OUTLINE

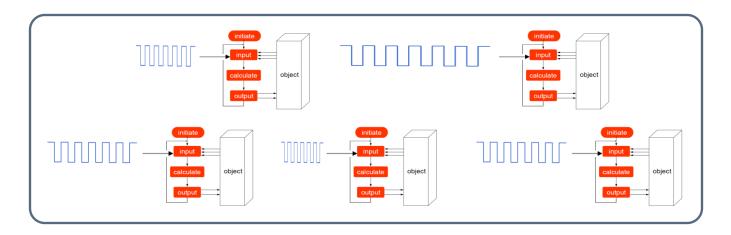
- Multicore Challenges
 - Why and what are multicores?
 - What we are doing in Uppsala: CoDeR-MP
 - The timing analysis problem
- Possible Solutions Partition/Isolation
 - Dealing with Shared Caches [EMSOFT 2009]
 - Dealing with Bus Interference [RTSS 2010]
 - Dealing with Core Sharing [RTAS 2010]

Dealing with Core Sharing: Fixed-Priority Multiprocessor Scheduling

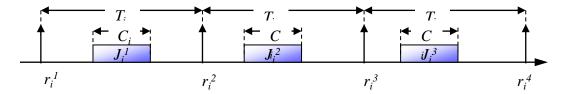
Joint work with Nan Guan, Martin Stigge and Yu Ge

Northeastern University, China Uppsala University, Sweden

Real-time Systems



□ N periodic tasks (of different rates/periods)



Utilization/workload: C_i/T_i

☐ How to schedule the jobs to avoid deadline miss?

On Single-processors

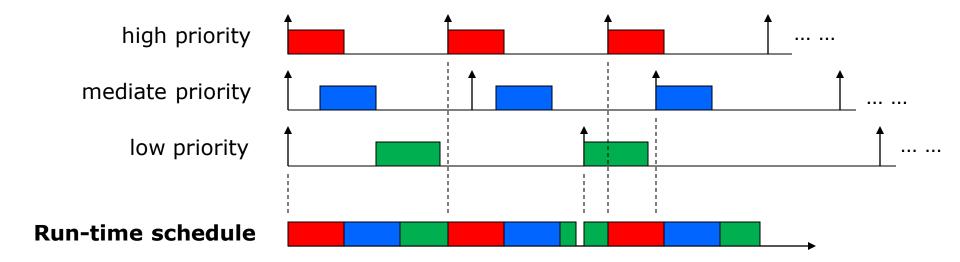
 Liu and Layland's Utilization Bound [1973] (the 19th most cited paper in computer science)

$$\sum_{\tau_i \in \tau} U_i \leq N(2^{1/N} - 1)$$
 the task set is schedulable number of tasks

- $N \to \infty$, $N(2^{1/N} 1) = 69.3\%$
- Scheduled by RMS (Rate Monotonic Scheduling)

Rate Monotonic Scheduling

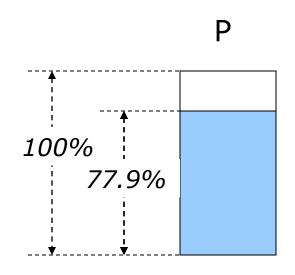
- \square Priority assignment: shorter period \rightarrow higher prio.
- Run-time schedule: the highest priority first



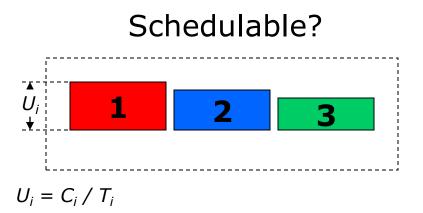
How to check whether all deadlines are met?

Liu and Layland's Utilization Bound

Schedulability Analysis

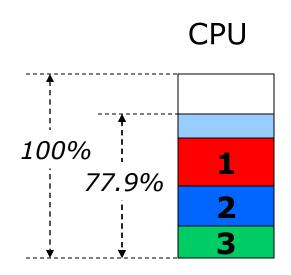


Liu and Layland's bound: $3 \times (2^{1/3} - 1) = 77.9\%$



Liu and Layland's Utilization Bound

Schedulability Analysis



Yes, schedulable!

Liu and Layland's bound:

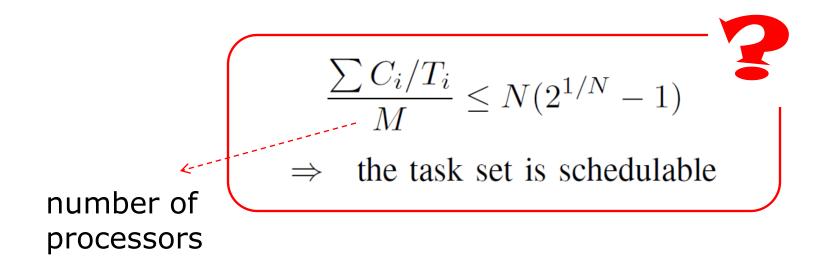
$$3 \times (2^{1/3} - 1) = 77.9\%$$

Multiprocessor (multicore) Scheduling

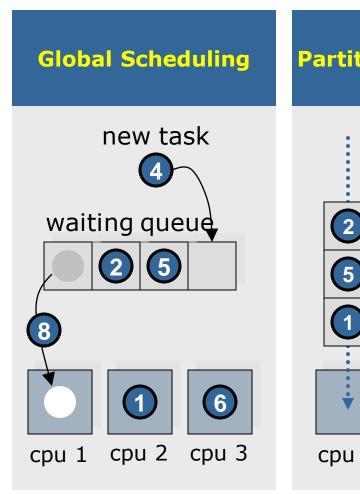
- ☐ Significantly more difficult:
 - Timing anomalies
 - Hard to identify the worst-case scenario
 - Bin-packing/NP-hard problems
 - Multiple resources e.g. caches, bandwidth
 -

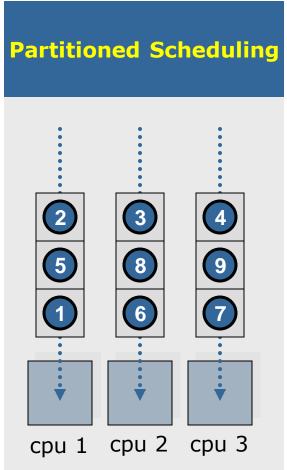
Open Problem (since 1973)

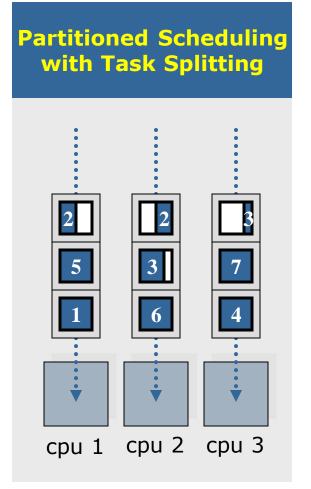
☐ Find a multiprocessor scheduling algorithm that can achieve Liu and Layland's utilization bound



