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Abstract 

Many researchers employ various statistical methods to locate faults in faulty programs. Like 

other researchers, we sometimes have made mistakes in the quest of making statistical fault 

localization both practical and scientific. In this experience report, we reflect on our work 

done on this topic, organize our isolated experiences in the format of models and errors, and 

cast them in the context of statistics.  
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1. Introduction 
Program debugging aims to locate faults in faulty programs, repair them, and confirm the 

identified faults having been removed [39]. Over the past few decades, a significant progress 

in research has been achieved. Nonetheless, program debugging is still lengthy and labor-

intensive. Together with testing, they consume at least 30% of the total development budget 

in a typical software development project [31]. Many researchers 

[1][11][24][26][27][28][32][43][45][55] have proposed or are investigating various 

automated or semi-automated methods with the aim of making this process more efficient, 

precise, and scalable. Fault localization, which means to pinpoint the locations of the faults 

in faulty software applications, is often deemed as a major bottleneck in this process. Diverse 

approaches such as traditional gdb1-like debugging facilities, program slicing [2][42][50], 

delta debugging [4][48], switching strategies [24][51], comparisons between a pair of peer 

executions [3][32][37] or among multiple ones [1][7][26][27][28][53], as well as the 

applications of formal analysis [10][44], to name a few, have been proposed.  

In our investigation on this topic, we have made mistakes in the sake of making statistical 

fault localization techniques both practical and scientific. In this experience report, we extend 

our previous presentation [9] by revisiting, consolidating, and reflecting on the development 

process of our ideas in statistical approaches to fault localization. In particular, we focus our 

attention on the statistical aspect of this class of fault localization methods. Our observations 

on our previous ideas as well as the ideas presented in the work done by other authors are 

that there is still inadequate awareness of some well-known and general issues:  
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 In Sections 4 and 5.1, we point out that many pieces of existing work do not address the 

issue of coincidental correctness [40] (which, an execution of a program may not always 

manifest into a failure even though a fault has been activated in the execution), even 

though this issue is “well-known” [34] in the software testing community that can be 

dated back to at least 1993. For instance, a fault may lie in a code library or fragment that 

is popularly executed by many executions. As pointed out by Denmat et al. [13], 

Tarantula [25], which relies on differencing the coverage achieved by a set of passed 

and failing executions, is intrinsically difficult to locate such a fault. We have further 

examined the 33 statement-level techniques summarized by Naish et al. [30], but could 

not observe that they are intrinsically able to locate such a fault either. Interestingly, 

many of the 33 techniques (and their variants) were proposed after 1993 and published in 

software engineering publication venues. It appears to us that many software engineering 

researchers (including us) recognize that coincidental correctness is a problem when 

using execution profiles with test verdict indicting no failure, and yet, there is inadequate 

awareness to address this problem in their fault localization techniques. Moreover, 

although techniques such as [40][53][54] have been developed to address this problem, 

yet we observe that later techniques may not learn from this experience. 

 A technique may deliberately trade between precision and scalability [45]. In Section 5.2, 

we show that it is possible to work from a model-based perspective to eliminate a class of 

background noise inherent in such a tradeoff. Previous work has developed many 

similarity coefficients (see Table 1 of [55] for example) that some capture noise-

reduction terms [45] in their similarity coefficients, yet subsequent work may not be 

aware of the significance of such noise-reduction terms, and resolves to develop a new 

similarity coefficient without them.   

 In Section 5.3, this report revisits the needs of using distribution-free statistical inferences 

[55]. It further points out that it is not always possible for every feature instance (e.g., 

every executed statement in a program over a given test suite) to receive a sufficient 

number of samples to scientifically apply the same statistical inference technique with an 

assumed underlying or prior distribution on the samples. This experience report also 

argues that sometimes, the amount of samples for a subset of feature instances can be so 

inadequate that even applying an non-parametric approach is problematic. Without 

knowing whether an inference on every feature instances can be applied with confidence 

to draw a statistical assertion, a technique may generate a list of feature instances (e.g., 

statements) that are associated with some inference values with diverse degrees of 

confidence intervals, and yet some of the feature instances in the list may not be reliably 

used. If this is the case, suggesting the list to the users poses a huge risk on the reliability 

of the suggest locations of the faults. For instance, SOBER [28] and DES [56] did not 

validate whether each predicate may apply their “z-value” hypothesis testing formulas.  

It is worth noting that the target of this experience report is not to concisely summarize 

the previously developed techniques or point out their imperfections. Rather, this report aims 

to raise the awareness of the research community about the scientific issues when developing 

techniques that solve practical problems. Hence, for brevity, in the sequel, this experience 

report only summarizes the intuitive ideas of individual work.  

The rest of this report is organized as follows. Section 2 gives the preliminaries of 

statistical fault localization. It provides a basis for our discussion on how a statistical 



instrument may affect the precision of a chosen fault localization idea that uses statistical 

inferences to suggest faulty positions in programs with confidence. Section 3 outlines a code-

based example to ease us to discuss on various program debugging issues in the subsequent 

two sections. Section 4 explains the needs to develop statistical structural models to better 

understand fault localization for program debugging, which further leads us, in Section 5, to 

discuss on some issues about errors in the fault localization process. In particular, we show 

how such a model addresses the problem of coincidental correctness in Section 4, and we 

look at the errors that may be introduced in fault localization during the process of data 

collection in Section 5.1, data measurement in Section 5.2, and the application of statistical 

inference in Section 5.3. Finally, Section 6 concludes the report. 

