
1

Multicore Real-Time Systems

PART 2

OUTLINE

 Multicore Challenges (Real-Time Applications?)
• Why and what are multicores?

• What we are doing in Uppsala: CoDeR-MP

• The timing analysis problem

 Possible Solutions – Partition/Isolation
• Dealing with Cache Contention [EMSOFT 2009]

• Dealing with Bus Interference [RTSS 2010]

• Dealing with Core Sharing [RTAS 2010]

2

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

What is multi-core, and why?

L2 Cache

Off-chip memory

3

Multicore = Multiple hardware threads sharing the memory system

The free lunch is over &

Multicores are coming !

Erik Hagersten

Chief Architect at SUN (till 1999)

Professor of Computer Architecture, Uppsala

Year 2003-2007

4

1

10

100

1000

Now

Performance
[log]

Year

Single Core

Multicore:
Requires
Parallel
Applications

Free lunch is over, Erik Hagersten

5

Theoretically you may get:

 Higher Performance

• Increasing the cores -- unlimited computing power  !

 Lower Power Consumption

• Increasing the cores, decreasing the frequency
 Performance (IPC) = Cores * F  2* Cores * F/2  Cores * F

 Power = C * V2 * F  2* C * (V /2)2 * F/2  C * V2 /4 * F

 Keep the “same performance” using ¼ of the
energy (by doubling the cores)

6

This sounds great for embedded & real-time applications!

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

Shared

Resources

B
a

n
d

w
id

th

Multicore Challenges

L2 Cache

Off-chip memory

Real-time applications?

-- Cache contention

-- Bus interference

-- Multiprocessor scheduling

Weak memory models - locking

Cheap/expensive Synchronization
7

UPMARC:

Uppsala Programming Multicore

Architecture Research Center

Awarded by the Swedish Research Council

10 millions US$: 2008 -- 2018

Year 2008 (June)

Similar centers: Stanford, UC Berkeley
8

UPMARC Research Areas

Applications & Algorithms

 Climate simulation

 PDE solvers

 Parallel algorithms for RT signal processing

 Parallelization of network protocols

Verification & Language Technology

 Erlang, language constructs/libraries, run-time systems

 Static analysis, Model-checking , testing, UPPAAL

Resource Management

 Efficiency: performance opt.

 Predictability: real-time applications

High Performance

Computing

Computer Networks

CPU

L1

CPU
L1

CPU
L1

CPU
L1

CPU
L1

CPU

L1
CPU

L1
CPU

L1

9

L2

CoDeR-MP:
Computationally Demanding Real-Time

Applications on Multicore Platforms

Awarded by the Swedish Strategic Research Foundation

3 millions US$: 2009 -- 2014

Year 2008 (November)

10

Objective (CoDeR-MP)

New techniques for

• High-performance software for soft RT applications &

• Predictable software for hard RT applications

on multicore

• Control Software for Industrial Robots – ABB robotics

• Tracking with parallel particle filter – SAAB

Industry participation

Real-Time Tracking with parallel particle filter – SAAB

Parallelization
(Speed-up for PF algorithms)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of cores M

S
p
e
e
d
-u

p

Number of particles N = 10000

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of cores M

S
p
e
e
d
-u

p

Number of particles N = 1000

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of cores M

S
p
e
e
d
-u

p

Number of particles N = 500

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Number of cores M

S
p
e
e
d
-u

p

Number of particles N = 100

GDPF

RNA

GPF

RPA

Linear speed up

Real-Time Control – ABB Robotics

A B C D

Commands High-level

instructions

Precise moves

Requests

Welding

program

IRC5 robot controller

Mixed Hard and Soft Real-Time Tasks

20% hard real-time tasks

Main concerns:

Isolation between hard & soft tasks: “fire walls”

Real-time guarantee for the 20% “super” RT tasks

Migration to multicore?

OUTLINE

 Multicore Challenges
• Why and what are multicores?