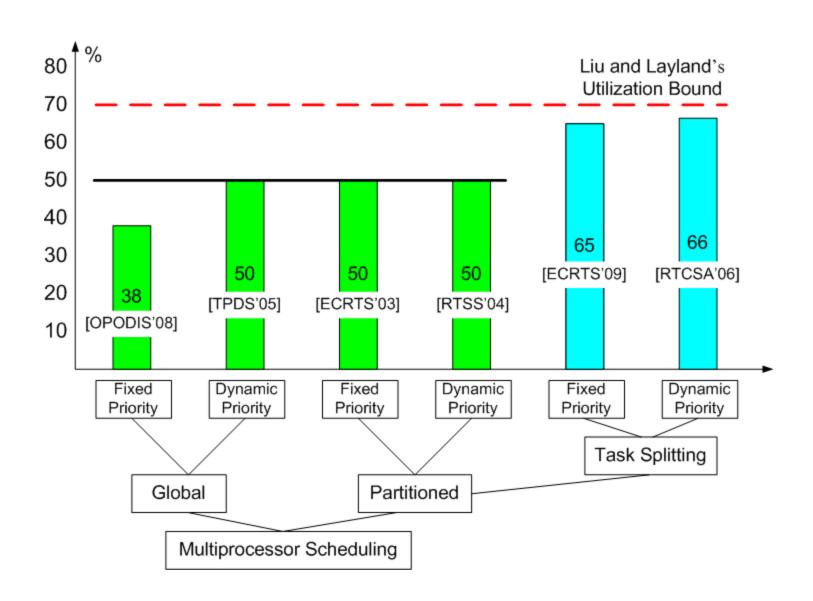
Multiprocessor Scheduling



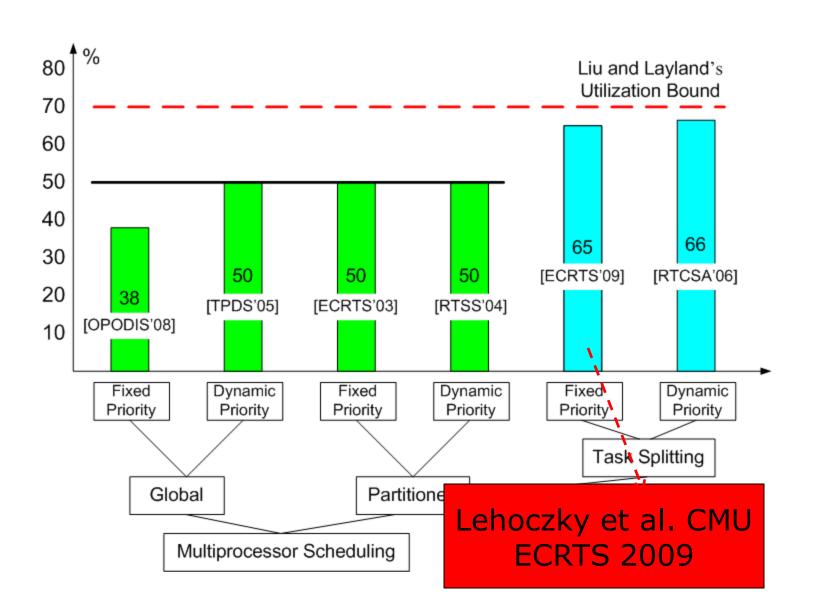




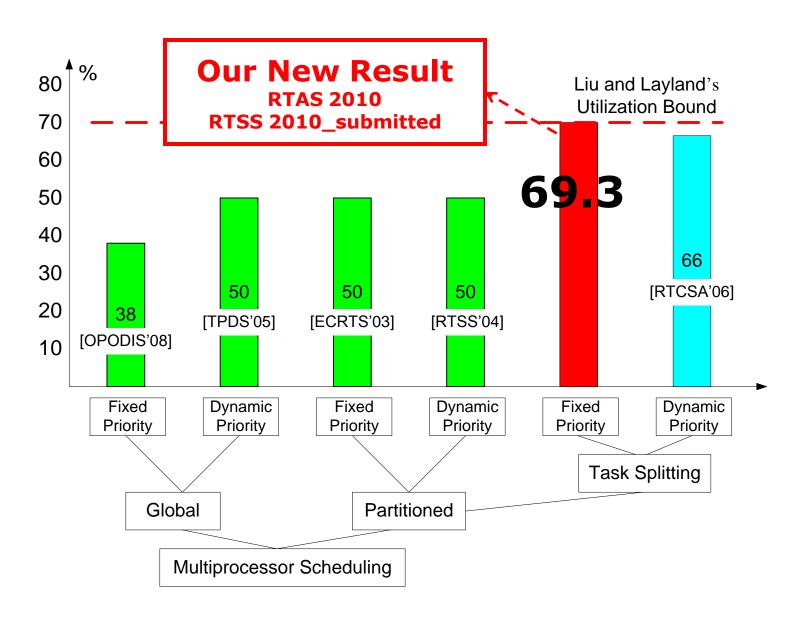
Best Known Results (before 2010)



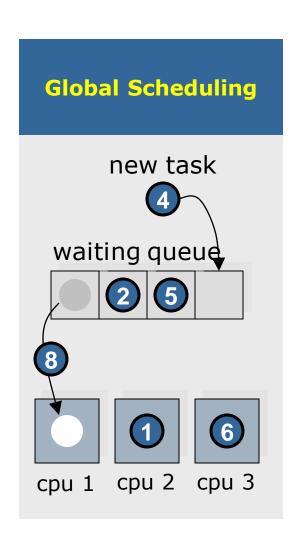
Best Known Results (before 2010)



Best Known Results

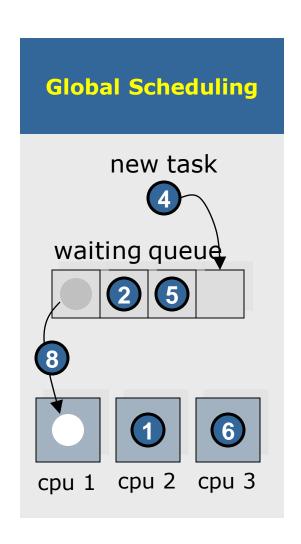


Multiprocessor Scheduling



Would fixed-priority scheduling e.g. "RMS" work?

Multiprocessor Scheduling

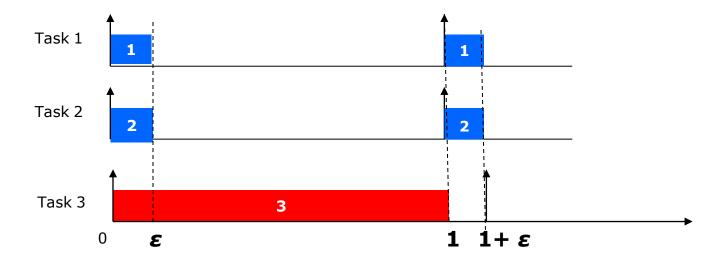


Would fixed-priority scheduling e.g. "RMS" work?

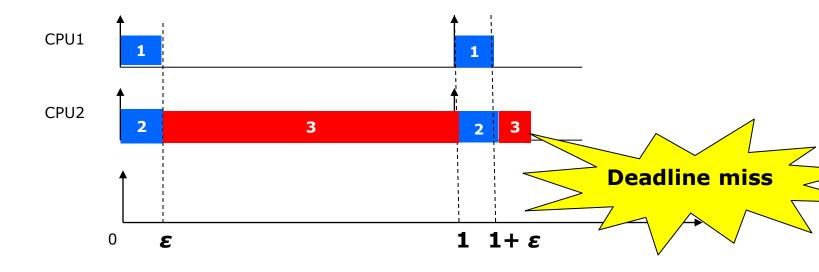
Unfortunately "RMS" suffers from the **Dhall's anomali**

Utilization may be "0%"

Dhall's anomali



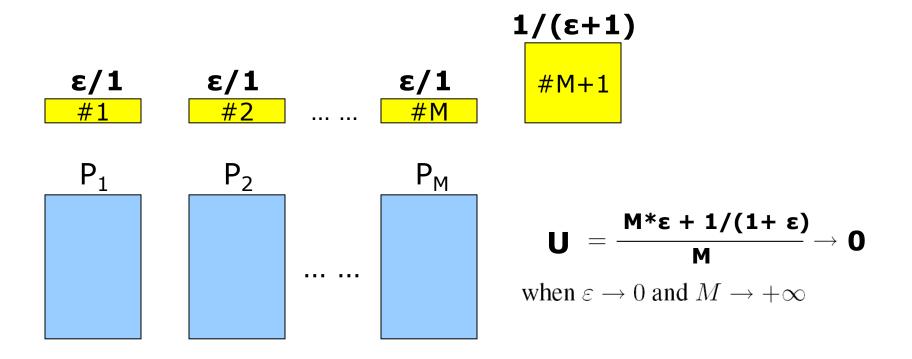
Dhall's anomali



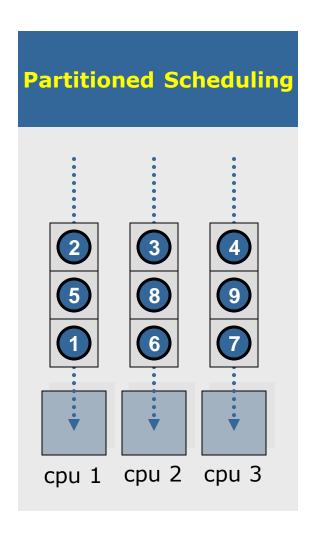
Schedule the 3 tasks on 2 CPUs using "RMS

Dhall's anomali

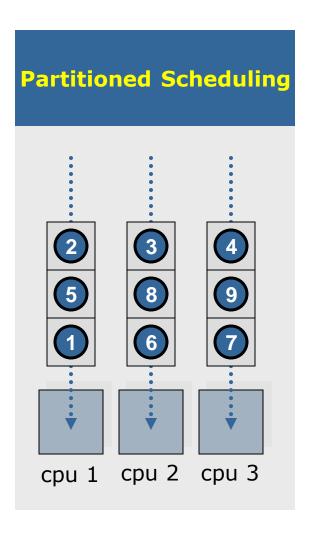
(M+1 tasks and M processors)



Multiprocessor Scheduling



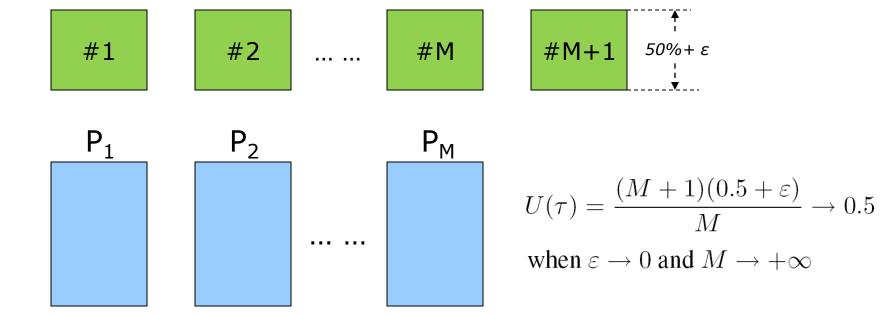
Multiprocessor Scheduling



Resource utilization may be limited to 50%

- □ The Partitioning Problem is similar to Bin-packing Problem (NP-hard)
- ☐ Limited Resource Usage, 50% necession

$$\sum C_i/T_i \leq 1$$
 necessary condition to guarantee schedulability

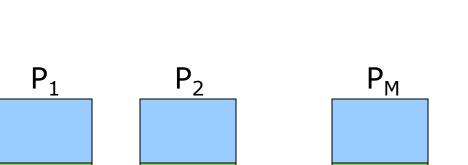


M

- The Partitioning Problem is similar to Bin-packing Problem (NP-hard)
- Limited Resource Usage

$$\sum C_i/T_i \leq 1$$
 necessary condition to guarantee schedulability

#M+1



#2

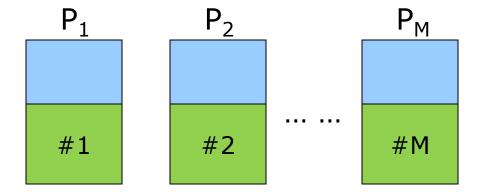
#1

$$U(\tau) = \frac{(M+1)(0.5+\varepsilon)}{M} \to 0.5$$
 when $\varepsilon \to 0$ and $M \to +\infty$