2. Statistical Fault Localization: Preliminaries 
In this paper, we generally refer to the use of statistical methods as the major devices in 

tackling the fault localization problem as statistical fault localization. As explained by Liu et 

al. [28], SOBER [28], Tarantula [15], and CBI [27] require the collections of the statistics 

from executions. In [15], Eagan et al. also explain that Tarantula was developed in the 

background of having a large test suite. Because of the statistical nature, if there is 

inadequate amount of samples, a statistical test may draw a raw false negative conclusion due 

to inadequate statistical power.  Hence, we argue that it is inappropriate to apply such a 

strategy on a set of data that contains an inadequate amount of samples such as merely 

having one failure sample and one non-failure sample. We firstly assume that we are given 

with a fairly large amount of samples, and later in Section 5.3, we revisit this assumption.  

We firstly define a basic strategy to locate faults statistically, followed by discussing a 

few more subtle issues that exist in program debugging, which separate our discussion from a 

discussion on merely applying a statistical approach on a dataset. In a simplest form, a basic 

strategy coined as BasicStrategy to locate faults in a faulty program P relies on a dataset D, 

in which each element is an execution profile (e.g., [49]) about P that captures some 

information about a particular execution path and its test verdict.  

A test verdict is to dictate whether the corresponding execution profile is earmarked as 

failed. We refer such an execution with a failed test verdict as a failing execution, and non-

failing otherwise. In practice, a check on the program outputs or a detected violation of some 

assertions or invariant constraints can be used to determine such a test verdict. For instance, 

one may mark the test verdict of an execution as failed if a trustworthy failure report about 

the execution is available.  

In many existing statistical fault localization techniques, various program entities such as 

statements [15][25], branches [53], predicates [27][28], path fragments [11][40], information 

flow [29], or their combinations [36] of a program exercised by an execution can be collected 

in an execution profile. To ease our subsequent discussion, we refer to each type of program 

entity (including its possible subtypes or supertypes) as a feature. In relation to this, every 

particular program entity in a program is called a feature instance.  For instance, the 

statement s9 in Figure 1 can be regarded as a feature instance by a strategy. 

Based on D, BasicStrategy may directly pick a similarity coefficient [22][30] or 

multiple ones [12][36] to measure the strength of co-occurrence between the presence of an 

object indicated by the test verdicts and the presence of an element indicated by the captured 

execution profiles. For instance, one may initialize BasicStrategy by choosing the Jaccard 



index [21] as its similarity coefficient and the statement coverage achieved by each execution 

[15] as the samples for conducting statistical inference over D.  

The application of a similarity coefficient may not be straightforward. For instance, the 

Jaccard index [21] is defined as Jaccard(X, Y) = | X  Y|  |X  Y|, where 

both X and Y are sets. Suppose that the feature instances are statements. In essence, the 

Jaccard index measures the proportion of statements that are commonly executed by X and Y. 

The empirical results and discussions reported in [26][32] on a technique coined as set-

intersection show that using such a strategy is significantly less effective to locate faults than 

the other techniques reported in the same experiments.   

Some existing proposals such as [1][22] use an alternative formulation for the 

comparison for objects that their attributes are restricted to be binary. Such formulation can 

be clarified with the aid of a contingency table [46] as shown in  

Table 12, in which Object X refers to as the coverage achieved by all execution profiles on 

a particular feature instance, and Object Y refers to as the test verdicts of the executions on 

the same feature instance. In brief, the values a, b, c, and d refer to the total numbers of 

matched cases in the four possible combinations of whether or not a feature instance is 

covered and whether or not a corresponding execution profile is failing, respectively. In data 

mining [17], the Jaccard coefficient can be expressed as (b + c)  (a + b + c), 

which is the same as 1 – a  (a + b + c). Hence, without the loss of generality, the 

Jaccard coefficient can be simply referred to as a  (a + b + c). For instance, the 

Jaccard technique described in [1] uses this reversed form.  

According to Han et al. [17], this coefficient is said to be useful for asymmetric data, that 

is, under the assumption that the presence of data is more interesting than their absence. In 

fault localization, the presence of a program entity in an execution and the presence of failure 

associated with the same execution are more interesting than the opposite combination. The 

Jaccard coefficient accounts for this asymmetric property by excluding the component d 

from its formula. With this understanding, we firstly let s be a + b + c + d, and rewrite 

the Jaccard coefficient into (a/s)  (a/s + b/s + c/s). Each term in the Jaccard 

coefficient can be regarded as the probability of the occurrence of the corresponding event in 

the sense of frequency probability, and therefore, a composition of four such probabilities. 

Hence, an alternative view is that the Jaccard coefficient uses the parameters a, b, and c to 

characterize D.  We use this alternate view to link it to our discussion on distribution-free 

hypothesis testing in Section 5.3.3 

 

 

                                                                 

2 It is worth noting that contingency table is also known as crosstab, which has been directly 

used for statistical fault localization (e.g., [43]). 

3 For simplicity, in this paper, we do not go into the Bayesian probability theory to estimate 

and adjust the prior probabilities of event occurrences so that a technique may further be 

adapted to handle multiple faults in a program. 



 

Table 1. Contingency table for binary data: Suppose that the feature instance in question is s. The terms a, b, c, 

and d refer to the number of executions that each covers s and is failing, does not cover s and is failing, covers s 

and is non-failing, and does not cover s and is non-failing, respectively. 

  Object X 

  Covered Not Covered Sum 

Object Y 

Failed A B a + b 

Not Failed C D c + d 

Sum a + c b + d  

 

Once the above strategy computes the strengths of the above correlations, the next 

procedure is to organize (or prioritize) the corresponding feature instances with the aim of 

presenting the corresponding program entities that can help developers to locate faults most 

effectively first. In many empirical studies of statistical fault localization research (e.g., 

[24][26]), this procedure is approximated by a measurement on the relative rank of the first 

statement or predicate that is nearest to a fault position of each fault in a program. To make 

our paper more focused, the ranking part of statistical fault localization techniques is not 

within the scope of this experience report.  

