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Abstract. This paper deals with the local learning approach for clus-
tering, which is based on the idea that in a good clustering, the cluster
label of each data point can be well predicted based on its neighbors and
their cluster labels. We propose a novel local learning based clustering
algorithm using kernel regression as the local label predictor. Although
sum of absolute error is used instead of sum of squared error, we still ob-
tain an algorithm that clusters the data by exploiting the eigen-structure
of a sparse matrix. Experimental results on many data sets demonstrate
the effectiveness and potential of the proposed method.
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1 Introduction

Data clustering has been extensively studied and practiced across multiple dis-
ciplines for several decades [8]. It aims to group objects, usually represented
as data points in R

d, into several clusters in a meaningful way. Generally, the
clustering objective is formulated to maximize intra-cluster cohesion and inter-
cluster separability. Clustering techniques have been applied to many tasks, such
as image segmentation [11], unsupervised document organization, grouping genes
and proteins with similar functionality, and so on.

Many clustering algorithms have emerged over the years. One of the most
popular clustering methods in recent years is the spectral clustering approach
which exploits the eigen-structure of a specially constructed matrix. Generally,
spectral clustering can be motivated from a graph partitioning perspective. Var-
ious graph clustering objectives, including ratio cut [6], normalized cut [11], and
min-max cut [7], can be solved effectively by the spectral clustering method.

In this paper, we propose a clustering method that’s also based on eigen-
decomposing a matrix as is done in spectral clustering. However, we motivate it
from the local learning idea, namely, in a good clustering, the cluster label of each
data point can be well predicted based on its neighbors and their cluster labels.
First, our method constructs local label predictors for each data point using its
neighbors and their cluster labels as the training data. Then it minimizes the
discrepancy between the data points’ cluster labels and the prediction results of
all the local predictors to get a final clustering.
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The local learning idea has already been used in supervised learning [3], trans-
ductive classification [20] and dimensionality reduction [21]. In supervised learn-
ing, for each test data point, data points in the vicinity of the test point are
selected for learning an output function. Then this function is used to predict
the label of the test point. In practice, this method can achieve better perfor-
mance than global learning machines since only data points relevant to the test
point are used for training [3].

When the local learning idea is used in an unsupervised manner, a clustering
objective is formulated in [19] and achieves good performance. This objective
is also combined with a global label smoothness regularizer to obtain a method
called “clustering with local and global regularization” in [16,17]. However, their
local clustering objective uses sum of squared error to measure the discrepancy
between the data points’ cluster labels and the prediction results of all the local
predictors. In regression analysis, a model using the sum of squared error measure
can be sensitive to noise and outliers, since large error entries are overempha-
sized. To obtain a better model, we use sum of absolute error which is more
robust and reliable. Traditionally, a regression model using absolute error will
lead to a linear programming optimization problem [26]. However, by combin-
ing sum of absolute error and kernel regression as the local label predictors, we
still obtain an algorithm that clusters the data by exploiting the eigen-structure
of a specially constructed matrix, thus inheriting the advantages of the power-
ful spectral clustering approach. Experimental results on many data sets from
real-world domains demonstrate the superiority of our proposed approach in
obtaining high quality clusterings.

The rest of the paper is organized as follows. In Section 2, we begin with an
introduction to the notations and representation of cluster labels, then formulate
the model in detail. The algorithm is derived in Section 3. In Section 4, we
evaluate the proposed method on many data sets. We make concluding remarks
in Section 5.

2 Model Formulation

2.1 Notations

In this section we introduce the notations adopted in this paper. Boldface lower-
case letters, such as x and y, denote column vectors. Boldface uppercase letters,
such as M and A, denote matrices. The superscript T is used to denote the
transpose of a vector or matrix. M ≥ 0 means that every entry in M is non-
negative. For x ∈ R

d, ‖x‖ denotes the L2 norm, and ‖x‖1 denotes the L1 norm.

