
SAT Based Automated Test Case Generation For MUMCUT Coverage

Jun Yan1,2 and Jian Zhang1

1 Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
2 Graduate University, Chinese Academy of Sciences

{yanjun,zj}@ios.ac.cn

Abstract

MUMCUT is a criterion for testing Boolean specifica-

tions. The traditional test case generation methods for this

problem are based on approximate approaches. The effi-

ciency of these algorithms depend on the designers’ experi-

ence on this coverage. In this paper, the authors apply SAT

based method to solve this problem. Two SAT solvers, walk-

sat and zChaff, are employed to generate approximate and

optimal test case set respectively. The experimental results

show that the two SAT methods are efficient.

1 The Problem

A typical problem in software testing is test case gen-

eration for SUT (System Under Test). A possible way to

reduce the number of test cases is to find those cases satis-

fying some test criteria. Many criteria are coverage style,

i.e. for each pattern, at least one of test cases cover it.

The sophisticated MUMCUT [3] coverage strategy is de-

veloped for testing software embedded with complex logi-

cal decisions adequately. The MUMCUT coverage criterion

is a hybrid test coverage which integrates the MUTP, MNFP

and CUTPNFP strategies for detecting the same types of

fault for IDNF of boolean expressions. The IDNF (Irredun-

dant Disjunctive Normal Form) is a DNF form in which no

variable is redundant (Or it can not be reduced to an equiv-

alent expression which has fewer literals). A test case is a

set of values assigned to the variables of the IDNF.

For a decision S = p1 + . . . + pm, a test case
−→
t is a

true point (respectively a false point) iff S(
−→
t ) = T (re-

spectively S(
−→
t ) = F ). If pi(

−→
t ) = T and pj(

−→
t ) = F

for every j 6= i, then
−→
t is said to be a unique true

point (UTP) for the i’th term pi of S. Furthermore, let

pi = xi
1
xi

2
· · ·xi

ki
, where xi

j is the j’th literal in pi. We use

pi,j = xi
1
· · ·xi

j · · ·x
i
ki

to denote the term obtained from

pi by negating its j’th literal xi
j . A test case

−→
f is said to

be a near false point (NFP) of the literal xi
j of pi of S if

S(
−→
f ) = F and pi,j(

−→
f ) = T . If a pair of tests, a UTP

−→
t

and an NFP
−→
f , differ only in the corresponding truth value

of the j’th literal of pi, we say this pair is a corresponding

UN pair.

For every i, if the test set contains UTPs of i’th term

pi such that all possible truth values (that is, T and F ) of

every variable not occurring in pi are covered, we say the

test set satisfies the MUTP (Multiple Unique True Point)

criterion. For every i and j, if the test set contains NFPs

of j’th literal of the i’th term pi such that all possible truth

values of every variable not occurring in pi are covered, we

say the test set satisfies the MNTP (Multiple Near False

Point) criterion. The CUTPNFP (Corresponding Unique

True Point and Near False Point Pair) requires for every i

and j, as far as possible, the test set contains a UTP
−→
t of pi

and a NFP
−→
f of the j’th literal of pi such that

−→
t and

−→
f are

UN pair. For more about the MUMCUT coverage, please

refer to paper [3].

This criterion is proved to have stronger fault-detecting

ability of test sets than the MC/DC and some other related

coverage criteria for logical decisions [3]. Meanwhile, the

constraints are more complicated than other related criteria.

Due to the complexity of the criterion, test case generation

is a difficult problem. Existing methods are mainly based

on greedy or random methods. For such methods we do

not know the least number of test cases that are needed to

achieve MUMCUT strategy. In this paper, we describe a

complete approach which can find minimal set of test cases.

2 The Approach

The SAT problem is the first proved NP-complete prob-

lem and well researched. There are two types of solving

methods for SAT problems: heuristic local search and sys-

tematic search. The first method is approximate and may

not definitely get a solution even for a satisfiable instance;

The latter one is complete but may cost much time. We can

translate the decision problem (i.e, for a given size N , can

we find a test set satisfying MUMCUT criterion?) to SAT

1
ISSRE 2006 Supplementary Conference Proceedings
© Copyright 2006 Chillarege Press

1



and employ the solvers to generate test set.

