OUTLINE

d Multicore Challenges
®m Why and what are multicores?
B What we are doing in Uppsala: CoDeR-MP
B The timing analysis problem

d Possible Solutions — Partition/Isolation
B Dealing with Shared Caches [EMSOFT 2009]
B Dealing with Bus Interference [RTSS 2010]
‘ Dealing with Core Sharing [RTAS 2010]
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d How to schedule the jobs to avoid deadline miss?



On Single-processors

B Liu and Layland’s Utilization Bound [1973]
(the 19t most cited paper in computer science)
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— the task set is schedulable

BN — oo, N2YY —1)=69.3%
B Scheduled by RMS (Rate Monotonic Scheduling)
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Rate Monotonic Scheduling

d Priority assignment: shorter period - higher prio.
d Run-time schedule: the highest priority first

high priority - - - T ......
mediate priority T_- T ] - T ......
low priority :‘ - _ T ......

Run-time schedule [ENINNNITNNNNNNN NN

0 How to check whether all deadlines are met?



Liu and Layland’s Utilization Bound

d Schedulability Analysis

I Schedulable?

Liu and Layland’s bound:
3x (2Y3 1) = 77.9%



Liu and Layland’s Utilization Bound

d Schedulability Analysis

CPU

Yes, schedulable!

Liu and Layland’s bound:
3x (2Y3 1) =77.9%



Multiprocessor (multicore) Scheduling

d Significantly more difficult:
B Timing anomalies
B Hard to identify the worst-case scenario
B Bin-packing/NP-hard problems

B Multiple resources e.g. caches, bandwidth



Open Problem (since 1973)

d Find a multiprocessor scheduling algorithm that
can achieve Liu and Layland’s utilization bound

- 2

Z C?i/Ti 1/N «
< N(2V/N _ 1
SN )
«17 = the task set is schedulable
number of o

Processors



Multiprocessor Scheduling

Global Scheduling [ Partitioned Scheduling Pavf,ti'tt,',°}1::ksscp'1,ﬁct';‘,,';"g
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Best Known Results (before 2010)

80
70
60
50
40
30
20
10

Liu and Layland’s
Utilization Bound
I I I [ECRTS'09] [RTCSA'06]
[TPDS'05] [ECRTS 03] [RTSS 04]
[OPODIS'08] .

Fixed Dynamic Fixed Dynamlc Fixed Dynamic
Priority Priority Priority Priority Priority Priority
\h“““'--._ _.H"'/
Task Splitting
Global Partiioned ———
_H-_"'""--.,___________‘__._._________._.-—F""_F.—F._

Multiprocessor Scheduling




80
70
60
50
40
30
20
10

Best Known Results (before 2010)

Liu and Layland’s
Utilization Bound

65 66

[ECRTS'09] [RTCSA'06]
[TPDS'05]  [ECRTS'03] [RTSS'04]
[DPODIS 08]
Fixed Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Priority Priority
-\‘H‘-‘-‘“}-“_‘_‘_‘_ ‘//-"
Tash Splitting
A
Global

_‘_‘_‘-‘_‘-‘-‘_‘-‘_‘_""‘"-—._

Multiprocessor Scheduling




80
70
60
50
40
30
20
10

Best Known Results

o

% Our New Result Liu and Layland’s
RTAS 2010 . o Utilization Bound
—_—— RTSS 2010_submitted —_— —_———— -

66

[RTCSA'06]
[TPDS’05] [ECRTS’03] [RTSS’04]
[OPODIS 08] . . .