Specifically, ‖x‖ =
√∑d

i=1 x2
i and ‖x‖1 =

∑d
i=1 |xi|. For M ∈ R

s×t, ‖M‖F de-
notes the Frobenius norm, and ‖M‖SAV denotes the Sum-Absolute-Value norm
[4]. Specifically,

‖M‖F =
√

trace(MT M) =

⎛
⎝

s∑
i=1

t∑
j=1

m2
ij

⎞
⎠

1
2

and ‖M‖SAV =
s∑

i=1

t∑
j=1

|mij |



458 J. Sun et al.

Table 1. Summary of notations

Symbols Description
n total number of input data points
d data dimensionality
X total data matrix, X ∈ R

n×d

X input space from which data is drawn, X ⊆ R
d

c number of output clusters
πl the set of points in the l-th cluster where 1 ≤ l ≤ c
|πl| the number of points in the l-th cluster where 1 ≤ l ≤ c
Ni the set of “neighbors” of xi, here xi /∈ Ni

1m m-dimensional column vector whose entries are all 1’s
Im the identity matrix of order m

Diag(M) the diagonal matrix whose size and diagonal elements are
the same as the square matrix M

Deg(M) the degree matrix of M, i.e., the diagonal matrix whose
diagonal elements are the sums of rows of M

Trace(M) the trace of the square matrix M

Other important notations are summarized in Table 1. In addition, neighborhood
Ni simply denotes a set of nearest neighbors (measured by some distance metric)
of point xi. Typically, given k � n, we define each neighborhood Ni as the set
of k-nearest neighbors of xi, not including xi.

2.2 Cluster Labels

Given a set of data points {xi}n
i=1 ⊆ X ⊆ R

d, the goal of clustering is to find a
disjoint partitioning {πl}c

l=1 of the data where πl is the l-th cluster.
We represent a clustering of the data points by a partition matrix P =

[p1, . . . ,pc] = [pil] ∈ {0, 1}n×c and P1c = 1n. Thus, exactly one element in
each row of P is 1. Specifically,

pil =
{

1 if xi ∈ πl,
0 if xi /∈ πl.

(1)

Instead of directly using the entries of partition matrix P as the cluster labels,
we use a Scaled Partition Matrix Y = P(PT P)−1 where Y = [y1, . . . ,yc] =
[yil] ∈ R

n×c. Specifically,

yil =
{ 1

|πl| if xi ∈ πl,

0 if xi /∈ πl.
(2)

Thereby each data point xi is associated with a c-dimensional cluster label
[yi1, yi2, . . . , yic]. The scaling is used for obtaining balanced clusters and bal-
anced clusters usually lead to better performance in practice.

2.3 Clustering Objective

In a typical local learning approach for supervised learning [3], for each test
data point, data points in the vicinity of the test point is selected for learning
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an output function. Then this function is used to predict the label of the test
point. Although this method looks “simple and stupid” [3], it can achieve good
performance in practice since only data points relevant to the test point are used
for training. This approach can be also adapted to the clustering problem [19]
and the idea is translated into:

In a good clustering, the cluster label of a data point can be well estimated
based on its neighbors and their cluster labels.

Based on this idea, a clustering objective can be formulated to obtain a cluster-
ing that satisfies the above property. For each point xi, if we construct a local
label predictor oil(·) based on its neighborhood information {(xj , yjl) |xj ∈ Ni},
then the prediction result oil(xi) should be similar to the cluster label yil of xi.
Hence, a brute force approach to select the best final clustering would be:

1. Enumerate all possible labelings of {xi}n
i=1.

2. For each labeling,
(a) For each neighborhood Ni (1 ≤ i ≤ n) and the corresponding labels,

build local learners [oi1(·), oi2(·), . . . , oic(·)]. Here, oil(·) is the output
function learned using the training data {(xj , yjl) |xj ∈ Ni} where
1 ≤ l ≤ c.