- The Partitioning Problem is similar to Bin-packing Problem (NP-hard)
- Limited Resource Usage

$$\sum C_i/T_i \leq 1$$
 necessary condition to guarantee schedulability

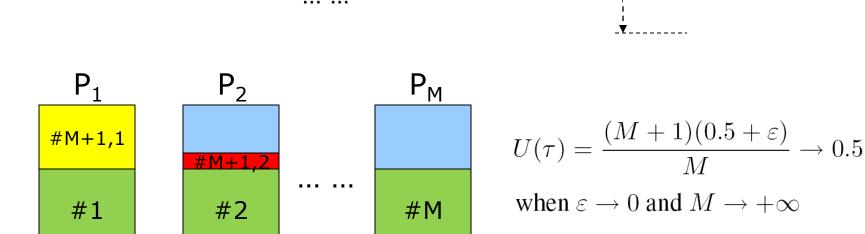
#M+1,1 50%+ 8



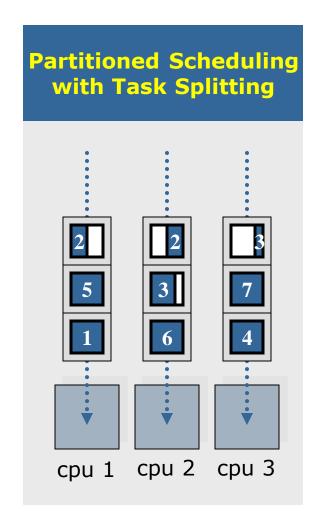
$$U(\tau) = \frac{(M+1)(0.5+\varepsilon)}{M} \to 0.5$$
 when $\varepsilon \to 0$ and $M \to +\infty$

- The Partitioning Problem is similar to Bin-packing Problem (NP-hard)
- Limited Resource Usage

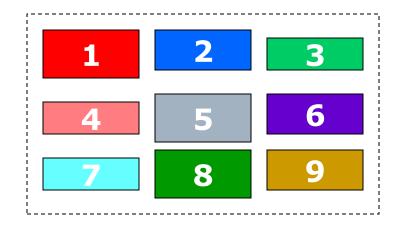
 $\sum C_i/T_i \leq 1$ necessary condition to guarantee schedulability

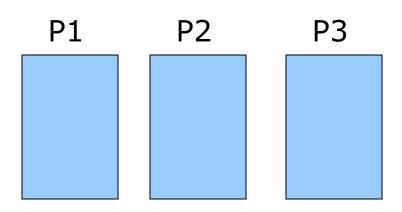


Multiprocessor Scheduling



Partitioning





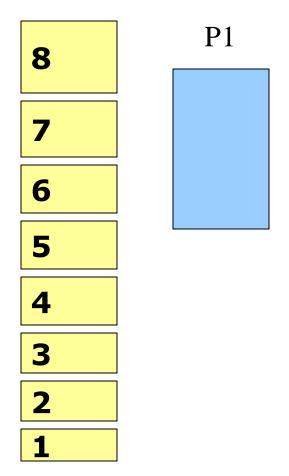
Bin-Packing with Item Splitting

Resource can be "fully" (better) utilized

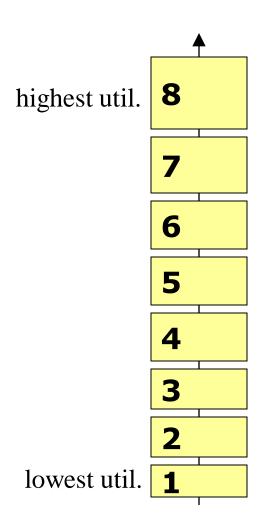
Previous Algorithms

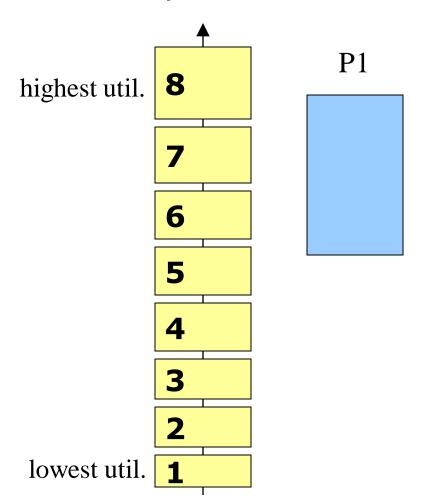
[Kato et al. IPDPS'08] [Kato et al. RTAS'09] [Lakshmanan et al. ECRTS'09]

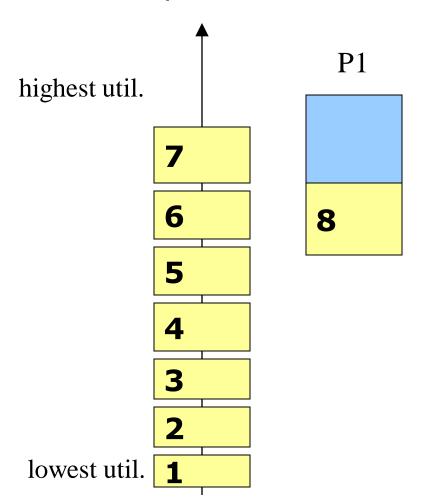
- Sort the tasks in some order e.g. utilization or priority order
- Select a processor, and assign as many tasks as possible

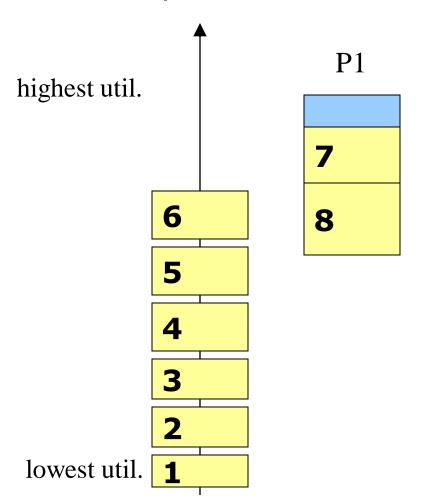


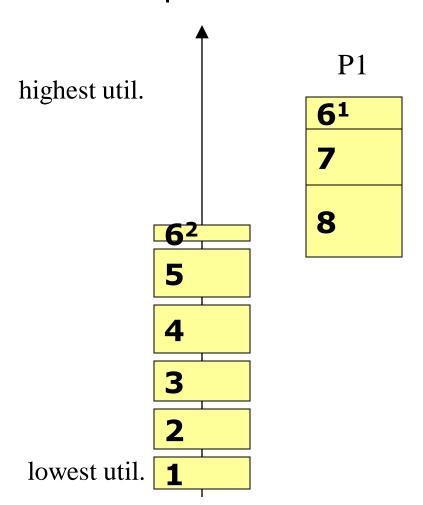
Sort all tasks in decreasing order of utilization