Fixed Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Priority Priority

Task Splitting

Global Partitioned

Multiprocessor Scheduling




Multiprocessor Scheduling

Global Scheduling . o .
- Would fixed-priority scheduling
e.g. "RMS” work?
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Multiprocessor Scheduling

Global Scheduling

Would fixed-priority scheduling
e.g. "RMS” work?

new task
it é Unfortunately "RMS"” suffers
walting queu from the Dhall’s anomali
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é Utilization may be "0%"”
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Dhall’s anomali
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Dhall’s anomali

Deadline miss _

Schedule the 3 tasks on 2 CPUs using "RMS



Dhall’'s anomali

(M+1 tasks and M processors)
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Multiprocessor Scheduling

Partitioned Scheduling
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Multiprocessor Scheduling

Partitioned Scheduling
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Resource utilization may
be limited to 50%



Partitioned Scheduling

d The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

> CyT <1
d Limited Resource Usage, 50% necessary condition to

guarantee schedulability
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Partitioned Scheduling

d The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)
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Partitioned Scheduling

d The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

> CyT <1
d Limited Resource Usage necessary condition to

guarantee schedulability

(M +1)(0.5+¢)
#1 #2 #M when e — 0 and M — +o0

U(r) = — 0.5




Partitioned Scheduling

d The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

> CyT <1
d Limited Resource Usage necessary condition to

guarantee schedulability
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Multiprocessor Scheduling

Partitioned Scheduling

with Task Splitting
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Partitioned Scheduling

 Partitioning

___________________________________________________




Bin-Packing with Item Splitting

d Resource can be “fully” (better) utilized

___________________________________________________
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Previous Algorithms

[Kato et al. IPDPS’08] [Kato et al. RTAS’09] [Lakshmanan et al. ECRTS'09]

d Sort the tasks in some order e.g. utilization or priority order
O Select a processor, and assign as many tasks as possible
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Lakshmanan’s Algorithm [ecrrso9;

d Sort all tasks in decreasing order of utilization
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible

P1

highest util.
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lowest util.




Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible

A

Pl
highest util.
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible

A

P1
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible
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P1 P2
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible
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Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible

A

_ _ P1 P2 P3
highest util. 61 %1:
4 4
8 5 1
62 22

lowest util.



Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many
tasks as possible

highest util.

lowest util.
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key feature:
“depth-first” partitioning
with decreasing utilization order




Lakshmanan’s Algorithm [ecrrso9;

[ Pick up one processor, and assign as many

tasks as possible

highest util.

lowest util.

A

PL P2  P3

Utilization Bound:

65%



Our Algorithm
[RTAS10]

“width-first” partitioning
with increasing priority order



Our Algorithm

d Sort all tasks in increasing priority order

lowest priority | 7 +
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highest priority | 1 |




Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority | 7 +
6
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highest priority | 1 |




Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3
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Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority
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highest priority




Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority
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Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority
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Our Algorithm

d Select the processor on which the assigned
utilization is the lowest
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Our Algorithm

d Select the processor on which the assigned
utilization is the lowest
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Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority
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Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority

highest priority 12—

P1

21

P2

P3

Zi%:
4
6




Our Algorithm

d Select the processor on which the assigned

utilization is the lowest
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Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

4 key feature:
lowest priority “width-first” partitioning
with increasing prio order

highest priority



Comparison

Why is our algorithm better?

Ours: width-first
& Increasing priority order
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Comparison

Why is our algorithm better?

By our algorithm split tasks generally have higher priorities

Ours: width-first
& Increasing priority order

N
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Previous: depth-first
& decreasing utilization order
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Split Task

1 Consider an extreme scenario:
B suppose each subtask has the highest priority

B schedulable anyway, we do not need to worry about
their deadlines

- —
3 | (4
8 7

2= A1
5
6

A The difficult case is when the tail task is not on the top
B the key point is to ensure the tail task is schedulable



Split Task

1 Subtasks should execute in the correct order




Split

ask

d Subtasks get “shorter deadlines”

|




Split Task

1 Subtasks should execute in the correct order
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These two are on the top: no problem with schedulability



Split Task

1 Subtasks should execute in the correct order
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These two are on the top: no problem with schedulability



Why the tail task is schedulable?

