a precise physical meaning [54].

Table 2. Proportion of faults located by different statistical fault localization techniques (taken from [54])

 Proportion of faults located

Code

Emanation

Effort

Tarantula
[26]

Jaccard
[1]

Ochiai
[1]

SBI
[47]

CBI
[27]

SOBER
[28]

DES-
CBI
[56]

DES-
SOBER

[56]

CP
[53]

BlockRank
[54]

5% 0.30 0.30 0.30 0.30 0.12 0.01 0.07 0.05 0.39 0.39

10% 0.40 0.41 0.41 0.41 0.23 0.10 0.16 0.10 0.47 0.49

20% 0.66 0.66 0.66 0.66 0.29 0.24 0.27 0.22 0.65 0.67

mean 0.20 0.20 0.20 0.20 0.41 0.43 0.43 0.43 0.18 0.17

stdev 0.24 0.24 0.24 0.24 0.28 0.24 0.27 0.24 0.21 0.20

Table 2 shows an empirical comparison between two network-based techniques (i.e., CP

and BlockRank)5 and some other techniques on a suite of four medium-scale subjects (flex,

grep, gzip, and sed) to locate faults in 110 single-fault versions with one suite of test cases

for each subject. All of them were downloaded from SIR [14]. Each column of the table

shows a technique, and each row shows the proportion of faults located by the corresponding

technique with a certain threshold of code examination effort (see Section II for the

definition) as indicated as the corresponding row heading. The bottom two rows of the table

show the mean code examination effort (mean) and their standard deviations (stdev) to

locate all the faults in the experiment by each technique. For instance, with 5% code

examination effort, these two network-based techniques can be at least 0.09 (i.e., 0.39 – 0.30)

in absolute term (or 30% in relative term) more effective than the other techniques in the

same row to locate the faults from these subjects.

Intuitively, as some errors have been alleviated, such a network-based technique can be

more predictable. This intuition is consistent with the observations in the bottom row that the

standard derivations on code examination effort achieved by the two techniques to locate a

fault are smaller than the corresponding values of the other techniques in the table.

A statistical model for fault-failure propagation may be more complicated if a graph G

represents multiple kinds of dependencies in a program or a family of programs. For

instance, for graphs representing concurrent programs or definition-use associations for

5 We note that the essence of CP and BlockRank is to factor in the influences of all the nodes and edges in the same graph

on individual fault predictor location, yet some readers may prefer to view that these techniques work on a graph-based

motif rather than individual (and standalone) fault predictors. Hence, one may view them as graph-based techniques. We

accept both viewpoints.

memory locations, multiple edges may be exercised at each execution step. A further

generalization or adaptation of the above propagation models is necessary to handle such

cases. Moreover, in Table 2, the overall fault localization effectiveness for different

techniques may become almost indistinguishable after certain ranges of code examination

efforts. It indicates that some faults seem to be more effective to be detected by strategies

that are not network-based. They suggest that there are some error dimensions that the

propagation model has not captured but it may interference with the propagation strategies.

What are they? In the next section, we are going to reveal some of them based on our

experiences.

5. Thriving on Errors
In this section, we firstly point out some observations or misconceptions that many

researchers may have recognized, but as we are going to explain, many statistical fault

localization studies have overlooked them. Then, we share our experiences in addressing

them.

5.1 Data
We firstly look at a problem in the construction process of the dataset D.

Observation 1: Activating a fault in an execution does not imply observing a failure.

This observation is well-known in the software testing community for decades [34]. The

implication of Observation 1 is that some non-failing execution may have activated some

faults as well. Nonetheless, the location of a fault cannot be known before it is located.

Intuitively, such errors in D are hard to avoid.

In the “ordinary developer” example presented in Section 3, the developer applied some

knowledge about “null pointer exception” to track the flow of a program to locate s3 as the

root cause of an observed failure at s9. This kind of knowledge can be codified as fault

patterns. For instance, in FindBugs [18], some static fault patterns have been characterized

and used in the tool to detect anomalies (e.g., the null pointer bugs [19]). Similarly, many

patterns of concurrency faults [38] have been used in numerous static or dynamic

concurrency fault detectors.

An execution profile may contain sub-paths. If this is the case, such a sub-path may

match against some fault patterns. In [40], we use a heuristics to utilize this concept for

statistical fault localization: if there is a match, then the execution fragment is kept;

otherwise, the fragment can be discarded. Both the comprehensiveness of the suite of fault

patterns and how well the suite of fault patterns is coupled with real faults are important.

These questions remain to be answered. It appears to us that the situation is analogous to the

first-order mutants in mutation testing that killing them may effectively expose the actual

faults or higher-order mutants of the same program.

