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Abstract

The necessity to develop methods for discovering association patterns to increase business
utility of an enterprise has long been recognized in data mining community. This requires
modeling specific association patterns that are both statistically (based on support and confi-
dence) and semantically (based on objective utility) relating to a given objective that a user
wants to achieve or is interested in. However, we notice that no such association models have
been reported in the literature. Traditional association mining focuses on deriving correlations
among a set of items and their association rules like diaper — beer only tell us that a pattern
like {diaper} is statistically related to an item like beer. In this paper, we present a new
approach, called Objective-Oriented utility-based Association (OOA) mining, to modeling such
association patterns that are explicitly relating to a user’s objective and its utility. Due to
its focus on a user’s objective and the use of objective utility as key semantic information to
measure the usefulness of association patterns, OOA mining differs significantly from existing
approaches such as the constraint-based association mining. We formally define OOA mining
and develop an algorithm for mining OOA rules. The algorithm is an enhancement to Apriori
with specific mechanisms for handling objective utility. We prove that the utility constraint
is neither monotone nor anti-monotone nor succinct nor convertible and present a novel prun-
ing strategy based on the utility constraint to improve the efficiency of OOA mining. Our
experiments further demonstrate the effectiveness and efficiency of the proposed approach.

1 Introduction

Association mining is an important problem in data mining. Briefly, given a historical dataset of
an application, we derive frequent patterns and association rules from the dataset by using some
thresholds, such as a minimum support and a minimum confidence. Since Agrawal’s pioneer work
[2, 4], a lot of research has been conducted on association mining. Major achievements include
approaches to improving the efficiency of computing the frequent patterns from large datasets
1, 2, 3, 4, 5, 10, 15, 31], approaches to applying constraints to find more interesting patterns
6, 7, 14, 20, 25, 29, 30, 34, 35|, and approaches to eliminating irrelevant association rules by
making use of some interestingness measures [9, 23, 22, 21, 26, 27, 33, 36].

Observe that most existing approaches to association mining are itemset-correlation-oriented
in the sense that they aim to find out how a set of items are statistically correlated by mining

association rules of the form
Ila"'ajm — Im+1(s%7c%) (1)

where s%, the support of the rule, is the probability of all items I, ..., I, 11 occurring together, and
c%, the confidence of the rule, is the conditional probability of I,,, 11 given the itemset {I1, ..., I, }.
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Both s% and ¢% are obtained simply by counting the frequency of the respective itemsets in a
given dataset, and are greater than or equal to the user-specified minimum support and minimum
confidence, respectively.

Although finding correlations of itemsets like diaper — beer is very important, in many
situations people may be more interested in finding out how a set of items support a specific
objective Obj that they want to achieve by discovering association rules of the form

L, ... I, — Obj(s%,c%,u) (2)

where (1) s% (the support of the rule) is the probability that all items I, ..., I,;, together with Obj
hold, (2) ¢% (the confidence of the rule) is the conditional probability of Obj given the itemset
{I,....; I}, and (3) u is the wutility of the rule, showing to what degree the pattern {I1,...,I;;}
semantically supports Obj. Due to its focus on an objective and the use of objective utility as key
semantic information to measure the usefulness of association patterns, we refer to this new type
of association mining as Objective-Oriented utility-based Association (OOA) mining, as opposed
to traditional Itemset-Correlation-Oriented Association (ICOA) mining.

OOA mining derives patterns that both statistically and semantically support a given ob-
jective Obj. Informally, I = {I,...,I,,} is said to statistically support Obj if the support s%
and confidence ¢% of the rule (2) are not below a user-specified minimum support ms% and a
user-specified minimum confidence mc%, respectively. And I is said to semantically support Obj
if the utility u of the rule (2) is not below a user-specified minimum utility mu. As a result,
all patterns derived in OOA mining must be interesting to an enterprise since when employed,
they would increase the (expected) utility of the enterprise above the user-specified minimum
level (u > mu). Therefore, OOA mining has wide applications in many areas where people are
looking for objective-centered statistical solutions to achieve their goals. For a typical example,
in business situations a manager may use OOA mining to discover the best business strategies by
specifying his/her objective as “high profit and low risk of loss.” Another example is in medical
field. A doctor may use OOA mining to find the best treatments for a disease by specifying an
objective “high effectiveness and low side-effects.”

The term wutility is commonly used to mean “the quality of being useful” and utilities are
widely used in decision making processes to express user’s preferences over decision objects towards
decision objectives [16, 17, 32]. In decision theory, we have the well-known equation “Decision
= probability + utility,” which says that a decision object is chosen based on its probability and
utility. Since association mining can be viewed as a special decision problem where decision objects
are patterns, we may well have, correspondingly, an equation “Interestingness = probability +
utility,” which states that an interesting pattern comes with both a high probability and a high
utility. This equation further justifies the necessity and significance of enhancing traditional
probability (support and confidence) based association mining with objective related utilities.

Since utilities are subjective, they can be acquired from domain experts/users. We would
point out, however, that this does not mean we need to acquire a utility for each single item
in a dataset. As we will see in Section 3, it suffices to obtain utilities only for those items in a
dataset which are directly related to the given objective. The population of such objective items
(or classes; see Section 3.1 for the definition) would be quite small in practical applications.

In this paper, we systematically study OOA mining. In Section 3, we formally define the con-
cepts of objective, support, confidence, and utility under the frame of OOA mining. In particular,
we will present a formulation of an objective and define utilities based on the formulation. In
Section 4, we develop an algorithm for mining OOA frequent patterns and rules. The algorithm
is based on Apriori, with an enhancement that handles objective utility. Traditional association
mining is NP-hard [13, 19, 37], but OOA mining does not seem to be easier. To improve the



efficiency of OOA mining, we will present a novel strategy for pruning itemsets based on the
support and utility constraints. In Section 5, we present the experimental results to demonstrate
the effectiveness and efficiency of our method. In Section 6, we make conclusions with our future
work.