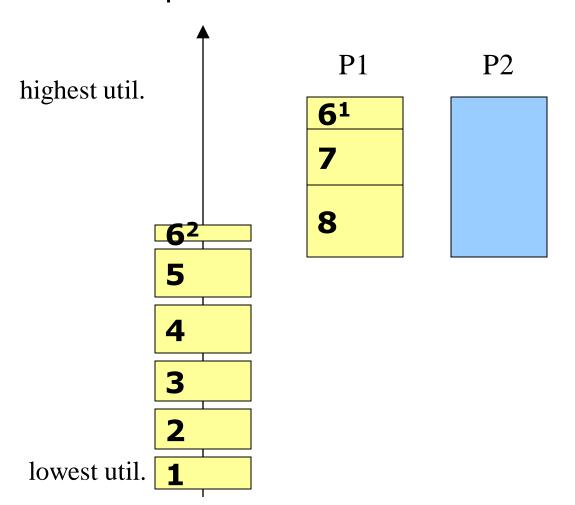


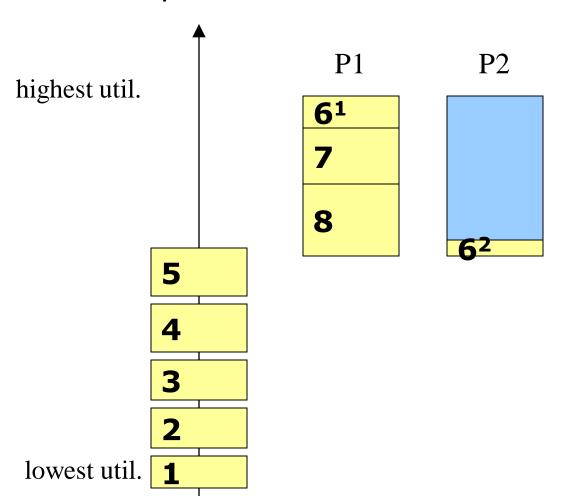


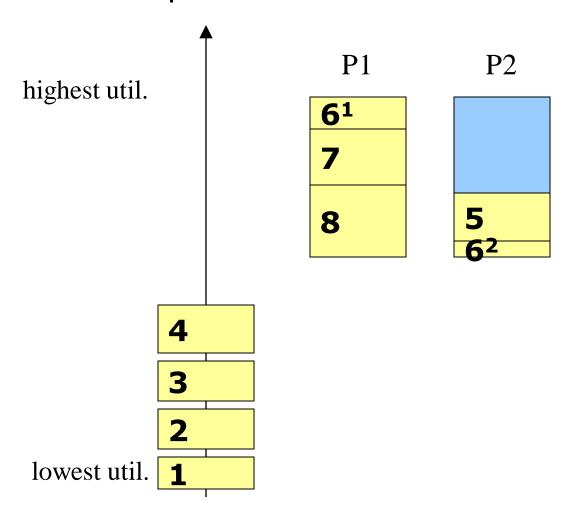


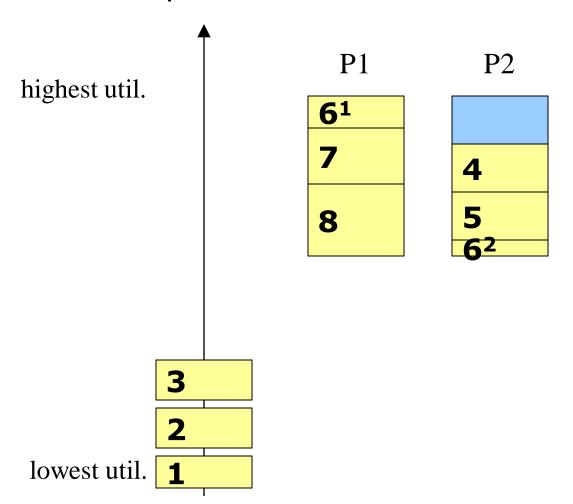


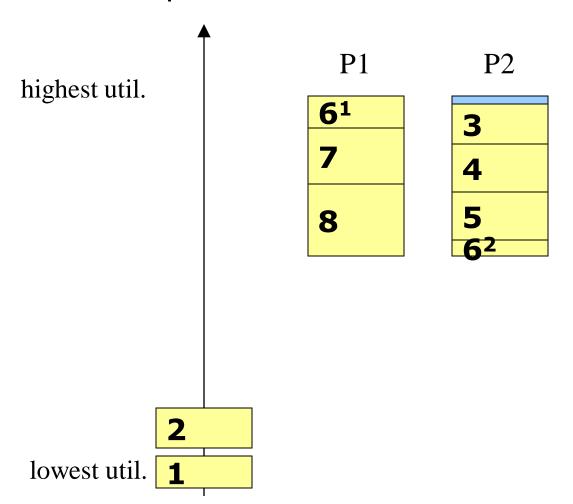


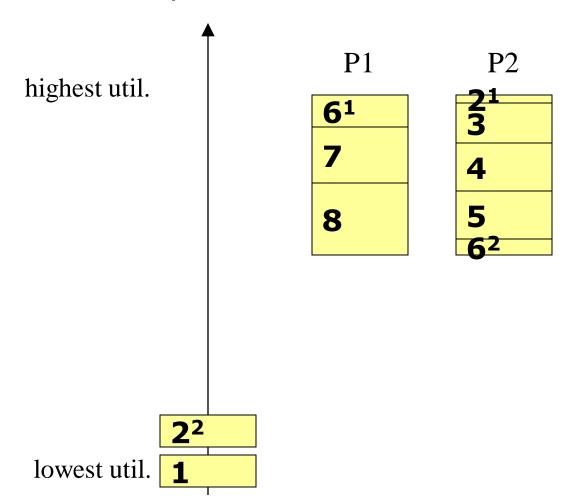


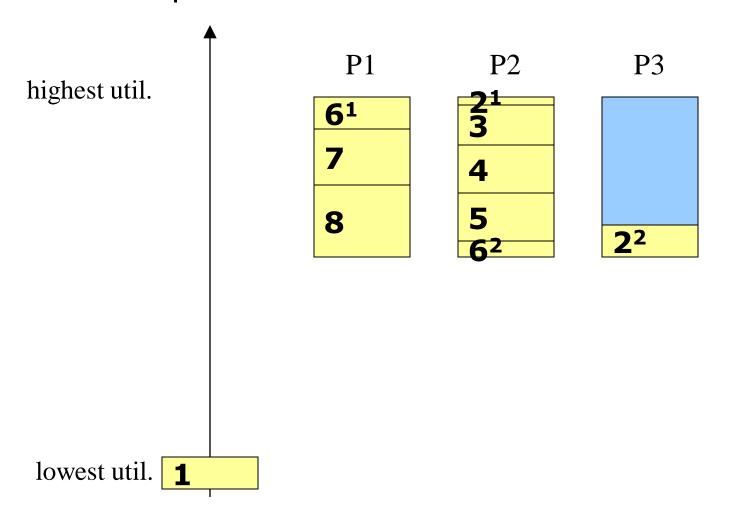




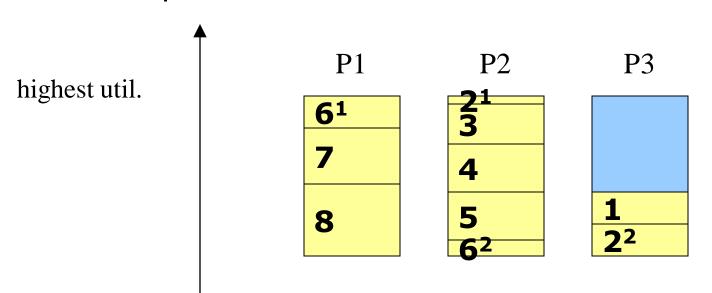








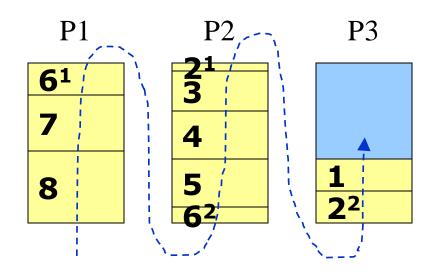
 Pick up one processor, and assign as many tasks as possible



lowest util.

□ Pick up one processor, and assign as many tasks as possible

highest util.



key feature:

"depth-first" partitioning with decreasing utilization order

lowest util.

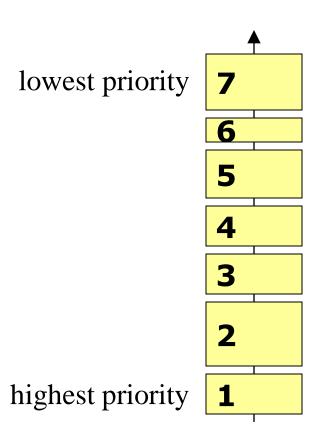
 Pick up one processor, and assign as many tasks as possible

P3 highest util. **6**¹ **Utilization Bound: 65%** lowest util.

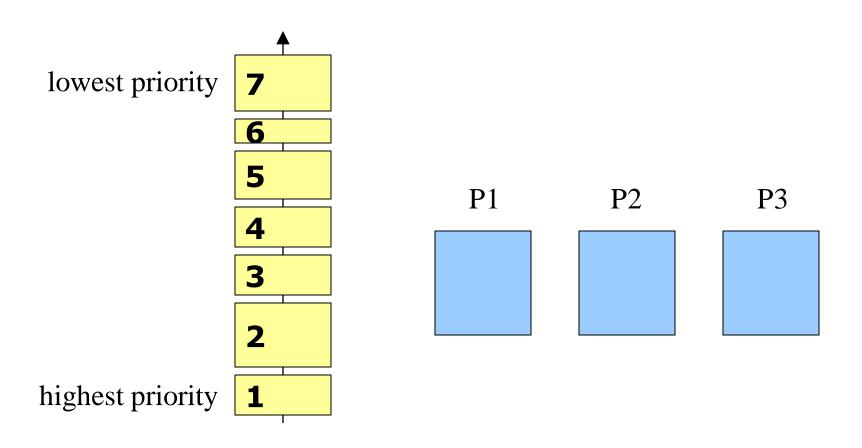
Our Algorithm [RTAS10]

"width-first" partitioning with increasing priority order

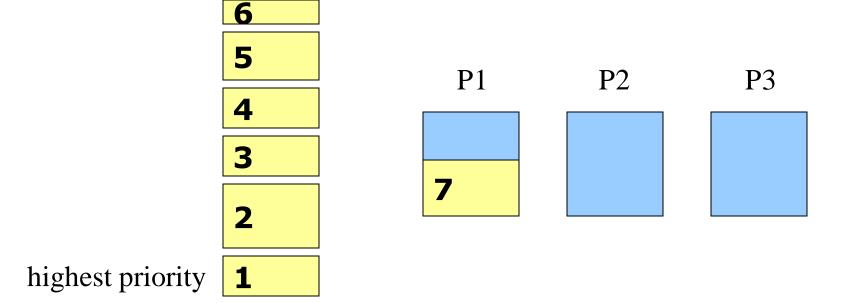
■ Sort all tasks in increasing priority order



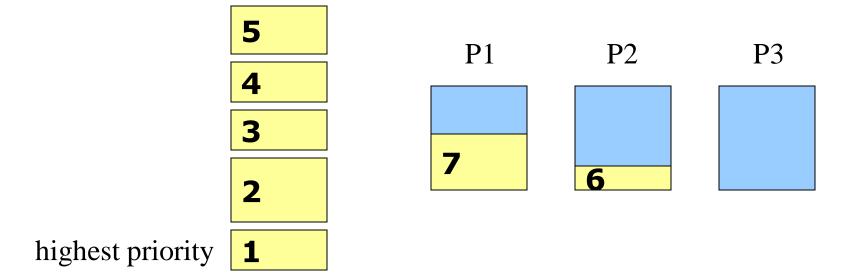
■ Select the processor on which the assigned utilization is the lowest



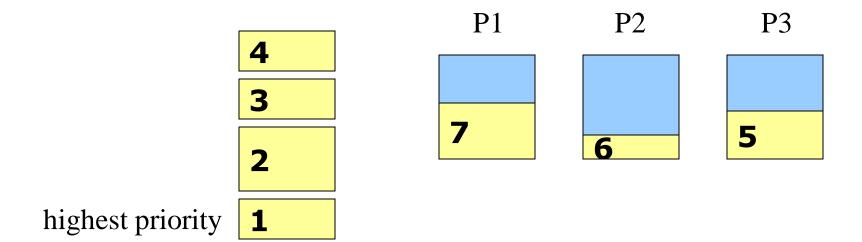
■ Select the processor on which the assigned utilization is the lowest



