
Page 1 October 2010 Patrice Godefroid

Software Model Checking

Patrice Godefroid

Microsoft Research

Page 2 October 2010 Patrice Godefroid

“Model Checking”

• Model Checking (MC) = systematic state-space exploration = exhaustive testing

• “Model Checking” = “check whether the system satisfies a temporal-logic formula”

– Example: G(p->Fq) is an LTL formula

• Simple yet effective technique for finding bugs in high-level hardware and software
designs (examples: FormalCheck for Hardware, SPIN for Software, etc.)

• Once thoroughly checked, models can be compiled and used as the core of the
implementation (examples: SDL, VFSM, etc.)

B A C

deadlock

Each component is modeled by a FSM.

Page 3 October 2010 Patrice Godefroid

Model Checking of Software

• How to apply model checking to analyze software?

– “Real” programming languages (e.g., C, C++, Java),

– “Real” size (e.g., 100,000’s lines of code).

• Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation

(SLAM, Bandera,
FeaVer, BLAST,
CBMC,…)

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,…

Data inputs: DART, EXE, SAGE,…

Page 4 October 2010 Patrice Godefroid

Overview: Software Model Checking (SMC)

• Lecture 1: SMC via Systematic Testing - Concurrency

• Lecture 2: SMC via Systematic Testing - Data Inputs

• Lecture 3: SMC via Abstraction

• Lecture 4: May/Must Abstraction-based SMC

• Lecture 5: Combining Static and Dynamic SMC

• Lecture 6: What’s Next? Compositional Testing & Verification

• Disclaimer:

– emphasis on what influenced the speaker, not an exhaustive survey

Page 5 October 2010 Patrice Godefroid

Lecture 1:

Software Model Checking

via Systematic Testing

Dealing with Concurrency

Page 6 October 2010 Patrice Godefroid

Dynamic Approach: Systematic Testing (VeriSoft)

• State Space = “product of (OS) processes” (Dynamic Semantics)

– Processes communicate by executing operations on com. objects.

– Operations on com. objects are visible, other operations are invisible.

– Only executions of visible operations may be blocking.

– The system is in a global state when the next operation of each process is

visible.

– State Space = set of global states + transitions between these.

THEOREM: Deadlocks and assertion violations are

preserved in the “state space” as defined above.

deadlock

s0

Page 7 October 2010 Patrice Godefroid

VeriSoft

• Controls and observes the execution of concurrent processes of the system under test by
intercepting system calls (communication, assertion violations, etc.).

• Systematically drives the system along all the paths (=scenarios) in its state space
(=automatically generate, execute and evaluate many scenarios).

• From a given initial state, one can always guarantee a complete coverage of the state
space up to some depth.

• Note: analyzes “closed systems”; requires test driver(s) possibly using “VS_toss(n)”.

VeriSoft

B A C

System Processes

deadlock

s0

Page 8 October 2010 Patrice Godefroid

VeriSoft State-Space Search

• Automatically searches for:

– deadlocks,

– assertion violations,

– divergences (a process does not communicate with the rest of the system

during more than x seconds),

– livelocks (a process is blocked during x successive transitions).

• A scenario (=path in state space) is reported for each error found.

• Scenarios can be replayed interactively using the VeriSoft

simulator (driving existing debuggers).

Page 9 October 2010 Patrice Godefroid

The VeriSoft Simulator

Page 10 October 2010 Patrice Godefroid

Originality of VeriSoft

• VeriSoft is the first systematic state-space exploration tool for
concurrent systems composed of processes executing arbitrary
code (e.g., C, C++,…) [POPL97].

• VeriSoft looks simple! Why wasn’t this done before?

• Previously existing state-space exploration tools:

– restricted to the analysis of models of software systems;

– each state is represented by a unique identifier;

– visited states are saved in memory (hash-table, BDD,…).

• With programming languages, states are much more complex!

• Computing and storing a unique identifier for every state is
unrealistic!

Page 11 October 2010 Patrice Godefroid

“State-Less” Search

• Don’t store visited states in memory: still terminates when state

space is finite and acyclic… but terribly inefficient!

• Example: dining philosophers (toy example)

– For 4 philosophers, a state-less search explores 386,816 transitions, instead

of 708: every transition is executed on average 546 times!

Page 12 October 2010 Patrice Godefroid

• A state-less search in the state space of a concurrent system can

be much more efficient when using “partial-order methods”.

• POR algorithms dynamically prune the state space of a concurrent

system by eliminating unnecessary interleavings while preserving

specific correctness properties (deadlocks, assertion violations,...).