Nonetheless, if we want to present some empirical results, we are unavoidable to discuss 

on the ranking effectiveness of statistical fault localization techniques. We use the 

interpretation of code examination effort for this purpose. 

In many validation experiments, the amount of code examination effort is measured via a 

metric known as expense [24]. Supposed that the feature intsances used by a technique in an 

experiment are statements, then this metric (i.e., expense) is defined as the ratio of the 

executable statements received the same or higher ranks than an executable statement that is 

nearest to the fault position over the total number of executable statements in D. In other 

words, the higher this metric indicated, the better a technique in relation to the other 

techniques in the same experiment is. It is worth noting that the use of expense can only 

measure one particular aspect of the fault localization effectiveness of a technique. It is also 

still unclear whether this metric maintains a linear relationship with the original target of 

measuring code examination effort. Furthermore, a difference of, say, 10% in different ranges 

of code examination efforts to locate the same faults or the same amount of faults may not be 

directly comparable. Despite its limitations, in the rest of this article, we simply use this 

metric to stand for code examination effort when we discuss on empirical data. 

Last, but not the least, we should be aware of the underlying inspiration of applying such 

a technique to fault localization for program debugging: A program spectrum is a 

distribution of data [16] on a feature instance such as path or statement derived from the 

execution profiles [33]. Raps et al. [33] pointed out that contrasting such a pair of path 

spectra generated by two versions of the same program (e.g., intuitively, two “closely 

related” programs both in terms of program structures and semantics) by a similarity 

coefficient provides insights on the program behaviors between the two versions to facilitate 

software maintenance. Harrolds et al. [16] generalized the concept of path spectra to program 

spectra, and empirically compared different types of program spectra and their individual 

correlations to program misbehavior in between a program and its modified program. Later, 



Eagan et al. [15] combined the concept of program spectrum and fault localization to 

formulate Taranulta. The fault localization effectiveness of Taranulta was first reported in 

[25], which is probably the first empirical evidence in the public literature that contrasting 

two program spectra derived from a set of non-failing executions and a set of failing 

executions, respectively, of the same program can be valuable to locate faults in the program.  

3. Running Example 
Is it adequate to merely having a strong fault-failure correlation [54] between the 

execution information associated with a feature instance and the test verdicts? Let us 

consider the piece of code fragment shown in Figure 1 first. 

In Figure 1, the program always crashes when any of its executions exercises the line s9 

due to the occurrence of a null pointer exception. Let us hypothesize that the root cause of 

this failure is at line s3, which is supposedly assigned a value from pGiven, but is 

mistakenly implemented to receive a null value
4
. This null value is kept by the variable pA at 

s3; and the corresponding infected state of this variable in an execution may not necessarily 

infect a memory location pointed by the variable pB at line s6, which is further referenced at 

line s9, triggering a failure as a result. 

On the one hand, the fault is at s3, and yet some executions of the program may exercise 

s3 only (e.g., skipping s6 and s9). It means that some executions do not result in null 

pointer exceptions at s9. On the other hand, every execution that exercises s9 must 

associate with a failure. The line s9 strongly correlates with the failures indicated by D, but 

the line s3 does not.  

The prime utility of statistical fault localization is to pinpoint s3, which is the root cause 

of the failure. However, in the example, s9 is determined to be more failure relevant than s3 

based on the relative strengths of the measured correlations. Perhaps, this “correlation 

inversion” scenario could not be perfectly solved.  

 

 

 

Figure 1. A simple program 

                                                                 

4
 For instance, an alternative fault hypothesis is that the fault is due to an omission of 

statements right before s9, which misses to implement a guard of referencing a possible 

null value of pB before using the pointer at s9 because pGiven can be a null value. 

s1.   int foo(int a, int b, POINT pGiven) 
s2.   { 
s3.        POINT pA = null; // fault 
s4.        … 
s5.        if () { 
s6.            POINT pB = pA; 
s7.            … 
s8.            if () { 
s9.                 pB[3] = 0; 
s10.               … 
s11.          } 
s12.      } 
s13.  } 



Let us further look at how an ordinary developer may debug this program. We recall that 

the class of failure is the null pointer exception. Starting from assessing s9, a developer may 

follow the control flow and data flow of the program to find out that this problematic 

occurrence of null value is assigned at s6, which is originated from s3. If this is the case, the 

developer successfully locates the fault. Based on the finding, the developer can also explain 

the failures observed at s9. 

One may further deem such a correlation value as a statistical explanation of the observed 

failures in D. Hence, apart from merely increasing the correlation values of s3 by some 

means to maximize the above utility of statistical fault localization, another concern is to 

provide a scientific explanation to developers: Why and how is such a failure relevant value 

observed at s9 related to (or explain) another such value observed at s3? 

We argue that a second utility of statistical fault localization is to provide a statistical 

model or framework that can help explain how a fault manifests into a failure of the faulty 

program as observed in D. The way may mimic how the above “ordinary developer” locates 

s3 from s9, and explains the failures. Nonetheless, unlike the above developer, who locates 

the fault based on the unique fault signature of “null pointer exception”, such a model or 

framework should be general. 

From the above example, readers may further observe that even though s3 is faulty, 

some infected states generated by executing s3 may not lead the program to misbehave. For 

instance, if the decision outcome of an execution at s5 is false, the above null pointer 

exceptions cannot be observed.  This phenomenon is generally referred to as coincidental 

correctness [40], which affects the test verdict assignments in the execution profiles captured 

by D. For instance, some non-failing executions may contain many prolific data that are 

failure relevant but non-observable due to the presence of coincidental correctness.  

