Timed Automata, TCTL
& Verification Problems



Timed Automata: Syntax

Clocks: x, y

n Guard =clock constraint
Action — Reset
used xX<=5& y >3 Action perfomed on clocks
for synchronization
-
x:=0




Timed Automata: Semantics

Clocks: x, y

n Guard =clock constraint

Action — Reset

used xX<=5& y=> 3 Action perfomed on clocks
for synchronization
-
0 State
\ Xo= ( location, x=v, y=u) wherev,uarein R
Transitions
a
- NG (n, x=2.4, y=3.1415) - > (m,x=0, y=3.1415)

&4 (n, x=2.4, y=3.1415) ~ o (nm,x=3.5, y=4.2415)




Timed Automata with 7nvariants

n
<=5
Clocks: x, y
<= o
. x<=5&y>3 Transitions
Location 2
Invariants a (n,x=24,y=3.1415) —/\

(n, x=2.4, y=3.1415) (n, x=3.5, y=4.2415)
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Timed Automata: Example
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Timed Automata: Example

2<=x<=3




Timed Automata: Example




Timed Automata

Finite Automata + Clock Constraints + Clock resets



Clock Constraints

g.:=X~n | g&g

where

= X is a clock variable

" ~e{g,>, 5>

= nis a natural number
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Semantics (definition)

= clock valuations. V(C) v:C—Rso
= state. (I,v) where leL and veV(C)

= gction transition (1,v)——(',v'") iff (D)-22.()
g(v) and v'=v[r] and Inv(l')(v')

= delay Transition (I,v) —>(l,v+d) iff
Inv(l)(v+d") whenever d'<d eR:o
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Modeling Concurrency

» Products of automata

= CCS Parallel composition
e implemented in UPPAAL
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CCS Parallel Composition (implemented in UPPAAL)

g a x:=0

where a is an actionc! orc? ort, and cis a channel name 13



The UPPAAL Model

= Networks of Timed Automata + Integer Variables +....

g W

>=2 o
j'(==3 y<=4 Two-way synchronization
cI C? sesssssssnmun on complementary actions.
x:=0 |

V ir=itd v V Closed Systems!

L o

Example transitions
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Verification Problems



Location Reachability (def.)

n is reachable from m if there is a sequence of transitions:

(m, u) > (n,v)
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(Timed) Language Inclusion, L(A) < L(B)

(Ao &) (a1, t) ..o .o (an t,) € L(A)

If
A can perform a, att, aatt, ... ... a, att,

b

(los Uo) (lor up+ty)
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Verification Problems

= Timed Language Equivalence & Inclusion ®

e 1-clock, finite traces, decidable [Ouaknine & Worrell 04]
e 1-clock, infinite traces & Buchi-conditions, undecidable [Abdulla et al 05]

= Universality ®

= Untimed Language Inclusion ©

= (Un)Timed (Bi)simulation ©

= Reachability Analysis/Emptiness ©

= Optimal Reachability (synthesis problem) ©

e If a location is reachable, what is the minimal delay before reaching the
location?
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Timed CTL = CTL + clock constraints

Note that the semantics of TA defines a transition system
where each state has a Computation Tree
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Computation Tree Logic, CTL
Clarke & Emerson 1980

Syntax
¢ =P | -0 dved| EXo| E[¢ U] | Alo U 4]

where P € AP (atomic propositions)

Derived Operators

AGp EGp EF p AF p
el
P } p
]
1
~ ,’,
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Liveness: p - -> @

p lead’s to g¢”

AG (p imply AF q)
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Timed CTL (a simplified version)

Syntax
¢ =pl=oldvo[EXO[E[oUSG]|AloU ]

where P € AP (atomic propositions) OF Clock constraint
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Timed CTL (a simplified version)

Syntax
¢ =pl=oldvo[EXO[E[oUSG]|AloU ]

where P € AP (atomic propositions) OF Clock constraint

Derived Operators

AGp EGp EF p AF p
0/ g/ N g/
\
"
: ,= {;ﬁ
]

A[] P in UPPAAL E[] P in UPPAAL E<> P in UPPAAL A<> P in UPPAAL



Derived Operators (cont.)

AG (p imply AF q)

p-->¢qin UPPAAL
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Bounded Liveness

[TACAS 98]

Verify: "whenver p is true,
q should be true within 10 sec

P-->(qgandx<10)

Use extra clock x
Add x:=0 on all edges
leadingto P
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Bounded Liveness/Responsiveness

(reachability analysis, more efficient?)