• Two main core POR techniques:

– Persistent/stubborn sets (Valmari, Godefroid,…)

– Sleep sets (Godefroid,…)

Partial-Order Reduction in Model Checking

[Note: checking more elaborate properties require other extensions

– Ex: ample sets (Peled) are persistent sets satisfying additional

conditions sufficient for LTL model checking

Not used here as VeriSoft only checks reachability properties]

Page 13 October 2010 Patrice Godefroid

• Intuitively, a set T of enabled transitions in s are persistent in s if
whatever one does from s while remaining outside of T does not
interact with T.

• Example:

• Limitation: need info on (static) system structure.
• VeriSoft only exploits info on next transitions and “system_file.VS”.

Persistent/Stubborn Sets

Send(q1,m1)

Send(q1,m2)

Send(q2,m4) z=Rcv(q1)

Send(q1,m6)

stop

P3

x=Rcv(q2)

Send(q1,m3)

stop

stop

P1 P2 {P1:Send(q1,m1)} is persistent in s

The most advanced algorithms for

(statically) computing persistent sets

are based on “stubborn sets”

[Valmari]

Send(q2,m5)

(q1 is empty in s)

Page 14 October 2010 Patrice Godefroid

Sleep Sets

• Sleep Sets exploit local independence (commutativity) among
enabled transitions. One sleep set is associated with each state.

• Example:

• Limitation: alone, no state reduction.
• Sleep sets are easy to implement in VeriSoft since they only require

information on next transitions.

Send(q1,x)

Send(q1,y)

P1 P2

Send(q2,z)

Send(q2,m)

P1:Send(q1,x) P2:Send(q2,m)

P1:Send(q2,z)
P2:Send(q1,y)

Sleep={P1:Send(q1,x)}

Transitions in Sleep

are not explored!
P1:Send(q1,x)

P2:Send(q2,m)

Page 15 October 2010 Patrice Godefroid

• With POR algorithms, the pruned state space looks like a tree!

• Thus, no need to store intermediate states!

An Efficient State-Less Search

t

t

t’

t’

t

t’

t t’

t’

(persistent sets)

(sleep sets)

• Without POR algorithms, a state-less search in the state space

 of a concurrent system is untractable.

Page 16 October 2010 Patrice Godefroid

VeriSoft - Summary

• Two key features distinguish VeriSoft from other model checkers

– Does not require the use of any specific modeling/programming language.

– Performs a state-less search.

• Use of partial-order reduction is key in presence of concurrency.

• In practice, the search is typically incomplete.

• From a given initial state, VeriSoft can always guarantee a

complete coverage of the state space up to some depth.

Page 17 October 2010 Patrice Godefroid

Users and Applications

• Development of research prototype started in 1996.

• VeriSoft 2.0 available outside Lucent since January 1999:

– 100’s of licenses in 25+ countries, in industry and academia

– Free download at http://www.bell-labs.com/projects/verisoft

• Examples of applications in Lucent:

– 4ESS HBM unit testing and debugging (telephone switch maintenance)

– WaveStar 40G R4 integration testing (optical network management)

– 7R/E PTS Feature Server unit and integration testing (voice/data signaling)

– CDMA Cell-Site Call Processing Library testing (wireless call processing)

Page 18 October 2010 Patrice Godefroid

Application: 4ESS HBM [ISSTA98]

• 4ESS switches control millions of calls every day.

• Heart-Beat Monitor (HBM) determines the status of elements

connected to 4ESS switch by monitoring propagation delays of

messages to/from these elements.

• HBM decides how to route new calls in 4ESS switch (i.e., decides

to switch from out-of-band to in-band signaling - called NTH).

• November 1996: “field incident”; June 1997: 2nd field incident…

• HBM code = 100s of lines of EPL (assembly) code, 7/3 years old

• Hoes does this code work exactly???

Page 19 October 2010 Patrice Godefroid

Application: 4ESS HBM (continued)

• Translate EPL code to C code

(using existing partial translator)

• Build test harness for HBM C code, model its

environment (using “VS_toss(n)”), add

“VS_assert(0)” where HBM code hits NTH

(took only a few hours!)

• Check properties (reverse eng./testing)

• Discovered several flaws in software and its

documentation... [ISSTA98]

Example of scenario found:

DLN HBM

Page 20 October 2010 Patrice Godefroid

• CDMA Base Station Call-processing

software library involves complex dynamic

resource-allocation algorithms and handoffs

scenarios (100,000’s lines of C/C++ code).