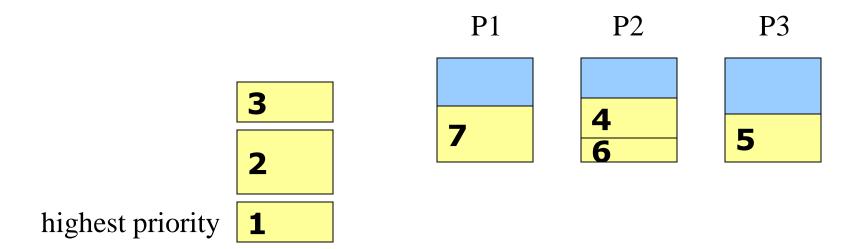
■ Select the processor on which the assigned utilization is the lowest



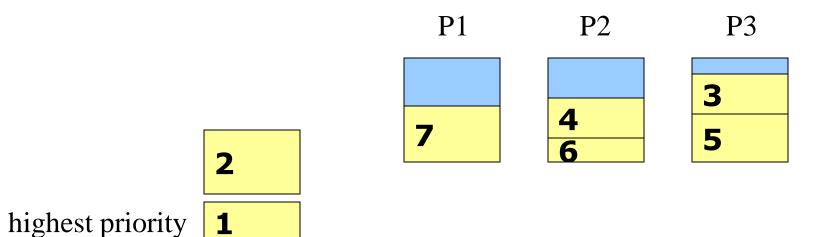
■ Select the processor on which the assigned utilization is the lowest



■ Select the processor on which the assigned utilization is the lowest

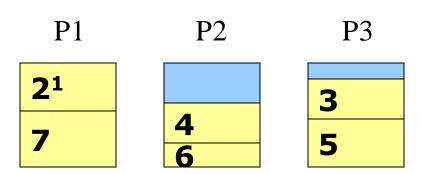


■ Select the processor on which the assigned utilization is the lowest



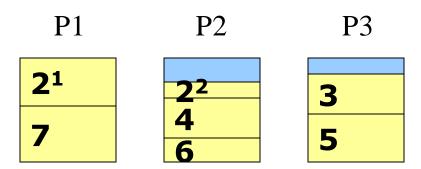
■ Select the processor on which the assigned utilization is the lowest

lowest priority



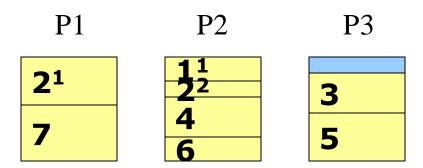
■ Select the processor on which the assigned utilization is the lowest

lowest priority

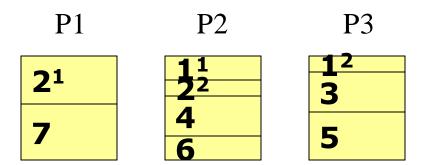


■ Select the processor on which the assigned utilization is the lowest

lowest priority



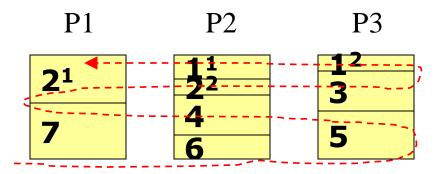
■ Select the processor on which the assigned utilization is the lowest



■ Select the processor on which the assigned utilization is the lowest

lowest priority

key feature:
"width-first" partitioning
with increasing prio order



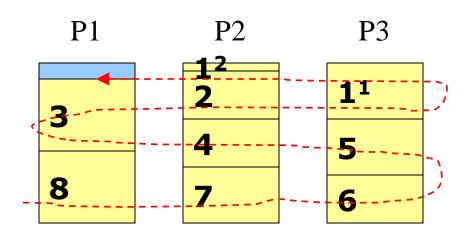
Comparison

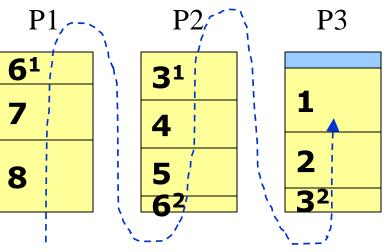
Why is our algorithm better?

Ours: width-first

& increasing priority order

Previous: depth-first & decreasing utilization order





Comparison

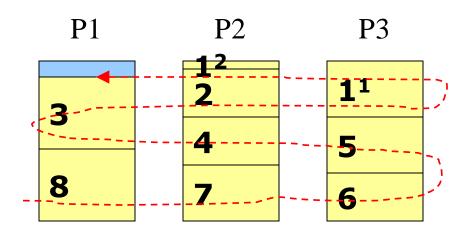
Why is our algorithm better?

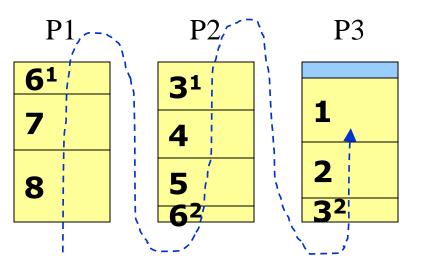
By our algorithm split tasks generally have higher priorities

Ours: width-first

& increasing priority order

Previous: depth-first & decreasing utilization order



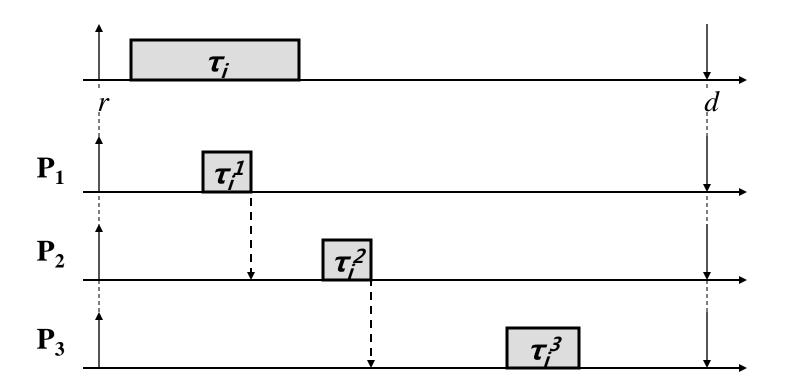


- Consider an extreme scenario:
 - suppose each subtask has the highest priority
 - schedulable anyway, we do not need to worry about their deadlines

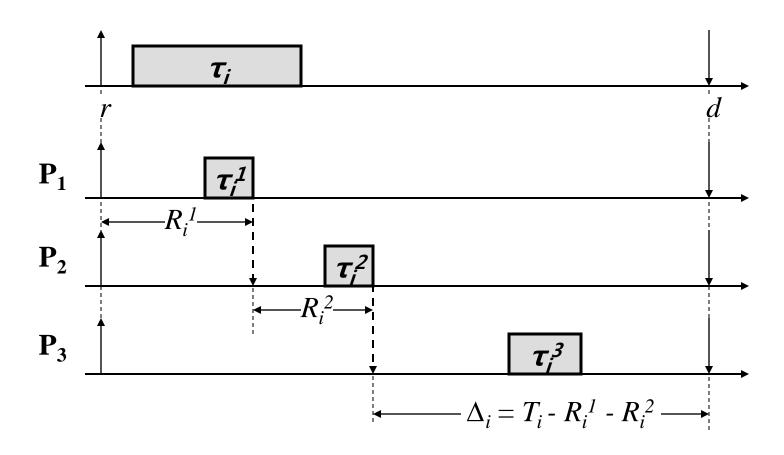
13	12	11
3	4	5
8	7	6

- ☐ The difficult case is when the tail task is not on the top
 - the key point is to ensure the tail task is schedulable

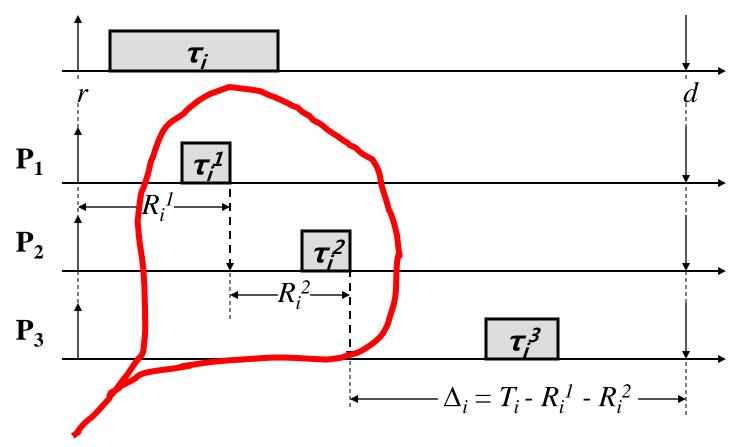
Subtasks should execute in the correct order



☐ Subtasks get "shorter deadlines"

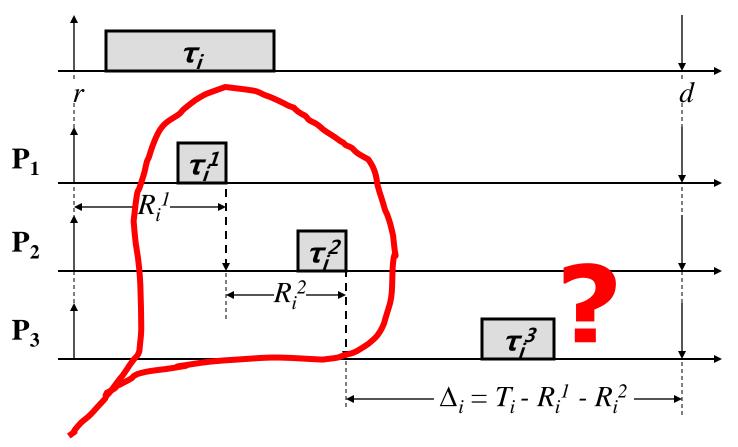


Subtasks should execute in the correct order



These two are on the top: no problem with schedulability

Subtasks should execute in the correct order



These two are on the top: no problem with schedulability

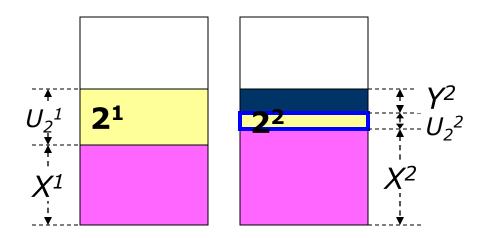
Why the tail task is schedulable?