In the above sense, there are errors in the construction process of D.  Are there errors in 

executing the other parts of typical statistical fault localization strategies? In the next two 

sections, we are going to share our experience further and discuss on these issues. 

4. Modeling Fault-Failure Structure Statistically 
     A dataset D can be initialized to contain much information such as the consecutive pairs 

of statements executed or a sub-path for each execution. Based on such “link” information, 

one may construct a structural model that describes the fault-failure correlations distributed 

among the program entities of a program concerned. With such a structure, a network-based 

inference on the structure (as we are going to describe in this section) can be used to alleviate 

the problem of locating faults that are popularly executed by the executions in D. 

We first hypothesize that a measured fault-failure correlation value via a similarity 

coefficient represents a statistical fact presented in D about the observed failures. Although a 

strategy can apply any similarity coefficient in practice, yet under this hypothesis, we argue 

that it is preferential to apply those similarity coefficients that can be linked to the probability 

theory and have clear physical meanings.  

For instance, in [53], the mean occurrence frequency of an edge for failing executions is 

contrasted with that of the same edge for non-failing executions in D. In [27], a variant of the 

former kind is compared to that in the whole set of executions, which is probably the first 

work that contributes to this kind of modeling concept in statistical fault localization for 



program debugging. In essence, the ideas of these two pieces of work are to measure and 

specify the change in the probability of the same program entity occurred between the two 

sets of execution profiles used in their corresponding models.  Because each specified change 

is a component in a model, we refer to such a change as an infected state.  

Simply specifying the infected states of a model is insufficient because such states may 

associate with different flows of information along the execution paths in a program. To 

model such flows collectively, one may consider constructing a graph to denote how such the 

corresponding program entities are organized in the faulty program and how such infected 

states may be related to them.   

For instance, we may take the set of such statistical facts (i.e., the observed infected 

states) on “links” as a starting point. We may connect an end node of one link and a start 

node of another link if the labels on these two nodes refer to the same basic blocks in the 

code of the faulty program that D bases on. If every link represents a control-based 

dependence of a program, then a resultant graph is a control flow graph, in which each edge 

is superimposed with the above-mentioned statistical facts [53]. Similarly, if every link is a 

definition-use association of a program, it becomes a data flow graph. Other superimposed 

dependence graphs can be constructed similarly (e.g., see Baah et al. [5] for an alternate 

formulation).  

There are challenges in using such a graph for fault localization.  Let us consider a simple 

example that such a graph G comprises of three nodes {a, b, c} and three directed edges {(a, 

b), (b, c), (c, a)}. Suppose also that the three edges are earmarked with non-identical values 

and they represent control flow edges.  

One way to “execute” G statistically is to “follow the edges” to visit its nodes in turn. 

Similar to how an error in an execution may propagate from a program state to the other 

program states in the execution, the error on one edge may propagate from one edge to 

another edge when a program execution is simulated on G. Hence, the measured statistical 

fact of every such node should represent the sum of the original statistical facts of the node 

and the fractional original statistical facts of the nodes propagated via the graph and reached 

this node. In other words, if one simply uses the measured statistical fact on a node (or edge) 

as if it were the original statistical fact for the node (or edge), this is an error in such 

approximation. 

To iron out the fault-failure correlations of individual nodes more precisely, we apportion 

the measured statistical facts of one node to all those nodes that are directly connected by the 

incoming edges of the former node, which is analogous to rewinding the above “execution” 

on G [53][54]. In the example, the graph G is cyclic. Hence, at the end, the proportion of the 

statistical fact of a node apportioned to the other nodes reaches the node itself. Moreover, the 

node also receives the proportions from the other two nodes as well. Through Gaussian 

elimination [41] or its approximation such as dynamic programming, finally, all the three 

nodes on G receive the same fault-failure correlation values. Readers may observe that such a 

propagation method is (1) not only capable of re-distributing the fault-failure correlations 

among nodes in a network-based model (2) but also uncover the next level of “facts” for 

further statistical analysis. In general, such a network-based motif is a general directed graph, 

and the correlation values after propagation may be non-identical. Intuitively, the set of 

equations generated via such a propagation model can help model how a failure observed at a 



node (e.g., statement s9 in Figure 1) can be backtracked to another node (e.g., s6 in Figure 

1) statistically.  

However, for program debugging, the situation can be more complicated. An execution 

may crash at a particular program state. A consequence is that one should not simply follow 

the edges to apportion the statistical facts without considering whether such a propagation 

carries a precise physical meaning [54].   

 

Table 2. Proportion of faults located by different statistical fault localization techniques (taken from [54]) 

 Proportion of faults located 

Code 

Emanation 

Effort 

Tarantula 
[26] 

Jaccard 
[1] 

Ochiai 
[1] 

SBI 
[47] 

CBI 
[27] 

SOBER 
[28] 

DES-
CBI 
[56] 

DES-
SOBER 

[56] 

CP 
[53] 

BlockRank 
[54] 

5% 0.30 0.30 0.30 0.30 0.12 0.01 0.07 0.05 0.39 0.39 

10% 0.40 0.41 0.41 0.41 0.23 0.10 0.16 0.10 0.47 0.49 

20% 0.66 0.66 0.66 0.66 0.29 0.24 0.27 0.22 0.65 0.67 

mean 0.20 0.20 0.20 0.20 0.41 0.43 0.43 0.43 0.18 0.17 

stdev 0.24 0.24 0.24 0.24 0.28 0.24 0.27 0.24 0.21 0.20 

 

Table 2 shows an empirical comparison between two network-based techniques (i.e., CP 

and BlockRank)5 and some other techniques on a suite of four medium-scale subjects (flex, 

grep, gzip, and sed) to locate faults in 110 single-fault versions with one suite of test cases 

for each subject. All of them were downloaded from SIR [14]. Each column of the table 

shows a technique, and each row shows the proportion of faults located by the corresponding 

technique with a certain threshold of code examination effort (see Section II for the 

definition) as indicated as the corresponding row heading. The bottom two rows of the table 

show the mean code examination effort (mean) and their standard deviations (stdev) to 

locate all the faults in the experiment by each technique. For instance, with 5% code 

examination effort, these two network-based techniques can be at least 0.09 (i.e., 0.39 – 0.30) 

in absolute term (or 30% in relative term) more effective than the other techniques in the 

same row to locate the faults from these subjects.  