(b) Predict each data point xi using the above local label predictors
[oi1(·), oi2(·), . . . , oic(·)], obtaining [oi1(xi), oi2(xi), . . . , oic(xi)]. Cal-
culate the error

∑c
l=1 |yil − oil(xi)|.

(c) Calculate the total error sum
∑n

i=1
∑c

l=1 |yil − oil(xi)|.

3. Pick the labeling with the smallest total error sum.

Obviously, we won’t directly use the above exhaustive search approach since
the number of possible clusterings is too large. In fact, for n data points and c
clusters, there’re 1

c!

∑c
l=1

(
c
l

)
(−1)c−lln different clusterings [8].

Suppose ol = [o1l(x1), o2l(x2), . . . , onl(xn)]T ∈ R
n×1 and O = [o1, . . . ,oc] ∈

R
n×c, which is the combination of all the predictions made by the local label

predictors. Then, the clustering objective can be written as follows:

min
Y∈Rn×c

J (Y) = ‖Y − O‖SAV =
c∑

l=1

‖yl − ol‖1 (3)

subject to Y is a scaled partition matrix defined in (2) (4)

Note that instead of using the Frobenius norm ‖·‖F as the error measure, we
use the Sum-Absolute-Value norm ‖·‖SAV which is more robust. The problem of
what kind of local predictor we will use will be addressed in the next subsection.

2.4 Local Label Predictor

For the clustering objective (3) to be tractable, we want to select a local label
predictor that’s easy to deal with and yet sufficiently powerful for learning the
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local structure. So, we choose kernel regression model as our local label predictor.
Kernel regression [1,13,18] is a widely used nonparametric technique for nonlinear
regression. The prediction of a kernel regression model for a test point takes the
form of a weighted average of the target values observed at training points. The
weighting coefficients are related to the kernel function K(xi,xj) for xi,xj ∈ X
where X is the data space. With xi fixed, K(xi,x) can be interpreted as an
unnormalized probability density function centered around xi. Therefore, two
key properties of the kernel function are

K(xi,xj) ≥ 0 for all xi,xj ∈ X . (5)∫

x∈X
K(xi,x) dx ∈ (0, ∞) for all xi ∈ X (6)

Given a training set {(xi, yi)}n
i=1, we want to construct a learner to predict

the target value y for a test point x. Motivated from kernel density estimation
[2], the target value for a test point x can be estimated by

y =
∑n

i=1 yiK(xi,x)∑n
i=1 K(xi,x)

(7)

which is called the kernel regression formula, also known as Nadaraya-Watson
model [10]. This model can also be motivated from the interpolation problem
when the input variables are noisy [2].

Generally, a distance-based kernel function [18] can be written as

K(xi,xj) = ϕ(D(xi,xj)) (8)

where D(·, ·) is a distance metric. ϕ(·) is a nonnegative function and monotoni-
cally decreases with increasing D(xi,xj). In addition, ϕ(·) often have parameters
pertaining to the rate of decay.

Various kernel functions have been studied in the literature, such as Gaussian,
Epanechnikov, rectangular, triangular, and so on. The following two kernels will
be used in our experiments as in [19]:

– The Gaussian kernel is defined as

K(xi,xj) = exp
(

−D(xi,xj)2

γ

)
(9)

where ϕ(t) = exp
(
− t2

γ

)
for γ > 0.

– The cosine kernel defined over nonnegative data points on the unit hyper-
sphere is defined as follows

K(xi,xj) = xT
i xj = 1 − ‖xi − xj‖2

2
(10)

where xi,xj ∈ X = {x |xT x = 1,x ≥ 0}. Here, ϕ(t) = 1− t2

2 for 0 ≤ t ≤
√

2
and ϕ(t) = 0 for t ≥

√
2. This kernel generally leads to good performance

when used for document data sets [19].
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2.5 Constructing and Combining Local Predictors