The typical case: two CPUs and task 2 is split to two sub-tasks

As we always select the CPU with the lowest load assigned, we know

$$Y^{2} + U_{2}^{2} <= U_{2}^{1}$$

$$Y^{2} <= U_{2}^{1} - U_{2}^{2}$$



That is, the "blocking factor" for the tail task is bounded.

Theorem

For a task set in which each task τ_i satisfies

$$U_i \le \frac{\Theta(N)}{1 + \Theta(N)}$$

we have

$$\frac{\sum C_i/T_i}{M} \le N(2^{1/N} - 1)$$

 \Rightarrow the task set is schedulable

$$\Theta(N) = N(2^{\frac{1}{N}} - 1) \qquad N \to \infty, \quad \frac{\Theta(N)}{1 + \Theta(N)} \doteq 0.41$$

Theorem

For a task set in which each task τ_i satisfies

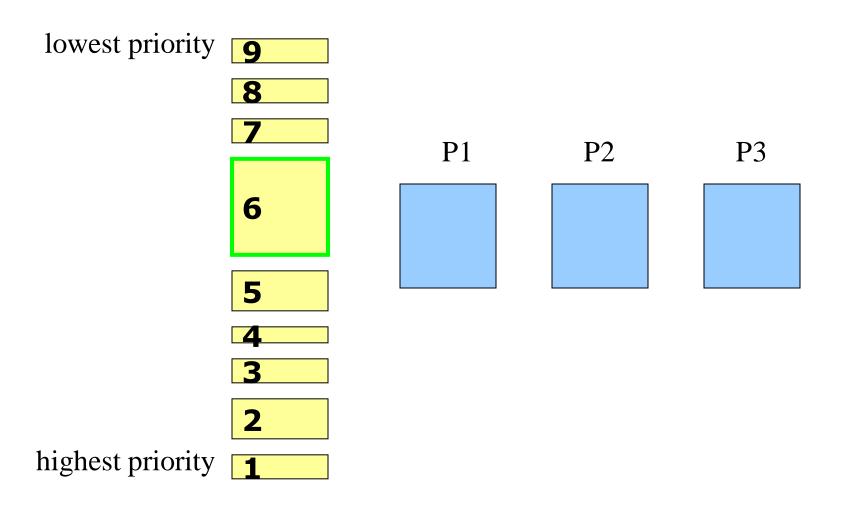
$$U_i \leq \frac{\Theta(N)}{1+\Theta(N)} \quad \text{get rid of this constraint}$$

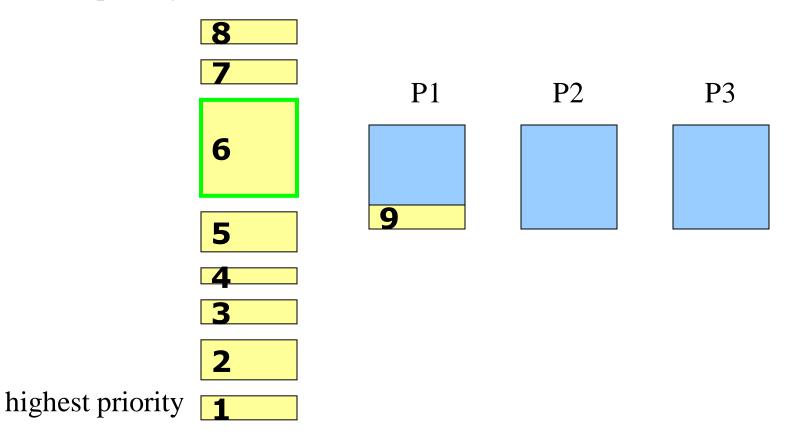
we have

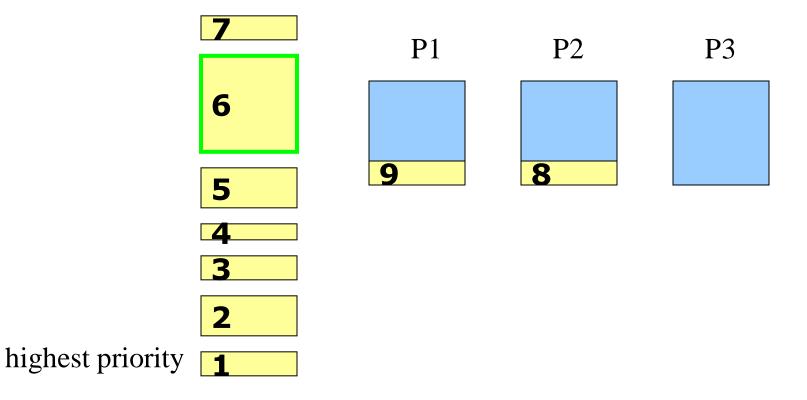
$$\frac{\sum C_i/T_i}{M} \le N(2^{1/N} - 1)$$

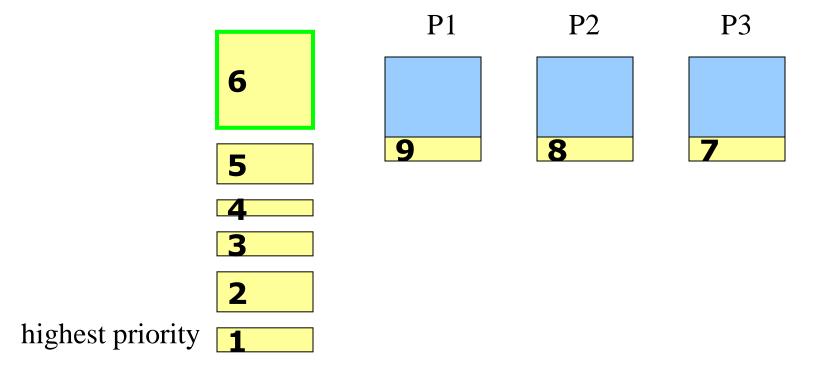
the task set is schedulable

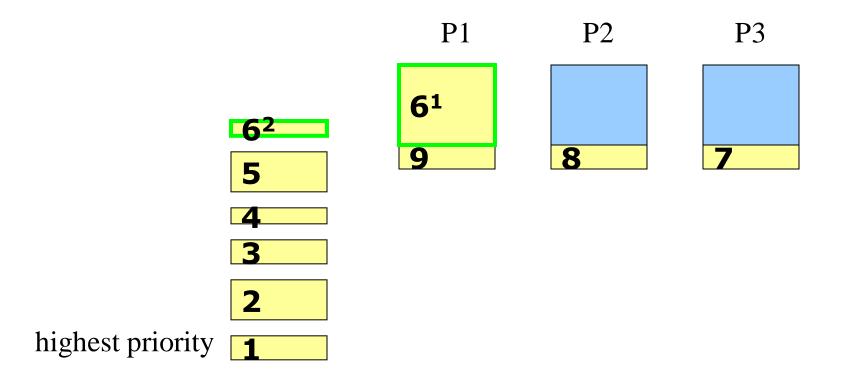
$$\Theta(N) = N(2^{\frac{1}{N}} - 1) \qquad N \to \infty, \quad \frac{\Theta(N)}{1 + \Theta(N)} \doteq 0.41$$

