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Multicore Real-Time Systems

PART 2



OUTLINE

 Multicore Challenges (Real-Time Applications?)
• Why and what are multicores?

• What we are doing in Uppsala: CoDeR-MP

• The timing analysis problem

 Possible Solutions – Partition/Isolation
• Dealing with Cache Contention [EMSOFT 2009]

• Dealing with Bus Interference  [RTSS 2010]

• Dealing with Core Sharing [RTAS 2010]

2



CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

What is multi-core, and why?

L2 Cache

Off-chip memory
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Multicore = Multiple hardware threads sharing the memory system



The free lunch is over &

Multicores are coming !

Erik Hagersten

Chief Architect at SUN (till 1999)

Professor of Computer Architecture, Uppsala

Year 2003-2007
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Theoretically you may get:

 Higher Performance 

• Increasing the cores -- unlimited computing power  ! 

 Lower Power Consumption

• Increasing the cores,  decreasing the frequency
 Performance (IPC)  = Cores * F  2* Cores * F/2  Cores * F

 Power =  C * V2 * F  2* C * (V /2)2 * F/2  C * V2 /4 * F

 Keep the  “same performance” using ¼ of the 
energy  (by doubling the cores)
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This sounds great for embedded & real-time applications!
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Real-time applications?

-- Cache contention

-- Bus interference

-- Multiprocessor scheduling

Weak memory models - locking

Cheap/expensive Synchronization
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UPMARC: 

Uppsala Programming Multicore

Architecture Research Center

Awarded by the Swedish Research Council

10 millions US$:  2008 -- 2018

Year 2008 (June)

Similar centers:  Stanford,   UC Berkeley 
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UPMARC Research Areas

Applications & Algorithms

 Climate simulation

 PDE solvers

 Parallel algorithms for RT signal processing

 Parallelization  of  network protocols

Verification & Language Technology

 Erlang, language constructs/libraries, run-time systems

 Static analysis,  Model-checking , testing, UPPAAL  

Resource Management

 Efficiency:  performance opt.

 Predictability: real-time applications

High Performance

Computing

Computer Networks
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CoDeR-MP: 
Computationally Demanding Real-Time 

Applications on Multicore Platforms

Awarded by the Swedish Strategic Research Foundation

3 millions US$: 2009 -- 2014

Year 2008 (November)
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Objective (CoDeR-MP)

New techniques for

• High-performance software for soft RT applications &

• Predictable software for hard RT applications

on multicore

• Control Software for Industrial Robots – ABB robotics

• Tracking with parallel particle filter – SAAB 

Industry participation



Real-Time Tracking with parallel particle filter – SAAB 



Parallelization
(Speed-up for PF algorithms)
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Real-Time Control – ABB Robotics

A B C D

Commands High-level

instructions

Precise moves

Requests

Welding

program

IRC5 robot controller

Mixed Hard and Soft Real-Time Tasks

20% hard real-time tasks

Main concerns:

Isolation between hard & soft tasks: “fire walls”

Real-time guarantee for the 20% “super” RT tasks

Migration to multicore?



OUTLINE

 Multicore Challenges
• Why and what are multicores?

• What we are doing in Uppsala: CoDeR-MP

• The timing analysis problem

 Possible Solutions – Partition/Isolation
• Dealing with Cache Contention [EMSOFT 2009]

• Dealing with Bus Interference  [RTSS 2010]

• Dealing with Core Sharing [RTAS 2010]
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task3

Single-Processor Timing Analysis

Sequential Case (WCET analysis)

Concurrent Case  (Schedulability analysis)

WCRT=WCET

WCRT

WCRT 

Non-
deterministic
releases

task1

task1

task2
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On single processor:

17

WCET  =  #instructions + “cache miss penalty” 

“Cache miss penalty” can be estimated “precisely”

by  e.g abstract interpretation – based on the history of  executions



On multicore processor:
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WCET  = #instructions + “cache miss penalty” + …

“Cache miss penalty”  can be much larger due to cache 

contentions from the other cores … and also bus delays

WCET of a single task can not be estimated in isolation 
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An Example Architecture

core 1 core 2 core 3 core 4

Private L1

cache

Private L1

cache

Private L1

cache

Private L1

cache
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Shared L2 cache



Cache analysis on multicore

 L2 cache contents of task 1 may be over-written by task 2

Task 1 Task 2 Task 3 Task 4
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Cache analysis on multicore

 L2 cache contents of task 1 may be over-written by task 2

Task 1 Task 2 Task 3 Task 4
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Cache analysis on multicore