In our clustering problem, for each data point xi and {(xj , yjl) |xj ∈ Ni}, we
want to construct a local label predictor oil(·) to estimate the cluster label of xi.
Here we choose kernel regression model introduced in the previous subsection as
our local label predictor. According to equation (7), the solution of local label
prediction for xi and l is given by

oil(xi) =

∑
xj∈Ni

K(xi,xj)yjl

∑
xj∈Ni

K(xi,xj)
(11)

We can construct a matrix A = [aij ] ∈ R
n×n as follows

aij =

⎧⎨
⎩

K(xi,xj)∑
xj∈Ni

K(xi,xj)
if xj ∈ Ni

0 if xj /∈ Ni

(12)

Two key properties that A satisfies are

A ≥ 0 (13)
A1n = 1n (14)

These two properties will be used in the next section for the derivation of our
main clustering algorithm.

Recall from section 2.3 that

ol = [o1l(x1), o2l(x2), . . . , onl(xn)]T ∈ R
n×1 (15)

O = [o1,o2, . . . ,oc] ∈ R
n×c (16)

where 1 ≤ l ≤ c. By combining equations (11) and (12), it’s not difficult to see
that

ol = Ayl and O = AY (17)

Therefore, the clustering objective in (3) can be rewritten as follows:

min
Y∈Rn×c

J (Y) = ‖Y − AY‖SAV =
c∑

l=1

‖yl − Ayl‖1 (18)

subject to Y is a scaled partition matrix defined in (2) (19)

This is the main objective function we want to optimize. Here, the L1 norm ‖·‖1
in equation (18) makes the function not differentiable and difficult to optimize
combined with constraint (2) which is not convex. However, the properties of A
in (13) and (14) ensure that the problem can be optimized by eigen-decomposing
some sparse matrix. We will derive the algorithm in the next section.
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3 Algorithm Derivation

In this section, we simplify the optimization problem (18) and obtain an algo-
rithm that’s based on exploiting the eigen-structure of a sparse matrix.

3.1 Main Theorem

Suppose âi ∈ R
n×1 denotes the transpose of the i-th row vector of A, so A =

[â1, â2, . . . , ân]T . Then we have

J (Y) = ‖Y − AY‖SAV =
c∑

l=1

n∑
i=1

|yil − âT
i yl| (20)

Substituting (2) into (20), we have

J (Y) =
c∑

l=1

⎛
⎝ ∑

xi∈πl

|1 −
∑

xj∈πl
aij |

|πl|
+

∑
xi /∈πl

|0 −
∑

xj∈πl
aij |

|πl|

⎞
⎠ (21)

According to the properties of A in (13) and (14), we obtain

J (Y) =
c∑

l=1

⎛
⎝ ∑

xi∈πl

∑
xj /∈πl

aij

|πl|
+

∑
xi /∈πl

∑
xj∈πl

aij

|πl|

⎞
⎠ (22)

=
c∑

l=1

∑
xi∈πl

∑
xj /∈πl

(aij + aji)

|πl|
(23)

=
c∑

l=1

pT
l

(
Deg(A + AT ) − A − AT

)
pl

|πl|
(24)

where pl is the l-th column of partition matrix P defined in (1).
Define F = [f1, . . . , fc] = [fil] ∈ R

n×c as F = P(PT P)−
1
2 , so fl = pl(pT

l pl)−
1
2 .

Specifically,

fil =

{√
1

|πl| if xi ∈ πl,

0 if xi /∈ πl.
(25)

Obviously, we have

FT F =
(
(PT P)−

1
2 PT

)
P(PT P)−

1
2 = Ic (26)

where Ic ∈ R
c×c is the identity matrix of order c.

Using F, the clustering objective can be simplified as

J (F) =
c∑

l=1

fT
l

(
Deg(A + AT ) − A − AT

)
fl (27)

= Trace
(
FT

(
Deg(A + AT ) − A − AT

)
F

)
(28)

Therefore, we obtain the following theorem:
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Table 2. Clustering via LOcal Regression (CLOR)

Input :
Data set {xi}n

i=1, number of clusters c, neighborhood size k.
Output :

Partition matrix P as defined in (1).
Procedure :

1. Compute the k nearest neighbors (Ni) for each xi.
2. Construct the matrix A as defined in (12).
3. Construct the matrix M = Deg(A + AT ) − A − AT .
4. Compute the eigenvectors corresponding to the c smallest

eigenvalues of M, thus obtaining F∗.
5. Discretize F∗ to get the partition matrix P.