2 Related Work

The necessity to develop methods for finding specific patterns which can be used to increase
business utility has long been recognized by several researchers [8, 18, 24, 33]. For instance, Berry
and Linoff [8] states: “merely finding the patterns is not enough. You must be able to respond
to the patterns, to act on them, ultimately turning the data into information, the information
into action, and the action into value.” Furthermore, Kleinberg, Papadimitriou and Raghavan
[18] emphasizes: “a pattern in the data is interesting only to the extent in which it can be used
in the decision-making process of the enterprise to increase utility.”

To the best of our knowledge, however, no work on association mining has been reported in
the literature which formally models such patterns that are explicitly relating to a user’s objective
and its utility. In this paper, we develop such a model. An OOA rule I, ..., I, — Obj not only
shows that the pattern {Iy, ..., I, } statistically supports the user’s objective Obj, but also suggests
that when being applied to the underlying enterprise it would increase the expected utility above
a user-specified minimum level.

Our work is related to but different from existing constrained association mining. Exist-
ing constrained association mining, typically represented by the work of Bayardo, Agrawal, and
Gounopolos [6, 7], Han, Lakshmanan, Ng, Pang and Pei [14, 20, 25, 29, 30], and Srikant, Agrawal
and Vu [34, 35], takes the form

{(5=1)|C}

where S and T are sets of items and C' is a set of constraints on the selection of S and 7. When
T is not empty, such kind of association mining belongs to ICOA mining because no matter what
constraints C is, it always derives asociation rules of the form

Li,.... L, — Ji,....Jn

where both itemsets {I1,..., I, } and {J1,..., J, } satisfy C. Certainly, OOA mining can use con-
straints, too. Constrained OOA mining takes the form

{(5 = 00bj)|Cop; }

where Cyyp; is a set of constraints on the selection of S in terms of the objective Obj. Constrained
OOA mining always derives OOA rules.

Another significant difference between existing constrained association mining and OOA min-
ing is that most exisitng work focuses on SQL-style constraints including item selection, pattern
length, set relations (C, D, etc.), max(S)0v, min(S)0v, sum(S)6v, count(S)0v and avg(S)0Ov,
where S is an itemset, v is a real number, and 0 is < or > (see [28] for a summary of types
of constraints discussed in the literature). These constraints fall into one of the following four
well-defined categories: monotone, anti-monotone, succinct [12, 14, 20, 25], or convertible [29, 30].
In OOA mining, however, we introduce objective utility as a key constraint. On the one hand, a
general objective and its utility are difficult, if not impossible, to be formulated using SQL-style
constraints. On the other hand, the utility constraint is neither monotone nor anti-monotone
nor succinct nor convertible (see Section 4.2 for the proof). Therefore, no existing constrained



association mining methods are applicable to it. In this work we push the utility constraint deep
into OOApriori (a variant of Apriori) to prune candicate patterns in order to efficiently derive all
OOA rules.

We would point out that although business objectives, such as “high profit and low risk of
loss,” can be viewed as constraints, such constraints seem to be at a meta-level w.r.t. the above
mentioned SQL-style constraints. Therefore, specific mechanisms are required to represent and
handle them. The proposed OOA ming may then be the first such mechanism.

Finally, our work is different from existing research on “interestingness” [9, 23, 22, 21, 26,
27, 33, 36], which focuses on finding ”interesting patterns” by matching them against a given set
of user’s beliefs. Informally, a derived association rule is considered ”interesting” if it conforms
to or conflicts with the user’s beliefs. In contrast, in OOA mining we measure the interestingness
of OOA rules in terms of their probabilities as well as their utilities in supporting the user’s
objective.

3 Objective, Support, Confidence, and Utility

In this section, we define some major concepts for OOA mining. We assume that readers are
familiar with traditional association rule mining, especially with the widely used Apriori algorithm
(2, 4]. A data base or dataset DB is associated with a finite set D B,y of attributes. Each attribute
A; has a finite domain V; (continuous attributes can be discretized using methods such as that
in [11]). For each v € V;, A; = v is called an item. An itemset or a pattern is a set of items.
A k-itemset is an itemset with k items. DB consists of a finite set of records/transactions built
from DBy, with each record being a set {A; = v1,..., Ay, = vy, } of items where A; # A; for any
i # j. We use |DB| to denote the total number of records in DB. Finally, for any itemset I the
function count(I, DB) returns the number of records in DB that are supersets of I.

To help illustrate our approach, we use the following motivating example as a running example
throughout this paper.

Example 1 Let us consider a simplified dataset DB; about medical treatments for a certain
disease as shown in Table 1, where treatment, effectiveness and side-effect are attributes with
domains {1, 2, ..., 5}, {1, 2, ..., 5} and {1, 2, 3, 4}, respectively. R# is not an attribute of DB;.
It is used to identify records by assigning a unique number to each record. Table 2 shows the
degrees of the effectiveness and side-effects which are assigned by experienced domain experts.
The doctor then wants to discover from D By the best treatments with high effectiveness and low
side-effects. Apparently, this is a typical objective-oriented utility-based mining problem.

