What's inside UPPAAL

-- Data Structures and Algorithms
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Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints

Gl
= Algorithms UPPSALA (A
e . UN[VE_R?]TET AALB(?ﬁRG :.JNIV?RSITY
= Reachability analysis G sy s ey e ey 0 s

UPPaAL 3.4.7, Aug 2004,

= Liveness checking
= Verification Options



All Operations on Zones
(needed for verification)

= | ransformation

S1
= Conjunction e .

S2,S3,...,5n
= Post condition (delay) /o ./ X\

= Reset S
= Consistency Checking 7 A

= Inclusion
s Emptiness



Zones = Conjuctive constraints

= A zone Zis a conjunctive formula:
9; &gy & ... &g,
where g; may be x;~ b; or Xxi-x;~b;;
s Use a zero-clock x, (constant 0), we have
{Xi-X; ~ by | ~is < or<, ij<n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)



Datastructures for Zones in UPPAAL

s Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
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Canonical Datastructures for Zones
Difference Bounded Matrices Bellman 1958, Dill 1989

Inclusion

x<=1 1/' \2‘
Z1 |Yyx<=2 Graph

S N




Canonical Dastructures for Zones
Difference Bounded Matrices

Inclusion
x<=1
Z1 |Yyx<=2
Z-y<=2
z<=9

Shortest
Path
Closure

Shortest
Path
Closure

Bellman 1958, Dill 1989
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Canonical Datastructures for Zones
Difference Bounded Matrices Bellman 1958, Dill 1989

Emptiness

y>=5 Graph 0

Y'X<=3 \ Yy

Negative Cycle
iff
empty solution set
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Canonical Datastructures for Zones
Difference Bounded Matrices

' Conjunction y

« ZNg

1<=x, 1<=y
-2<=X-y<=3

2T ' /
-1K ’ ‘_1\», 2 _le 2

y

X
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Canonical Dastructures for Zones
Difference Bounded Matrices

Delay

ya [ ]

1<=x <=4
1<=y <=3

f/ x X
1 Shortest Remove 1
0 Path 3 3 upper 0 3
Closure bounds
& > on clocks ‘\ )
-1

_1 y

12



Canonical Datastructures for Zones
Difference Bounded Matrices

' Reset y

{y}Z

X

1<=x, 1<=y

-2<=X-y<=3 y=0, 1<=x
X X

Remove all
} 3 bounds -1
0 involving y 0 0
5 andsetyto 0
Ty oK
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COMPLEXITY

s Computing the shortest path closure, the
cannonical form of a zone: O(n3) [Dijkstra’s alg.]

s Run-time complexity, mostly in O(n)
(when we keep all zones in cannonical form)
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Datastructures for Zones in UPPAAL

s Difference Bounded Matrices
[Bellman58, Dill89]

»  Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
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Minimal Graph

|
e T
f T - Shortest
' Path

X1-x2<=-4
x2-x1<=10 . |
x3-x1<=2 3 ‘ |, Closure
X2-x3<=2 | - Oo(n3)
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x3-X0<=5 }
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Re:::::ion L II SpiEs worst_ O(n?)
o(n) ‘;5 | 3| practice O(n)
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(Minimal graph, a.ka.
compact data structure)
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Graph Reduction Algorithm




Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

18



Graph Reduction Algorithm

G: weighted graph

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

3. Shortest Path Reduction
One cycle pr. class
+
Removal of redundant edges
between classes
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Datastructures for Zones in UPPAAL

s Difference Bounded Matrices
[Bellman58, Dill89]

s Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
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Other Symbolic Datastructures
CDD-representations I

s NDD’s Maler et. al.

s CDD's uppAAL/CAV99

s DDD's Mgller, Lichtenberg
= Polyhedra HyTech

21



Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints

j>. Algorithms

= Reachability analysis
= Liveness checking

= Verification Options

.-‘ ,‘:, i
UPPSALA (8
UNIVERSITET AALBORG UNIVERSITY

gt 1995-2000 by Uppeasa Linkensity and Aaibong Univemsity. All ights resened.
oo nfoemnation &1 hilpadiwwe. uppast.com