Theorem 1. The optimization problem in (18) is equivalent to the following
one:

min
F∈Rn×c

Trace
(
FT

(
Deg(A + AT ) − A − AT

)
F

)
(29)

subject to F is defined in (25) (30)

3.2 Relaxation and Discretization

Following the standard spectral clustering procedure, we relax the F defined in
(25) to be any matrix from R

n×c that satisfies FT F = Ic. Thus, the optimization
problem is as follows:

min
F∈Rn×c

Trace
(
FT

(
Deg(A + AT ) − A − AT

)
F

)
(31)

subject to FT F = Ic (32)

From the Ky Fan Theorem [23], the global optimal solution of the above relaxed
problem is given by any matrix from the following set

{
F∗Q |Q ∈ R

c×c,QT Q = Ic

}
(33)

where the columns of F∗ ∈ R
n×c are the c eigenvectors corresponding to the c

smallest eigenvalues of the matrix Deg(A + AT ) − A − AT .
After obtaining the relaxed solution, we have to discretize it to get a final

solution defined in (1). The discretization approach used in [22] is adopted to
obtain the final partition matrix P since it’s previously reported to produce sat-
isfactory results [22,19]. Using an iterative procedure, this discretization method
tries to rotate F∗ (after normalizing the rows of F∗ to unit norm) so that it’s
close to a partition matrix as defined in (1). Details can be found in [22].

The main algorithm is summarized in Table 2. We name our algorithm Clus-
tering via LOcal Regression (CLOR).
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3.3 Relation to Other Approaches

Although the final optimization problem uses the spectral methods for finding
the optimal clustering, our clustering criterion is motivated from a local learning
approach. In our method, we adopt sum of absolute error as the discrepancy
measure instead of sum of squared error which is used in [19]. In addition, in
order for the optimization to be tractable, we use kernel regression as the local
label predictor while [19] uses “kernel ridge regression”. We will empirically
demonstrate that our clustering algorithm usually achieves better performance
than the algorithm proposed in [19].

Our algorithm is different from spectral clustering with ratio cut [6] or normal-
ized cut (NCut) [11] on the k-nearest neighbor similarity graph. We construct
the following k-nearest neighbor similarity matrix G = [gij ] ∈ R

n×n

gij =
{

K(xi,xj) if xj ∈ Ni or xi ∈ Nj

0 otherwise (34)

Spectral clustering algorithms typically use the affinity matrix G which is sym-
metric. In general, the graph laplacian (used by ratio cut) or normalized graph
laplacian (used by NCut) derived from this affinity matrix are not equal to
Deg(A + AT ) − A − AT . Since NCut usually outperforms ratio cut in practice,
we compare our algorithm CLOR with NCut in the next section and demonstrate
the better performance of our algorithm.

4 Experiments

In this section, we present an empirical evaluation of our clustering method in
comparison with representative algorithms on a number of data sets.

4.1 Data Sets

In this subsection, we introduce the basic information of the data sets used in
our experiments. We use 14 document data sets1 from the CLUTO toolkit [24].

We briefly introduce the basic information of the data sets as follows.

– cranmed : This data set comprises the CRANFIELD and MEDLINE ab-
stracts which were previously used to evaluate information retrieval systems.

– fbis : The fbis data set is derived from the Foreign Broadcast Information
Service data of TREC-5 [15].

– hitech: This data set is from the San Jose Mercury newspaper articles that
are distributed as part of the TREC collection.