• What we are doing in Uppsala: CoDeR-MP

• The timing analysis problem

 Possible Solutions – Partition/Isolation
• Dealing with Cache Contention [EMSOFT 2009]

• Dealing with Bus Interference [RTSS 2010]

• Dealing with Core Sharing [RTAS 2010]

15

task3

Single-Processor Timing Analysis

Sequential Case (WCET analysis)

Concurrent Case (Schedulability analysis)

WCRT=WCET

WCRT

WCRT

Non-
deterministic
releases

task1

task1

task2

16

On single processor:

17

WCET = #instructions + “cache miss penalty”

“Cache miss penalty” can be estimated “precisely”

by e.g abstract interpretation – based on the history of executions

On multicore processor:

18

WCET = #instructions + “cache miss penalty” + …

“Cache miss penalty” can be much larger due to cache

contentions from the other cores … and also bus delays

WCET of a single task can not be estimated in isolation

mcol cnt mcol mcol mcol sha mcol susane mcol susans

0

50000

100000

150000

200000

250000

300000

350000

E
x
e

c
u

ti
o

n
 t
im

e
 (

u
S

)

without cache partitioning

An Experiment on a LINUX machine with 2 cores

WCET (vary 10 – 50%)

mcol runs with different programs

(Zhang Yi)

19

An Example Architecture

core 1 core 2 core 3 core 4

Private L1

cache

Private L1

cache

Private L1

cache

Private L1

cache

20

Shared L2 cache

Cache analysis on multicore

 L2 cache contents of task 1 may be over-written by task 2

Task 1 Task 2 Task 3 Task 4

21

Cache analysis on multicore

 L2 cache contents of task 1 may be over-written by task 2

Task 1 Task 2 Task 3 Task 4

22

Cache analysis on multicore

Private L1

cache

Private L1

cache

Private L1

cache

Private L1

cache

Shared L2 cache

23

Task 1 Task 2 Task 3 Task 4

The multicore challenge: WCET analysis

 Must explore all interleavings of “execution paths” on all cores

 Must represent “precise” timing information on each core (to keep
track of the progress on each core and cache contents)

24

The multicore challenge: Schedulability analysis

 #cores < #tasks

Task 1 Task 2 Task 3 Task 4 Task 5

25

Cyclic dependence

26

Multicore schedulability analysis

WCET analysis

The “Impossible” Problem

1. We must “schedule” the shared cache lines

2. We must “schedule” the shared memory bus

• when cache misses ocur

3. We must “schedule” the shared cores

27

OUTLINE

 Multicore Challenges
• Why and what are multicores?

• What we are doing in Uppsala: CoDeR-MP

• The timing analysis problem

 Possible Solutions – Partition/Isolation
• Dealing with Shared Caches [EMSOFT 2009]

• Dealing with Bus Interference [RTSS 2010]

• Dealing with Core Sharing [RTAS 2010]

28

OUTLINE

 Multicore Challenges
• Why and what are multicores?

• What we are doing in Uppsala: CoDeR-MP

• The timing analysis problem

 Possible Solutions – Partition/Isolation
• Dealing with Shared Caches [EMSOFT 2009]

• Dealing with Bus Interference [RTSS 2010]

• Dealing with Core Sharing [RTAS 2010]

29

Cache analysis on multicore

Private L1

cache

Private L1

cache

Private L1

cache

Private L1

cache

Shared L2 cache

30

Task 1 Task 2 Task 3 Task 4

Cache-Coloring: partitioning and isolation

Task 1 Task 2 Task 3 Task 4

31

Cache-Coloring: partitioning and isolation

Task 1 Task 2 Task 3 Task 4

32

WCET can be estimated using static techniques for single
processor platforms (for the given portion L2 cache)

Cache-Coloring: partitioning and isolation

 E.g. LINUX – Power5 (16 colors)

… …

Logical Pages of Task A Logical Pages of Task B

Physical Pages

… … … …

L2 Cache

controlled by

software (OS)

indexed by hardware

33

mcol cnt mcol mcol mcol sha mcol susane mcol susans

0

50000

100000

150000

200000

250000

300000

350000

E
x
e

c
u

ti
o

n
 t
im

e
 (

u
S

)

without cache partitioning

mcol cnt mcol mcol mcol sha mcol susane mcol susans

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

320000

340000

E
x
e

c
u

ti
o

n
 t
im

e
 (

u
S

)

with cache partitioning

An Experiment on a LINUX machine with 2 cores

with Cache Coloring/Partitioning [ZhangYi et al]

34

What to do when #tasks > #cores ?