Previous research such as [32] has shown that a non-failing execution trace that is nearest

to a failing execution trace can help to locate faults. In relation to the idea mentioned in the

last paragraph, we have developed a suite of 12 fault patterns for this purpose [40]. By

applying the whole suite of patterns to every execution profile, a fragment of an execution

may be able to precisely match with a particular fault pattern. If this is the case, the part of

the execution profiles for this particular execution fragment is treated as a new execution

profile, and the latter is added to a constructing dataset D’ (initially empty) with a test verdict

the same as that of the original execution profile.

In this way, D’ is by design to contain no execution fragment that cannot be matched

with at least one fault pattern; and at the same time, an execution trace that can match with

multiple fault patterns will generate multiple execution profiles in D’. These two types of

actions correspond to cleansing D and refining D, respectively. Hence, in statistical

inference, the execution fragments can be compared more reliably with respect to the set of

fault patterns.

 If D incurs the problem of coincidental correctness and contains many samples,

intuitively, both failing executions and non-failing executions that can match the same fault

pattern at the same position in the program may exist. The corresponding pairs of execution

fragments in D’ (i.e., after the application of fault patterns) should be the nearest (which is in

fact identical with respect to the concerned fault pattern) because they match the same pattern

at the same position. At first sight, such a pair of execution fragments achieves the same

coverage statistics with respect to a fault pattern, and hence, provides little hints to locate

faults. At a closer look, suppose that a failed execution in D manifests into multiple

execution fragments D’, and they contain a fault. This type of coverage refinement may

enhance the amount of samples for failure scenarios (i.e., the component a in Table 1),

potentially improving the probability to locate the fault in the corresponding code fragment

with respect to the fault patterns (and their correlated higher-order fault pattern instances and

actual faults).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
e

c
a

ll(
5

%
)

Program: bc

Refined
Coverage

Statement
Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
e

c
a

ll(
1

%
)

Program: grep

Refined
Coverage

Statement
Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
e

c
a

ll(
1

%
)

Program: bc

Refined
Coverage

Statement
Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
e

c
a

ll(
5

%
)

Program: space

Refined
Coverage

Statement
Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
ec

al
l(

5
%

)

Program: bc

Refined Coverage

Statement Coverage

% of coincidental correctness test cases
in the execution profile D

Figure 2. The change in fault localization effectiveness between before applying the coverage refinement

patterns on top of Tarantula and after applying it (adapted from [40]): In each plot of the figure, Recall(k%)
refers to the proportion of faults located with k% code examination effort. Moreover, the statement coverage

achieved by each test case is used as an execution profile in D. The lines labeled as “Statement Coverage” and

“Refined Coverage” are the fault localization effectiveness achieved by Tarantula using D and D’, respectively,

on each program (bc, grep, and space are shown in the figure) with 1000 mutants that a failure of each mutant

can be detected by at least one test case.

Figure 2 shows the results of applying the whole suite of fault patterns on the datasets for

three medium-scale programs (bc, grep, and space). The subjects were downloaded from

SIR [14]. Although the improvement in effectiveness measured as the proportion of faults

located within the same amount of code examination effort varies, and yet one still observes

that, by cleansing and refining D, on average, a statistical fault localization technique can be

more accurate as the amount of confidential correctness in D increases.

Such a pair of execution fragments has been shown to be useful when it is used alone

[32] or statistically [40]. Nonetheless, it is certainly that in some scenarios, the above-

mentioned cleansing and refinement strategy may remove some execution profiles that can

succinctly and effectively used by a fault localization strategy to locate faults. It appears that

there are some deeper reasons to be uncovered. It is interesting to explore further by the

research community.

5.2 Similarity Measurement
We now turn our focus on the measurement process on the features that a strategy

applies.

Observation 2: Given a feature, measuring the correlation between D and each instance of

most features is inaccurate irrespective to the similarity coefficient used.

Take Figure 1 for example. If we merely measure the strength of the fault-failure

correlation between the execution information in D for s9 and the test verdicts, we have

ignored the fact that an execution cannot merely execute s9. Rather, every such execution

may go through some other feature instances such as s3 and s6.

Hence, each test verdict of an execution profile is probably associated with a set of

feature instances rather than the one being measured only. In other words, the samples

captured in D with respect to individual feature instances such as individual statements being

measured are not independent to one another.

In terms of probability theory, they are simply not independent events. If this is the case,

mathematicians use conditional probability to handle such cases. In this connection, if we

merely measure the direct fault-failure correlation for a feature instance, there are white

noises in the background, probably in every such measurement. Echoing the message in

Section 5.1, researchers may also develop some active strategies to reduce the adverse effects

of such issues on fault localization effectiveness.