Intuitively, as some errors have been alleviated, such a network-based technique can be 

more predictable. This intuition is consistent with the observations in the bottom row that the 

standard derivations on code examination effort achieved by the two techniques to locate a 

fault are smaller than the corresponding values of the other techniques in the table. 

A statistical model for fault-failure propagation may be more complicated if a graph G 

represents multiple kinds of dependencies in a program or a family of programs. For 

instance, for graphs representing concurrent programs or definition-use associations for 
                                                                 

5 We note that the essence of CP and BlockRank is to factor in the influences of all the nodes and edges in the same graph 

on individual fault predictor location, yet some readers may prefer to view that these techniques work on a graph-based 

motif rather than individual (and standalone) fault predictors. Hence, one may view them as graph-based techniques. We 

accept both viewpoints.   



memory locations, multiple edges may be exercised at each execution step. A further 

generalization or adaptation of the above propagation models is necessary to handle such 

cases. Moreover, in Table 2, the overall fault localization effectiveness for different 

techniques may become almost indistinguishable after certain ranges of code examination 

efforts. It indicates that some faults seem to be more effective to be detected by strategies 

that are not network-based. They suggest that there are some error dimensions that the 

propagation model has not captured but it may interference with the propagation strategies. 

What are they? In the next section, we are going to reveal some of them based on our 

experiences.  

5. Thriving on Errors  
In this section, we firstly point out some observations or misconceptions that many 

researchers may have recognized, but as we are going to explain, many statistical fault 

localization studies have overlooked them. Then, we share our experiences in addressing 

them.  

5.1 Data  
We firstly look at a problem in the construction process of the dataset D.  

Observation 1: Activating a fault in an execution does not imply observing a failure. 

This observation is well-known in the software testing community for decades [34]. The 

implication of Observation 1 is that some non-failing execution may have activated some 

faults as well. Nonetheless, the location of a fault cannot be known before it is located. 

Intuitively, such errors in D are hard to avoid.  

In the “ordinary developer” example presented in Section 3, the developer applied some 

knowledge about “null pointer exception” to track the flow of a program to locate s3 as the 

root cause of an observed failure at s9. This kind of knowledge can be codified as fault 

patterns. For instance, in FindBugs [18], some static fault patterns have been characterized 

and used in the tool to detect anomalies (e.g., the null pointer bugs [19]). Similarly, many 

patterns of concurrency faults [38] have been used in numerous static or dynamic 

concurrency fault detectors. 

An execution profile may contain sub-paths. If this is the case, such a sub-path may 

match against some fault patterns. In [40], we use a heuristics to utilize this concept for 

statistical fault localization: if there is a match, then the execution fragment is kept; 

otherwise, the fragment can be discarded. Both the comprehensiveness of the suite of fault 

patterns and how well the suite of fault patterns is coupled with real faults are important. 

These questions remain to be answered. It appears to us that the situation is analogous to the 

first-order mutants in mutation testing that killing them may effectively expose the actual 

faults or higher-order mutants of the same program.  

Previous research such as [32] has shown that a non-failing execution trace that is nearest 

to a failing execution trace can help to locate faults. In relation to the idea mentioned in the 

last paragraph, we have developed a suite of 12 fault patterns for this purpose [40]. By 

applying the whole suite of patterns to every execution profile, a fragment of an execution 

may be able to precisely match with a particular fault pattern. If this is the case, the part of 

the execution profiles for this particular execution fragment is treated as a new execution 



profile, and the latter is added to a constructing dataset D’ (initially empty) with a test verdict 

the same as that of the original execution profile.   

In this way, D’ is by design to contain no execution fragment that cannot be matched 

with at least one  fault pattern; and at the same time, an execution trace that can match with 

multiple fault patterns will generate multiple execution profiles in D’. These two types of 

actions correspond to cleansing D and refining D, respectively. Hence, in statistical 

inference, the execution fragments can be compared more reliably with respect to the set of 

fault patterns.  

 If D incurs the problem of coincidental correctness and contains many samples, 

intuitively, both failing executions and non-failing executions that can match the same fault 

pattern at the same position in the program may exist. The corresponding pairs of execution 

fragments in D’ (i.e., after the application of fault patterns) should be the nearest (which is in 

fact identical with respect to the concerned fault pattern) because they match the same pattern 

at the same position. At first sight, such a pair of execution fragments achieves the same 

coverage statistics with respect to a fault pattern, and hence, provides little hints to locate 

faults. At a closer look, suppose that a failed execution in D manifests into multiple 

execution fragments D’, and they contain a fault. This type of coverage refinement may 

enhance the amount of samples for failure scenarios (i.e., the component a in Table 1), 

potentially improving the probability to locate the fault in the corresponding code fragment 

with respect to the fault patterns (and their correlated higher-order fault pattern instances and 

actual faults). 
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Figure 2. The change in fault localization effectiveness between before applying the coverage refinement 

patterns on top of Tarantula and after applying it (adapted from [40]): In each plot of the figure, Recall(k%) 
refers to the proportion of faults located with k% code examination effort. Moreover, the statement coverage 

achieved by each test case is used as an execution profile in D. The lines labeled as “Statement Coverage” and 

“Refined Coverage” are the fault localization effectiveness achieved by Tarantula using D and D’, respectively, 

on each program (bc, grep, and space are shown in the figure) with 1000 mutants that a failure of each mutant 

can be detected by at least one test case.  

