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 Multicore Challenges
 Why and what are multicores?

 What we are doing in Uppsala: CoDeR-MP

 The timing analysis problem

 Possible Solutions – Partition/Isolation
 Dealing with Shared Caches [EMSOFT 2009]

 Dealing with Bus Interference  [RTSS 2010]

 Dealing with Core Sharing [RTAS 2010]
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Real-time Systems

 N periodic tasks (of different rates/periods)

 How to schedule the jobs to avoid deadline miss?
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On Single-processors

 Liu and Layland’s Utilization Bound [1973]

(the 19th most cited paper in computer science)



 Scheduled by RMS (Rate Monotonic Scheduling)

number of 
tasks



Rate Monotonic Scheduling

 Priority assignment: shorter period  higher prio.

 Run-time schedule: the highest priority first

 How to check whether all deadlines are met? 

high priority

mediate priority

low priority

… …

… …

… …

Run-time schedule



Liu and Layland’s Utilization Bound

 Schedulability Analysis
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Liu and Layland’s Utilization Bound

 Schedulability Analysis

CPU
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Yes, schedulable!77.9%

Liu and Layland’s bound:
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Multiprocessor (multicore) Scheduling

 Significantly more difficult:

 Timing anomalies

 Hard to identify the worst-case scenario

 Bin-packing/NP-hard problems

 Multiple resources e.g. caches, bandwidth

 … … 



Open Problem (since 1973)

 Find a multiprocessor scheduling algorithm that 
can achieve Liu and Layland’s utilization bound

number of 
processors

?
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Best Known Results (before 2010)
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Lehoczky et al. CMU
ECRTS 2009
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Multiprocessor Scheduling

52
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8

4

new task

waiting queue

cpu 1 cpu 2 cpu 3

Global Scheduling
Would fixed-priority scheduling
e.g. “RMS” work?  

Unfortunately “RMS” suffers
from the Dhall’s anomali

Utilization may be “0%” 



Dhall’s anomali
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Dhall’s anomali
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Deadline miss



Dhall’s anomali
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Multiprocessor Scheduling
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Partitioned Scheduling

 The Partitioning Problem is similar to          
Bin-packing Problem (NP-hard)

 Limited Resource Usage, 50% necessary condition to 
guarantee schedulability
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Partitioned Scheduling
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Partitioned Scheduling

 The Partitioning Problem is similar to          
Bin-packing Problem (NP-hard)

 Limited Resource Usage necessary condition to 
guarantee schedulability
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Multiprocessor Scheduling
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Partitioned Scheduling

 Partitioning

P1

1

P2 P3

1 31 2

4 5 6

7 8 9



Bin-Packing with Item Splitting

 Resource can be “fully” (better) utilized
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Previous Algorithms 
[Kato et al. IPDPS’08] [Kato et al. RTAS’09] [Lakshmanan et al. ECRTS’09]

 Sort the tasks in some order e.g.  utilization  or priority order

 Select a processor, and assign as many tasks as possible 
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Lakshmanan’s Algorithm [ECRTS’09]

 Sort all tasks in decreasing order of utilization
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Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many 
tasks as possible 
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Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many 
tasks as possible 
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Lakshmanan’s Algorithm [ECRTS’09]
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Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many 
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Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many 
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Lakshmanan’s Algorithm [ECRTS’09]
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Lakshmanan’s Algorithm [ECRTS’09]
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Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many 
tasks as possible 
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Lakshmanan’s Algorithm [ECRTS’09]

 Pick up one processor, and assign as many 
tasks as possible 
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Our Algorithm 
[RTAS10]

“width-first” partitioning 

with increasing priority order



Our Algorithm

 Sort all tasks in increasing priority order
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Our Algorithm

 Select the processor on which the assigned 
utilization is the lowest

7

6

5

4

3

2

1

P1 P2 P3

highest priority

lowest priority



Our Algorithm

 Select the processor on which the assigned 
utilization is the lowest
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Our Algorithm

 Select the processor on which the assigned 
utilization is the lowest

5

4

3

2

1

P1 P2 P3

7
6

highest priority

lowest priority



Our Algorithm

 Select the processor on which the assigned 
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Our Algorithm

 Select the processor on which the assigned 
utilization is the lowest

3

2

1

P1 P2 P3

7
6 5
4

highest priority

lowest priority



Our Algorithm

 Select the processor on which the assigned 
utilization is the lowest

2

1

P1 P2 P3

7
6 5
4

3

highest priority

lowest priority



Our Algorithm

 Select the processor on which the assigned 
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Our Algorithm

 Select the processor on which the assigned 
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Our Algorithm

 Select the processor on which the assigned 
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Our Algorithm

 Select the processor on which the assigned 
utilization is the lowest
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7
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highest priority

lowest priority

key feature:
“width-first” partitioning
with increasing prio order
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Why is our algorithm better?