Let us consider the following formulation to ease us to relate our discussion to the issues

on similarity coefficient:

Let A(e) be the probability of an execution with an observed failure and it executes e,

B(e) be the probability of an execution without observed failure and it executes e,

and,

C(e) be the probability of execution executes e.

Then, we can compute T(e) as (A(e) – C(e)) – (B(e) – C(e)), which can be further

simplified into A(e) – B(e).

The terms A(e) and B(e) as well as their variants have been directly used as the similarity

coefficients in many existing fault localization techniques. Examples include Jaccard [1],

Tarantula [26], and their variants.

The term A(e) – C(e) represents how much the probability of observing e has been

changed from the (noisy) background C(e) to the set of execution profiles that each is

earmarked as failed. C(e) can be considered as the white noise observed in D, and this idea of

characterization has been proposed in [27].

Opposite to the interpretation of the term A(e) – C(e), the term B(e) – C(e) represents how

much the probability of observing e has been changed from the (noisy) background C(e) to

the set of execution profiles that each is not earmarked as failed. Hence, if the term A(e) –

C(e) represents the evidences of observing a failure on top of the white noise, then the term

B(e) – C(e) represents the evidences of observing no failure on top of the background with

identical white noise.

The difference between these two terms (A(e) – C(e) and (B(e) – C(e)) thus represents the

evidence of changing from observing no failure to observing a failure in the presence of

(noisy) background. Interestingly, this difference T(e) can be simplified into A(e) – B(e),

which is independent to the background C(e). In CP [53] and Minus [45], we use such noise-

reduction formulas. Table 3 shows the empirical results [45] of Minus, which is initialized

on top of Tarantula [15], on a suite of three medium-scale Java programs (jtopas, xml-
security, and ant) with 86 versions with real faults using statements as the feature instances

for measurement. The row and column headings of the table can be interpreted similarly as

Table 2. Readers may compare the columns for Minus and Tarantula to observe the overall

effect on adding such a term in a fault localization similarity coefficient.

Table 3. Effect of Having Noise Reduction Terms (adapted from [45]).

 Proportion of faults located

Code

Examination

Effort

Minus
[45]

Jaccard
[1]

Ochiai
[1]

SBI
[47]

Tarantula

[26]

5% 0.1034 0.1264 0.1264 0.0690 0.1034

10% 0.2644 0.2644 0.2644 0.1494 0.2184

20% 0.3448 0.3448 0.3448 0.2759 0.3333

mean 0.4539 0.4687 0.4673 0.5830 0.4739

stdev 0.3517 0.3628 0.3624 0.3837 0.3537

The above measurement of fault-failure correlations is also affected by the chosen feature

and where in the program the feature instances are measured. In some cases, the locations to

measure such feature instances introduce imprecision, rendering such measurements

imprecise.

For instance, in [56], we observe that the computation taken by a program to compute a

decision value of a decision statement at the source-code level is subject to the complexity of

the decision expression. In C, C++, or Java source code, there are statements expressing

short-circuit logics. The above kind of measurement on such a statement is not precise

enough. By not mixing up different evaluation sequences (which is free from short-circuit

expressions) [56], one can obtain data at a finer granularity for every execution profile.

The empirical study reported in [56] uses four medium-scale programs (flex, grep, gzip,

and sed) with 110 faulty versions and the seven Siemens suite with 126 faulty versions as

subjects [14] to validate this idea. The result shows that the improvement on using finer

coverage granularity for predicate-based statistical fault localization may vary significantly

from a subject to another subject, and sometimes do not improve the original techniques. We

have reflected on this finding, which lead us to study the issue that we are going to discuss in

the next sub-section.

In some intermediate-representation levels of a program, there is no room for short-

circuit logics to take any effect. One may still improve the measurement precision by

applying the concept of evaluation sequence to construct a sequence of atomic predicates (or

a subpath) as a feature instance. For instance, in [45], the code listing of a program is

proposed to be partitioned according to such feature instances statically. Moreover, we used

Minus with all such sequences as the set of feature instances to have developed a technique

known as MKBC [45]. Figure 3 shows the empirical result [45] of MKBC in the same

experiment as what we have described to produce Table 3. In the table, MKBC is 10% more

effective than the other techniques in the same plot consistently across a majority range of

code examination effort.