3.1 Formulation of an Objective

An objective describes anything that we want to achieve or we are interested in. In order to
discover patterns in a dataset DB that support our objective Obj, we need first to formulate Obj
in terms of items of DB. This can be done by first partitioning D Bgy; into two disjoint subsets:

DBy = DBgt?j U DBZt?bj

where each attribute A € DBgfgj obviously contributes to Obj, whereas each A € DBZt?bj does

not. For convenience, we refer to attributes in DB,ggj as objective attributes.
Let A be an objective attribute and V its domain. For each v € V, A = v is called an
objective item or a class of A. We use class(A) to denote all classes of A. Let R be a relation

symbol such as =, >, <, etc. For each v € V, ARv is called an objective relation. An objective



R# | treatment | effectiveness | side-effect
1 1 2 4
2 2 4 2
3 2 4 2
4 2 2 3
5 2 1 3
6 3 4 2
7 3 4 2
8 3 1 4
9 4 5 2
10 4 4 2
11 4 4 2
12 4 3 1
13 5 4 1
14 5 4 1
15 5 4 1
16 5 3 1

Table 1: A medical dataset DBj.

effectiveness side-effect

5 getting much better | 4 very serious

4  getting better 3 serious yet tolerable
3 no obvious effect 2 alittle

2 getting worse 1 normal

1

getting much worse

Table 2: Degrees of the effectiveness and side-effects.

can then be represented by a logic formula over objective relations using the connectives A, V or
—. Formally, we have

Definition 1 An objective Obj over a dataset DB is a disjunctive normal form C; V ... V Cy,
(m > 1) where each C; is a conjunction Dy A ... A D,, (n > 1) with each D; being an objective
relation or the negation of an objective relation.

For instance, in Example 1 the doctor’s objective Obj is “high effectiveness with low side-
effects,” which divides the set of attributes DB;,,, into DBY% ={effectiveness, side-effect} and

latt
DB?gtbj ={treatment}. Based on the measurement of the effectiveness and side-effects as shown
in Table 2, Obj may be formulated by the formula: (effectiveness>3) A (side-effect<3). Of course,
there may be different formulas for Obj, such as (effectiveness>3) A (side-effect<4). The onus is
then upon the doctor to choose a formula that best matches his/her objective.

With an objective Obj as formulated above, we can then evaluate against a dataset how
a pattern I = {Iy,...,I,} statistically and semantically supports Obj by defining the support,

confidence and utility of the corresponding rule Iy, ..., I,, — Obj.



3.2 Support and Confidence in OOA Mining

Support and confidence are two major parameters in association mining. We use them because
they reflect the statistical significance of discovered rules. In traditional association mining,
the support of an association rule Iy, ..., I;;, — I,.1 is given by Count({h"ﬁg‘"“}’DB), while the

count({I1,....Im+1},DB)
count(I,DB)

In OOA mining, we say an objective Obj holds in a record r in DB (or we say r supports Obj) if
Obj is true given r. As an example, let 71 = {treatment=>5, effectiveness=4, side-effect=1}, ro =
{treatment=4, effectiveness=3, side-effect=1}, and Obj be (effectiveness>3) A (side-effect<3).
Then Obj holds in 7 but does not in r9. Furthermore, for any itemset I = {I,...,I,,} we say
TU{Obj} = {L,..., I, Obj} holds in r if both Obj and all I;s (i.e. AIZ7"I; A Obj) are true in 7.

To define the support and confidence for OOA mining, we extend the function count(I, DB)
to count(I U{Obj}, DB) that returns the number of records in DB in which TU{Obj} holds. For
instance, let I = {treatment=5} and Obj be as defined above. There are three records in DB,
(see Table 1) in which I U {Obj} = {treatment=>5, Obj} holds. Therefore, count({treatment=>5,
Obj},DBy) = 3.

confidence of the rule is computed using the formula

Definition 2 Let Iy,...,I,, = Obj (s%,c%,u) be an association rule in OOA mining. Then the
support and confidence of the rule are respectively given by

count({Iy,...,In,0bj}, DB)
|DB]

s% = * 100%,

count({I,...,I,,0bj}, DB)

o = count({Iy,.... I, }, DB)

* 100%.

As an illustration, Table 3 shows the supports and confidences for all rules of the form
“treatment=k — Obj” where k is a treatment number. These rules are composed from the
dataset DB, of Example 1. Note that the last two rules have the same support and confidence.
We will further distinguish between them by using a third parameter — utility, as defined in the
following section.

Obj : (effectiveness>3) A (side-effect<3)
rules supports (s%) | confidences (c¢%) | utilities (u)
treatment=1— Obj | 0 0 —-1.6
treatment=2— Obj | 12.5% 50% -1
treatment=3— Obj | 12.5% 66% —0.2
treatment=4— Obj | 18.75% 5% 0.8
treatment=5— Obj | 18.75% 75% 1.2

Table 3: The supports, confidences and utilities of rules computed from DB; of Table 1.

3.3 Utility in OOA Mining

Suppose we have two association rules with the same support and the same confidence. The two
rules may well have a big difference in their degrees in supporting our objective. The question
then is how we make the distinction. In OOA mining, utility is used as a key parameter for
distinguishing between association rules w.r.t. an objective.



We first introduce the utility of a class. Let Obj be an objective and A an objective attribute.
Based on Obj, the classes of A can be subjectively classified into three disjoint groups (this can
be done by the domain users in charge of the OOA mining task):

class(A) = classt(A) Uclass (A) U class®(A)

where class™(A) consists of all classes of A that show positive support for Obj, class™ (A) of
all classes of A that show negative support for Obj, and class®(A) of all classes of A that show
neither positive nor negative support for Obj. Therefore, classes in class™(A) will bring Obj
positive utilities, whereas classes in class™(A) bring negative utilities. The utilities of classes in
class®(A) are assumed to be zero.

Different classes may have different utilities, but how to determine them depends on appli-
cation domains. Therefore, we ask the domain users to associate each class A = v in class™(A)
or class™(A) with a utility ua—, (a real number), which represents its strength in supporting the
objective positively (when it is in class*(A)) or negatively (when it is in class™ (A)). Since any
class in class®(A) can be considered as a special positive class with a utility 0, we can merge
class®(A) into the positive group. Therefore, in the sequel we always assume that any class A = v
belongs to either class™(A) or class™ (A).

