OUTLINE

d Multicore Challenges
®m Why and what are multicores?
B What we are doing in Uppsala: CoDeR-MP
B The timing analysis problem

d Possible Solutions — Partition/Isolation
B Dealing with Shared Caches [EMSOFT 2009]
B Dealing with Bus Interference [RTSS 2010]
‘ Dealing with Core Sharing [RTAS 2010]

Dealing with Core Sharing:
Fixed-Priority Multiprocessor Scheduling

Joint work with
Nan Guan, Martin Stigge and Yu Ge

Northeastern University, China
Uppsala University, Sweden

Real-time Systems

ject ject
| |

T | H T H ELLECLE %:;H

| |

!
_ J

’@ pa ’@ p
S T AT =
B Iculate ob, Iculate obj

A N periodic tasks (of different rates/periods)

»d »d

h T. P T. e T. >
T *+ c T + c ¥ T < c > T
rit r2 ra rs

Utilization/workload: C;/T;

d How to schedule the jobs to avoid deadline miss?

On Single-processors

B Liu and Layland’s Utilization Bound [1973]
(the 19t most cited paper in computer science)

-

.v N
> Ui NEYY -1

TiCT

— the task set is schedulable

BN — oo, N2YY —1)=69.3%
B Scheduled by RMS (Rate Monotonic Scheduling)

--{s number of

tasks

Rate Monotonic Scheduling

d Priority assignment: shorter period - higher prio.
d Run-time schedule: the highest priority first

high priority - - - T
mediate priority T_- T] - T
low priority :‘ - _ T

Run-time schedule [ENINNNITNNNNNNN NN

0 How to check whether all deadlines are met?

Liu and Layland’s Utilization Bound

d Schedulability Analysis

I Schedulable?

Liu and Layland’s bound:
3x (2Y3 1) = 77.9%

Liu and Layland’s Utilization Bound

d Schedulability Analysis

CPU

Yes, schedulable!

Liu and Layland’s bound:
3x (2Y3 1) =77.9%

Multiprocessor (multicore) Scheduling

d Significantly more difficult:
B Timing anomalies
B Hard to identify the worst-case scenario
B Bin-packing/NP-hard problems

B Multiple resources e.g. caches, bandwidth

Open Problem (since 1973)

d Find a multiprocessor scheduling algorithm that
can achieve Liu and Layland’s utilization bound

- 2

Z C?i/Ti 1/N «
< N(2V/N _ 1
SN)
«17 = the task set is schedulable
number of o

Processors

Multiprocessor Scheduling

Global Scheduling [Partitioned Scheduling Pavf,ti'tt,',°}1::ksscp'1,ﬁct';‘,,';"g

new task

waiting queué

1900

.

v

N
= o1
e w - o0 000OOS
— N
BB

oo [FI[F]G 11

cpul cpu?2 cpu3 cpul cpu?2 cpu3 cpul cpu?2 cpu3

Best Known Results (before 2010)

80
70
60
50
40
30
20
10

Liu and Layland’s
Utilization Bound
I I I [ECRTS'09] [RTCSA'06]
[TPDS'05] [ECRTS 03] [RTSS 04]
[OPODIS'08] .

Fixed Dynamic Fixed Dynamlc Fixed Dynamic
Priority Priority Priority Priority Priority Priority
\h“““'--._ _.H"'/
Task Splitting
Global Partiioned ———
H-"'""--.,___________‘__._._________._.-—F""_F.—F._

Multiprocessor Scheduling

80
70
60
50
40
30
20
10

Best Known Results (before 2010)

Liu and Layland’s
Utilization Bound

65 66

[ECRTS'09] [RTCSA'06]
[TPDS'05] [ECRTS'03] [RTSS'04]
[DPODIS 08]
Fixed Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Priority Priority
-\‘H‘-‘-‘“}-“_‘_‘_‘_ ‘//-"
Tash Splitting
A
Global

‘‘_‘-‘_‘-‘-‘_‘-‘_‘_""‘"-—._

Multiprocessor Scheduling

80
70
60
50
40
30
20
10

Best Known Results

o

% Our New Result Liu and Layland’s
RTAS 2010 . o Utilization Bound
—_—— RTSS 2010_submitted —_— —_———— -

66

[RTCSA'06]
[TPDS’05] [ECRTS’03] [RTSS’04]
[OPODIS 08] . . .