Figure 3. Effect on having more accurate feature measurement (adapted from [45])

Last, but not the least, we recall that we have discussed the Jaccard coefficient in Section

2. A coefficient similar to the Jaccard coefficient is affected by the sample size [22]. This

finding shows that if a technique compares the coefficient values provided by such a

coefficient on two feature instances, the relative size of the samples for the two feature

instances should be considered. In theory, the size can be non-identical. Baah et al. [6]

recognize the problem of potential presence of cofounding factor in measurement, and

propose a methodology to address such a problem.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

p
ro

p
o

rt
io

n
 o

f
fa

u
lt

s
lo

ca
te

d

Code Examination Effort

Jaccard

Ochiai

Sbi

Tarantula

MKBC

[1]

[1]

[47]

[26]

[45]

5.3 Statistical Inference
In this section, we study on the use of statistical inference in the measurement of

similarity. In statistics, broadly speaking, there are parametric and non-parametric tests.

Non-parametric tests are distribution free tests, and tend to be more robust, but their power to

distinguish distributions is weaker than parametric tests if both classes are appropriate to the

same problem [57] (and see [35], on page 34, for a further discussion). Hence, it is well

receptive that one should use parametric tests whenever possible. Liu et al. [28] contribute to

propose the first parametric hypothesis testing approach to fault localization to debug

programs, and develop a technique known as SOBER, which is stated in [28] to be based on

normal distribution. Nonetheless, there are still some complications.

In D, some feature instances, such as a particular statement like s9 in Figure 1, may

contain too few samples to apply a parametric test. One idea to address this problem is to add

more samples to D until every such feature instance has an adequate amount of samples.

Nonetheless, this kind of idea does not solve the problem entirely.

Observation 3: Using a large amount of data does not imply that a distribution with known

parameters such as a normal distribution (i.e., the samples are drawn from a Gaussian

population) can be assumed.

Consider the line s6 in Figure 1. In general, whether this statement can be covered in an

execution of a program does not always follow a prior distribution. Furthermore, there is no

guaranty that different feature instances in the same program must follow the same prior

distribution. Rather, the concerned distribution depends on how a decision expression is

implemented at s5 with respect to its input domain, and how this particular input domain for

s5 is sampled with respect to D. In general, controlling D to attain a desirable distribution

for every feature instance in a program is very difficult. One of the primary obstacles is the

reachability problem encountered in test generation, which is in general undecidable. If it can

be done, the distribution can be represented by some parameters of a target distribution, and

hence, these parameters can further be used in a fault localization strategy properly. In

theory, one may enlarge D; in practice, one needs more test cases with definite test verdicts.

However, unless the test oracle problem in related to the concerned program has been

addressed at a low cost, it does not look like a promising direction.

As it appears difficult to control the composition of D so that a parametric test can be

reliably applied, in [20][52], we have further testified the normality assumption using the

Siemens suite [14], which has been popularly used in many testing and fault localization

research experiments. We executed each version over its corresponding test pool in entirety,

which contains thousands of test cases. We then measured the degree of normality of the

distributions of evaluation bias [28] of each predicate, which is the proportion of the total

frequencies that the predicate has been evaluated to be true. We used the Jarque-Bera test

[23] as the normality test. As shown in Table 4, the empirical results [52] indicate that in

many cases, the distributions of evaluation bias for individual predicates cannot be

reasonably considered as normal distributions.

The empirical result seems suggesting the follows: Intuitively, using thousands of test

cases even for a small-scale program such as the Siemens programs for the testing purpose is

already unrealistically large. Nonetheless, for a scientific application of a parametric

statistical fault localization strategy to address the problem in statistical fault localization,

such a quantity is still inadequate.

Table 4. Normality Test on the distribution of evaluation bias (adapted from [52])

Range of p-value for

normality test

> 0.90 > 0.50 > 0.10 > 0.05 > 0.01

Proportion of the most

fault-relevant predicates

0.55 0.55 0.55 0.61 0.67

Proportion of all

predicates

0.56 0.59 0.60 0.62 0.78

Apparently, Observation 3 contradicts to the well-known Central Limit Theorem [8] that

provides a scientific background to ensure parametric tests work properly in the presence of

large amount of samples even if the population is non-Gaussian. In fact, for program

debugging, it does not.

So far, we have assumed that D contains many elements. In some cases, only a few

samples for some feature instances exist even though the cardinality of D is large. For

instance, in D, some statements of a program may only be barely executed, and hence, only a

limited amount of execution profiles in D may cover these statements. In statistics, when the

number of samples to apply a statistical test is too small such as less than 20, it is more

appropriate to use a non-parametric test. An implication is that for a statistical fault

localization technique such as Jaccard that uses whether a particular program entity (e.g.,

statement) is covered by an execution profile that is earmarked as failed, a preliminary

guideline is that the technique should have at least 20 such profiles for every such program

entity so that the technique can be applied scientifically.