Definition 3 The groups of positively and negatively supporting classes of a dataset DB for Obj
are respectively defined as follows:

classt(DB) = {A =v (ua=y)|A € DB,%J: and A =v € classt(A)},
class™ (DB) = {A = v (ua—,)|A € DB and A = v € class (A)}.

As an example, by consulting the doctor or other specialists in the domain we are able to
build the following groups of positively and negatively supporting classes from DB; of Example
1 (the utility values may be different in reality):

class™(DBy) = {effectiveness=5 (1), effectiveness=4 (0.8),

effectiveness=3 (0), side-effect=1 (0.6), side-effect=2 (0)},
class™(DB;) = {effectiveness=1 (1), effectiveness=2 (0.8),

side-effect=4 (0.8), side-effect=3 (0.4)}.

Notice that the utility assignment to the effectiveness classes is higher than that to the side-
effect classes. This suggests that from the doctor’s point of view, the factor effectiveness is more
important w.r.t. the objective than the factor side-effect.

Next we define the utility of an OOA itemset in terms of the utilities of classes. An OOA
itemset (or OOA pattern) is a set {A; = vy, ..., Ay, = vy, } of items with A4; € Dngb] and A; # A;
for any ¢ # j. Let I be an OOA itemset and r a record in DB with I C r. Let C, be the set of
classes in r. The positive utility of r for I is the sum of the utilities of all positively supporting
classes in C)., given by

U;J—(I) = Z UA=y, (3)
A=vEC, NA=v(ua=y)Eclasst(DB)

the negative utility of r for I is the sum of the utilities of all negatively supporting classes in C,
given by

up (I) = > UA=0, (4)

A=veCr NA=v(us=y)€Eclass™ (DDB)
and the net utility of r for I is
ur(I) = " (I) = u, (). (5)

Extending the above concepts to all records of DB leads to the following.



Definition 4 Let I be an OOA itemset. The positive, negative and net utility of DB for I are
respectively defined as follows:

ubp(D) = D> uf (D), (6)

reDBAICr
upp(D =" D u; (D), (7)
reDBAICr
upp(l) = uhp(D) —upp(D = 3 w(l). (8)
r€eDBAICr

We are now in a position to define the utility of an association rule in OOA mining.

Definition 5 Let I3,...,I,, — Obj (s%,c%,u) be an association rule with I = {I,...,I,,} an
OOA itemset. The utility of the rule is given by

_ upp(])
~ count(I, DB) ©)

Observe that the utility u of a rule as defined in (9) is actually the expected utility of the
OOA pattern I for the objective Obj given the dataset DB. From the decision theoretic view
point, such utility shows how useful the pattern I is w.r.t. the objective Obj, thereby reflecting
the degree to which the pattern semantically supports the objective. For convenience, in the
sequel when we say the utility of an OOA pattern I we refer to its expected utility as defined in
9).

As an example, the utilities shown in Table 3 are computed by applying the formula (9)
with class™(DBy) and class™(DB;) as set above. We see that the last two rules have quite
different utilities for the objective, although their support and confidence are the same. Therefore,
“treatment=>5" is the best because it has the highest utility in supporting the objective.

4 Mining OOA Frequent Patterns and Association Rules

In this section, we develop approaches to mining objective-oriented utility-based frequent patterns
and rules. We begin by giving a formal definition of the frequent patterns and association rules
in OOA mining based on the above definitions of support, confidence and utility.

Definition 6 Let DB be a dataset and Obj an objective. Let ms%, mc% and mu be a user-
specified minimum support, minimum confidence and minimum utility, respectively.

e An OOA itemset I is an OOA frequent pattern/itemset in DB if

count(I U{Obj}, DB)
| DB

s% = * 100% > ms%.

e Let I ={I,....,I,} be an OOA frequent pattern. I,..., I, — Obj (s%,c%,u) is an OOA
association rule (OOA rule, for short) if
count(I U{Obj}, DB)
count(I,DB)

% = * 100% > mc%

and )
UDB

= > .

count(I,DB) — mu



Example 2 Consider Example 1 again. Let the minimums be ms% = 10%, mc% = 60% and
mu = 0. Apparently, each treatment number constitutes an OOA item, thus we have the five
candidate OOA rules as shown in Table 3. Now we apply the conditions of Definition 6 to see if
these rules are OOA rules.

The first rule treatment=1— Obj is not an OOA rule, since its support is below the minimum
10%. The second rule treatment=2— Obj is not an OOA rule, either, since its confidence is below
the minimum 60%. The third rule treatment=3 — Obj is not an OOA rule. Although both its
support and confidence are above the minimums, its utility is below the minimum 0. As a result,
only the last two rules, treatment=4— Obj and treatment=5— Obj, are OOA rules. Between
the two treatments numbered 4 and 5, the doctor may prefer to choose treatment 5 because its
expected utility for his/her objective is higher.

OOA mining is then to derive all OOA rules from DB. In the remaining of this section, we
develop algorithms and pruning strategies for OOA mining.

4.1 Objective-Oriented Apriori

The key to mining association rules is to generate frequent itemsets. Apriori [4] is the most widely
used algorithm for generating frequent patterns in traditional association mining. It generates
frequent k-itemsets in three major steps. First, it generates all (k — 1)-itemsets Ly 1 whose
support is not less than the minimum support ms%. Then, for each pair of (k — 1)-itemsets,
{I,...; Iy 9,1y 1} and {I1,..., Iy o, I} in Ly 1, it composes a k-itemset {I,..., I }. Finally, for
each k-itemset it checks all of its (k — 1)-sub-itemsets to make sure their supports are not below
ms%. A k-itemset is a frequent itemset only if all its (k — 1)-sub-itemsets are frequent itemsets.

In this section, we extend Apriori to generating OOA frequent patterns and rules by enhancing
it with mechanisms for handling objective utility. For convenience, we refer to the extended
algorithm as Objective-Oriented Apriori (OOApriori, for short).

