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What’s inside UPPAAL 
-- Data Structures and Algorithms



2

UPPAAL Tool

Modeling

Simulation

Verification
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Architecture of UPPAAL

Linux, Windows, Solaris, MacOS
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Inside the UPPAAL tool

 Data Structures
 DBM’s (Difference Bounds Matrices)

 Canonical and Minimal Constraints

 Algorithms 
 Reachability analysis

 Liveness checking

 Verification Options
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All Operations on Zones

(needed for verification)

 Transformation

 Conjunction

 Post condition (delay)

 Reset

 Consistency Checking

 Inclusion

 Emptiness

S1

S2, S3, ... , Sn

Si    Sj                 
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Zones = Conjuctive constraints

 A zone Z is a conjunctive formula:

g1 & g2 & ... & gn

where gi may be xi ~ bi or  xi-xj~bij

 Use a zero-clock x0 (constant 0), we have

{xi-xj ~ bij | ~ is < or , i,jn}

 This can be represented as a MATRIX, DBM

(Difference Bound Matrices)
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Datastructures for Zones in UPPAAL

 Difference Bounded Matrices
[Bellman58, Dill89]

 Minimal Constraint Form  
[RTSS97]

 Clock Difference Diagrams 
[CAV99]

x1 x2

x3x0

-4

4

2

2

5

3 3 -2 -2

1
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Canonical Datastructures for Zones

Difference Bounded Matrices Bellman 1958, Dill 1989

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

Z1

Z2

Inclusion

0

x

y

z

1 2

29

0

x

y

z

2 3

37

3

? ?   

Graph

Graph


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Bellman 1958, Dill 1989

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

Z1

Z2

Inclusion

0

x

y

z

1 2

29

Shortest
Path

Closure

Shortest
Path

Closure

0

x

y

z

1 2

25

0

x

y

z

2 3

37

0

x

y

z

2 3

36

3

3 3

Graph

Graph

? ?   

Canonical Dastructures for Zones

Difference Bounded Matrices

Z1  Z2 !
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Bellman 1958, Dill 1989

x<=1
y>=5
y-x<=3

Z

Emptiness

0
y

x

1
3

-5

Negative Cycle
iff
empty solution set

Graph

Canonical Datastructures for Zones

Difference Bounded Matrices
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Canonical Datastructures for Zones
Difference Bounded Matrices

x

y

Z

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

Add new edge

for g

Zg

Conjunction

y

x

-1

-1

3

2

0

1<=x, 1<=y
-2<=x-y<=3
3<=x

x

y

-3

y

x

-1

3

2

0

-3
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1<= x <=4
1<= y <=3

Z
x

y

x

y

Z 

0

y

x4

-1

3

-1

Shortest

Path 
Closure

Remove

upper
bounds

on clocks

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

y

x

-1

-1

3

2

0

4

3

Canonical Dastructures for Zones
Difference Bounded Matrices

Delay



13

Canonical Datastructures for Zones
Difference Bounded Matrices

x

y

Z

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

Remove all

bounds 
involving y

and set y to 0

x

y

{y}Z

y=0, 1<=x

Reset

y

x

-1

0

0 0
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COMPLEXITY

 Computing the shortest path closure, the 
cannonical form of a zone: O(n3) [Dijkstra’s alg.]

 Run-time complexity, mostly in O(n)

(when we keep all zones in cannonical form) 
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Datastructures for Zones in UPPAAL

 Difference Bounded Matrices
[Bellman58, Dill89]

 Minimal Constraint Form
[RTSS97]

 Clock Difference Diagrams 
[CAV99]

x1 x2

x3x0

-4

4

2

2

5

3 3 -2 -2

1
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Minimal Graph

x1-x2<=-4

x2-x1<=10
x3-x1<=2
x2-x3<=2

x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2
2

5

3

x1 x2

x3x0

-4

4

2

2

5

3

x1 x2

x3x0

-4

2

2
3

3
-2 -2

1

Shortest

Path
Closure
O(n3)

Shortest

Path
Reduction

O(n3)

3

Space worst O(n2)

practice O(n)

(DBM)

(Minimal graph, a.ka.
compact data structure)

-1

7
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Graph Reduction Algorithm
G: weighted graph

1. Equivalence classes based
on 0-cycles.
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Graph Reduction Algorithm
G: weighted graph

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives. 
Safe to remove redundant edges
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Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives. 
Safe to remove redundant edges

3. Shortest Path Reduction
=

One cycle pr. class
+

Removal of redundant edges
between classes

G: weighted graph
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Datastructures for Zones in UPPAAL

 Difference Bounded Matrices
[Bellman58, Dill89]

 Minimal Constraint Form  
[RTSS97]

 Clock Difference Diagrams 
[CAV99]

x1 x2

x3x0

-4

4

2

2

5

3 3 -2 -2

1
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Other Symbolic Datastructures

 NDD’s Maler et. al.