[TACAS 98]

Verify: "whenver p is true,
q should be true within 10 sec

AG ((P, and x>10) imply q)

Use extra clock x and boolean P,
Add P, := tt and x:=0 on all edges
leading to location P
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Bounded Liveness/Responsiveness

(reachability analysis, more efficient?)
[TACAS 98]

This is not really correct;

Verify: "whenver p is true,
q should be true within 10 sec

AG ((P, and x>10) imply q)

Use extra clock x and boolean P,
Add P, := tt and x:=0 on all edges
leading to location P

———————

Pb:=ff stiould be
On all eadges leaving q
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Problem with Zenoness/Time-stop
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EXAMPLE

We want to specify “"whenever P is true,
Q should be true within 10 time units
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EXAMPLE

We want to specify “"whenever P is true,

y<=3 Q should be true within 10 time units
®<=5
P,:=true AG ((P, and x>10) imply Q)

30



EXAMPLE

We want to specify “"whenever P is true,
Q should be true within 10 time units

Il
9

y<
y<=5

P,:=true AG ((P, and x>10) imply q)
X =
is satisfied !
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Solution with UPPAAL

Check Zeno-freeness by an extra observer
System | | ZenoCheck

Check (yes means "no zeno loops”)

ZenoCheck.A - - > ZenoCheck.B

ZenoCheck T
Committed location!
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REACHABILITY ANALYSIS
using Regions
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Infinite State Space!

2 2 : :
—)@ ? >@ } gives rise to the

infinite transition system:

o d

T — 2 r—2.1 T =% x =27

However, the reachability problem is decidable © Alur&Dill 1991
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Region: From infinite to finite

Concrete State Symbolic state (region)
(n, x=2.2, y=1.5) (n, ' )
Yt Y4
O
1 1 ,
- X M . X
1 23 1 2 3

An equivalence class (i.e. a region)
There are only /inite many such!! 35



Region equivalence (Intuition)

u= v iff (l,u) and (l,v) may reach
the same set of egivalence classes
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Region equivalence (Intuition)

u= v iff (l,u) and (l,v) may reach
the same set of eqivalence classes
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Region equivalence (Intuition)

u= v iff (l,u) and (l,v) may reach
the same set of eqivalence classes
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Region equivalence /A/ur and pill 19907

= y,v are clock assignments

= y=v iff
e For all clocks x,
either (1) u(x)>Cx and v(x)>Cx
or (2) Lux)l=Lv(x) |
e For all clocks x, if u(x)<=Cx,
{u(x)}=0 iff {v(x)}=0
e For all clocks x, y, if u(x)<=Cx and u(y)<=Cy
{u)}<= {u(y)} iff {v(x)}<= {v(y)}
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Region equivalence (alternatively)

u = v iff u and v satisfy exactly
the same set of constraints in
the form of

Xi ~mand Xxi-xj ~ n
where ~ is in {<,>,<,>}
and m,n < MAX

This is not quite correct;
we need to consider the MAX

more carefully
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Region Graph

Finite-State Transition System!/

(nl ') — (n,

X:=0

(m, | ) —~(m, ')...

) aus

1 2 3 X

OBS: there are only .
Flnlte many reglons (ml [U])—’ (nl [V]) if (ml U)—’ (n,V)
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Theorem

u~v implies
e u(x:=0)~ v(x:=0)
® u+n ~ v+n for all natural number n
e forall d<1: u+d ~ v+d’ for some d’'<1

"Region equivalence’ is preserved by "addition” and reset.
(also preserved by "subtraction” if clock values are “bounded”)
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Region graph of

a simple timed automata

X>=2

3

0
™~
F

B C
! !
D<e <l r =
:
! I B
2 =2 1 <2 <2
(b)
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Fischers again

AG(—(CS; ACS,))

>
>

X<1 X:= >1
= V=1
5

.

>

(e
Partial

Region Graph

. - Y>1
Untimed case <l \.oV'= B2 V=2
Timed case
ALAZV=1 ALA2v=1| | ALA2v=1 | | ALA2v=1| | A1A2,v=1
x=y=0 0 <x=y <1 x=y=1 1 <x,y
A1,B2,v=2 v
; A1,B2,v=2 Al1,B2,v=2 Al1,B2,v=2 | | A1,B2,v=2
0 <x<1 M 0<y <x<l P 0<y<x=1pP 0<y<l
A1,CS2,v=2 y=0 L <X
v Al1,B2,v=2 Al,B2,v=2
B1,CS2,v=1 71 I<xy y=1
A1,CS2,v=2 L <x
1<xy [~
CS1,CS2,v=1
No further behaviour possible!!