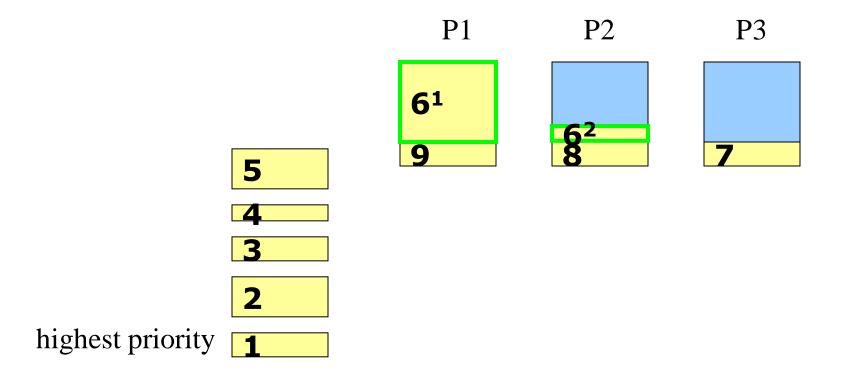




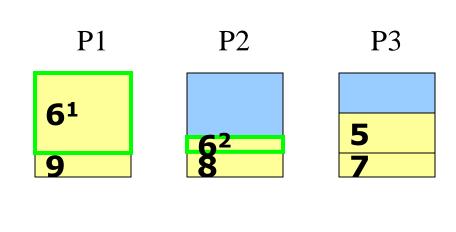








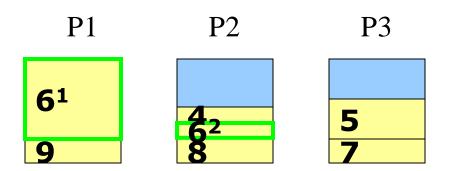
lowest priority



2

highest priority 1

lowest priority



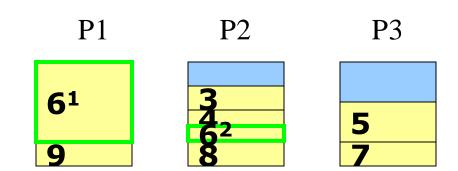
<u>3</u>

2

highest priority

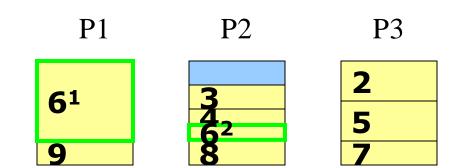
1

lowest priority

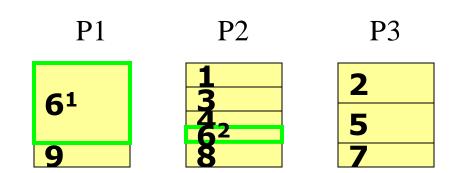


highest priority 1

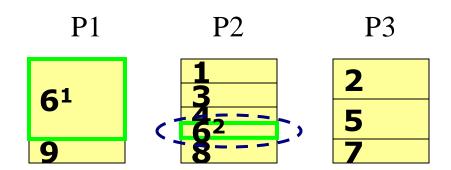
lowest priority



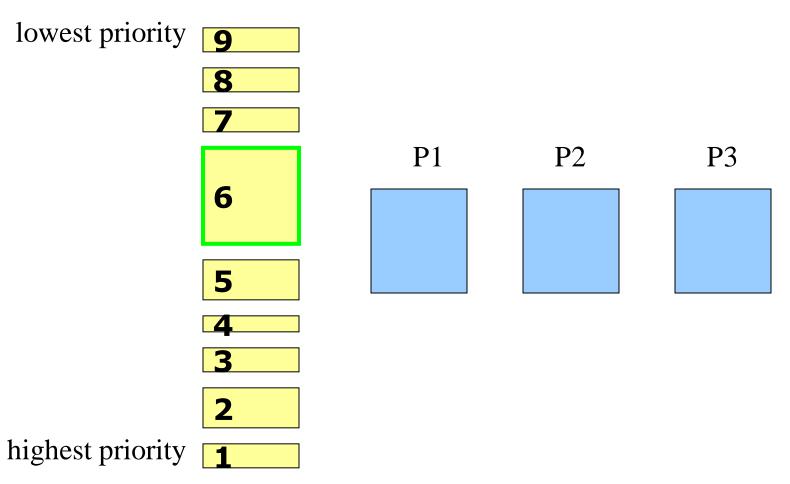
highest priority 1



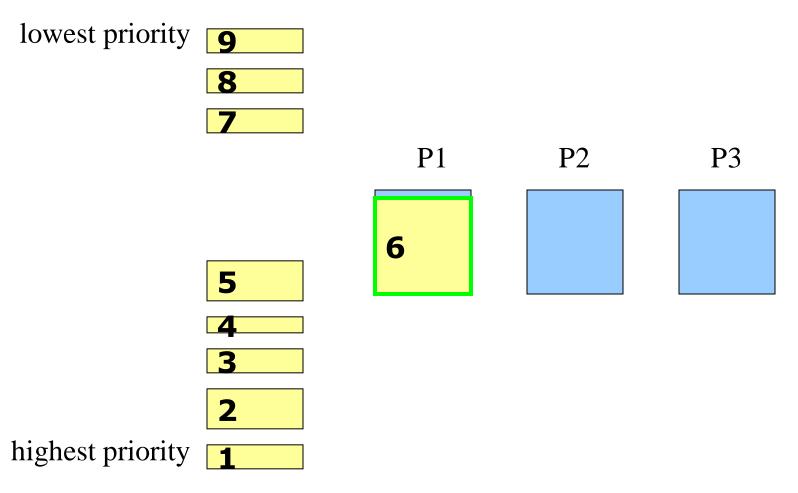
the heavy tasks' tail task may have too low priority level



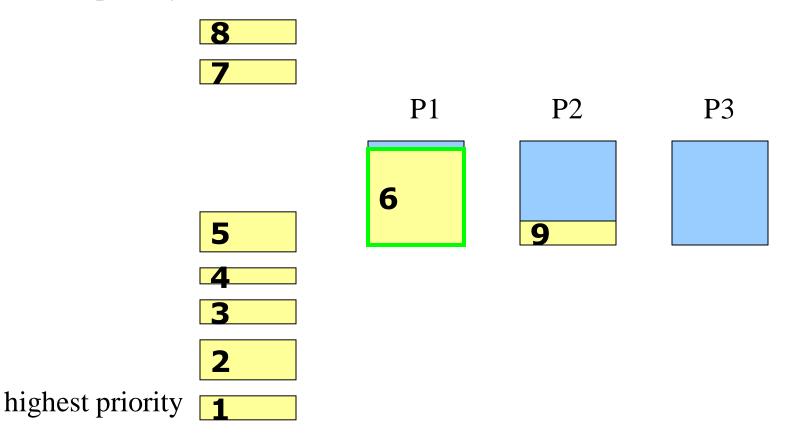
Pre-assigning the heavy tasks (that may have low priorities)



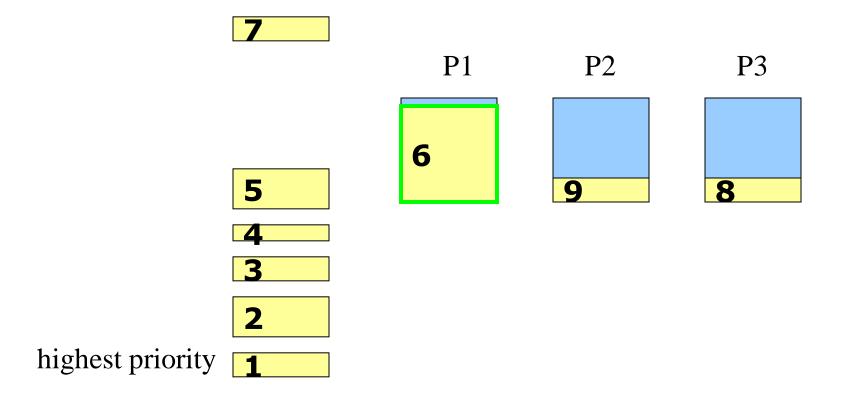
Pre-assigning the heavy tasks (that may have low priorities)



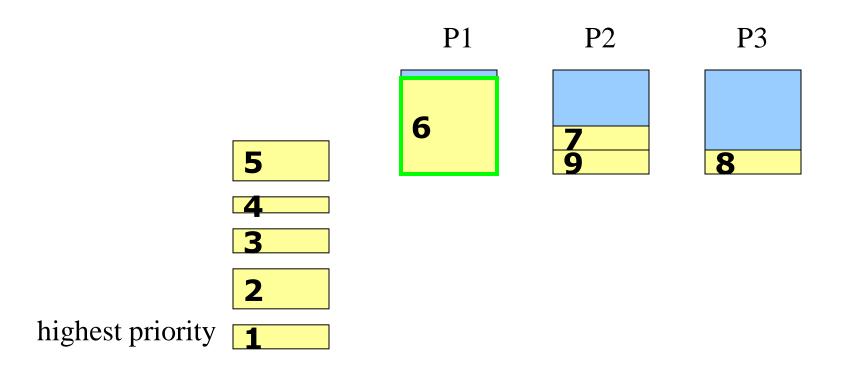
Pre-assigning the heavy tasks (that may have low priorities)



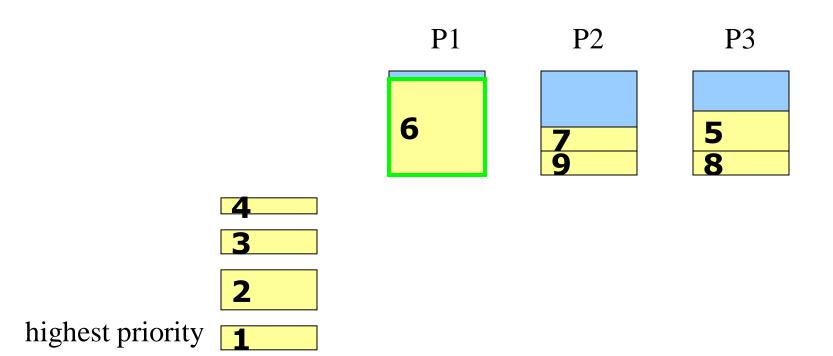
Pre-assigning the heavy tasks (that may have low priorities)



Pre-assigning the heavy tasks (that may have low priorities)

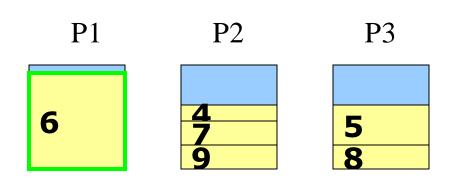


Pre-assigning the heavy tasks (that may have low priorities)