UPPaAL 3.4.7, Aug 2004,
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Timed CTL in UPPAAL

| E[l1p | A<>p | p-->¢q

Pu=Al|g.| gyl notp| porp|pandp | pimplyp

/AN

Process Clock predicate
Location constraint over data variables
(a location in

automaton A)
denotes

==\ SAFETY PROPERTIES A[] (p imply A<> q;

23



Timed CTL (a simplified version)

Syntax
¢ v=pl-oloveolEXOIEDUGI|A[DU o]

where P e AP (atomic propositions) Or Clock constraint

Derived Operators

A6 p EF p

¢

A[]P in UPPAAL E<> P in UPPAAL



We have a search problem

(nosZo) Symbolic state

/J \ Symbolic transitions

® Reachable?
Eo®

25



Forward Reachability

Init -> Final ?

/ ‘\ | INITIAL Passed := @; :
' Waiting := {(n0,20)} :

Waiting Final T
REPEAT

[OQQQ QJ - pick (n,Z) in Waiting

( \ - if forsome Z' =2 Z

(n,Z") in Passed then STOP
QQ Q - else /explore/ add
O~ {(MU): (n,2) => (m,U) }
to Waiting;
OO O Add (n,Z) to Passed
O

. UNTIL Waiting = @
k\‘ln't / Passed/ or

Final is in Waiting
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Forward Reachability

Waiting

o)

Final

Passed /

Init -> Final ?

INITIAL Passed := O;
Waiting := {(n0,Z0)}

REPEAT

———————————————————————

- pick (n,Z) in Waiting
-ifforsome Z' 27
(n,Z") in Passed then STOP

-2 g---------

- else (explore) ad

{(mU):(n,2) =>(m,\U) }

to Waiting;
Add (n,Z) to Passed

UNTIL Waiting =0
or
Final is in Waiting
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Forward Reachability

Init -> Final ?

‘\ INITIAL Passed := @;
Waiting := {(n0,Z0)}

Waitingo[ Q @ /C)] Final
[O OOJ leI|::>Iisc?<-r(n,2) in Waiting

-ifforsome Z' 27

i UNTIL Waiting =0
k\.Imt J Passed/ or

Final is in Waiting

28

. —_-AnZ)inPassed then STOP __ _
( Q Q\ I - else /explore/ add
GRS | {mU): (n,2) => (,U) )
® ® | _____loWaiting; ________
Add (n,Z) to Passed
02)



Forward Reachability

Init -> Final ?

'\ INITIAL Passed := @:
Waiting := {(n0,Z0)}

waiting | () 0y O Final
O REPEAT
Q @ - pick (n,Z) in Waiting
f - if forsome Z' =2 Z
(n,Z") in Passed then STOP

QQ Q - else /explore/ add

O~ {(MU): (n,2) => (m,U) }

Q Q ————— toWaiting, _ - _ _ _ _ ____

@ I Add (n,Z) to Passed

O
: UNTIL Waiting =0
k\‘lmt J Passed / or ?

Final is in Waiting
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Forward Reachability

o)

waiting | O 0y O Final

O (a2 O
K

O O
GRS

k\‘m - _/ Passed /

Init -> Final ?

INITIAL Passed := O;
Waiting := {(n0,Z0)}

REPEAT
- pick (n,Z) in Waiting
- ifforsome Z' =2 Z
(n,Z") in Passed then STOP
- else /explore/ add
{(mU) : (n,Z2) => (m,U) }
to Waiting;
Add (n,Z) to Passed
UNTIL Waiting =0
or
Final is in Waiting



Further question

Can we find the path with shortest delay, leading to P ?
(i.e. a state satisfying P)

OBSERVATION:

Many scheduling problems can be phrased naturally as
reachability problems for timed automata.
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Verification vs. Optimization

= Verification Algorithms:

= Checks a logical property of the
entire state-space of a model.