Fixed Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Priority Priority

Task Splitting

Global Partitioned

Multiprocessor Scheduling

Multiprocessor Scheduling

Global Scheduling . o .
- Would fixed-priority scheduling
e.g. "RMS” work?

new task

waiting queué

1900

.

v

cpul cpu?2 cpu3

Multiprocessor Scheduling

Global Scheduling

Would fixed-priority scheduling
e.g. "RMS” work?

new task
it é Unfortunately "RMS"” suffers
walting queu from the Dhall’s anomali
. @06
é Utilization may be "0%"”

cpul cpu?2 cpu3

Dhall’s anomali

- o o

o Ee— |

0 &£ 1 i+ ¢

Dhall’s anomali

Deadline miss _

Schedule the 3 tasks on 2 CPUs using "RMS

Dhall’'s anomali

(M+1 tasks and M processors)

1/(g+1)
e/l e/l g/l #M+1
#1 #2 | ... #M
Py P, Py

B M*e + 1/(1+ €)
U - v -

when ¢ — 0and M — +o

Multiprocessor Scheduling

Partitioned Scheduling

v v v

cpul cpu?2 cpu3

Multiprocessor Scheduling

Partitioned Scheduling

v

v

v

cpul cpu?2 cpu3

Resource utilization may
be limited to 50%

Partitioned Scheduling

d The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

> CyT <1
d Limited Resource Usage, 50% necessary condition to

guarantee schedulability

#1 #2 | ... #M #M+1 | 50%+e

(M 4+ 1)(0.5 4+ ¢)
when ¢ — 0and M — 4+

U(r) = — 0.5

Partitioned Scheduling

d The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

> CyT <1
d Limited Resource Usage necessary condition to

guarantee schedulability

...... #M+1 | 50%+e

(M +1)(0.5+¢)
#1 #2 #M whene — Oand M — +oo

U(r) = — 0.5

Partitioned Scheduling

d The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

> CyT <1
d Limited Resource Usage necessary condition to

guarantee schedulability

(M +1)(0.5+¢)
#1 #2 #M when e — 0 and M — +o0

U(r) = — 0.5

Partitioned Scheduling

d The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

> CyT <1
d Limited Resource Usage necessary condition to

guarantee schedulability

-
______ | 50%+ €
R
P, P, Py
M+ 1)(0.5 +¢
= D05

#1 #2 #M whene — Oand M — +oo

Multiprocessor Scheduling

Partitioned Scheduling

with Task Splitting

o @ 2
sRERE

v v v

cpul cpu?2 cpu3

Partitioned Scheduling

 Partitioning

Bin-Packing with Item Splitting

d Resource can be “fully” (better) utilized

i
i

Previous Algorithms

[Kato et al. IPDPS’08] [Kato et al. RTAS’09] [Lakshmanan et al. ECRTS'09]

d Sort the tasks in some order e.g. utilization or priority order
O Select a processor, and assign as many tasks as possible

P1

v o)

= INW &~ ||| N

Lakshmanan’s Algorithm [ecrrso9;

d Sort all tasks in decreasing order of utilization

A

highest util. | 8
5 .
. .
- .
. .
3 .
2.

lowest util. | 1

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

+

P1
highest util. | 8

= INW &~ ||| N

lowest util.

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

P1

highest util.

= INW &~ ||| N

lowest util.

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

A

Pl
highest util.

=IINIW|| ||

lowest util.

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

A

P1
61

highest util.

HNwhmﬁ
(0]

lowest util.

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

A

P1 P2
61

highest util.

HNwhmﬁ
(0]

lowest util.

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

A

Pl P2
highest util.
61
7
8
62 |
5
4
3
2
lowest util. | 1

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

A

Pl P2
highest util.
61
7
8 5
62 |
4
3
2
lowest util. | 1

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

A

Pl P2
highest util.
61
7 4
8 5
62 |

N

lowest util. | 1 |

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

A

Pl P2
highest util. :
6 3
7 4
8 5
62

lowest util. | 1 |

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

A

_ _ P1 P2
highest util. 61 %1:
4 4
8 5
62

22
lowest util. | 1 |

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

A

_ _ P1 P2 P3
highest util. 61 %1:
4 4
5
8 62 22

lowest util. | 1

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

A

_ _ P1 P2 P3
highest util. 61 %1:
4 4
8 5 1
62 22

lowest util.