Pre-assigning the heavy tasks (that may have low priorities)

lowest priority

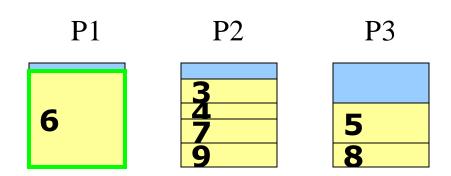


2

highest priority 1

Pre-assigning the heavy tasks (that may have low priorities)

lowest priority



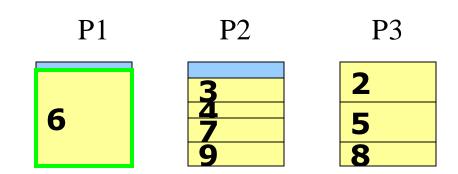
2

highest priority

1

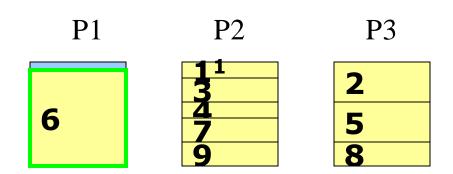
Pre-assigning the heavy tasks (that may have low priorities)

lowest priority

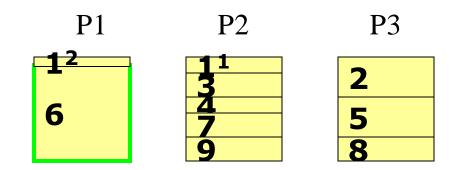


highest priority

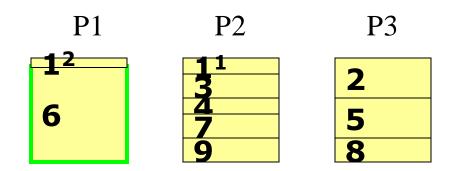
Pre-assigning the heavy tasks (that may have low priorities)



Pre-assigning the heavy tasks (that may have low priorities)



Pre-assigning the heavy tasks (that may have low priorities)



avoid to split heavy tasks (that may have low priorities)

Theorem

By introducing the pre-assignment mechanism, we have

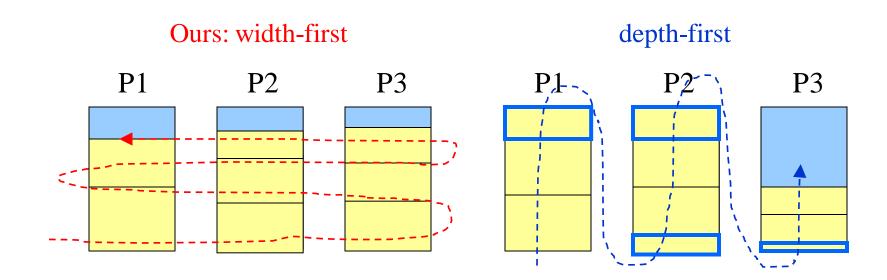
$$\frac{\sum C_i/T_i}{M} \le N(2^{1/N} - 1)$$

 \Rightarrow the task set is schedulable

Liu and Layland's utilization bound for all task sets!

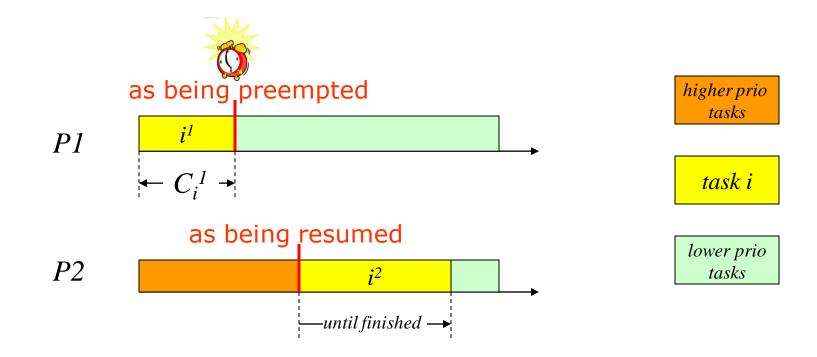
Overhead

- In both previous algorithms and ours
 - The number of task splitting is at most M-1
 - task splitting -> extra "migration/preemption"
 - Our algorithm on average has less task splitting

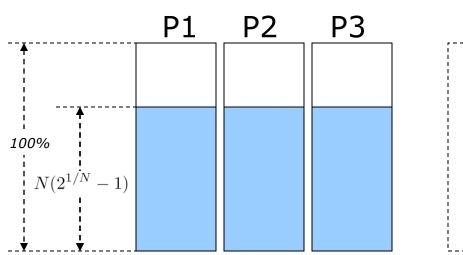


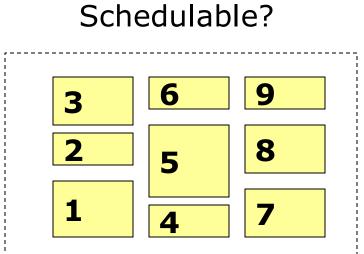
Implementation

- Easy!
 - One timer for each split task
 - Implemented as "task migration"

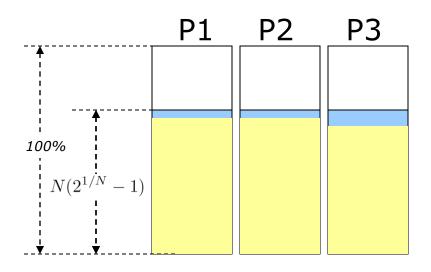


Further Improvement





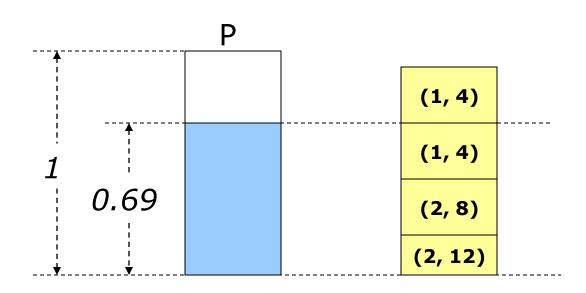
Uisng Liu and Layland's Utilization Bound



Yes, schedulable by our algorithm

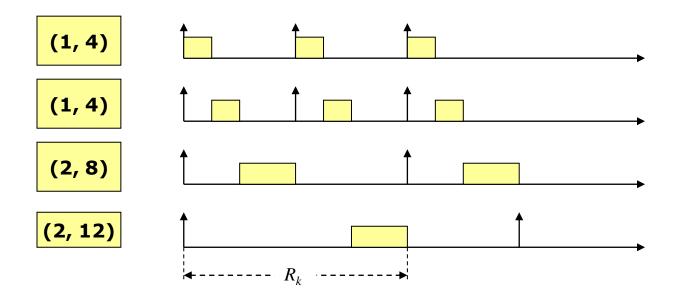
Utilization Bound is Pessimistic

- The Liu and Layland utilization bound is sufficient but not necessary
- many task sets are actually schedulable even if the total utilization is larger than the bound



Exact Analysis

- Exact Analysis: Response Time Analysis [Lehoczky_89]
 - pseudo-polynomial



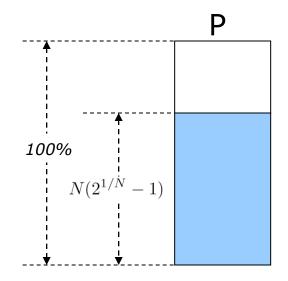
$$R_k = \sum_{T_i < T_k} \left[\frac{R_k}{T_i} \right] C_i + C_k$$
 task if

task k is schedulable iff $R_k <= T_k$

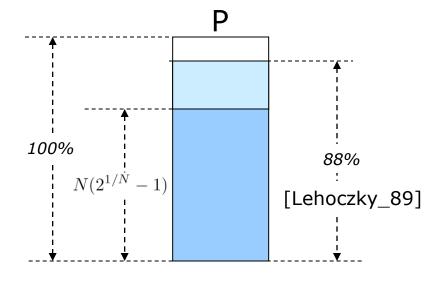
Utilization Bound v.s. Exact Analysis

On single processors

Utilization bound Test for RMS



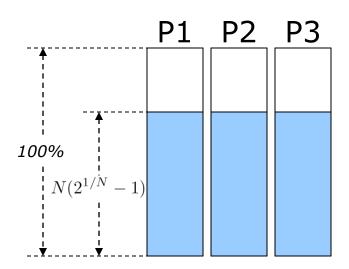
Exact Analysis for RMS

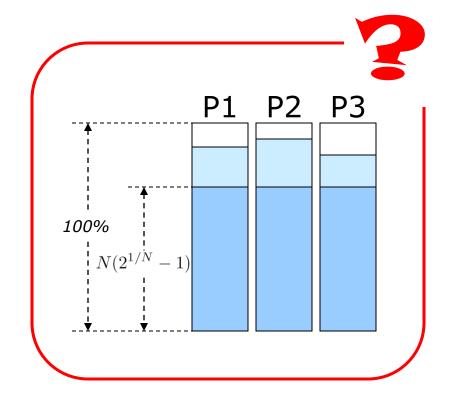


On Multiprocessors

☐ Can we do something similar on multiprocessors?

Utilization bound Test the algorithm introduced above





Beyond Layland & Liu's Bound [RTSS 2010, rejected!]

- Our RTAS10 algorithm:
 - Increasing RMS priority order & worst-fit partitioning
 - Utilization test to determine the maximal load for each processor
 - The maximal load for each processor bounded by 69.3% $N(2^{\frac{1}{N}}-1)$
- Improved algorithm:
 - Employ Response Time Analysis to determine the maximal workload on each processor
 - more flexible behavior (more difficult to prove ...)
 - Same utilization bound for the worst case, but
 - Much better average performance (by simulation)

I believe this is "the best algorithm" one can hope for "fixed-prioritiy multiprocessor scheduling"

Conclusions

- ☐ The (multicore) Timing Problem is challenging
 - Difficult to guarantee Real-Time
 - and Difficult to analyze/predict
- Solutions: Partition & Isolation
 - Shared caches: coloring/partition
 - Memory bus/bandwidth: TDMA, ?
 - Processor cores: partition-based scheduling

Thanks!