 CDD’s UPPAAL/CAV99

 DDD’s Møller, Lichtenberg

 Polyhedra HyTech

 ......

CDD-representations



22

Inside the UPPAAL tool

 Data Structures
 DBM’s (Difference Bounds Matrices)

 Canonical and Minimal Constraints

 Algorithms 
 Reachability analysis

 Liveness checking

 Verification Options
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Timed CTL in UPPAAL

P ::= A.l | gc | gd | not p| p or p | p and p | p imply p

Process 
Location
(a location in 
automaton A)

Clock
constraint

predicate
over data variables

E<> p | A[] p | E[] p | A<> p | p - -> q

denotes
A[] (p imply A<> q)

SAFETY PROPERTIES
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Timed CTL (a simplified version)

 :: = p |   |    | EX  | E[ U ] | A[ U ]

Syntax

where p  AP (atomic propositions) or Clock constraint

p
p

AG p EF p

Derived Operators

A[] P in UPPAAL E<> P in UPPAAL
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We have a search problem

(n0,Z0)

S2, S3  ......   Sn

T2                 



T1

Reachable?

E<> 

Symbolic state

Symbolic transitions
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Forward Reachability

Passed

Waiting
Final

Init

Init -> Final ?

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting


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Passed

Waiting
Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else (explore) add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting



n,Z’

Forward Reachability
Init -> Final ?
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Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting



n,Z’

m,U

Forward Reachability
Init -> Final ?
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Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting



n,Z’

m,U

n,Z

Forward Reachability
Init -> Final ?
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Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting



n,Z’

m,U

n,Z

Forward Reachability
Init -> Final ?
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Further question

Can we find the path with shortest delay, leading to P ?
(i.e. a state satisfying P)

OBSERVATION:
Many scheduling problems can be phrased naturally as 
reachability problems for timed automata.
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Verification vs. Optimization

 Verification Algorithms:

 Checks a logical property of the 
entire state-space of a model.

 Efficient Blind search.

 Optimization Algorithms:

 Finds (near) optimal solutions.

 Uses techniques to avoid non-
optimal parts of the state-space 
(e.g. Branch and Bound).

 Goal:  solve opt.  problems with 
verification.

80

60

State reachable?

Min time of reaching state?
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The maximal and minimal delay problem

OPTIMAL  REACHABILITY



34

Find the trace leading to P with min delay

p

p

p p

p

p

p p
p p

p
p

p
p

p

p
p

S0

p

There may
be a lot of 
pathes leading
to P

Which one 
with the shortest 
delay?
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p

p

p p

p

p

p p
p p

p
p

p
p

p

p
p

S0

p

Idea: delay as ”Cost” to reach 

a state, thus cost increases
with time at rate 1

Find the trace leading to P with min delay
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An Simple Algorithm for minimal-cost reachability

 State-Space Exploration + Use of global variable Cost and global clock 

 Update Cost whenever goal state with min( C ) < Cost is found:

 Terminates when entire state-space is explored.

Problem: The search may never terminate! 

80 Cost =80

Cost =

:=0 80
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An Simple Algorithm for minimal-cost reachability

 State-Space Exploration + Use of global variable Cost and global clock 

 Update Cost whenever goal state with min( C ) < Cost is found:

 Terminates when entire state-space is explored.

Problem: The search may never terminate! 

80

60 Cost =60

Cost =

:=0

60
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Example (min delay to reach G)

m

n

G

x:=0,:=0

x =10

x:=0

X=>0

(m,x0, x= )

(n,x= =0) (n,x0,x= )

(n,x=0, =10, -x=10) (n,x  0,  10, -x= 10)

... ... 