= Efficient Blind search.

= Optimization Algorithms:
= Finds (near) optimal solutions.
= Uses techniques to avoid non-
optimal parts of the state-space
(e.g. Branch and Bound).
= Goal: solve opt. problems with
verification.

32



OPTIMAL REACHABILITY

The maximal and minimal delay problem

33



Find the trace leading to P with min delay

There may
be a lot of

pathes leading
toP

Which one

with the shortest
delay?

34



Find the trace leading to P with min delay

Idea: delay as "Cost” to reach
p a state, thus cost increases
with time at rate 1

35



An Simple Algorithm for minimal-cost reachability

= State-Space Exploration + Use of global variable Cost and global clock &
= Update Cost whenever goal state with min( C ) < Cost is found:

= Terminates when entire state-space is explored.
Problem: The search may never terminate!

36



An Simple Algorithm for minimal-cost reachability

= State-Space Exploration + Use of global variable Cost and global clock &
= Update Cost whenever goal state with min( C ) < Cost is found:

= Terminates when entire state-space is explored.
Problem: The search may never terminate!

37



Example (min delay to reach G)

(m,x=0, x= 9)

(n,x=0,x= 0)

——>

(n,x>0, 0>10, 0-x=10)

Q (mx= 8=0)+—" |
m /
x:=0,5:=0 (nx= %5=0) >
/
x =10 | (n,x=0, 8=10,‘ S-x=10)
n -

(n,x=0,x=0, 0=20,0-x=20)

»

(n,x>0, 0>20, O-x=20)

x:=0 ‘ 
X=>0

»

(n,x=0, 0=30,0-x=30)

< T

(n,x> 0, 0>30, 0-x=30)

The minimal delay = 0 but the search may never terminate!
Problem: How to symbolically represent the zone C.




Priced-Zone

Cost = minimal total time

C can be represented as the zone Z°, where:
— Z% original (ordinary) DBM plus...
— 3 clock keeping track of the cost/time.

Delay, Reset, Conjunction etc. on Z are
the standard DBM-operations

Delay-Cost is incremented by Delay-operation on Z°.

39



Priced-Zone

e (Cost = min total time

e C can be represented as the zone 7% where:
— 7% isthe original zone Z extended with the C
global clock 6 keeping track of the cost/time. 2

— Delay, Reset, Conjunction etc. on C are the
standard DBM-operations

e But inclusion-checking will be different X
Then: C,&E C,EC;
But: ¢t C,cC,

40



Solution: ()-widening operation
= ()T removes upper bound on the —clock:

C.C C,C=C, 0
'ec/cc/

= In the Algorithm:
= Delay(C") = ( Delay(C") )*
= Reset(x,C") = ( Reset(x,C") )*
» C'Ag=(CTag)t

« Itis suffices to apply ()7 to the initial state (l,,C,).

41



Example (widening for Min)

S

Z, & 7,
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Example (widening for Min)

8“ ' ' .
Ty Z+= Widen(2)

Z, & 7,
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Example (widening for Min)

S +

Ty Z+= Widen(Z)

VARSWAP !

44



An Algorithm (Min)

Cost:=0w0, Pass := {}, Wait := {(1,,C,)}
while Wait # {} do
select (1,C) from Wait
if (1,C) | P and Min(C)<Cost then Cost:= Min (C)
if (1,C) E(l,C’) for some (1,C’) in Pass then skip
otherwise add (1,C) to Pass
and forall (m,C’) such that (1,C).—~_,(m,C’):

Return Cost
Output: Cost = the min cost of a found trace satisfying P.