& increasing priority order

Ours: width-first Previous: depth-first

& decreasing utilization order

By our algorithm split tasks generally have higher priorities



Split Task

 Consider an extreme scenario:

 suppose each subtask has the highest priority

 schedulable anyway, we do not need to worry about 
their deadlines 

 The difficult case is when the tail task is not on the top

 the key point is to ensure the tail task is schedulable
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Split Task

 Subtasks should execute in the correct order
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Split Task

 Subtasks get “shorter deadlines”

τi

τi1

τi2

τi3

P1

P2

P3

r d

∆i = Ti - Ri
1 - Ri

2

Ri
1

Ri
2



Split Task

 Subtasks should execute in the correct order
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Split Task

 Subtasks should execute in the correct order

τi
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r d
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These two are on the top: no problem with schedulability

?



Why the tail task is schedulable?

21 22

X1 X2

Y2

Y2 + U2
2 <= U2

1

That is, the “blocking factor” for the tail task is bounded.

U2
1

U2
2

The typical case: two CPUs 
and task 2 is split to two 
sub-tasks

As we always select the 
CPU with the lowest load 
assigned,  we know

Y2 <= U2
1  - U2

2



Theorem

For a task set in which each task     satisfies

we have



Theorem

For a task set in which each task     satisfies

we have

get rid of this constraint



Problem of Heavy Tasks
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Problem of Heavy Tasks
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Problem of Heavy Tasks
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Problem of Heavy Tasks
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Problem of Heavy Tasks
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Problem of Heavy Tasks
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may have too low priority level



Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have 
low priorities)
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Solution for Heavy Tasks
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Solution for Heavy Tasks
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Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have 
low priorities)
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Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have 
low priorities)

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8
76

9

3



Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have 
low priorities)

P1 P2 P3

highest priority

lowest priority

5

4

2

1

8
76

9

3



Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have 
low priorities)
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Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have 
low priorities)
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Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have 
low priorities)
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Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have 
low priorities)
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Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have 
low priorities)
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Solution for Heavy Tasks

 Pre-assigning the heavy tasks (that may have 
low priorities)

P1 P2 P3
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avoid to split heavy tasks 
(that may have low priorities) 



Theorem

 By introducing the pre-assignment mechanism, 
we have

Liu and Layland’s utilization bound for all task sets!



Overhead

 In both previous algorithms and ours

 The number of task splitting is at most M-1

 task splitting -> extra “migration/preemption”

 Our algorithm on average has less task splitting 

P1 P2 P3P1 P2 P3

Ours: width-first depth-first



Implementation

 Easy!

 One timer for each split task

 Implemented as “task migration”

i1

Ci
1

P1

P2

task i

higher prio 

tasks

i2

until finished

as being resumed

as being preempted

lower prio

tasks



Further Improvement
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Uisng Liu and Layland’s Utilization Bound

P1 P2 P3

Yes, schedulable 
by our algorithm 100%



Utilization Bound is Pessimistic

 The Liu and Layland utilization bound is 
sufficient but not necessary

 many task sets are actually schedulable even if 
the total utilization is larger than the bound

P

1
0.69

(1, 4)

(2, 12)

(1, 4)

(2, 8)



Exact Analysis

 Exact Analysis: Response Time Analysis [Lehoczky_89]

 pseudo-polynomial

(1, 4)

(2, 12)

(1, 4)

(2, 8)

Rk

task k is schedulable iff 
Rk <= Tk



Utilization Bound v.s. Exact Analysis

 On single processors

P

100%

Utilization bound Test
for RMS

P

Exact Analysis
for RMS

[Lehoczky_89]

88%
100%



On Multiprocessors

 Can we do something similar on multiprocessors?

P1 P2 P3

Utilization bound Test
the algorithm introduced above ?

P1 P2 P3

100% 100%



Beyond Layland & Liu’s Bound [RTSS 2010, rejected!]

 Our RTAS10 algorithm:
 Increasing RMS priority order & worst-fit partitioning

 Utilization test to determine the maximal load for each processor

 The maximal load for each processor bounded by  69.3%

 Improved algorithm:
 Employ Response Time Analysis to determine the maximal 

workload on each processor

 more flexible behavior (more difficult to prove …)

 Same utilization bound for the worst case, but

 Much better average performance (by simulation)

I believe this is “the best algorithm” one can hope 
for “fixed-prioritiy multiprocessor scheduling”



Conclusions

 The (multicore) Timing Problem is challenging

 Difficult to guarantee Real-Time 

 and Difficult to analyze/predict

 Solutions: Partition & Isolation

 Shared caches: coloring/partition

 Memory bus/bandwidth: TDMA, ?

 Processor cores: partition-based scheduling



Thanks!