35

Task partitioning

L2

Core 1

L1

Core 2

L1

L2

Core 3

L1

L2 L2

Core 4

L1

36

Task 5

Task 6Task 5
Task 100

Task 8 Task 7

Task 4 Task 13

What to do when #tasks > #cores ?

Cache-Aware Scheduling and Analysis

for Multicores [EMSOFT 2009]

37

Main message:

• “Isolation”: tasks of “same color” should not run at the same time

• The schedulability problem can be solved as an LP problem

Task Partitioning & Scheduling

 Color assignment: assign cores with “cache colors”

• Equally or according to some policy e.g. cores devoted to
critical tasks get more colors

• WCET analysis for tasks on different cores and colors

 Task assignment: partition tasks onto cores

• Partition-based multiprocessor scheduling

• Challenge: tasks may have different WECTs on different cores

 Global scheduling: need dynamic coloring (expensive
without hardware support)

38

What happens when L2 cache miss?
-- extra delays due to bus contention

39

core 1 core 2 core 3 core 4

Private L1

cache

Private L1

cache

Private L1

cache

Private L1

cache

Shared L2 cache

Memory bus

OUTLINE

 Multicore Challenges
• Why and what are multicores?

• What we are doing in Uppsala: CoDeR-MP

• The timing analysis problem

 Possible Solutions – Partition/Isolation
• Dealing with Shared Caches [EMSOFT 2009]

• Dealing with Bus Interference [RTSS 2010]

• Dealing with Core Sharing [RTAS 2010]

40

Bus Intererence Estimation & WCET Analysis

41

Core 0

L1

I-Cache

L1

D-Cache

Core 1

L1

I-Cache

L1

D-Cache

Shared Memory Bus

Off-Chip Memory

Duo-core processor with private L1 cache and shared memory bus

Combining Abstract Interpretation and Model
Checking for Multicore WCET Analysis [RTSS 2010]

Basic Idea:

Construct a timed model -- describing all possible timed

traces of bus requests, that are possible from each core

42

Combining Static Analysis & Model-Checking

43

L1 Cache

Config.

Task 1

CFG

Core 1

L1 Cache

Analysis

L1 CHMC

L1 Cache

Config.

Task 2

CFG

Core 2

L1 Cache

Analysis

L1 CHMC

Shared Bus

Analysis

Using MC

WCET of

Task 1

WCET of

Task 2

Bus

Configurations

(1) Local cache analysis by abstract

interpretation

(2) Construct a timed automaton for

each program to model the

precise timing information on

when to access the shared bus

(3) Construct a timed automaton

modeling the bus arbitration

(4) Explore the TA models using

UPPAAL to get the WCETs

Example (CFG with CHMC info from AI analysis)

44

AM

NC

AH

AM
FM

AH

AH

BB0

BB5

BB1

BB2 BB3

BB4

Private Cache Analysis by AI

 MUST analysis, classify instructions that are predicted as AH

 MAY analysis, classify instructions that are predicted as AM

 PERSISTENCE analysis, classify instructions that are predicted as FM

 Everything else as Not “Classified (NC)”

45

From CFG with CHMC to Timed Automata

 Modeling AH instructions

• If an instruction is AH, it never access the bus, so we only model
the L1 Cache access time and the instruction execution time

46

To guarantee that the automaton

will stay in location “Node1” for

exactly “L1Hit+InstTime” time

units

c[0]: a clock variable used for core-0 to model the elapse of time
L1Hit: the delay of a L1 cache hit
InstTime: the execution time of an instruction