– k1a, k1b and wap: These data set are from the WebACE project (WAP).
– re0 and re1 : These data sets are from Reuters-21578 text collection [9].
– tr11, tr12, tr23, tr31, tr41, and tr45 : These six data sets are derived from

the TREC collection [15].

1 http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz

http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
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Table 3. Summary of data sets

Name Source Points(n) Dims(d) Classes(c)
cranmed CRANFIELD/MEDLINE 2431 41681 2
fbis FBIS (TREC) 2463 12674 17
k1a WebACE 2340 21839 20
k1b WebACE 2340 21839 6
hitech San Jose Mercury (TREC) 2301 10080 6
re0 Reuters-21578 1504 2886 13
re1 Reuters-21578 1657 3758 25
tr11 TREC 414 6429 9
tr12 TREC 313 5804 8
tr23 TREC 204 5832 6
tr31 TREC 927 10128 7
tr41 TREC 878 7454 10
tr45 TREC 690 8261 10
wap WebACE 1560 8460 20

Table 3 summarizes the basic properties of the data sets. The smallest of these
data sets contains 204 data points and the largest consists of 2463 points. The
number of classes ranges from 2 to 25. These data sets are widely used in the
literature to evaluate different clustering systems [14,24,25].

4.2 Evaluation Criteria

In all the experiments of this paper, the class labels of data points are known to
the evaluation process and external validity measures are used to evaluate how
much class structure is recovered by a clustering. Besides, the true number of
classes c is provided to all the clustering algorithms. We use two popular external
validity measures, Normalized Mutual Information (NMI ) [12] and Clustering
Accuracy (Acc), as our criteria.

Given a clustering C and the “true” partitioning B (class labels). The number
of clusters in C and classes in B are both c. Suppose ni is the number of objects
in the i-th cluster, n

′

j is the number of objects in the j-th class and nij is the
number of objects which are both in the i-th cluster and j-th class. NMI between
C and B is calculated as follows [12]:

NMI (C, B) =

∑c
i=1

∑c
j=1 nij log n·nij

ni·n′
j√∑c

i=1 ni log ni

n

∑c
j=1 n

′
j log

n
′
j

n

. (35)

The value of NMI equals 1 if and only if C and B are identical and is close to
0 if C is a random partitioning. Larger values of NMI indicate better clustering
performance.

Suppose n is the total number of objects and other notations are the same
as above. Clustering Accuracy (Acc) builds a one-to-one correspondence between
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the clusters and the classes. Suppose the permutation function Map(·) : {i}c
i=1 
→

{j}c
j=1 maps each cluster index to a class index, i.e., Map(i) is the class index

that corresponds to the i-th cluster. Acc between C and B is calculated as follows:

Acc (C, B) =
max

(∑c
i=1 ni,Map(i)

)
n

(36)

The value of Acc equals 1 if and only if C and B are identical. Larger values of
Acc indicate better clustering performance.

4.3 Comparison Settings

Each data point (document) is originally represented by a term-frequency vector
(Bag-of-Words). We normalize each vector to unit norm so that every point xi

lies on the nonnegative unit hypersphere, that is, xi ∈ X = {x |xT x = 1,x ≥ 0}
for all 1 ≤ i ≤ n. The cosine kernel defined in (10) is generally considered
very suitable for documents. So it is adopted as the kernel function in most
experiments unless other kernels are explicitly mentioned to be used. For each
point xi, the neighborhood Ni consists of k-nearest neighbors of xi measured by
the cosine similarity. Here, k is provided by domain experts.

We test our Clustering via LOcal Regression (CLOR) algorithm in comparison
with another two algorithms which are listed as follows:

– Spectral clustering with normalized cut (NCut) [11]. The affinity graph is
constructed using the weighted k-nearest neighbor graph. The edge weight
between two connected data points is calculated with the kernel function.

