Timed Automata, TCTL & Verification Problems

Timed Automata: Syntax

Timed Automata: Semantics

Timed Automata with *Invariants*

Invariants insure progress!!

Timed Automata

Finite Automata + Clock Constraints + Clock resets

Clock Constraints

$$g ::= x \sim n \mid g \& g$$

where

- x is a clock variable
- **-~** ∈{<,>,≤,≥}
- n is a natural number

Semantics (definition)

- clock valuations: V(C) $v: C \rightarrow R \ge 0$
- *state*: (l,v) where $l \in L$ and $v \in V(C)$

- action transition $(l,v) \xrightarrow{a} (l',v')$ iff $(l,v') \xrightarrow{g \ a \ r} (l',v')$ $(l,v') \xrightarrow{g \ a \ r} (l',v')$ $(l,v') \xrightarrow{g \ a \ r} (l',v')$
- <u>delay Transition</u> $(l,v) \xrightarrow{d} (l,v+d)$ iff $Inv(l)(v+d') \text{ whenever } d' \leq d \in R \geq 0$

Modeling Concurrency

- Products of automata
- CCS Parallel composition
 - implemented in UPPAAL

CCS Parallel Composition (implemented in UPPAAL)

where a is an action c! or c? or τ , and c is a channel name

The UPPAAL Model

= Networks of Timed Automata + Integer Variables +....

Two-way synchronization on *complementary* actions.

Closed Systems!

Example transitions

(11,
$$m1$$
,...., $x=2$, $y=3.5$, $i=3$,....) \longrightarrow (12, $m2$,..., $x=0$, $y=3.5$, $i=7$,....)

Verification Problems

Location Reachability (def.)

n is reachable from m if there is a sequence of transitions:

$$(m, u) \longrightarrow * (n, v)$$

(Timed) Language Inclusion, $L(A) \subseteq L(B)$

Verification Problems

- Timed Language Equivalence & Inclusion ⊗
 - 1-clock, finite traces, decidable [Ouaknine & Worrell 04]
 - 1-clock, infinite traces & Buchi-conditions, undecidable [Abdulla et al 05]
- Universality ⊗
- Untimed Language Inclusion ©
- (Un)Timed (Bi)simulation ☺
- Reachability Analysis/Emptiness ©
- Optimal Reachability (synthesis problem) ©
 - If a location is reachable, what is the minimal delay before reaching the location?

Timed CTL = CTL + clock constraints

Note that the semantics of TA defines a transition system where each state has a Computation Tree

Computation Tree Logic, CTL

Clarke & Emerson 1980

Syntax

$$\phi :: = P \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi U \phi] \mid A[\phi U \phi]$$

where $\mathbf{P} \in \mathsf{AP}$ (atomic propositions)

Derived Operators

Liveness: p - -> q

"p leads to q"

Timed CTL (a simplified version)

Syntax

```
\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]
```

where **p** ∈ AP (atomic propositions) **Or Clock constraint**

Timed CTL (a simplified version)

Syntax

$$\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]$$

where **p** ∈ AP (atomic propositions) **Or Clock constraint**

Derived Operators

Derived Operators (cont.)

Bounded Liveness

Verify: "whenver p is true, q should be true within 10 sec

$$P - - > (q \text{ and } x < 10)$$

Use extra clock x
Add x:=0 on all edges
leading to P

Bounded Liveness/Responsiveness

(reachability analysis, more efficient?)

[TACAS 98]

Verify: "whenver p is true, q should be true within 10 sec

AG ((P_b and x>10) imply q)

Use extra clock x and boolean P_b Add $P_b := tt$ and x := 0 on all edges leading to location P

Bounded Liveness/Responsiveness

(reachability analysis, more efficient?)

[TACAS 98]

Verify: "whenver p is true, q should be true within 10 sec

AG ((P_b and x>10) imply q)

Use extra clock x and boolean P_b Add $P_b := tt$ and x := 0 on all edges leading to location P

Problem with Zenoness/Time-stop

EXAMPLE

We want to specify "whenever P is true, Q should be true within 10 time units

EXAMPLE

We want to specify "whenever P is true, Q should be true within 10 time units

AG ((P_b and x>10) imply Q)

EXAMPLE

We want to specify "whenever P is true, Q should be true within 10 time units

AG ((P_b and x>10) imply q)

is satisfied !!!

Solution with UPPAAL

Check Zeno-freeness by an extra observer System || ZenoCheck

Check (yes means "no zeno loops")

ZenoCheck.A - - > ZenoCheck.B

Committed location!

REACHABILITY ANALYSIS using Regions

Infinite State Space!