For the data structure, we associate each OOA itemset with some necessary data fields to
record data like counts and utilities. This is done by organizing an itemset into a structure using
pseudo C T language. That is, each OOA itemset I = {I1, ..., I,,} is internally an instance of the
data type ITEMSET defined as follows:

typedef struct {
set pattern; //store the pattern {Iy,..., I, }
int county; | /store count(I, DB)
int county; //[store count(I U {Obj}, DB)
float u™; //store u},5(I) (see the formula (6))
float u; //store upz(I) (see the formula (7))
} ITEMSET;

We use I.D to refer to the field D of I, where D is pattern, count;, county, u™ or u~.
I.county, I.counts, I.ut and I.u~ are all initialized to 0 when I is created. Moreover, when no
confusion would occur, by I we refer to its pattern I.pattern = {I1, ..., I, }.

Algorithm 1: Objective-Oriented Apriori.

Input: ms%, mc%, mu, Obj and DB.

Output: F'P, the set of OOA frequent itemsets, and
AR, the set of OOA rules.

function OO Apriori(ms%, mc%, mu, Obj, DB)



AR =FP = 0

—_
~—

2) k=1

3) Cp=A{I|Iisan OOA 1l-itemset in DB},
//Part 1: Collect counts and utilities of k-itemsets

4) for each record r in DB

5) for each k-itemset I € Cy,

6) if I C r then begin

7) I.count;++;

8) TLut = Tut 4+, (I);

9) Tu™ =1Tu™ +u, (I);

10) if Obj holds in r then

11) I.county++

12) end

//Part 2: Check for frequent OOA patterns (Ly) and OOA rules (AR)

13) Lk = @;
14) for each I = {I1,...,I;;} € C}
15) if s% = I"ngl‘h > ms% then begin
16) Ly=L,U {I},
= e
18) U=
19) if ¢% > mc% and v > mu then
20) AR = ARU T4, ..., I, — Obj(s%, %, u)}
21) end
//Part 3: Generate (k+1)-itemsets
22) if L; # () then begin
23) k++;
24) Cy, = aprioriGen(Li_1); //New candidate itemsets
25) goto 4)
26) end
27) return FP =J; L; and AR
end

In Algorithm 1, for each k > 1 C} is used to store candidate frequent OOA k-itemsets, Ly
to store frequent OOA k-itemsets, and AR to store all OOA rules. OOApriori consists of three
major parts. The first part (lines 4-12) scans the dataset DB and applies each record in DB to
counting the frequency and computing the positive and negative utilities of each candidate itemset
in Cy. At lines 8 and 9, u,f (1) and u; (I) are as defined in Section 3.3 (see the formulas (3) and
(4)). The second part (lines 13-21) checks the support, confidence and utility of each candidate
itemset I = {3, ..., I} in C} against the three user-specified minimums ms%, mc% and mu to
see if I is an OOA frequent pattern and I, ..., [ — Obj is an OOA rule. After all OOA frequent
k-itemsets and rules have been generated, the third part (lines 22-26) of OOApriori generates
new candidate (k + 1)-itemsets based on Ly by calling the following function aprioriGen(). This
function is borrowed from Apriori [4].

function aprioriGen(Ly)

1) Ciy1=0;
2) for each pair of itemsets in Ly of the form
3) {Ila---aIk—laIk} and {Ila---aIk—laIk—i—l}

10



4) Crt1 = Cpr1 U{{D1, s I }
//Prune itemsets

5) for each I € Cyy

6) if some k-sub-itemset of I is not in Ly then
7) Ci+1 = Cry1 — {I}; //Remove I from Cj4
8) return Cjiq

end

After the set Cyi1 of new candidate itemsets has been generated, the process goes to the
next cycle (line 25) for deriving OOA frequent (k+1)-itemsets and rules. OOApriori will continue
this way until no new OOA frequent itemsets can be generated (line 22).

We now prove the correctness of OOApriori.

Theorem 1 If I = {I1,...,1,,} is an OOA frequent pattern and J C I with J # 0, then J is an
OO0A frequent pattern.

Proof: First note that J is an OOA itemset. For any record r in DB, if TU{Obj} holds in r then
J U {0bj} holds in r. Therefore, count(I U {Obj}, DB) < count(J U{Obj}, DB). The theorem
then follows from Definition 6.

Theorem 2 OOApriori is sound and complete in the sense that I is an OOA frequent itemset
if and only if I € FP and that I,..., I, — Obj(s%,c%,u) is an OOA rule if and only if it is in
AR.

Proof: We divide the proof into two parts. First, we show by induction on k that I = {Iy,...I;}
is an OOA frequent itemset if and only if I € Ly.

For the induction basis, let £k = 1. Assume I = {I;} is an OOA frequent itemset with a
support s% > ms%. Then I is an OOA 1-itemset and must be in C; (see line 3). There must
be s% % |DB| records in DB in which I U {Obj} holds, so I.county = s% % |DB|. Therefore,
I 'fﬂﬁh = 3(7“’;‘;3‘ = s% > ms%. This means that the condition of line 15 is satisfied, which leads
to I € Ly (see line 16).

Conversely, let I € L. It must be added to Ly at line 16. Then I is an OOA 1-itemset in C
and the condition of line 15 must be satisfied. This means there are at least ms% * | DB| records
in |DB in which I U {Obj} holds. Thus I is an OOA frequent itemset.

For the induction hypothesis, let us assume that for any k£ < n, I = {I1, ..., I} is an OOA
frequent k-itemset if and only if I € L;. We now show the claim holds for k = n.

Assume I = {I,...,I,} is an OOA frequent n-itemset with a support s% > ms%. Then
by Theorem 1 all (n — 1)-sub-itemsets of I are OOA frequent itemsets and by the induction
hypothesis they must be in L, 1. This implies that I will be generated as a candidate n-itemset
by the function aprioriGen(L,_1) and it must be included in C),.