45



Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints

el
= Algorithms UPPSALA (A
e . UN[VE_R?]TET AALB(E)ﬁRG UNIV"ERSITY
= Reachability analysis S e ey e s

UPPaAL 3.4.7, Aug 2004,

= Liveness checking
= Verification Options

46



Timed CTL in UPPAAL

NE[lp | A<>p | p-->¢

Pu=Al|g.| gyl Matp| porp | pandp | pimplyp

/ A\

Process Clock
Location constraint

(a location in
LIVENESS PROPERTIES

automaton A)
denotes

SAFETY PROPERTIES All(pimply A<>q)

47

predicate
over data variables



Timed CTL (a simplified version)

Syntax
=pl=olovelEXOIEDUGII ALV P]

where P e AP (atomic propositions) Or Clock constraint

Derived Operators

S

E[]IP in UPPAAL A<> P in UPPAAL



Derived Operators (cont.)
AG (p imply AF q)

p-->qin UPPAAL



Question

A<> P

X< 5

A 4

“P will be true for sure in future”

22 Does this automaton satisfy AF P

50



Note that

A<> P

X< 5

A 4

“P will be true for sure in future”

NO T thereisa path:
(m, x=0) >(m,x=1)>(m,2) ... (m,x=kK) ...
Idling forever in location m

51



Note that

A<>P

m

X< 5

)

“P will be true for sure in future”

This automaton satisfies AFP

52



Algorithm for checking A<> P Eventually P

Bouajjani, Tripakis, Yovine'97
On-the-fly symbolic model checking of TCTL

There is no cycle containing
only states where p is false: not E [] (not p)
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Question: Time bound synthesis

A<>P  ”P will be true eventually ”
But no time bound is given.

Assume AF P is satisfied by an automaton A.
Can we calculate the Max time bound?

OBS: we know how to calculate the Min !

54



Assume A<> P is satisfied

Find the trace leading to P with the max delay

Almost the same
algorithm as for
synthesizing Min

We need
to explore
pp the Green part

55



An AlgOrlth m (MaX) -- not supported by UPPAAL

Cost:=0, Pass := {}, Wait := {(1,,Cp)}
while Wait # {} do
select (1,C) from Wait
if (1,C) F P and Max (C)>Cost then Cost:= Max(C)
else if forall (1,C’) in Pass: C z C’ then
add (1,C) to Pass
forall (m,C’) such that (1,C) —~_,(m,C’):

Return Cost
Output: Cost = the max cost of a found trace satisfying P.
BUT: L is defined on zones where the lower bound of “cost” is removed
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Zone-Widening operation for Max

51

C, £ G
y A
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Zone-Widening operation for Max
5t

C, £ G

Crc Gy

¢, EG
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Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
= Algorithms
= Reachability analysis
= Liveness checking

mm) Verification Options

.-‘ ,‘:, i
UPPSALA (8
UNIVERSITET AALBORG UNIVERSITY

gt 1995-2000 by Uppeasa Linkensity and Aaibong Univemsity. All ights resened.
oo nfoemnation &1 hilpadiwwe. uppast.com

UPPaAL 3.4.7, Aug 2004,
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=3 UPPAAL 2k

File Templates Yiew Queries | Options
[System Editor |Simulator | ver| " Diagnostic Trace
¥ Breadth-First
Overview # Local Reduction
=> PO  Global Reduction I
PAE<> | Vikingl.safe || o1 pctive-Clock Reduction |
P2E«<>| Vikingz.safe | ¥ Re-Use State-Space
P3E<>( Viking3.safe ) Daver_nppmmm .
PAE<> | Viking4.saf -~
| Vikingd.safe 3 [ Under-Approximate ———
PﬁE{}': Vlklng-ﬂ. SEle I L= =L L=
F"E|E=::=-( Wikingl.safe and Vikingz.safe and Viking3.:
Query

Diagnostic Trace

Breadth-First
Depth-First

Local Reduction
Active-Clock Reduction
Global Reduction
Re-Use State-Space
Over-Approximation

Under-Approximation

60



Inactive (passive) Clock Reduction

X is only active in location S1

Definition
X is inactive at S if on all path from
O S, X is always reset before being

S
/ 2 tested.

x<5

61



Global Reduction

(When to store symbolic state)

a0

However,
Passed list useful for
efficiency

O+—0+—0+0<0

No Cycles: Passed list not needed for termination
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Global Reduction  rrrssez;
(When to store symbolic state)

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

63



[RTSS97,CAV03]

To Store Or Not To Stoe?