From CFG with CHMC to Timed Automata

 Modeling AM instructions

• An AM instruction is guaranteed to access the shared bus, so we
model bus access behavior and instruction execution

47

Modeling the execution time

of the AM instruction

Sending a bus

request

Response from the

bus

From CFG with CHMC to Timed Automata

 Modeling FM instructions

• For an FM instruction, one should distinguish between the first
reference and the other references

48

The upper path models the first reference to the

instruction, which is a cache miss (access bus)

The lower path models the other references to the

instruction, which are cache hits (do not access

bus)

From CFG with CHMC to Timed Automata

 Modeling NC instructions

• So for NC instructions, we have to model both possibilities of
cache misses and cache hits, and let the model checker to
explore them

49

The “cache miss” case for an NC instruction

The “cache hit” case for an NC instruction

From CFG with CHMC to Timed Automata

 Optimization by grouping

• To reduce state space by reducing the number of locations and
edges, we grouping consecutive FM or AH instructions

• Given a sequence <FM, AH, AH, FM, AH, AH>

50

The upper path models the first time the sequence is executed

The lower path models all but the first time the sequence is executed

Without grouping:
12 locations
With grouping:
6 locations
(PostNode not included)

Example (CFG with CHMC info from AI analysis)

51

AM

NC

AH

AM
FM

AH

AH

BB0

BB5

BB1

BB2 BB3

BB4

The Timed Automaton Describing “Bus Interference”

52

Modeling the Shared Bus

 Example: TDMA bus schedule

• The bus schedule is composed of consecutive segments

• Segments are divided into slots, where each slot is assigned to
one core

53

segment 0 segment 1

……Core 0 Core 1 Core 0 Core 1

slot 0 slot 1 slot 0 slot 1

Modeling the TDMA Bus

 Timed automaton for the TDMA bus

54

Slot switch
Waiting for new

requests

Not enough time left

for the request

Servicing a

request

Check if it can service

the pending request

Enough time and the

right slot

The request cannot be

serviced in the

current slot

Modeling the FCFS Bus

 A work-conserving non-preemptive FCFS bus

55

Receiving a bus

request

Service the request

the first request in

the queue

New requests during

bus service

Service complete

Remove the

request

If no pending

request, go back to

“RecvReq” to wait

for future requests

Putting All Together

 Now, we have
• TA models for the programs running on all cores, describing all bus

requests annotated with timing info, that are possible from the cores

• TA model for a given bus arbitration protocol e.g TDMA, FCFS, RR …

 WCET estimation
• Let the UPPAAL model checker explore the network of TA models

• The WCETs are extracted from the clock constraints within the UPPAAL
model checker

 Scalability: for TDMA, it scales very well: the analysis can be
done separately for each program and the bus schedule.

56

A Tool for Multicore WCET Analysis

57

Experiments and Evaluation

 WCET Benchmark programs (Maladalen)

58

Name Description # instructions

bs Binary search algorithm for an array 78

edn Finite Impulse Response (FIR) filter calculations 896

fdct Fast Discrete Cosine Transform 647

insertsort Insertion sort on a reversed array 106

jfdctint Discrete Cosine Transformation on a pixel block 691

matmult Matrix multiplication 287

Results for the TDMA Bus

 System configurations

• Duo-core or 4-core systems

• L1 Cache size = 2KB,

• Cache associativity = 4

• Cache line size = 8B

• L1 hit latency = 1 cycle

• Instruction execution = 1 cycle

• Bus service time = 40 cycles

• Two different slot sizes: 100 cycles, 200 cycles

59

Results for the TDMA Bus

• The WCET of each program can be calculated
independently for the TDMA bus

• The worst-case bus delay scenario

– A bus request arrives in the slot assigned to it, but finds that
there are only 39 cycles left, which is just not enough to serve
the request

– For slot size 100, worst-case delay = 39 + 100 + 40 = 179

– For slot size 200, worst-case delay = 39 + 200 + 40 = 279

• Improvement

– (WCETAI+WC / WCETAI+MC - 1)