Private L1

cache

Private L1

cache

Private L1

cache

Private L1

cache

Shared L2 cache
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Task 1 Task 2 Task 3 Task 4



The multicore challenge: WCET analysis

 Must explore all interleavings of “execution paths” on all cores

 Must represent “precise” timing information on each core (to keep 
track of the progress on each core and cache contents)
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The multicore challenge: Schedulability analysis

 #cores < #tasks

Task 1 Task 2 Task 3 Task 4 Task 5
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Cyclic dependence
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Multicore schedulability analysis   

WCET analysis   



The “Impossible” Problem

1. We must “schedule” the shared cache lines

2. We must “schedule” the shared memory bus

• when cache misses ocur

3. We must “schedule” the shared cores
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OUTLINE

 Multicore Challenges
• Why and what are multicores?

• What we are doing in Uppsala: CoDeR-MP

• The timing analysis problem

 Possible Solutions – Partition/Isolation
• Dealing with Shared Caches [EMSOFT 2009]

• Dealing with Bus Interference  [RTSS 2010]

• Dealing with Core Sharing [RTAS 2010]
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OUTLINE

 Multicore Challenges
• Why and what are multicores?

• What we are doing in Uppsala: CoDeR-MP

• The timing analysis problem

 Possible Solutions – Partition/Isolation
• Dealing with Shared Caches [EMSOFT 2009]

• Dealing with Bus Interference  [RTSS 2010]

• Dealing with Core Sharing [RTAS 2010]
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Cache analysis on multicore

Private L1

cache

Private L1

cache

Private L1

cache

Private L1

cache

Shared L2 cache
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Task 1 Task 2 Task 3 Task 4



Cache-Coloring: partitioning and isolation

Task 1 Task 2 Task 3 Task 4
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Cache-Coloring: partitioning and isolation

Task 1 Task 2 Task 3 Task 4

32

WCET can be estimated using static techniques for single 
processor platforms (for the given portion L2 cache)



Cache-Coloring: partitioning and isolation

 E.g. LINUX – Power5 (16 colors)

… …

Logical Pages of Task A Logical Pages of Task B

Physical Pages

… … … …

L2 Cache

controlled by 

software (OS)

indexed by hardware
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What to do when #tasks > #cores ?

35



Task partitioning

L2

Core 1

L1

Core 2

L1

L2

Core 3

L1

L2 L2

Core 4

L1
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Task 5

Task 6Task 5
Task 100

Task 8 Task 7

Task 4 Task 13



What to do when #tasks > #cores ?

Cache-Aware Scheduling and Analysis

for Multicores [EMSOFT 2009]
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Main message:

• “Isolation”:  tasks  of  “same color” should not run at the same time

• The schedulability problem can be solved as an LP problem



Task Partitioning & Scheduling

 Color assignment: assign cores with “cache colors”

• Equally or according to some policy e.g. cores devoted to 
critical tasks get more colors

• WCET analysis for tasks on different cores and colors

 Task assignment:  partition tasks onto cores

• Partition-based multiprocessor scheduling

• Challenge: tasks may have different WECTs on different cores

 Global scheduling: need dynamic coloring (expensive 
without hardware support)
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What happens when L2 cache miss?
-- extra delays due to bus contention
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core 1 core 2 core 3 core 4

Private L1

cache

Private L1

cache

Private L1

cache

Private L1

cache

Shared L2 cache

Memory bus



OUTLINE

 Multicore Challenges
• Why and what are multicores?

• What we are doing in Uppsala: CoDeR-MP

• The timing analysis problem

 Possible Solutions – Partition/Isolation
• Dealing with Shared Caches [EMSOFT 2009]

• Dealing with Bus Interference  [RTSS 2010]

• Dealing with Core Sharing [RTAS 2010]
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Bus  Intererence Estimation & WCET Analysis 

41

Core 0

L1

I-Cache

L1

D-Cache

Core 1

L1

I-Cache

L1

D-Cache

Shared Memory Bus

Off-Chip Memory

Duo-core processor with private L1 cache and shared memory bus



Combining Abstract Interpretation and Model 
Checking for Multicore WCET Analysis [RTSS 2010]

Basic Idea:

Construct a timed model -- describing all possible timed 

traces of bus requests,  that are possible from each core
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Combining Static Analysis & Model-Checking 
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L1 Cache

Config.

Task 1

CFG

Core 1

L1 Cache

Analysis

L1 CHMC

L1 Cache

Config.