Moreover, if D cannot be asserted to follow an assumed distribution for every (failure

relevant) feature instance such as a normal distribution, the use of a parameter for the

assumed distribution (e.g., mean values for normal distributions) is risky from the statistics

point of view. It is primarily because of the effect size for a statistical tests being inadequate,

which makes the Type II error in statistical tests as the source of such risks. On the other

hand, nonparametric tests can still be applied even though the sample size is not small.

Indeed, our experiment reported in [55] shows that a non-parametric technique tends to

improve its effectiveness as more samples are available, whereas its parametric counterpart

does not.

Hence, in [55], we have argued that in general, it may be more robust (i.e., bearing less

risk) for statistical fault localization techniques to use a non-parametric approach to statistical

inference to draw a conclusion on whether the difference can be meaningful statistically. We

have experimented to compare the fault localization effectiveness of two popular and widely

used non-parametric hypothesis tests (Wilcoxon and Mann-Whiney tests) with 33 statement-

level strategies (for brevity, we refer readers to [55] for the discussion of these techniques) on

the program space downloaded from SIR [14]. We used 28 of the available faulty versions

because our platform cannot successfully compile the other 10 versions or the test pool in the

benchmark cannot reveal any failure on these versions. The results are shown in Table 5 in

which columns are techniques and rows are the number of faults located by spending a

certain amount of code examination effort as indicated by the corresponding row heading.

We observe from the table that the two non-parametric strategies can be more effective.

Table 5. Comparison of non-parametric test (highlighted) to other strategies (adapted from [55])

Program: SPACE. (# of faults located)

Using Non-Parametric Test is More Scientific

C
o

d
e

ex
am

in
at

io
n

ef

fo
rt

A problem of nonparametric tests in relation to parametric tests is that the former tests are

not powerful in the sense that the produced p-values tend to be quite large, and hence it is

more difficult to tell that the difference is statistically significant. This adverse effect is

linked to the ranking part of statistical fault localization techniques, which may use the p-

values as the indicators to prioritize program entities and presented them to their users. On

the other hand, if a p-value which is not small enough and the corresponding feature instance

is still presented in a ranked list as a suggestion to developers, the list would contain entries

that associate diverse degree of confidence values. An entry will a low confidence but is

ranked high may mislead the developers. Similarly, in the aforementioned similarity

coefficient measurement sections, if the fault-failure correlation of a feature instance is only

mild (e.g., 0.5), but a technique still present the feature instance to the developers simply

because the feature instance is ranked high in the ranking procedure, the developer may also

be misled.

We have only scratched the surface of using a non-parametric idea for fault localization

for program debugging. As we have mentioned in Section 2, sometimes, a feature instance

may come with one failing sample in D. In such a case, even a non-parametric approach

cannot be reliably applied in a standalone manner. A further investigation on scientific

methods to address this problem is needed to be well done.

As a final note, there are proposals (e.g., [7]) to use machine learning approaches that

train classifiers to locate and categorize faults based on program spectra in a dataset. A

simple and direct application to existing learning algorithms (Bayesian or not) ignores to

validate whether the dataset can provide a diagnosis result with sufficient confidence

associated with their classification strategies. Maximizing the diagnosis power over a dataset

for statistical fault localization does not solve this fundamental issue either.

6. Concluding Remarks
In this experience report, we have summarized and re-interpreted some of the isolated

work that we have investigated in the past few years. The main message is two-fold. First, we

have argued that a fault localization strategy should model a faulty program statistically as an

approach to understanding faults, fault activation, error propagation, and failure observation

in a chained manner and in a statistical way. Second, during a fault localization process, a

fault localization strategy should address the errors in multiple dimensions such as data,

similarity coefficient, and statistical inference.

We have also reviewed the basic ideas of some selected strategies and elaborated their

rationales. We have described selective mistakes that the science part of a technique could be

improved in the last two sections. We have made such mistakes ourselves in our own studies.

We hope that through this occasion, we could share our first-hand experiences with readers,

and raise the awareness of the research community not to overlook the importance of

developing sound techniques.

There are some obvious challenges for statistical fault localization in general. For

instance, a program with about 10,000 lines of code is usually regarded as small. However, it

is not quite effective if a developer still needs to debug the program by focusing their

attention to the first 100 lines of code suggested by a technique. At the same time, we have

presented some empirical results of different fault localization techniques in this report.

Readers must have observed that these techniques cannot consistently locate faults within 1%

code examination effort or a small number of lines of codes, say 3 lines, that the developers

may feel comfortable to use such a technique in practice. Both accuracy and scalability of

this class of fault localization techniques are remained to be improved significantly.