– Local Learning based Clustering Algorithm2 (LLCA) proposed in [19]. There
is a regularization parameter λ in LLCA. As is done in [19], we choose this
parameter from: λ ∈ {0.1, 1, 1.5}. For each data set and k, we report the
best performance among the results produced when different values of λ are
used (LLCA1). We also report the result obtained when LLCA automatically
select λ using the parameter selection method in [19] (LLCA2). Therefore,
LLCA1 has an unfair advantage over others.

For each algorithm, we assume that the “true” number of clusters c is given.
All the algorithms use the same discretization method whose code is available at
http://www.cis.upenn.edu/∼jshi/software/. Note that the main computa-
tional load of all the above algorithms is to eigen-decompose (or singular value
decomposition) a sparse n × n matrix with O(nk) non-zero elements.

4.4 Comparison of Clustering Performance

In this section, we compare the clustering performance of the investigated algo-
rithms. We have tested the clustering performance of the algorithms with various
neighborhood sizes.
2 The code is available at www.kyb.tuebingen.mpg.de/bs/people/mingrui/LLCA.zip

The code for NCut is also included in this package.

http://www.cis.upenn.edu/~jshi/software/
www.kyb.tuebingen.mpg.de/bs/people/mingrui/LLCA.zip
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Fig. 1. The clustering performance (NMI ) on six TREC data sets with different num-
ber of nearest neighbors (k). The legend is shown only in subfigure (a) for clarity.

For the six TREC data sets (tr11, tr12, tr23, tr31, tr41, and tr45 ), Figure 1
shows the the clustering performance of the algorithms. The x-axis denotes the
neighborhood size k and the y-axis denotes the clustering performance measured
by NMI. When the neighborhood size is too small (k = 5), LLCA1 and LLCA2
produce unsatisfactory clustering results on data sets such as tr12, tr41 and
tr45. These NMI results are not displayed in the subfigures for clarity.



468 J. Sun et al.

5 20 40 60 80 100 120
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Neighborhood Size

A
cc

u
ra

cy

 

 
NCut
LLCA1
LLCA2
CLOR

(a) tr23

5 20 40 60 80 100 120
0.45

0.5

0.55

0.6

0.65

0.7

Neighborhood Size

A
cc

u
ra

cy

(b) tr41

Fig. 2. The clustering performance (Acc) on data sets tr23 and tr41 with different
neighborhood sizes. The legend is shown only in subfigure (a) for clarity.

The results in Figure 1 show that our algorithm CLOR very often achieves the
best performance on all the six data sets and when different neighborhood sizes
are chosen. Even though the algorithm LLCA1 has the extra edge of selecting the
best NMI value when different values of the regularization parameter λ are used,
our algorithm CLOR has a clear advantage over it. Generally in practice, spectral
clustering with normalized cut (NCut) can produce very good results when an
appropriate similarity measure is chosen. Here we see that the performance of
LLCA is comparable to that of NCut, which demonstrates the effectiveness of
the local learning approach to clustering. The better performance of CLOR in
Figure 1 shows that our proposed algorithm is more suitable for the task of
clustering based on the local learning idea.

We also compare the clustering performance of the algorithms on the six
TREC data sets in terms of Acc as defined in equation (36). Most of the perfor-
mance figures are somewhat similar to the ones displayed in Figure 1. The two
most different figures are shown in Figure 2. Note that here, LLCA1 represents
the best Acc value when different regularization parameters γ are used. And the
value of γ associated with the best Acc is not necessarily the same as the value
of γ that corresponds to the best NMI. It’s observed that our algorithm CLOR
still outperforms others in most cases. Particularly, on the data set tr41, CLOR
seems to have a larger advantage over others in terms of Acc than NMI.