– Describes how much our approach can tighten compared to
assuming worst-case bus delay

60

Results for the TDMA Bus

 Results for a duo-core system with slot size 100

61

Programs
WCET

Improvement
AI + MC AI + Worst-Case

bs 8,282 14,644 77%

edn 9,219,082 16,565,100 80%

fdct 268,882 479,946 78%

insertsort 21,041 29,702 41%

jfdctint 315,882 563,936 79%

matmult 151,241 174,390 15%

Average 62%

Results for the TDMA Bus

 Results for a duo-core system with slot size 200

62

Programs
WCET

Improvement
AI + MC AI + Worst-Case

bs 8,484 22,444 165%

edn 9,207,282 25,756,000 180%

fdct 267,282 742,646 178%

insertsort 21,282 40,302 89%

jfdctint 314,564 873,336 178%

matmult 150,841 203,090 35%

Average 138%

Results for the TDMA Bus

 Results for a 4-core system with slot size 100

63

Programs
WCET

Improvement
AI + MC AI + Worst-Case

bs 16,082 30,244 88%

edn 18,428,441 34,946,900 90%

fdct 529,682 1,005,350 90%

insertsort 31,641 50,902 61%

jfdctint 624,482 1,182,740 89%

matmult 179,241 231,790 29%

Average 75%

Results for the TDMA Bus

 Results for a 4-core system with slot size 200

64

Programs
WCET

Improvement
AI + MC AI + Worst-Case

bs 16082 53644 234%

edn 18404164 62519600 240%

fdct 529682 1793450 239%

insertsort 32082 82702 158%

jfdctint 628164 2110940 236%

matmult 179241 317890 77%

Average 197%

Results for the FCFS Bus

 System configurations

• Duo-core system

• L1 Cache size = 8KB

• Cache line size = 8B

• Cache associativity = 4

• L1 cache hit latency = 1 cycle

• Instruction execution time = 1 cycle

• Bus service time = 40 cycles

65

Results for the FCFS Bus

 Evaluation method

• Grouping the six benchmark programs into two task sets

• {bs, edn, fdct} and {insertsort, jfdctint, matmult}

• Each task set is allocated on one core

• The tasks within the same task set are statically scheduled

66

Schedules Core-0 Core-1

S1 edn, bs, fdct matmult, insertsort, jfdctint

S2 bs, fdct, edn matmult, insertsort, jfdctint

S3 fdct, edn, bs matmult, insertsort, jfdctint

S4 edn, bs, fdct insertsort, jfdctint, matmult

S5 fdct, bs, edn Jfdctint, matmult, insertsort

S6 fdct, bs, edn matmult, insertsort, jfdctint

S7 edn, bs, fdct jfdctint, insertsort, matmult

S8 fdct, edn, bs Jfdctint, matmult, insertsort

Results for the FCFS Bus

 The worst-case bus delay scenario

• A request reqi arrives when the bus is servicing a request from
the other core which is issued immediately before reqi

• Given the above system configurations, the worst-case bud
delay for the FCFS bus is 80 cycles (two times the bus service
time)

67

Results for the FCFS Bus

68

Programs
WCET (AI + MC) WCET

AI+Worst-Case

Maximal

Impr.

Average

Impr.Minimal Average

bs 3,802 4,319 6,922 82% 67%

edn 240,267 246,970 276,068 15% 12%

fdct 37,573 44,620 63,453 69% 46%

insertsort 14,968 15,763 19,208 28% 23%

jfdctint 40,153 48,056 67,793 69% 45%

matmult 138,406 140,117 145,977 5% 4%

Average improvement for all programs 33%

Remember, we need to:

 “partition” the shared caches

 “partition” the shared memory bus

69

Now, assume that we have a
“safe WCET bound” for each task

The multicore challenge: Scheduling & schedulability analysis

 #cores < #tasks

Task 1 Task 2 Task 3 Task 4 Task 5

70

Dealing with Shared Cores

71

Multiprocessor Scheduling