To speed up the systematic search process, a possible ef-

ficient improving method is to reduce the search space by

adding SB (symmetry-breaking) constraints. Two solutions

are isomorphic if one can be obtained from the other by per-

muting element names. Because of the isomorphism, one

solution may be represented in many ways, which results in

much redundancy in the search space. We say that a prob-

lem has symmetries if it has isomorphic solutions. We use

a matrix to represent a test set. Each row denotes a test

case and each column denotes a value for an IDNF vari-

able. So there are two types of symmetries in our problem:

row symmetries (the test cases are isomorphic such that we

can permute each two rows of the matrix) and column sym-

metries (some parameters of the IDNF are isomorphic). We

add the SB clauses to the SAT set during the SAT encod-

ing to provide partial orders for these isomorphic elements.

Also a symmetry-breaking tool Shatter is used to process

the encoded SAT clause set.

Our goal is to find the optimal test set (e.g. the test set

that has minimum number of test cases). Let CN denote

the SAT clause set of test set sized N , we can make use of

the solvers to try to solve CN with different N until CN is

satisfiable while CN−1 is not. We first use the local search

tool walksat [2] to find the near-optimal value N1. Then we

use a complete solver zChaff [1] to try the test set near size

N1, until an optimal test set is generated.

3 Experimental Results and Conclusion

We implemented a tool to translate MUMCUT problem

to SAT problem in C programming language. Our transla-

tor can also generate some SB clauses. Our translator, the

SB tool Shatter and the SAT solvers are integrated into an

automatic tool by Perl programs. Our tool can be used to

find near-optimal test sets by walksat and the optimal ones

by zChaff.

First we use a simple instance ab + cde to show the im-

provement of the symmetry-breaking clauses for zChaff’s

processing time. The isomorphic parameters are (a, b) and

(c, d, e). The optimal test size of MUMCUT test is 10 and

the time cost with different strategies of size 9 and 10 are

listed in Table 1. All the times are measured in seconds. We

Table 1. The Efficiency of Symmetry-breaking

Test Size 9 10

Satisfiable? No Yes

No SB clauses added 20.149 0.032

Row symmetries 0.008 0.016

Column symmetries 4.908 0.004

Shatter 10.007 0.032

All techniques 0.004 0.012

can see that all the techniques decrease the zChaff process-

ing time greatly especially for the unsatisfiable instance.

Then we run some benchmarks. The instances of Table

2 come from [4]. We solved the instances with test size not

exceeding 80. The comparison between our two methods

and the best results of that paper is listed in Table 2. Note

the results of [4] are mean sizes.

Table 2. Some Small Instances
Number of Best size Our Method

Instance
Variables of [4] walksat zChaff

T01 7 38.5 39 38

T04 5 11.7 11 11

T06 11 84.0 63 54

T08 8 36.0 43 36

T09 7 16.0 16 16

T13 12 36.0 30 27

T14 7 32.9 25 24

T15 9 58.2 68 43

T19 8 44.3 40 35

T20 7 24.0 24 24

For some instances the walksat performs better than the

method of Yu et al. It can be used as a supplement for the

complete search method. According to zChaff, for some

instances, the results generated by the approximate method

are far from the optimal one. This implies that there is still

much work to be done to improve the test case generation

algorithm for MUMCUT.

Our computational results show that our method is sound

and efficient. The walksat method provides an approximate

result and the zChaff method gets the optimal one. The

benefits of SAT method for test case generation are two-

fold: 1) This method can provide either approximate test

sets rapidly or optimal ones on a long run by employing

different type of solvers. 2) This method is a general ap-

proach that we use to can get a solution without deep study

of the special problem. So it may be very useful for some

newly developed test criteria.

References

[1] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.

Chaff: Engineering an efficient SAT solver. In Proceedings of

the 38th conference on Design automation table of contents,

pages 530–535, 2001.
[2] B. Selman, H. Kautz, and B. Cohen. Local search strategies

for satisfiability testing. In AAAI-92: Proceedings 10th Na-

tional Conference on AI, 1995.
[3] Y. T. Yu and M. F. Lau. A comparison of MC/DC, MUMCUT

and several other coverage cirteria for logic decisions. The

Journal of System and Software, 79(5):577–590, May 2006.
[4] Y. T. Yu, M. F. Lau, and T. Y. Chen. Automatic generation of

test cases from Boolean specifications using the MUMCUT

strategy. The Journal of System and Software, 79(6):820–840,

June 2006.

2
ISSRE 2006 Supplementary Conference Proceedings
© Copyright 2006 Chillarege Press

2