Another issue is about a fundamental assumption about a statistical approach. A

developer may require debugging a program when there is only one failing case. In such

circumstances, some feature instances may not accumulate sufficient samples in the dataset

to conduct reliable statistical inference even one chooses a nonparametric approach. It

appears that some mechanisms to control the involved reliability should be developed.

Moreover, some faults may be elusive and may not be related to whether a particular

executable statement has been implemented wrongly. For instance, there are parameter

configuration errors in software applications or errors in the compiler to translate mistakenly

the source code into a wrong object code. It is also unclear to us how to relate the precise

position of omission faults to a similarity coefficient, although we have proposed to use fault

patterns.

Fortunately, the challenge in fault localization is not restrictive to software engineering.

We may learn a lot of from the fault localization studies conducted in the other fields such as

artificial intelligence, data mining, and networks and systems.

7. References
[1] Abreu, R., Zoeteweij, P., and van Gemund, A. J. C. A practical evaluation of spectrum-based fault

localization. Journal of Systems and Software, 82(11):17801792, 2009.

[2] Agrawal, H., and Horgan, J.R. Dynamic program slicing. In Proceedings of the ACM SIGPLAN 1990

Conference on Programming Language Design and Implementation (PLDI 1990), pages 246256, 1990.

[3] Agrawal, H., Horgan, J., Lodon, S., and Wong, W. Fault localization using execution slices and dataflow

tests. In Proceedings of Sixth International Symposium on Software Reliability Engineering (ISSRE

1995), pages 143151, 1995.

[4] Artho, C. Iterative delta debugging. International Journal on Software Tools for Technology Transfer,

13(3):223246, 2011.

[5] Baah, G. K., Podgurski, A., and Harrold, M. J. The probabilistic program dependence graph and its

application to fault diagnosis. In Proceedings of International Symposium on Software Testing and

Analysis (ISSTA’08), pages 189200, 2008.

[6] Baah, G. K., Podgurski, A., and Harrold, M. J. Causal inference for statistical fault localization. In

Proceedings of the 19th international symposium on Software testing and analysis (ISSTA 2010), pages

7384, 2010.

[7] Briand, L.C., Labiche, Y., and Liu, X. Using machine learning to support debugging with tarantula. In

Proceedings of the 18
th

 International Symposium on Software Reliability (ISSRE 2007), pages 137146,

2007.

[8] Casella, G., and Berger, R. Statistical Inference, the Second Edition, Duxbury, 2001.

[9] Chan, W.K. Statistical fault localization: challenges and achievement. Keynote address. The Second

International Workshop on Program Debugging (IWPD 2011) in conjunction with the 35
th
 Annual IEEE

Conference on Computer Software and Applications (COMPSAC 2011), Munich, 1821 July 2011.

[10] Ceillier, P., Ducasse, S., Ferre, S., and Ridoux, O. Formal concept analysis enhances fault localization in

software. In Proceedings of the 4
th

 International Conference on Formal Concept Analysis (ICFCA 2008),

pages 273288, LNCS 4933, Springer, 2008.

[11] Chilimbi, T. M., Liblit, B., Mehra, K., Nori, A.V., and Vaswani, K. HOLMES: Effective statistical

debugging via efficient path profiling. In Proceedings of the 31st International Conference on Software

Engineering (ICSE 2009), pages 3444, 2009.
[12] Debroy, V., and Wong, W.E. On the consensus-based application of fault localization techniques. To

appear in Proceedings of the 2
nd

 International Workshop on Program Debugging (IWPD 2011) in

conjunction with the 34
th

 Annual IEEE Computer Software and Applications Conference (COMPSAC

2011), volume 2, 2011.
[13] Denmat, T., Ducassé, M., and Ridoux, O. Data mining and cross-checking of execution traces: a re-

interpretation of Jones, Harrold and Stasko test information visualization. In Proceedings of the 20
th

IEEE/ACM International Conference on Automated Software Engineering (ASE 2005), pages 396-399,

2005.
[14] Do, H., Elbaum, S.G., and Rothermel, G. Supporting controlled experimentation with testing techniques:

an infrastructure and its potential impact. Empirical Software Engineering, 10(4):405435, 2005.
[15] Eagan J., Harrold, M.J., Jones, J.A., and Stasko, J. Technical Note: Visually Encoding Program Test

Information to Find Faults in Software. In Proceedings of the IEEE Symposium on Information

Visualization 2001 (INFOVIS 2001), pages 3336, 2011.