 



Figure 2 shows the results of applying the whole suite of fault patterns on the datasets for 

three medium-scale programs (bc, grep, and space). The subjects were downloaded from 

SIR [14]. Although the improvement in effectiveness measured as the proportion of faults 

located within the same amount of code examination effort varies, and yet one still observes 

that, by cleansing and refining D, on average, a statistical fault localization technique can be 

more accurate as the amount of confidential correctness in D increases.  

Such a pair of execution fragments has been shown to be useful when it is used alone 

[32] or statistically [40]. Nonetheless, it is certainly that in some scenarios, the above-

mentioned cleansing and refinement strategy may remove some execution profiles that can 

succinctly and effectively used by a fault localization strategy to locate faults. It appears that 

there are some deeper reasons to be uncovered. It is interesting to explore further by the 

research community. 

5.2 Similarity Measurement  
We now turn our focus on the measurement process on the features that a strategy 

applies.  

Observation 2: Given a feature, measuring the correlation between D and each instance of 

most features is inaccurate irrespective to the similarity coefficient used. 

Take Figure 1 for example. If we merely measure the strength of the fault-failure 

correlation between the execution information in D for s9 and the test verdicts, we have 

ignored the fact that an execution cannot merely execute s9. Rather, every such execution 

may go through some other feature instances such as s3 and s6.  

Hence, each test verdict of an execution profile is probably associated with a set of 

feature instances rather than the one being measured only. In other words, the samples 

captured in D with respect to individual feature instances such as individual statements being 

measured are not independent to one another.  

In terms of probability theory, they are simply not independent events. If this is the case, 

mathematicians use conditional probability to handle such cases. In this connection, if we 

merely measure the direct fault-failure correlation for a feature instance, there are white 

noises in the background, probably in every such measurement. Echoing the message in 

Section 5.1, researchers may also develop some active strategies to reduce the adverse effects 

of such issues on fault localization effectiveness.  

Let us consider the following formulation to ease us to relate our discussion to the issues 

on similarity coefficient:  

Let A(e) be the probability of an execution with an observed failure and it executes e,  

B(e) be the probability of an execution without observed failure and it executes e, 

and,  

C(e) be the probability of execution executes e.  

Then, we can compute T(e) as (A(e) – C(e)) –  (B(e) – C(e)), which can be further 

simplified into A(e) – B(e).  



The terms A(e) and B(e) as well as their variants have been directly used as the similarity 

coefficients in many existing fault localization techniques. Examples include Jaccard [1], 

Tarantula [26], and their variants.  

The term A(e) – C(e) represents how much the probability of observing e has been 

changed from the (noisy) background C(e) to the set of execution profiles that each is 

earmarked as failed. C(e) can be considered as the white noise observed in D, and this idea of 

characterization has been proposed in [27].  

Opposite to the interpretation of the term A(e) – C(e), the term B(e) – C(e) represents how 

much the probability of observing e has been changed from the (noisy) background C(e) to 

the set of execution profiles that each is not earmarked as failed. Hence, if the term A(e) – 

C(e) represents the evidences of observing a failure on top of the white noise, then the term 

B(e) – C(e) represents the evidences of observing no failure on top of the background with 

identical white noise.  

The difference between these two terms (A(e) – C(e) and (B(e) – C(e)) thus represents the 

evidence of changing from observing no failure to observing a failure in the presence of 

(noisy) background. Interestingly, this difference T(e) can be simplified into A(e) – B(e), 

which is independent to the background C(e). In CP [53] and Minus [45], we use such noise-

reduction formulas. Table 3 shows the empirical results  [45] of Minus, which is initialized 

on top of Tarantula [15], on a suite of three medium-scale Java programs (jtopas, xml-
security, and ant) with 86 versions with real faults using statements as the feature instances 

for measurement. The row and column headings of the table can be interpreted similarly as 

Table 2. Readers may compare the columns for Minus and Tarantula to observe the overall 

effect on adding such a term in a fault localization similarity coefficient.  

Table 3. Effect of Having Noise Reduction Terms (adapted from [45]).  

 Proportion of faults located 

Code 

Examination 

Effort 

Minus 
[45] 

Jaccard 
[1] 

Ochiai 
[1] 

SBI 
[47] 

Tarantula  

[26] 

5% 0.1034 0.1264 0.1264 0.0690 0.1034 

10% 0.2644 0.2644 0.2644 0.1494 0.2184 

20% 0.3448 0.3448 0.3448 0.2759 0.3333 

mean 0.4539 0.4687 0.4673 0.5830 0.4739 

stdev 0.3517 0.3628 0.3624 0.3837 0.3537 

 

The above measurement of fault-failure correlations is also affected by the chosen feature 

and where in the program the feature instances are measured. In some cases, the locations to 

measure such feature instances introduce imprecision, rendering such measurements 

imprecise.  

For instance, in [56], we observe that the computation taken by a program to compute a 

decision value of a decision statement at the source-code level is subject to the complexity of 

the decision expression. In C, C++, or Java source code, there are statements expressing 

short-circuit logics. The above kind of measurement on such a statement is not precise 



enough. By not mixing up different evaluation sequences (which is free from short-circuit 

expressions) [56], one can obtain data at a finer granularity for every execution profile.  