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many
tasks as possible

highest util.

lowest util.

PL P2 P3

6t/ I\ 157 |\

7. e]t

8! |!|5/ |l
; . [62 \ [22

key feature:
“depth-first” partitioning
with decreasing utilization order

Lakshmanan’s Algorithm [ecrrso9;

[Pick up one processor, and assign as many

tasks as possible

highest util.

lowest util.

A

PL P2 P3

Utilization Bound:

65%

Our Algorithm
[RTAS10]

“width-first” partitioning
with increasing priority order

Our Algorithm

d Sort all tasks in increasing priority order

lowest priority | 7 +
6
5
2 .
3
2

highest priority | 1 |

Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority | 7 +
6
> | P1 P2 P3
4
3.
2
highest priority | 1 |

Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

= N [W||H|U

highest priority

Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

= N (W[s U

highest priority

Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

= N |[|[W| P

highest priority

Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

«lF

highest priority | 1

Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

«lF

highest priority | 1

Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

21 3

«lF

highest priority | 1

Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

21 22— |3
4
6

highest priority | 1

Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

lowest priority

highest priority 12—

P1

21

P2

P3

Zi%:
4
6

Our Algorithm

d Select the processor on which the assigned

utilization is the lowest

P1

21

P2

P3

Zi%:
4
6

Our Algorithm

d Select the processor on which the assigned
utilization is the lowest

4 key feature:
lowest priority “width-first” partitioning
with increasing prio order

highest priority

Comparison

Why is our algorithm better?

Ours: width-first
& Increasing priority order

N
N -

P2 P3
12 R
S o ¥ - S

ly A S 7S

Previous: depth-first
& decreasing utilization order

PL--. P27\ P3
6/ |\ [31] |\

ARNrIRIe
8 151 |2

Comparison

Why is our algorithm better?

By our algorithm split tasks generally have higher priorities

Ours: width-first
& Increasing priority order

N
N -

P2 P3
12 R
S o ¥ - S

ly A S 7S

Previous: depth-first
& decreasing utilization order

PL--. P27 P3
6/ |\ [31] |\

ARNrIRIe
8 15 |2

Split Task

1 Consider an extreme scenario:
B suppose each subtask has the highest priority

B schedulable anyway, we do not need to worry about
their deadlines

- —
3 | (4
8 7

2= A1
5
6

A The difficult case is when the tail task is not on the top
B the key point is to ensure the tail task is schedulable

Split Task

1 Subtasks should execute in the correct order

Split

ask

d Subtasks get “shorter deadlines”

|

Split Task

1 Subtasks should execute in the correct order

v

v

v

Ti3

Y
[

v

f A;=T;-RY-R2—

These two are on the top: no problem with schedulability

Split Task

1 Subtasks should execute in the correct order

v

d
P,
P,
P 3| m
3 Ti ‘IV >

f A;=T;-RY-R2—

These two are on the top: no problem with schedulability

Why the tail task is schedulable?

The typical case: two CPUs
and task 2 is split to two

FTTT| p— Y2
sub-tasks U{ 21 jjj%:_Uzz
As we always select the X1 X2

CPU with the lowest load
assigned, we know

Y2+ U,2 <= U,1

U

YZ <= U21 = U22

That is, the “blocking factor” for the tail task is bounded.

heorem

For a task set in which each task 7; satisfies
O(N)

<
Vi s 1+ O(N)

we have

2. Ci/T; 1/N
< N(2 — 1
M = N()

— the task set is schedulable

1 B O(N)

= 0.41
T O(N)

—.

heorem

the task set is schedulable

O(N)

T O(N)

= 0.41

Problem of Heavy

lowest priority g

P1

asks

P2

highest priority [

P3

Problem of Heavy

lowest priority

P1

asks

P2

highest priority [

P3

Problem of Heavy

lowest priority

P1

asks

P2

highest priority [

P3

Problem of Heavy

lowest priority

P1

asks

P2

highest priority [

P3

Problem of Heavy

lowest priority

P1

asks

P2

61

highest priority [

L9 | 8

P3

Problem of Heavy Tasks
lowest priority
P1 P2
& | |
2
5 L9 | g
7 N—
3
2
highest priority [

P3

Problem of Heavy Tasks
lowest priority
P1 P2
& | |
2
L9 | g
7 N—
3
2
highest priority [