[16] Harrold, M.J., Rothermel, G., Wu, R., and Yi, L. An empirical investigation of program spectra. In

Proceedings of the 1998 ACM SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools

and Engineering (PASTE 1998), pages 8390, 1998.
[17] Han, J., and Kamber, M. Data Mining: Concepts and Techniques, the 2

nd
 Edition. The Morgan

Kaufmann Series in Data Management Systems, Jim Gray, Series Editor Morgan Kaufmann Publishers,

March 2006. ISBN 1-55860-901-6.

[18] Hovermeyer, D., and Pugh, W. Finding bugs is easy. In Companion to the 19th annual ACM SIGPLAN

conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 2004),

pages 132136, 2004.

[19] Hovermeyer, D., Spacco, J., and Pugh, W. Evaluating and tuning a static analysis to find null pointer

bugs. In Proceedings of the 6
th
 ACM SIGPLAN-SIGSOFT workshop on Program Analysis for Software

Tools and Engineering (PASTE 2005), pages 1319, 2005.

[20] Hu, P., Zhang, Z., Chan, W.K., and Tse, T.H. Fault localization with non-parametric program behavior

model. In Proceedings of the 8
th

 International Conference on Quality Software (QSIC 2008), pages

385395, 2008.

[21] Jaccard, P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin

del la Socit Vaudoise des Sciences Naturelles, 37:547–579, 1901.

[22] Jackson AA, Somers KM, Harvey HH. Similarity coefficients: measures for co-occurrence and

association or simply measures of occurrence?. American Naturalist, 133:436453, 1989.

[23] Jarque, C.M., Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of

regression residuals: Monte Carlo evidence. Economics Letters, 7(4):313318, 1981.

[24] Jeffrey, D., Gupta, N., and Gupta R. Fault localization using value replacement. In Proceedings of

International Symposium on Software Testing and Analysis (ISSTA 2008), pages 167–178, 2008.

[25] Jones, J. A., and Harrold, M.J., and Stasko, J. Visualization of test information to assist fault localization.

In Proceedings of the 24th International Conference on Software Engineering (ICSE 2002), pages

467477, 2002.
[26] Jones, J. A., and Harrold, M.J., Empirical evaluation of the tarantula automatic fault-localization

technique. In Proceedings of the 20th IEEE/ACM international Conference on Automated software

engineering (ASE 2005), pages 273282, 2005.

[27] Liblit, B., Naik, M., Zheng, A. X., Aiken, A., and Jordan, M. I. Scalable statistical bug isolation. In

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI 2005), pages 15–26, 2005.

[28] Liu, C., Fei, L., Yan, X., Midkiff, S. P., Han, J. Statistical debugging: a hypothesis testing-based

approach. IEEE Transactions on Software Engineering, 32(10), 831–848, 2006.

[29] Masri, W. Fault localization based on information flow coverage. Software Testing, Verification and

Reliability, 20:121147, 2010.

[30] Naish, L, Lee, H. Jl, and Ramamohanarao, K. A model for spectra-based software diagnosis. ACM

Transactions on Software Engineering and Methodology 20(3): Article 11 (August 2011), 32 pages,

2011. http://doi.acm.org/10.1145/2000791.2000795

[31] National Institute of Standards & Technology. The Economic Impacts of Inadequate Infrastructure for

Software Testing. Planning Report 02-3, May 2002.

[32] Renieris M., and Reiss,S.P. Fault localization with nearest neighbor queries. In Proceedings of the 18th

IEEE International Conference on Automated Software Engineering (ASE 2003), pages 30–39, 2003.

[33] Reps, T., Ball, T., Das, M., and Larus, J The use of program profiling for software maintenance with

applications to the year 2000 problem. In Proceedings of the 6th European SOFTWARE ENGINEERING

conference held jointly with the 5th ACM SIGSOFT international symposium on Foundations of software

engineering (ESEC 1997/FSE-5), pages 432449, 1997.
[34] Richardson, D. J., and Thompson, M.C. An analysis of test data selection criteria using the REPLAY

model of fault detection. IEEE Transactions on Software Engineering, 19(6):533553, 1993.
[35] Siegel, S., and Catellan, N.J. Nonparametric Statistics for the Behavioral Sciences, 2

nd
 Edition. New

York, NY. McGraw-Hill, 1988.
[36] Santelices, R., Jones, J.A., Yu, Y., Harrold, M.J. Lightweight fault-localization using multiple coverage

types. In Proceedings of the 31
st
 International Conference on Software Engineering (ICSE 2009), pages

5566, 2009.
[37] Sumner, W.N., Bao, T., Zhang, X. Selecting peers for execution comparison. Proceedings of the 20th

international symposium on Software testing and analysis (ISSTA 2011), pages 309319, 2011.
[38] Vaziri, M., Tip, F., and Dolby, J. Associating synchronization constraints with data in an object-oriented

language. In Proceedings of 33rd Anual Symposium on Principles of Programming Language (POPL

2006), pages 334345, 2006.