G

(n,x=0, =30,-x=30)

(n,x=0,x=0, =20,-x=20) (n,x  0,  20, -x= 20)

(n,x  0,  30, -x= 30)

(m,x= =0)

The minimal delay = 0 but the search may never terminate!

Problem: How to symbolically represent the zone C.
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Priced-Zone

• Cost = minimal total time 

• C can be represented as the zone Z, where:

– Z original (ordinary) DBM plus…

–  clock keeping track of the cost/time.

• Delay, Reset, Conjunction etc. on Z are 
the standard DBM-operations

• Delay-Cost is incremented by Delay-operation on Z.
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Priced-Zone


x

C3 C2 C1

C3  C2  C1

C1

C2

C3

Then:

But:

• Cost = min total time 

• C can be represented as the zone Z, where:

– Z is the original zone Z extended with the 
global clock  keeping track of the cost/time.

– Delay, Reset, Conjunction etc. on C are the 
standard DBM-operations

• But inclusion-checking will be different
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Solution: ()†-widening operation

 ()† removes upper bound on the –clock:

 In the Algorithm:

 Delay(C†) = ( Delay(C†) )†

 Reset(x,C†) = ( Reset(x,C†) )†

 C1
†  g = ( C1

†  g )†

 It is suffices to apply ()† to the initial state (l0,C0).



x

C3 C2 C1

C3  C2  C1
C1

C2

C3
†

†

†

† † †
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Example (widening for Min)



x

Z1  Z2
Z2

Z1
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Example (widening for Min)



x

Z1  Z2
Z2

Z1

Z+
2

Z+
1 Z+= Widen(Z)
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Example (widening for Min)



x

Z+
1  Z+

2

Z+
2

Z+
1

!

Z+= Widen(Z)

Z1 Z2
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An Algorithm (Min)
Cost:=, Pass := {}, Wait := {(l0,C0)}

while Wait  {} do

select (l,C) from Wait

if (l,C) = P and Min(C)<Cost then Cost:= Min(C)

if (l,C)   (l,C’) for some (l,C’) in Pass then skip

otherwise add (l,C) to Pass

and forall (m,C’) such that (l,C)    (m,C’):

add (m,C’) to Wait

Return Cost

Output: Cost = the min cost of a found trace satisfying P.

One-step reachability relation 
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Inside the UPPAAL tool

 Data Structures
 DBM’s (Difference Bounds Matrices)

 Canonical and Minimal Constraints

 Algorithms 
 Reachability analysis

 Liveness checking

 Verification Options
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Timed CTL in UPPAAL

P ::= A.l | gc | gd | not p| p or p | p and p | p imply p

Process 
Location
(a location in 
automaton A)

Clock
constraint

predicate
over data variables

E<> p | A[] p | E[] p | A<> p | p - -> q

denotes
A[] (p imply A<> q)SAFETY PROPERTIES

LIVENESS PROPERTIES
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Timed CTL (a simplified version)

 :: = p |   |    | EX  | E[ U ] | A[ U ]

Syntax

where p  AP (atomic propositions) or Clock constraint

EG p AF p

Derived Operators

E [] P in UPPAAL A<> P in UPPAAL
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Derived Operators (cont.)

p

q

p

q

q

q

q

q

AG (p imply AF q)

p - -> q in UPPAAL
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Question

A<> P ” P will be true for sure in future”

p

x 5

?? Does this automaton satisfy AF P
m
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Note that

A<> P ” P will be true for sure in future”

p

x 5

m

NO !!!! there is a path:

(m, x=0) (m,x=1)(m,2) ... (m,x=k) ...
Idling forever in location m
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Note that

A<> P ” P will be true for sure in future”

p

x 5 This automaton satisfies AF P

x 5
m
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Algorithm for checking A<> P

Bouajjani, Tripakis, Yovine’97

On-the-fly symbolic model checking of TCTL

Eventually P

There is no cycle containing 
only states where p is false: not E [] (not p)
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Question: Time bound synthesis

A<> P ” P will be true eventually”
But no time bound is given.

Can we calculate the Max time bound?
Assume AF P is satisfied by an automaton A.