117 states,,
| &
O

,f
I

g
.‘9

81 states.irypoint = ‘m == 55
9 states / &
&y
o =
TR o
Time OH | S
less than 10% \Q% N @
(need to

re-explore
some states)

8
0

e@’
~_ _



Reuse of State Space

Waiting

0o o |

7 000 0O)
OO0 O
ofel Ne
oJoloNe

k\OOO O/

0,

prop2

Passed /

Af]

Al]
Af]
Af]
Af]

Al]

propl

prop2
prop3
prop4
prop5

propn

Search

in existing
Passed
list before
continuing
search

Which order
to search?
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\

Reuse of State Space

Waiting

0o o |

1-.0.0.0-0)
sYoroNe
O0® O
O-O'T-0O
\ijeieleNely

0,

prop2

Passed /

Hashtable

Af]

Al]
Af]
Af]
Af]

Al]

propl

prop2
prop3
prop4
prop5

propn

Search

in existing
Passed
list before
continuing
search

Which order
to search?
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Reuse of State Space

0,

Waiting prop2 A[] propl
000 Al prop2
A[] prop3 Ew—
earc
( O-O-O O\ QH ping in existing
OO O O pTop Passed
. list before
O O‘ O . continuin
propl g
O-O Cof O - search
\ L0800, ALl propn_,
Passed Which order
Hashtable @ SuEgged i to search?

SQCOJ’JCJEJT‘/ INEIN Oy
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Reuse of State Space

O

Waiting prop2 A[] propl
[OO O J A[] prop2

A[] prop3 .Seargh :
In existing

A[] prop4 Passed
A[]l prop> >- list before
REVERSE CREATION continuing

ORDER search

A[] pr opn/ Which order

\ \ J o 4 to search?
asse

Hashtable

—~——> (generation order

Q Eged ©
SECONUaVATIETOLY, 68



Under-approximation
Bitstate Hashing (Holzman,SPIN)

o)
Final

Waiting O 0wy O)
O (a2 O

k\.““t _/ Passed /

69



Under-approximation
Bitstate Hashing

Waiting [Q .0 C)J Final Bitarray

O
O 0,2 QV/\
/ / 8 Mbits

UPPAAL
/ / Hashfunction
F

<0 /
\ 0
k Passed 1

O |—= O |k
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Bit-state Hashing

INITIAL Passed := @;
Waiting := {(n0,20)}

REP'_EAT Passed(F(n,Z2)) =1

{(mU) : (n,Z) => (m,U) }
to Waiting;
Add (n,Z) to Passed Passed(F(n,2)) :=1
UNTIL Waiting =0

or

Final is in Waiting
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Under Approximation
(good for finding Bugs quickly, debugging)

= Possitive answer is safe (you can trust)
= You can trust your tool if it tells:
a state is reachable (it means Reachable!)

= Negative answer is Inconclusive
= You should not trust your tool if it tells:

a state is non-reachable

» Some of the branch may be terminated by
conflict (the same hashing value of two states)
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Over-approximation
Convex Hull

¢—‘l".\

50
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Over-Approximation
(good for safety property-checking)

= Possitive answer is Inconclusive
= a state is reachable means Nothing
(you should not trust your tool when it says so)

» Some of the transitions may be enabled by
Enlarged zones

= Negative answer is safe
» a state is not reachable means Non-reachable
(you can trust your tool when it says so)
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Now, you can go home

= Download and use UPPAAL or
= Start to implement your own model checker
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