Task 2

CFG

Core 2

L1 Cache

Analysis

L1 CHMC

Shared Bus

Analysis

Using MC

WCET of

Task 1

WCET of

Task 2

Bus

Configurations

(1) Local cache analysis by abstract 

interpretation

(2) Construct a timed automaton for 

each program to model the 

precise timing information on 

when to access the shared bus

(3) Construct a timed automaton 

modeling the bus arbitration

(4) Explore the TA models using 

UPPAAL to get the WCETs



Example (CFG with CHMC info from AI analysis)
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Private Cache Analysis by AI

 MUST analysis, classify instructions that are predicted as AH

 MAY analysis, classify instructions that are predicted as AM

 PERSISTENCE analysis, classify instructions that are predicted as FM

 Everything else  as Not “Classified (NC)”
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From CFG with CHMC to Timed Automata

 Modeling AH instructions

• If an instruction is AH, it never access the bus, so we only model 
the L1 Cache access time and the instruction execution time
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To guarantee that the automaton 

will stay in location “Node1” for 

exactly “L1Hit+InstTime” time 

units

c[0]: a clock variable used for core-0 to model the elapse of time
L1Hit: the delay of a L1 cache hit
InstTime: the execution time of an instruction 



From CFG with CHMC to Timed Automata

 Modeling AM instructions

• An AM instruction is guaranteed to access the shared bus, so we 
model bus access behavior and instruction execution

47

Modeling the execution time 

of the AM instruction

Sending a bus 

request

Response from the 

bus



From CFG with CHMC to Timed Automata

 Modeling FM instructions

• For an FM instruction, one should distinguish between the first 
reference and the other references

48

The upper path models the first reference to the 

instruction, which is a cache miss (access bus)

The lower path models the other references to the 

instruction, which are cache hits (do not access 

bus)



From CFG with CHMC to Timed Automata

 Modeling NC instructions

• So for NC instructions, we have to model both possibilities of 
cache misses and cache hits, and let the model checker to 
explore them
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The “cache miss” case for an NC instruction

The “cache hit” case for an NC instruction



From CFG with CHMC to Timed Automata

 Optimization by grouping

• To reduce state space by reducing the number of locations and 
edges, we grouping consecutive FM or AH instructions

• Given a sequence <FM, AH, AH, FM, AH, AH>

50

The upper path models the first time the sequence is executed

The lower path models all but the first time the sequence is executed

Without grouping:
12 locations
With grouping:
6 locations 
(PostNode not included)



Example (CFG with CHMC info from AI analysis)
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The Timed Automaton Describing “Bus Interference”
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Modeling the Shared Bus

 Example: TDMA bus schedule

• The bus schedule is composed of consecutive segments

• Segments are divided into slots, where each slot is assigned to 
one core
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segment 0 segment 1

……Core 0 Core 1 Core 0 Core 1

slot 0 slot 1 slot 0 slot 1



Modeling the TDMA Bus

 Timed automaton for the TDMA bus
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Slot switch
Waiting for new 

requests

Not enough time left 

for the request

Servicing a 

request

Check if it can service 

the pending request

Enough time and the 

right slot

The request cannot be 

serviced in the 

current slot



Modeling the FCFS Bus

 A work-conserving non-preemptive FCFS bus
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Receiving a bus 

request

Service the request 

the first request in 

the queue

New requests during 

bus service

Service complete

Remove the 

request

If no pending 

request, go back to 

“RecvReq” to wait 

for future requests



Putting All Together

 Now, we have
• TA models for the programs running on all cores,  describing all bus 

requests annotated with timing info, that are possible from the cores

• TA model for a given bus arbitration protocol e.g TDMA, FCFS, RR …

 WCET estimation
• Let the UPPAAL model checker explore the network of TA models

• The WCETs are extracted from the clock constraints within the UPPAAL 
model checker

 Scalability: for TDMA, it scales very well: the analysis can be 
done separately for each program and the bus schedule.
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A Tool for Multicore WCET Analysis
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Experiments and Evaluation

 WCET Benchmark programs (Maladalen)
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Name Description # instructions

bs Binary search algorithm for an array 78

edn Finite Impulse Response (FIR) filter calculations 896

fdct Fast Discrete Cosine Transform 647

insertsort Insertion sort on a reversed array 106

jfdctint Discrete Cosine Transformation on a pixel block 691

matmult Matrix multiplication 287



Results for the TDMA Bus

 System configurations

• Duo-core or 4-core systems

• L1 Cache size = 2KB,

• Cache associativity = 4

• Cache line size = 8B

• L1 hit latency = 1 cycle

• Instruction execution = 1 cycle

• Bus service time = 40 cycles

• Two different slot sizes: 100 cycles, 200 cycles
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Results for the TDMA Bus