OBS: we know how to calculate the Min !
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Assume A<> P is satisfied    

Find the  trace leading to P with the max delay

p
p p p pp

p p
p p p p p

p
p

p p

S0

 P

p
pp

S0

 P

Almost the same
algorithm as for
synthesizing Min

We need
to explore 
the Green part
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An Algorithm (Max) -- not supported by UPPAAL

Cost:=0, Pass := {}, Wait := {(l0,C0)}

while Wait  {} do

select (l,C) from Wait

if (l,C) = P and Max(C)>Cost then Cost:= Max(C)

else if forall (l,C’) in Pass: C     C’ then

add (l,C) to Pass

forall (m,C’) such that (l,C)    (m,C’):

add (m,C’) to Wait

Return Cost

Output: Cost = the max cost of a found trace satisfying P.

BUT:         is defined on zones where the lower bound of “cost” is removed

One-step reachability relation 
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Zone-Widening operation for Max

C1

C2



x

C1    C2
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Zone-Widening operation for Max

C+
1

C+
2



x

C+
1  C+

2

C1 C2   !

C1    C2
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Inside the UPPAAL tool

 Data Structures
 DBM’s (Difference Bounds Matrices)
 Canonical and Minimal Constraints

 Algorithms 
 Reachability analysis
 Liveness checking

 Verification Options
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• Diagnostic Trace

• Breadth-First
• Depth-First

• Local Reduction
• Active-Clock Reduction
• Global Reduction

• Re-Use State-Space

• Over-Approximation
• Under-Approximation
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Inactive (passive) Clock Reduction

x is only active in location S1

x>3x<5

x:=0

x:=0

S x is inactive at S if on all path from
S, x is always reset before being
tested. 

Definition
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Global Reduction
(When to store symbolic state)

No Cycles:  Passed list not needed for termination

However,
Passed list useful for
efficiency
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Global Reduction
(When to store symbolic state)

Cycles:
Only symbolic states
involving loop-entry points 
need to be saved on Passed list

[RTSS97]
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To Store Or Not To Store?

117 statestotal

81 statesentrypoint

9 states

Time OH

less than 10%

[RTSS97,CAV03]

(need to
re-explore
some states)
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Reuse of State Space

Passed

Waiting

prop1

A[]  prop1 

A[]  prop2

A[]  prop3

A[]  prop4

A[]  prop5

.

.

.

A[]  propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?

prop2
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Reuse of State Space

Passed

Waiting

prop1

A[]  prop1 

A[]  prop2

A[]  prop3

A[]  prop4

A[]  prop5

.

.

.

A[]  propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?Hashtable

prop2
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Reuse of State Space

Passed

Waiting

prop1

A[]  prop1 

A[]  prop2

A[]  prop3

A[]  prop4

A[]  prop5

.

.

.

A[]  propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?Hashtable Swapped to

secondary memory

prop2
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Reuse of State Space

Passed

Waiting

prop1

A[]  prop1 

A[]  prop2

A[]  prop3

A[]  prop4

A[]  prop5

.

.

.

A[]  propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?

Hashtable
Swapped to
secondary memory

REVERSE CREATION
ORDER

generation order

prop2
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Under-approximation
Bitstate Hashing  (Holzman,SPIN)

Passed

Waiting Final

Init

n,Z’

m,U

n,Z
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Under-approximation
Bitstate Hashing

Passed

Waiting Final

Init

n,Z’

m,U

n,Z

Passed=
Bitarray

1

0

1

0

0

1

UPPAAL
8 Mbits

Hashfunction
F
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Bit-state Hashing

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting



Passed(F(n,Z)) = 1

Passed(F(n,Z)) := 1
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Under Approximation
(good for finding Bugs quickly, debugging)

 Possitive answer is safe (you can trust)
 You can trust your tool if it tells:

a state is reachable (it means Reachable!)

 Negative answer is Inconclusive
 You should not trust your tool if it tells:

a state is non-reachable

 Some of the branch may be terminated by 
conflict (the same hashing value of two states)
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Over-approximation
Convex Hull

x

y

Convex Hull

1 3 5

1

3

5
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Over-Approximation
(good for safety property-checking)

 Possitive answer is Inconclusive
 a state is reachable means Nothing

(you should not trust your tool when it says so)

 Some of the transitions may be enabled by 
Enlarged zones

 Negative answer is safe
 a state is not reachable means Non-reachable

(you can trust your tool when it says so)



Now, you can go home

 Download and use UPPAAL or

 Start to implement your own model checker

75