The empirical study reported in [56] uses four medium-scale programs (flex, grep, gzip, 

and sed) with 110 faulty versions and the seven Siemens suite with 126 faulty versions as 

subjects [14] to validate this idea. The result shows that the improvement on using finer 

coverage granularity for predicate-based statistical fault localization may vary significantly 

from a subject to another subject, and sometimes do not improve the original techniques. We 

have reflected on this finding, which lead us to study the issue that we are going to discuss in 

the next sub-section. 

In some intermediate-representation levels of a program, there is no room for short-

circuit logics to take any effect. One may still improve the measurement precision by 

applying the concept of evaluation sequence to construct a sequence of atomic predicates (or 

a subpath) as a feature instance. For instance, in [45], the code listing of a program is 

proposed to be partitioned according to such feature instances statically. Moreover, we used 

Minus with all such sequences as the set of feature instances to have developed a technique 

known as MKBC [45]. Figure 3 shows the empirical result [45] of MKBC in the same 

experiment as what we have described to produce Table 3. In the table, MKBC is 10% more 

effective than the other techniques in the same plot consistently across a majority range of 

code examination effort.  

 
Figure 3. Effect on having more accurate feature measurement (adapted from [45]) 

Last, but not the least, we recall that we have discussed the Jaccard coefficient in Section 

2. A coefficient similar to the Jaccard coefficient is affected by the sample size [22]. This 

finding shows that if a technique compares the coefficient values provided by such a 

coefficient on two feature instances, the relative size of the samples for the two feature 

instances should be considered.  In theory, the size can be non-identical. Baah et al. [6] 

recognize the problem of potential presence of cofounding factor in measurement, and 

propose a methodology to address such a problem.  
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5.3 Statistical Inference  
In this section, we study on the use of statistical inference in the measurement of 

similarity.  In statistics, broadly speaking, there are parametric and non-parametric tests. 

Non-parametric tests are distribution free tests, and tend to be more robust, but their power to 

distinguish distributions is weaker than parametric tests if both classes are appropriate to the 

same problem [57] (and see [35], on page 34, for a further discussion). Hence, it is well 

receptive that one should use parametric tests whenever possible. Liu et al. [28] contribute to 

propose the first parametric hypothesis testing approach to fault localization to debug 

programs, and develop a technique known as SOBER, which is stated in [28] to be based on 

normal distribution. Nonetheless, there are still some complications.  

In D, some feature instances, such as a particular statement like s9 in Figure 1, may 

contain too few samples to apply a parametric test. One idea to address this problem is to add 

more samples to D until every such feature instance has an adequate amount of samples. 

Nonetheless, this kind of idea does not solve the problem entirely.  

Observation 3:  Using a large amount of data does not imply that a distribution with known 

parameters such as a normal distribution (i.e., the samples are drawn from a Gaussian 

population) can be assumed. 

Consider the line s6 in Figure 1. In general, whether this statement can be covered in an 

execution of a program does not always follow a prior distribution. Furthermore, there is no 

guaranty that different feature instances in the same program must follow the same prior 

distribution. Rather, the concerned distribution depends on how a decision expression is 

implemented at s5 with respect to its input domain, and how this particular input domain for 

s5 is sampled with respect to D. In general, controlling D to attain a desirable distribution 

for every feature instance in a program is very difficult. One of the primary obstacles is the 

reachability problem encountered in test generation, which is in general undecidable. If it can 

be done, the distribution can be represented by some parameters of a target distribution, and 

hence, these parameters can further be used in a fault localization strategy properly. In 

theory, one may enlarge D; in practice, one needs more test cases with definite test verdicts. 

However, unless the test oracle problem in related to the concerned program has been 

addressed at a low cost, it does not look like a promising direction.  

As it appears difficult to control the composition of D so that a parametric test can be 

reliably applied, in [20][52], we have further testified the normality assumption using the 

Siemens suite [14], which has been popularly used in many testing and fault localization 

research experiments. We executed each version over its corresponding test pool in entirety, 

which contains thousands of test cases.  We then measured the degree of normality of the 

distributions of evaluation bias [28] of each predicate, which is the proportion of the total 

frequencies that the predicate has been evaluated to be true. We used the Jarque-Bera test 

[23] as the normality test. As shown in Table 4, the empirical results [52] indicate that in 

many cases, the distributions of evaluation bias for individual predicates cannot be 

reasonably considered as normal distributions.  

The empirical result seems suggesting the follows: Intuitively, using thousands of test 

cases even for a small-scale program such as the Siemens programs for the testing purpose is 

already unrealistically large. Nonetheless, for a scientific application of a parametric 



statistical fault localization strategy to address the problem in statistical fault localization, 

such a quantity is still inadequate.  

Table 4. Normality Test on the distribution of evaluation bias (adapted from [52]) 

Range of p-value for 

normality test 

> 0.90 > 0.50 > 0.10 > 0.05 > 0.01 

Proportion of the most 

fault-relevant predicates  

0.55 0.55 0.55 0.61 0.67 

Proportion of all 

predicates 

0.56 0.59 0.60 0.62 0.78 

 

Apparently, Observation 3 contradicts to the well-known Central Limit Theorem [8] that 

provides a scientific background to ensure parametric tests work properly in the presence of 

large amount of samples even if the population is non-Gaussian. In fact, for program 

debugging, it does not. 

So far, we have assumed that D contains many elements. In some cases, only a few 

samples for some feature instances exist even though the cardinality of D is large. For 

instance, in D, some statements of a program may only be barely executed, and hence, only a 

limited amount of execution profiles in D may cover these statements. In statistics, when the 

number of samples to apply a statistical test is too small such as less than 20, it is more 

appropriate to use a non-parametric test. An implication is that for a statistical fault 

localization technique such as Jaccard that uses whether a particular program entity (e.g., 

statement) is covered by an execution profile that is earmarked as failed, a preliminary 

guideline is that the technique should have at least 20 such profiles for every such program 

entity so that the technique can be applied scientifically. 