Problems with Region Construction

= Too many ‘regions’
e Sensitive to the maximal constants
® e¢.g.x>1,000,000,y>1,000,000 as guards in TA

= The number of regions is highly exponential in the
number of clocks and the maximal constants.
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REACHABILITY ANALYSIS
using ZONES
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Z0Nes: From infinite to finite

State Symbolic state (zone)
(n, x=3.2, y=2.5) (n, 1<x<4,1<y<3)
Zone:
conjunction of
Y1 Yy X-y~n, X~n
| m |
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Symbolic Transitions

1<=x<=4
1<=y<=3
v y
delays to
ORI
x
X>3
y y
] >3 conjuncts to
X
X
y:=0] projects to 3<X y=0
(m) "

Thus (n, 1<=x<=4,1<=y<=3) =a=> (m, 3<x, y=0)
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Fischer’s Protocol
analysis using zones

i

F~

2

.
&

X:=0

+I

Criticial Section

. X<10
Initially Vi=1
v=1

>
>

8y

Y:=0 Y>10

>
>

Y<10 Ve

(2

.
>
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Fischers cont.

Untimed case

Al,A2,v=1

A 4

A1,B2,v=2

A 4

A1,CS2,v=2

A 4

B1,CS2,v=1

A 4

CS1,CS2,v=1
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Fischers cont.

Untimed case

A 4

A 4

Al,A2,v=1

A1,B2,v=2

A1,CS2,v=2

A 4

B1,CS2,v=1

A 4

CS1,CS2,v=1

Taking time into account
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Fischers cont.

Untimed case

A 4

A 4

A 4

A 4

Al1,A2,v=1 A1,B2,v=2 A1,CS2,v=2 B1,CS2,v=1 CS1,CS2,v=1

Taking time into account

10 {--- 10

10
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Fischers cont.

Untimed case

Al1,A2,v=1

A 4

A1,B2,v=2

Taking time into account

10 [ 10

10

A 4

A1,CS2,v=2

A 4

B1,CS2,v=1

A 4

CS1,CS2,v=1
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Fischers cont.

Untimed case

Al1,A2,v=1

A 4

A1,B2,v=2

Taking time into account

10

A 4

A1,CS2,v=2

10

A 4

B1,CS2,v=1

10

A 4

CS1,CS2,v=1
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Fischers cont.

Untimed case

Al1,A2,v=1

A 4

A1,B2,v=2

Taking time into account

10 [

10

A 4

A1,CS2,v=2

A 4

B1,CS2,v=1

A 4

CS1,CS2,v=1

10
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Zones = Conjuctive constraints

= A zone Zis a conjunctive formula:
91 &g & ... &g,
where g, may be x;~ b; or X-X;~b;;
= Use a zero-clock x, (constant 0), we have
{Xi-X; ~ by | ~is < or<, ij<n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)
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Solution set as semantics

= Let Z be a zone (a set of constraints)
= et [Z]={u | uis a solution of Z}

(We shall simply write Z instead [Z] )
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Operations on Zones

Post-condition (Delay): SP(Z) or Z7T
e [ZT] = {u+d| d € R, ue[Z]}

Pre-condition: WP(Z) or Z{ (the dual of ZT)
o [Zl] = {u| u+de[Z] for some deR}

Reset: {x}Z or Z(x:=0)
o [{x}Z] ={u[0/x] | u e[Z]}

Conjunction
* [Z8&g]= [Z]N[d]
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Two more operations on Zones

= Inclusion checking: ZicZ:
= Solution sets

= Emptiness checking: Z = @
= NO solution
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Theorem on Zones

The set of zones is closed
under all zone operations

e That is, the result of the operations on a zone is a zone
e Thus, there will be a zone to represent the sets: [ZT], [Z!], [{x}Z]
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One-step reachability: si— S;

= Delay: (n,Z2) > (n,Z") where Z'= ZT A inv(n)

= Action: (n,Z) > (m,Z") where Z'= {x}(Z ~9)

it @@

= Reach: (n,2) —(m,Z2) if (n,Z2) >—>(m,Z")
= Successors(n,Z2)={(m,Z") | (n,2) ——(m,Z"), Z'+D}
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Now, we have a search problem

EF ®