[39] Vessey, I. Expertise in debugging computer programs: an analysis of the content of verbal protocols.

IEEE Transactions on Systems, an, and Cybernetics, 16(5):621–637, 1986.

[40] Wang, X., Cheung, S. C., Chan, W. K., and Zhang, Z. Taming coincidental correctness: coverage

refinement with context patterns to improve fault localization. In Proceedings of the 31st International

Conference on Software Engineering (ICSE 2009), pages 45–55, 2009.

[41] Wilkinson, J.H. The Algebraic Eigenvalue Problem. Oxford University Press, 1988.

[42] Weiser, M. Program slicing. IEEE Transactions on Software Engineering, 10 (4): 352–357, 1984.

[43] Wong E., Wei, T., Qi, Y., and Zhao, L. A Crosstab-based Statistical Method for Effective Fault

Localization. In Proceedings of the 2008 International Conference on Software Testing, Verification,

and Validation (ICST 2008), pages 4251, 2008.

[44] Wotawa, F., Stumptner, M, and Mayer, W. Model-based debugging or how to diagnose programs

automatically. In Proceedings of the 15
th

 International Conference on Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems (IEA/AIE 2002), Developments in Applied

Artificial Intelligence, pages 243-257, LNCS 2358/2002, Springer, 2002.

[45] Xu, J., Z. Zhang, W.K. Chan, T.H. Tse, and S. Li. A Dynamic Fault Localization Technique with Noise

Reduction for Java Programs. In Proceedings of the 11
th

 International Conference on Quality Software

(QSIC 2011), pages 1120, 2011.

[46] Yates, F. Contingency tables involving small numbers and the χ2 test. Supplement to the Journal of the

Royal Statistical Society, 1(2):217235, 1934.

[47] Yu, Y., Jones, J.A., and Harrold, M.J.. An empirical study of the effects of test-suite reduction on fault

localization. In Proceedings of the 30th International Conference on Software Engineering (ICSE 2008),

pages 201–210, 2008.

[48] A. Zeller. Yesterday, my program worked. Today, it does not. Why?. In Proceedings of ESEC/FSE-7

Proceedings of the 7th European Software Engineering Conference held jointly with the 7th ACM

SIGSOFT International Symposium on Foundations of Software Engineering (ESEC/FSE-7), pages

253267, 1999.

[49] Zhao, Q., Sim, J.E., Wong, W.F., and Rudolph, L. DEP: detailed execution profile. In Proceedings of the

15
th

 International Conference on Parallel Architectures and Compilation Techniques (PACT 2006),

pages 154163, 2006.

[50] Zhang, X., Gupta, N., and Gupta, R. Pruning dynamic slices with confidences. In Proceedings of the

2006 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2006),

pages 169180, 2008.

[51] Zhang, X., Gupta, N., and Gupta, R. Locating faults through automated predicate switching. In

Proceedings of the 28
th

 International Conference on Software Engineering (ICSE 2006), pages 271281,

2006.

[52] Zhang, Z. Chan, W.K. Tse, T.H., Hu P., and Wang, X. Is non-parametric hypothesis testing model

robust for statistical fault localization?, Information and Software Technology, 51 (11):1573–1585, 2009.

[53] Zhang, Z. Chan, W.K., Tse, T.H., Jiang, B., and Wang, X. Capturing propagation of infected program

states, Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT International Symposium on Foundations of Software Engineering (ESEC 2009/FSE-

17), pages 43–52, 2009.

[54] Zhang, Z., Chan, W.K., Tse, T.H., and Jiang, B. Precise Propagation of Fault-Failure Correlations in

Program Flow Graphs. To appear in Proceedings of the 35
th

 Annual International Computer Software

and Applications Conference (COMPSAC 2011), 10 pages, 2011.

[55] Zhang, Z., Chan, W.K., Tse, T.H., Yu, Y.T., and Hu, P. Non-parametric statistical fault localization.

Journal of Systems and Software, 84(6):885905, 2011.

[56] Zhang, Z., Jiang, B., Chan, W.K., Tse, T.H., and Wang, X. Fault localization through evaluation

sequences. Journal of Systems and Software, 83 (2): 174–187, 2010.

[57] Zolman, J.F. Experimental design and statistical inference. Oxford University Press, New York, 1993.