Moreover, if D cannot be asserted to follow an assumed distribution for every (failure 

relevant) feature instance such as a normal distribution, the use of a parameter for the 

assumed distribution (e.g., mean values for normal distributions) is risky from the statistics 

point of view. It is primarily because of the effect size for a statistical tests being inadequate, 

which makes the Type II error in statistical tests as the source of such risks. On the other 

hand, nonparametric tests can still be applied even though the sample size is not small. 

Indeed, our experiment reported in [55] shows that a non-parametric technique tends to 

improve its effectiveness as more samples are available, whereas its parametric counterpart 

does not. 

Hence, in [55], we have argued that in general, it may be more robust (i.e., bearing less 

risk) for statistical fault localization techniques to use a non-parametric approach to statistical 

inference to draw a conclusion on whether the difference can be meaningful statistically. We 

have experimented to compare the fault localization effectiveness of two popular and widely 

used non-parametric hypothesis tests (Wilcoxon and Mann-Whiney tests) with 33 statement-

level strategies (for brevity, we refer readers to [55] for the discussion of these techniques) on 

the program space downloaded from SIR [14]. We used 28 of the available faulty versions 

because our platform cannot successfully compile the other 10 versions or the test pool in the 

benchmark cannot reveal any failure on these versions. The results are shown in Table 5 in 

which columns are techniques and rows are the number of faults located by spending a 



certain amount of code examination effort as indicated by the corresponding row heading. 

We observe from the table that the two non-parametric strategies can be more effective. 

Table 5. Comparison of non-parametric test (highlighted) to other strategies (adapted from [55]) 

Program: SPACE.  (# of faults located)

Using Non-Parametric Test is More Scientific
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A problem of nonparametric tests in relation to parametric tests is that the former tests are 

not powerful in the sense that the produced p-values tend to be quite large, and hence it is 

more difficult to tell that the difference is statistically significant. This adverse effect is 

linked to the ranking part of statistical fault localization techniques, which may use the p-

values as the indicators to prioritize program entities and presented them to their users. On 

the other hand, if a p-value which is not small enough and the corresponding feature instance 

is still presented in a ranked list as a suggestion to developers, the list would contain entries 

that associate diverse degree of confidence values. An entry will a low confidence but is 

ranked high may mislead the developers. Similarly, in the aforementioned similarity 

coefficient measurement sections, if the fault-failure correlation of a feature instance is only 

mild (e.g., 0.5), but a technique still present the feature instance to the developers simply 

because the feature instance is ranked high in the ranking procedure, the developer may also 

be misled. 

We have only scratched the surface of using a non-parametric idea for fault localization 

for program debugging. As we have mentioned in Section 2, sometimes, a feature instance 

may come with one failing sample in D. In such a case, even a non-parametric approach 

cannot be reliably applied in a standalone manner. A further investigation on scientific 

methods to address this problem is needed to be well done.   

As a final note, there are proposals (e.g., [7]) to use machine learning approaches that 

train classifiers to locate and categorize faults based on program spectra in a dataset. A 

simple and direct application to existing learning algorithms (Bayesian or not) ignores to 

validate whether the dataset can provide a diagnosis result with sufficient confidence 

associated with their classification strategies. Maximizing the diagnosis power over a dataset 

for statistical fault localization does not solve this fundamental issue either. 



6. Concluding Remarks 
In this experience report, we have summarized and re-interpreted some of the isolated 

work that we have investigated in the past few years. The main message is two-fold. First, we 

have argued that a fault localization strategy should model a faulty program statistically as an 

approach to understanding faults, fault activation, error propagation, and failure observation 

in a chained manner and in a statistical way. Second, during a fault localization process, a 

fault localization strategy should address the errors in multiple dimensions such as data, 

similarity coefficient, and statistical inference.  

We have also reviewed the basic ideas of some selected strategies and elaborated their 

rationales. We have described selective mistakes that the science part of a technique could be 

improved in the last two sections. We have made such mistakes ourselves in our own studies. 

We hope that through this occasion, we could share our first-hand experiences with readers, 

and raise the awareness of the research community not to overlook the importance of 

developing sound techniques. 

There are some obvious challenges for statistical fault localization in general. For 

instance, a program with about 10,000 lines of code is usually regarded as small. However, it 

is not quite effective if a developer still needs to debug the program by focusing their 

attention to the first 100 lines of code suggested by a technique. At the same time, we have 

presented some empirical results of different fault localization techniques in this report. 

Readers must have observed that these techniques cannot consistently locate faults within 1% 

code examination effort or a small number of lines of codes, say 3 lines, that the developers 

may feel comfortable to use such a technique in practice. Both accuracy and scalability of 

this class of fault localization techniques are remained to be improved significantly.  

Another issue is about a fundamental assumption about a statistical approach. A 

developer may require debugging a program when there is only one failing case. In such 

circumstances, some feature instances may not accumulate sufficient samples in the dataset 

to conduct reliable statistical inference even one chooses a nonparametric approach. It 

appears that some mechanisms to control the involved reliability should be developed.  

Moreover, some faults may be elusive and may not be related to whether a particular 

executable statement has been implemented wrongly. For instance, there are parameter 

configuration errors in software applications or errors in the compiler to translate mistakenly 

the source code into a wrong object code. It is also unclear to us how to relate the precise 

position of omission faults to a similarity coefficient, although we have proposed to use fault 

patterns. 

Fortunately, the challenge in fault localization is not restrictive to software engineering. 

We may learn a lot of from the fault localization studies conducted in the other fields such as 

artificial intelligence, data mining, and networks and systems.  
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