Besides, we conduct experiments on the six TREC data sets when Gaussian
kernel is used instead of cosine kernel. Due to the space limit, we only show the
results on data set tr11 in Figure 3. The left subfigure shows the NMI values
of the algorithms on tr11 when different neighborhood sizes k are chosen. Here
the algorithms use Gaussian kernel (γ = 1). The right subfigure displays the
performance of CLOR with the two kernels on data set tr11. It can be observed
from the left subfigure that our algorithm still outperforms the other three. The
right subfigure shows that cosine kernel is slightly better than Gaussian kernel for
document clustering. However, the result from Gaussian kernel doesn’t deviate
too much from the result with cosine kernel on tr11. Experiments with Gaussian
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Fig. 3. The left subfigure shows the clustering performance (NMI ) of the considered
algorithms on data set tr11. Here Gaussian kernel (γ = 1) is used. The right subfigure
displays the performance of CLOR with different kernels on data set tr11.

kernel have also been conducted on the other five TREC data sets. From these
experiments, we can draw similar conclusions as above. Therefore, the superiority
of our algorithm CLOR is not sensitive to what type of kernel is used.

In general, theoretical guidance on how to choose the best neighborhood size
k is rare. A rule of thumb is to choose k so that the number of connected
components of the k-nearest neighbor graph is close to one. An asymptotic result
is that if k is chosen on the order of log(n), then the k-nearest neighbor graph
will be connected for n points drawn i.i.d. from some probability distribution
with a connected support in R

d [5]. Therefore, for data sets with size around
1000, we can choose k to be a small multiple of 10. We list the experimental
results on the remaining 8 data sets when neighborhood size k = 30 in Table 4.
It can be observed that our algorithm CLOR consistently outperforms the other
three. We also note that different performance measures may lead to divergent
performance ranks of the clustering algorithms, which is reflected by the results
on the data sets re0 and re1.

Table 4. Empirical results when neighborhood size k = 30. Both NMI and Acc results
are provided. On each data set, the best results of NMI and Acc are shown in boldface.

NMI Acc
LLCA1 LLCA2 NCut CLOR LLCA1 LLCA2 NCut CLOR

cranmed 0.8479 0.8479 0.8568 0.8927 0.9745 0.9745 0.9770 0.9840
fbis 0.5816 0.5757 0.5832 0.5909 0.5108 0.5108 0.5428 0.5534

hitech 0.3373 0.3373 0.2956 0.3439 0.4920 0.4920 0.4207 0.5502
k1a 0.5267 0.5267 0.5223 0.5557 0.4060 0.4060 0.3987 0.4897
k1b 0.6416 0.6416 0.7180 0.7332 0.8120 0.8120 0.8466 0.8846
re0 0.3905 0.3847 0.4030 0.4302 0.3863 0.3138 0.3324 0.3318
re1 0.4942 0.4598 0.4967 0.5043 0.3959 0.3693 0.3730 0.3953
wap 0.5258 0.5093 0.5173 0.5426 0.3962 0.3333 0.3859 0.4314
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5 Conclusions and Future Work

In this paper, we propose a new local learning based clustering algorithm,
namely, Clustering via LOcal Regression (CLOR). This algorithm is based on
the local learning idea, i.e., in a good clustering, the cluster label of each data
point can be well predicted based on its neighbors and their cluster labels. When
using kernel regression model as the local label predictor and sum of absolute
error as the discrepancy measure, we obtain an algorithm that still inherits the
advantages of spectral clustering. Experimental results on many data sets show
that our algorithm consistently outperforms the previously proposed local learn-
ing approach for clustering [19] and spectral clustering based on normalized cut,
which demonstrate the effectiveness and potential of our proposed algorithm in
obtaining accurate clusterings.

In the future, we want to continue this work on several issues as follows. First,
we want to gain a deeper understanding on the underlying reasons for the good
performance of our algorithm. We will start this work by investigating the capac-
ity and locality control issues of the local label predictor in our approach and the
one in [19]. Second, we will try to derive a good and stable automatic parameter
selection procedure for neighborhood size k and parameters in the kernel func-
tion. Third, instead of using k-nearest neighbors measured by a distance metric
which is provided by domain experts, we plan to learn the neighborhood Ni

using semi-supervised information such as instance-level constraints [14]. This
problem seems to be easier than learning a distance metric and thus hopefully
we’ll obtain good results.
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