• The WCET of each program can be calculated 
independently for the TDMA bus

• The worst-case bus delay scenario

– A bus request arrives in the slot assigned to it, but finds that 
there are only 39 cycles left, which is just not enough to serve 
the request

– For slot size 100, worst-case delay = 39 + 100 + 40 = 179

– For slot size 200, worst-case delay = 39 + 200 + 40 = 279

• Improvement

– (WCETAI+WC / WCETAI+MC - 1)

– Describes how much our approach can tighten compared to 
assuming worst-case bus delay
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Results for the TDMA Bus

 Results for a duo-core system with slot size 100

61

Programs
WCET

Improvement
AI + MC AI + Worst-Case

bs 8,282 14,644 77%

edn 9,219,082 16,565,100 80%

fdct 268,882 479,946 78%

insertsort 21,041 29,702 41%

jfdctint 315,882 563,936 79%

matmult 151,241 174,390 15%

Average 62%



Results for the TDMA Bus

 Results for a duo-core system with slot size 200
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Programs
WCET

Improvement
AI + MC AI + Worst-Case

bs 8,484 22,444 165%

edn 9,207,282 25,756,000 180%

fdct 267,282 742,646 178%

insertsort 21,282 40,302 89%

jfdctint 314,564 873,336 178%

matmult 150,841 203,090 35%

Average 138%



Results for the TDMA Bus

 Results for a 4-core system with slot size 100
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Programs
WCET

Improvement
AI + MC AI + Worst-Case

bs 16,082 30,244 88%

edn 18,428,441 34,946,900 90%

fdct 529,682 1,005,350 90%

insertsort 31,641 50,902 61%

jfdctint 624,482 1,182,740 89%

matmult 179,241 231,790 29%

Average 75%



Results for the TDMA Bus

 Results for a 4-core system with slot size 200
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Programs
WCET

Improvement
AI + MC AI + Worst-Case

bs 16082 53644 234%

edn 18404164 62519600 240%

fdct 529682 1793450 239%

insertsort 32082 82702 158%

jfdctint 628164 2110940 236%

matmult 179241 317890 77%

Average 197%



Results for the FCFS Bus

 System configurations

• Duo-core system

• L1 Cache size = 8KB

• Cache line size = 8B

• Cache associativity = 4

• L1 cache hit latency = 1 cycle

• Instruction execution time = 1 cycle

• Bus service time = 40 cycles
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Results for the FCFS Bus

 Evaluation method

• Grouping the six benchmark programs into two task sets

• {bs, edn, fdct} and {insertsort, jfdctint, matmult}

• Each task set is allocated on one core

• The tasks within the same task set are statically scheduled

66

Schedules Core-0 Core-1

S1 edn, bs, fdct matmult, insertsort, jfdctint

S2 bs, fdct, edn matmult, insertsort, jfdctint

S3 fdct, edn, bs matmult, insertsort, jfdctint

S4 edn, bs, fdct insertsort, jfdctint, matmult

S5 fdct, bs, edn Jfdctint, matmult, insertsort

S6 fdct, bs, edn matmult, insertsort, jfdctint

S7 edn, bs, fdct jfdctint, insertsort, matmult

S8 fdct, edn, bs Jfdctint, matmult, insertsort



Results for the FCFS Bus

 The worst-case bus delay scenario

• A request reqi arrives when the bus is servicing a request from 
the other core which is issued immediately before reqi

• Given the above system configurations, the worst-case bud 
delay for the FCFS bus is 80 cycles (two times the bus service 
time)
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Results for the FCFS Bus
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Programs
WCET (AI + MC) WCET

AI+Worst-Case

Maximal

Impr.

Average

Impr.Minimal Average

bs 3,802 4,319 6,922 82% 67%

edn 240,267 246,970 276,068 15% 12%

fdct 37,573 44,620 63,453 69% 46%

insertsort 14,968 15,763 19,208 28% 23%

jfdctint 40,153 48,056 67,793 69% 45%

matmult 138,406 140,117 145,977 5% 4%

Average improvement for all programs 33%



Remember, we need to:

 “partition” the shared caches

 “partition” the shared memory bus
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Now, assume that we have a 
“safe WCET bound” for each task



The multicore challenge: Scheduling & schedulability analysis

 #cores < #tasks

Task 1 Task 2 Task 3 Task 4 Task 5
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Dealing with Shared Cores
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Multiprocessor Scheduling