Since the support of I is s% > ms%, we have I“Cf)i“g‘t? > ms%, so that the condition of line
15 is satisfied. As a result, I is added to L, at line 16.

Conversely, let I € L,,, which was added to L,, at line 16. Then I must be an OOA n-itemset
in C), and its support s% must not be less than ms% to make the condition of line 15 true. That
is, I must be an OOA frequent itemset.

Next, we prove the second part of this theorem: Let R = I4, ..., I, — Obj(s%,c%,u), then
R is an OOA rule if and only if R is in AR.

Assume R is an OOA rule. Then I = {I, ..., I,,} must be an OOA frequent itemset. By the
above proof, I must be in L,, with a support s%. Since ¢% > mc% and u > mu, the condition
of line 19 is true, so that R is added to AR at line 20.
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Conversely, if R € AR, I must be in L,, and by the proof of the first part of this theorem, it
is an OOA frequent itemset with a support s% > ms%. Since R is added to AR at line 20, the
condition of line 19 must be true, which means ¢% > mc% and u > mu. So R is an OOA rule.
This concludes our proof.

4.2 A Pruning Strategy for Mining OOA Rules

Theorem 2 shows the correctness of applying OOApriori to computing OOA frequent itemsets
and rules. In this section we develop a pruning strategy to improve its efficiency. Here and
throughout, when we say that an OOA itemset I = {[3, ..., I,,} passes/violates the confidence or
the utility constraint, we mean that the OOA rule I, ..., I, — Obj passes/violates the constraint.

Four types of constraints for association mining have been identified in the literature [14, 20,
25, 28, 29, 30]. Let C be a constraint and S; and S be two arbitrary itemsets with S; C Ss.
C is anti-monotone if Sy violating C' implies Sy violates C. C' is monotone if S satisfying C
implies Sy satisfies C. If C' is succinct then S; and Sy satisfying C' implies S; U S9 satisfies C. C
is convertible if there exists an order R on items such that for any itemset S satisfying C, every
prefix of S w.r.t. R satisfies C.

Theorem 1 assures us that the support constraint for OOA frequent patterns is anti-monotone.
Therefore, in OOApriori we can safely delete an itemset I from Lj; when its support is below the
minimum support (see line 15) because no frequent patterns will be built from I. It turns out,
however, that neither the confidence nor the utility constraint for OOA rules is anti-monotone.

Theorem 3 The utility constraint for OOA rules is neither monotone nor anti-monotone nor
succinct nor convertible.

Proof: It is trivial to prove that the utility constraint for OOA rules is neither monotone nor anti-
monotone. We now prove it is neither succinct nor convertible by creating two counter-example
datasets as shown in the following two tables.

R#|A BJ|O R#|A B[O
1 al bl 01 1 al b1 01
2 al bl 09 2 aq b2 09
3 al bg 01 3 a9 b1 09
4 a9 bl 01

Let the objective Obj be O = 07 and the utilities for the two classes O = 07 and O = 0y be
1 and —1, respectively. Let the three minimums be ms% = mc% = 20% and mu = 0.1. Look at
the first dataset. The supports and confidences of the three OOA patterns {A = a1}, {B = b1}
and {A = a1,B = b1} are all above the respective minimum values. However, the utility of
{A = a1, B = by} is below the minimum, although those of {A = a1} and {B = b;} are above it.
This violates the condition for a succinct constraint. That is, the utility constraint is not succinct.
Now consider the second dataset. Again, The supports and confidences of the three OOA patterns
{A=a1}, {B =0} and {4 = a1, B = b} are all above the respective minimum values. Note
that {A = a1, B = by} satisfies the minimum utility constraint. However, neither {A = a;} nor
{B = b1} does. This implies that there exists no order on the items in {A = ay, B = b;} such
that the prefix of the ordered itemset satisfies the minimum utility constraint. This means that
the utility constraint is not convertible.

In a similar way, we can prove that the confidence constraint for OOA rules is neither mono-
tone nor anti-monotone nor succinct nor convertible. Therefore, we cannot rashly prune any
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itemset I when it violates the confidence or the utility constraint. The pruning problem is then
described as follows: For any itemset I in Ly (see the OOApriori algorithm) that has passed the
support constraint but violates either the confidence or the utility constraint, can we delete I from
Ly, without missing any OOA rules? Without any pruning mechanism, OOApriori will generate
all OOA frequent items, many of which may produce no OOA rules because of the violation of
the confidence or the utility constraint. Look at the function aprioriGen(Ly) again. Since all
(k+ 1)-itemsets are composed from the k-itemsets in Ly, we need to keep Lj as small as possible.
In other words, any OOA frequent itemset I in Ly should be removed if no OOA rules would be
built from I or any of its OOA super-itemsets.

In this section, we present a pruning strategy using the support and utility constraints. To
describe the pruning strategy, we add two more data fields to the internal structure of an OOA
itemset I as shown below:

typedef struct {
set pattern; //store the pattern {Iy,..., I}
int county; //[store count(I, DB)
int county; //[store count(I U{Obj}, DB)
float  u™; //store u} (1)
float u; //store up,z(1)

int county; [ /[store |ST|
float  Inu; //store the least negative utility
} ITEMSET:

Here, let S be the set of records in DB in which I U {Obj} holds and ST be the set of records in
S which contain no negative class (i.e., all classes of these records are in class™(DB)), then the
first new field county is used to store |S*| (note that the field counts stores |S|) and the second
new field Inu is used to store the least negative utility of a record in S — ST, i.e. Inu < u; (I) for
any 7 in S — ST.

Strategy 1 Remove any OOA itemset I = {Iy,..., I} from Ly if I.county < ms% x |DB| and

% < mu, where LB~ = (ms% * |DB| — I.count]) * I.Inu.