P3

Problem of Heavy Tasks

lowest priority

highest priority

61
L9

P1 P2

A=

P3

Problem of Heavy Tasks

lowest priority

highest priority

61
L9

P1

P2

B

P3

Problem of Heavy Tasks

lowest priority

P1 P2 P3

61
=
K |

o

highest priority [

Problem of Heavy Tasks

P1 P2 P3

61
2
L9 |

o

Problem of Heavy Tasks

the heavy tasks’ tail task
may have too low priority level

P1 P2 P3

61 2
¢ 2 = 5
) | - 7

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority g

8 |
7

P1 P2 P3

highest priority [1

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority g

8 |
7

P1 P2 P3

highest priority [1

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

8 |
7

P1 P2 P3

highest priority [1

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3

highest priority [1

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3
6 7
5 9 8
7 N—
3
2
highest priority [1

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3
6 7 | |5
9 8
7 N—
3
2
highest priority [1

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3
6 W 5
9 8
3 |
2

highest priority [1

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3
6 ﬁ: 5
9 8 |

highest priority [1

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3
3 2
6 7 5
9 8 |

highest priority [1

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3
6 5
9 8

highest priority 12—

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3
R == E
6 7 5
o 8

Solution for Heavy Tasks

d Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3
S == E
6 7 5
o 8

avoid to split heavy tasks
(that may have low priorities)

heorem

d By introducing the pre-assignment mechanism,
we have

M
— the task set is schedulable

Liu and Layland’s utilization bound for all task sets!

Overhead

d In both previous algorithms and ours

B The number of task splitting is at most M-1

% task splitting -> extra “"migration/preemption”
B Our algorithm on average has less task splitting

Ours: width-first

P2

depth-first

— =

-

-t ————

Implementation
d Easy!

B One timer for each split task
B Implemented as “task migration”

4

as being preempted higher prio
tasks
il
Pl ' R
“_ Cil * task i
as being resumed :
lower prio
P2 12 tasks

L until finished —».

Further Improvement

?
o pr P2 p3 SehedulEbler
3 6 9
oy
100% i 2 5 8
N (2N 1)
| 1 J[a 1|7

Uisng Liu and Layland’s Utilization Bound

P1 P2 P3

A Yes, schedulable
100% ! by our algorithm

Utilization Bound is Pessimistic

d The Liu and Layland utilization bound is
sufficient but not necessary

d many task sets are actually schedulable even if
the total utilization is larger than the bound

P

e

’ (1, 4)

Y11 1 1
| 1, 4

1 : (1, 4)

. 0.69 -

B (2,12)

Exact Analysis

d Exact Analysis: Response Time Analysis [Lehoczky_89]
B pseudo-polynomial

(1,4) — — ' =

@ M T/, [m :

(2, 8) T — T —
(2,12) T — T
* """"" Ry =------- -h
Ri= 2. { q Ci + O, task k ISRSC<h_ecTIuIabIe iff
T;<Tp ' " <=T,

Utilization Bound v.s. Exact Analysis

[On single processors

Utilization bound Test Exact Analysis
for RMS for RMS
P P
e oo
A N &
_____ f ——— e — _____x_____ I
100% : 10?% 8'8%
AT(QJ/N —1)]\(21/\ 1) :
[Lehoczky_89]
R S N L RS S L i

On Multiprocessors

d Can we do something similar on multiprocessors?

Utilization bound Test

the algorithm introduced above / ;

P1 P2 P3 P1 P2 P3

Beyond LaYIand & Liu’s Bound [r7ss 2010, rejected!]

d Our RTAS10 algorithm:
B Increasing RMS priority order & worst-fit partitioning
B Utilization test to determine the maximal load for each processor

B The rlnaximal load for each processor bounded by 69.3%
N(2¥ — 1)

d Improved algorithm:

B Employ Response Time Analysis to determine the maximal
workload on each processor

B more flexible behavior (more difficult to prove ...)
B Same utilization bound for the worst case, but
B Much better average performance (by simulation)

I believe this is "the best algorithm” one can hope
for “fixed-prioritiy multiprocessor scheduling”

Conclusions

d The (multicore) Timing Problem is challenging
B Difficult to guarantee Real-Time
B and Difficult to analyze/predict

[Solutions: Partition & Isolation
B Shared caches: coloring/partition
B Memory bus/bandwidth: TDMA, ?
B Processor cores: partition-based scheduling

Thanks!