The typical case: two CPUs
and task 2 is split to two

FTTT|  p— Y2
sub-tasks U{ 21 jjj%:_Uzz
As we always select the X1 X2

CPU with the lowest load
assigned, we know

Y2+ U,2 <= U,1

U

YZ <= U21 = U22

That is, the “blocking factor” for the tail task is bounded.



heorem

For a task set in which each task 7; satisfies
O(N)

<
Vi s 1+ O(N)

we have

2. Ci/T; 1/N
< N(2 — 1
M = N( )

— the task set is schedulable

1 B O(N)

= 0.41
T O(N)
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heorem

the task set is schedulable

O(N)

T O(N)

= 0.41



Problem of Heavy
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Problem of Heavy
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Problem of Heavy Tasks
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Problem of Heavy Tasks

lowest priority

highest priority
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Problem of Heavy Tasks

lowest priority

highest priority
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Problem of Heavy Tasks

lowest priority

P1 P2 P3
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Problem of Heavy Tasks
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Problem of Heavy Tasks

the heavy tasks’ tail task
may have too low priority level

P1 P2 P3

61 2
¢ 2 = 5
) | - 7




Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority g
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Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority g

8 |
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Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

8 |
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highest priority [1



Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3

highest priority [1



Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority
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Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)
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Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority
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Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority
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Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3
3 2
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Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3
6 5
9 8

highest priority 12—



Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3
R == E
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Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3
S == E
6 7 5
o 8

avoid to split heavy tasks
(that may have low priorities)




heorem

d By introducing the pre-assignment mechanism,
we have

M
— the task set is schedulable

Liu and Layland’s utilization bound for all task sets!



Overhead

d In both previous algorithms and ours

B The number of task splitting is at most M-1

% task splitting -> extra “"migration/preemption”
B Our algorithm on average has less task splitting

Ours: width-first

P2

depth-first
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Implementation
d Easy!

B One timer for each split task
B Implemented as “task migration”

4

as being preempted higher prio
tasks
il
Pl ' R
“_ Cil * task i
as being resumed :
lower prio
P2 12 tasks

L until finished —».



Further Improvement
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Uisng Liu and Layland’s Utilization Bound

P1 P2 P3

A Yes, schedulable
100% ! by our algorithm




Utilization Bound is Pessimistic

d The Liu and Layland utilization bound is
sufficient but not necessary

d many task sets are actually schedulable even if
the total utilization is larger than the bound
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Exact Analysis

d Exact Analysis: Response Time Analysis [Lehoczky_89]
B pseudo-polynomial
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Utilization Bound v.s. Exact Analysis

[ On single processors

Utilization bound Test Exact Analysis
for RMS for RMS
P P
e oo
A N &
_____ f ——— e — _____x_____ I
100% : 10?% 8'8%
AT(QJ/N —1) ]\(21/\ 1) :
[Lehoczky_89]
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On Multiprocessors

d Can we do something similar on multiprocessors?

Utilization bound Test

the algorithm introduced above / ;

P1 P2 P3 P1 P2 P3




Beyond LaYIand & Liu’s Bound [r7ss 2010, rejected!]

d Our RTAS10 algorithm:
B Increasing RMS priority order & worst-fit partitioning
B Utilization test to determine the maximal load for each processor

B The rlnaximal load for each processor bounded by 69.3%
N(2¥ — 1)

d Improved algorithm:

B Employ Response Time Analysis to determine the maximal
workload on each processor

B more flexible behavior (more difficult to prove ...)
B Same utilization bound for the worst case, but
B Much better average performance (by simulation)

I believe this is "the best algorithm” one can hope
for “fixed-prioritiy multiprocessor scheduling”



Conclusions

d The (multicore) Timing Problem is challenging
B Difficult to guarantee Real-Time
B and Difficult to analyze/predict

[ Solutions: Partition & Isolation
B Shared caches: coloring/partition
B Memory bus/bandwidth: TDMA, ?
B Processor cores: partition-based scheduling



Thanks!