Since I is a frequent OOA itemset, there are at least ms% * |DB| records in |[DB| in which
IU{Obj} holds. When I.county < ms% * |DB|, there are at least (ms% * |[DB| — I.count])
records in DB in which I U{Obj} holds that contain negative classes. Therefore, LB~ > 0 is the
least negative utility of DB for I and thus is the lower bound of I.u~. As a result, I.u™ — LB~ is
the upper bound of the utility of DB for I. To sum up, this strategy says that an OOA frequent
itemset I is removable if the upper bound of its expected utility is below the minimum utility.
The following theorem shows that applying this strategy will not miss any OOA rules.

Theorem 4 Let I = {I1,...., Iy} be an OOA frequent itemset. If I.county < ms% x |DB| and
% < mu then there is no OOA itemset J = {J1,...,Jn} D I such that Jy,...,J, — Obj is
an OO0A rule.

Proof: First note that for any OOA frequent itemset I, ms% % |DB| is the minimum number of
records in DB in which T U {Obj} holds. Assume I.count] < ms% * |[DB| and % < mu.
Let J = {J1,....; Jn} D I. Then J.county < I.count; < ms% = |DB].

Assume, on the contrary, that Jy,...,J, — Obj(s%,c%,u) is an OOA rule. Then, J is an
OOA frequent itemset and thus there are at least ms% * |[DB| — I.county records in S — St in

13



which J U {Obj} holds. Since the least negative utility of any record in S — S* is I.lnu, the
negative utility upz(J) of J is not less than LB~ = (ms% * |DB| — I.county ) * I.Inu. Then we
have the following derivation:

uDB(J)
count(J,DB)
upp(N)—upp(J)
count(J,DB)
UJDFB( )—upp(Jd)
count(J,DB)
u}, 5 (I)~LB~
count(J,DB)

—+ —
uh o (I)~LB
ms%+| D B]| < mu.

u =

INIA

IN

Obviously, we reach a contradiction to the assumption u > mwu and thus conclude the proof.

Example 3 Let us use a simple example to illustrate the pruning strategy. Consider a dataset
DBs; as shown in Table 4. Let Obj be (O1 = 011) V (O3 = 091). So O and Os are objective
attributes. Any OOA itemset is composed from A and Other Attributes. Let

class+(DB2) = {01 = 011(2), 01 = 013(0.5), OQ = 021(1)},
class_(DBg) = {01 = 012(2), Oy = 022(2)},
ms% = mc% = 75%, and mu = 1.

Look at the OOA itemset I = {A = a}. We have |DBsy| = 4, count(I, DBy) = 4, and count(l U
{Obj}, DBy) = 3. I is an OOA frequent itemset with a support 75%. But A = a — Obj is not an
OOA rule since its utility u = (0.5 —24+24+2—-2—-2+1)/4 = —0.125 < mu. It is easy to check
that I.county =1 < 75%%|DBy| =3, LB~ = (3—1)%2 = 4, and B2 = 2524 — 0.5 < mu,
Therefore Strategy 1 can be applied to remove I from L;.

R# | A | Other Attributes | O; | Oy
1 |a 013 | 022
2 a 011
3 a 011 099
4 a 012 021

Table 4: A dataset D Bs.

It is easy to push Strategy 1 into the OOApriori algorithm. This is done by replacing lines
14-21 of Algorithm 1 with the following lines:

14) for each I ={I,...., I} € Cy
15) if % = L-counlz > 1,5% then begin

[DB]
16) Ly=LyU {I},
) o= femt
18) u =
19) if ¢% > mc% and u > mu then
20) AR = ARU{IL,...,I; — Obj(s%,c%,u)};
20-1) else begin
20-2) LB~ = (ms% * |DB| — I.county) * IInu;
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20-3) if I.count] < ms% % |DB| and Lul_LB r < mu then

sVt DB
20-4) Ly = Ly — {I} //by Strategy 1

20-5) end

21) end

The above procedure works as follows: For each candidate k-itemset in Cy, if it passes the
support constraint then it is added to Ly (lines 15 and 16). If it also passes both the confidence
and the utility constraint, an OOA rule built from I is added to AR (lines 17-20). Otherwise,
when [ passes the support constraint but violates either the confidence or the utility constraint,
our pruning strategy is applied (lines 20-1 to 20-5) to remove some OOA frequent itemsets from Ly
from which no OOA rules will be produced. The correctness of the OOApriori algorithm enhanced
with the pruning strategy follows immediately from Theorems 2 and 4. That is, Iy,..., I, —
0bj (5%, c%, u) is an OOA rule if and only if it is in AR.

5 Experimental Evaluation

The OOApriori algorithm has been implemented. We now show its effectiveness and efficiency by
empirical experiments. We choose the widely used German Credit dataset from the UCI Machine
Learning Archive (ftp://ftp.ics.uci.edu/pub /machine-learning-databases/statlog/german/). This
dataset consists of 1000 records (each record represents a customer) with 21 attributes such
as Status, Duration, Credit-history, Purpose, Employment, etc. The last attribute Conclusion
classifies a customer as good or bad in terms of his/her credits. The reason we use this dataset in
our experiment is that its attributes are semantically easy to understand so that we can flexibly
create different objectives from them to test our approach. (Our evaluation method applies to
large datasets as well. Due to the page limitation, our experimental results of applying OOApriori
to the KDD Cup 1998 Data (http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html) will be
reported in detail in a separate paper.)

We randomly partition the 1000 records in the original dataset into two parts, one for training
and the other for testing. By changing the proportional ratio between the two parts, we obtain
four pairs of datasets of different sizes, DSy, ..., DSy, as shown in Table 5.

DSl DSQ DS;), DS4
Training Data | 600 | 700 | 800 | 900
Testing Data | 400 | 300 | 200 | 100

Table 5: The size of training/testing datasets.