However, the reachability problem is decidable © Alur&Dill 1991

Region: From infinite to finite

Region equivalence (Intuition)

 $u \cong v$ iff (I,u) and (I,v) may reach the same set of eqivalence classes

Region equivalence (Intuition)

 $u \cong v$ iff (I,u) and (I,v) may reach the same set of eqivalence classes

Region equivalence (Intuition)

 $u \cong v$ iff (I,u) and (I,v) may reach the same set of eqivalence classes

Region equivalence [Alur and Dill 1990]

- u,v are clock assignments
- u≈v iff
 - For all clocks x,
 either (1) u(x)>Cx and v(x)>Cx
 or (2) \[\ll u(x) \rl = \ll v(x) \]
 - For all clocks x, if u(x)<=Cx, {u(x)}=0 iff {v(x)}=0
 - For all clocks x, y, if u(x)<=Cx and u(y)<=Cy
 {u(x)}<= {u(y)} iff {v(x)}<= {v(y)}

Region equivalence (alternatively)

 $u \cong v$ iff u and v satisfy exactly the same set of constraints in the form of $xi \sim m$ and $xi-xj \sim n$ where \sim is in $\{<,>,\leq,\geq\}$ and m,n < MAX

This is not quite correct; we need to consider the MAX more carefully

Region Graph

Finite-State Transition System!!

Theorem

u≈v implies

- $u(x:=0) \approx v(x:=0)$
- u+n ≈ v+n for all natural number n
- for all d<1: u+d ≈ v+d' for some d'<1

"Region equivalence' is preserved by "addition" and reset.

(also preserved by "subtraction" if clock values are "bounded")

Region graph of a simple timed automata

$AG(\neg(CS_1 \land CS_2))$

Fischers again

$A2^{\bigvee <1} \lor := 2^{\bigvee :=0} B2^{\bigvee >1} \lor =2$

Untimed case

Timed case

11

Problems with Region Construction

- Too many 'regions'
 - Sensitive to the maximal constants
 - e.g. x>1,000,000, y>1,000,000 as guards in TA
- The number of regions is highly exponential in the number of clocks and the maximal constants.

REACHABILITY ANALYSIS using ZONES

Zones: From infinite to finite

Symbolic Transitions

Fischer's Protocol analysis using zones

Untimed case

Untimed case

Untimed case

Untimed case

Untimed case

Untimed case

Zones = Conjuctive constraints

A zone Z is a conjunctive formula:

$$g_1 \& g_2 \& ... \& g_n$$

where g_i may be $x_i \sim b_i$ or x_i - x_j ~ b_{ij}

- Use a zero-clock x_0 (constant 0), we have $\{x_i-x_i \sim b_{ij} \mid \sim is < or \le, i,j \le n\}$
- This can be represented as a MATRIX, DBM (Difference Bound Matrices)

Solution set as semantics

Let Z be a zone (a set of constraints)

Let [Z]={u | u is a solution of Z}

(We shall simply write Z instead [Z])

Operations on Zones

- Post-condition (Delay): SP(Z) or Z↑
 - $[Z^{\uparrow}] = \{u+d | d \in R, u \in [Z]\}$
- Pre-condition: WP(Z) or Z^{\downarrow} (the dual of Z^{\uparrow})
 - $[Z\downarrow] = \{u \mid u+d\in[Z] \text{ for some } d\in R\}$
- Reset: {x}Z or Z(x:=0)
 - $[\{x\}Z] = \{u[0/x] \mid u \in [Z]\}$
- Conjunction
 - $[Z\&g] = [Z] \cap [g]$

Two more operations on Zones

- Inclusion checking: Z₁⊆Z₂
 - solution sets
- Emptiness checking: Z = Ø
 - no solution

Theorem on Zones

The set of zones is closed under all zone operations

- That is, the result of the operations on a zone is a zone
- Thus, there will be a zone to represent the sets: $[Z^{\uparrow}]$, $[Z^{\downarrow}]$, $[\{x\}Z]$

One-step reachability: Si ____ Sj

- Delay: $(n,Z) \rightarrow (n,Z')$ where $Z'=Z^{\uparrow} \wedge inv(n)$
- Action: $(n,Z) \rightarrow (m,Z')$ where $Z'= \{x\}(Z \land g)$

if
$$n$$
 g $x:=0$ m

- Reach: $(n,Z) \longrightarrow (m,Z')$ if $(n,Z) \rightarrow \rightarrow (m,Z')$
- Successors(n,Z)= $\{(m,Z') \mid (n,Z) \frown (m,Z'), Z' \neq \emptyset\}$

Now, we have a search problem