We conducted a series of experiments on the datasets with several different objectives. Due
to the page limitation, we only report the experimental results for a typical objective. The
objective attributes are Liable-people, Foreign and Conclusion, and the objective Obj is defined
as (Conclusion=good) A (Liable-people=2 V Foreign=no). That is, suppose we are interested
in customers whose credit is good and who either are not foreign workers or have more than
one person being liable to provide maintenance for the credit account. All the remaining eighteen
attributes are treated as non-objective attributes. The utilities of the major classes of the objective
are defined in Table 6 where we normalize the utilities into [0, 100].
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Conclusion | Foreign | Liable-people
classT™(DB) | good (70) | mo (10) 2 (20)
class (DB) | bad (70) | yes (10) 1 (20)

Table 6: Utilities of the positive/negative classes.

5.1 Effectiveness of OOA Mining

The correctness of OOA mining is guaranteed by Theorem 2. So our experiments for its effective-
ness are to demonstrate (1) how the number N of OOA rules changes as the minimum support,
confidence or utility varies and (2) the prediction accuracy of OOA rules. Intuitively, N would
decrease as any one of the three minimums increases. This is verified by our first experiment with
its results as shown in Figure 1. In the figure, the x-axis represents the minimum utilities used
in the mining process while the y-axis represents the number of OOA rules mined by applying
OOApriori. Similar trends can be obtained for minimum supports and minimum confidences.
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Figure 1: The trends of the size of OOA rule sets against minimum utilities.

Our second experiment measures the prediction accuracy of OOA rules. This is done by
computing the prediction rate of an OOA rule set derived from the training dataset of DS;
(i < 4) against the testing dataset of D.S;.

For each record r in the testing dataset, we partition its classes in the same way as in the
training dataset. Let I = {I3,..., I, } be an OOA itemset and R = I,..., I, — Obj(s%, %, u) be
an OOA rule. We compute the new utility for the rule R against the testing dataset. If the new
utility value is above the user-specified minimum value mu, we say R is a good rule, otherwise
it is a bad rule. Obviously, we want to have more good rules since we are further assured by
the testing data that applying them would increase business utilities. Therefore, to measure the
prediction accuracy of an OOA rule set we compute the ratio between the total number of good
rules and the total number of rules in the set. We call such a ratio as the prediction rate of the
rule set. Figure 2 shows the prediction rates of the four rule sets against the four pairs of datasets
(Table 5). On average, they achieve a prediction rate of 77%.

We observe an interesting fact that the higher the utility of each OOA rule in a rule set is, the
higher the prediction rate of the rule set would be. To verify this, we made another experiment
on the four new rule sets each of which consists of the top 100 rules with the highest utilities from
one of the four rule sets of the previous experiment. Figure 3 shows the prediction rates of the
four special rule sets. They achieve a prediction rate of 87% on average.
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Figure 2: The prediction rates of OOA rule sets.

120
§ 100 | opet 94 o 92 oo 92 g9 92
= 88
£ 80 Mﬂ,\‘w 87 84
c 80 79 & A
) 74 74 74
£ 60
5 —4—pDs1
T —®—pDs2
o —4&—ps3
—»—Ds4
20
20 25 30 35 40

Minimum Utilities

Figure 3: The prediction rates of OOA rule sets with high utilities.

5.2 Efficiency of OOA Mining

By comparing Apriori [4] and OOApriori, it is easy to see that the complexity of OOA mining
should be in the same complexity class as the traditional association mining (NP-hard). Let
N; = |U; C;| and Ny = ||J; Ci| be the sizes of the two sets of OOA candidate itemsets generated
by OOApriori with and without applying Strategy 1, respectively. In this section, we evaluate
the effect of applying Strategy 1 to pruning OOA itemsets by demonstrating its itemset reduction
rate defined by MN;;VI We still use the four datasets shown in Table 5 while the other settings
are the same as above.

Figure 4 shows our experimental results on the itemset reduction rates where we use different
minimum utilities while keeping the minimum support and minimum confidence unchanged. The
results strongly demonstrate that applying our pruning strategy can greatly improve the efficiency
of the OOApriori algorithm. On average, they pruned 8% — 9% of the candidate itemsets during
the mining process. Figure 5 further demonstrates the effectiveness of the pruning strategy, where
we use the same minimum confidence and minimum utility while letting the minimum support
vary.

6 Conclusions and Future Work

We have developed a new approach to modeling association patterns. OOA mining discovers
patterns that are explicitly relating to a given objective that a user wants to achieve or is interested
in and its utility. As a result, all OOA rules derived from a dataset by OOA mining are useful

17



25
20.66

——pDs1

Itemset Reduction Rate (%)

1 2 5 10 15

Minimum Utilities

Figure 4: The itemset reduction rates against minimum utilities.
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Figure 5: The itemset reduction rates against minimum supports.

because applying them would increase business utility of an enterprise. This shows a significant
difference from traditional association mining.

We developed an algorithm for mining OOA frequent patterns and rules. The algorithm is an
enhancement to Apriori with specific mechanisms for handling objective utility. Since the utility
constraint is neither anti-monotone nor monotone nor succinct nor convertible, finding effective
pruning strategies is of great significance. We developed a novel pruning strategy for mining OOA
rules by combining the support and utility constraints. As far as we can determine, no similar
work has been reported in the literature.

As future research, we consider extending our work along the following two lines: (1) Note
that in OOA mining each OOA rule is supposed to bring an enterprise with an ezpected utility
above the minimum level. A rather attractive extention would be to mine OOA rules not only
whose expected utility is above the minimum but also that could bring the enterprise with a
mazimal possible utility. (2) In practical applications, each OOA pattern would be a business
strategy, a medical treatment, a war tactics, and the like. Different strategies/treatments/tactics
have different utilities, but they may also have different costs. Pushing such costs into the OOA
mining process is of practical significance and thus worth our exploration.
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