• How to test reliably this software? VeriSoft

– Increased test coverage from O(10) to

O(1,000,000) scenarios.

– Automatic regression testing for multiple

cell-sites and releases (more than 1,500

VeriSoft runs in 2000-2001).

– Found several critical bugs…[ICSE2002]

Example of Industrial Application: CDMA

Automated Testing Interface

Hw Simulation Environment

CDMA

Call

Processing

Library

Rest of the

System…

Test driver

VeriSoft

Walsh code

checking

mobile MSC

CE
Cell 1

CE
Cell 2

CE Cell 3

CE

Page 21 October 2010 Patrice Godefroid

Discussion: Strengths of VeriSoft

• Used properly, very effective at finding bugs

– can quickly reveal behaviors virtually impossible to detect using

conventional testing techniques (due to lack of controllability and

observability)

– compared with conventional model checkers, no need to model the

application!

• Eliminates this time-consuming and error-prone step

• VeriSoft is WYSIWYG: great for reverse-engineering

• Versatile: language independence is a key strength in practice

• Scalable: applicable to very large systems, although incomplete

– the amount of nondeterminism visible to VeriSoft can be reduced at the

cost of completeness and reproducibility (not limited by code size)

Page 22 October 2010 Patrice Godefroid

Discussion: Limitations of VeriSoft

• Requires test automation:

– need to run and evaluate tests automatically (can be nontrivial)

– if test automation is already available, getting started is easy

• Need be integrated in testing/execution environment

– minimally, need to intercept VS_toss and VS_assert

– intercepting/handling communication system calls can be tricky...

• Requires test drivers/environment models (like most MC)

• Specifying properties: the more, the better… (like MC)

– Restricted to safety properties (ok in practice); use Purify!

• State explosion... (like MC)

Page 23 October 2010 Patrice Godefroid

Discussion: Conclusions

• VeriSoft (like model checking) is not a panacea.

– Limited by the state-explosion problem,…

– Requires some training and effort (to write test drivers, properties, etc.).

– “Model Checking is a push-button technology” is a myth!

• Used properly, VeriSoft is very effective at finding bugs.

– Concurrent/reactive/real-time systems are hard to design, develop and test.

– Traditional testing is not adequate.

– “Model checking” (systematic testing) can rather easily expose new bugs.

• These bugs would otherwise be found by the customer!

• So the real question is “How much ($) do you care about bugs?”

Page 24 October 2010 Patrice Godefroid

Software Model Checking Tools

1990

1995

2000

2005

VeriSoft

(MC for Ada…)

FeaVer
SLAM

BLAST

JavaPathFinder

CMC

Bandera

Bogor

(Bell Labs)
(Microsoft)

(Berkeley)

(NASA) (Kansas U.)

(Stanford)

(Kansas U.)

(Bell Labs)

Dynamic Static

And many other recent ones…

CBMC
(CMU)

Page 25 October 2010 Patrice Godefroid

Static partial-order reduction

• Use static analysis to predict locations red accesses after s

– if static analysis proves that red thread only accesses y and z

– then x := 1 is a persistent transition from s

x := 1

s

y := 2

z := 3 independent

static

analysis

Dynamic Partial Order Reduction [POPL’05]

Page 26 October 2010 Patrice Godefroid

Static Partial-Order Reduction

• Use static analysis to predict locations red accesses after s

• Pointers?

– coarse analysis information => limited POR => state explosion

*p := 1

s

*q1 := 2

*q2 := 3 independent

static

analysis

Page 27 October 2010 Patrice Godefroid

Example: static partial-order reduction

Global Vars

 lock m
 int t1,t2
 int x=0
 int n=100
 char[] a

Thread 2

 lock(m)
 t2 := x++
 unlock(m)

for(;t2<n; t2+=2)
 a[t2] := ‘r’

Thread 1

 lock(m)
 t1 := x++
 unlock(m)

 for(;t1<n; t1+=2)
 a[t1] := ‘b’

• Static analysis gives

– t1, t2 are thread-local

– x is protected by m

– but a[t1] and a[t2] may alias

• Static POR gives O(n2) explored states and transitions

– but only two possible terminating states

may-alias (according to static analysis)

never alias (in practice)

Page 28 October 2010 Patrice Godefroid

New Idea: Dynamic Partial-Order Reduction

• Execute initial arbitrary execution trace to completion

• Examine transitions performed by each thread

– identify and explore other interleavings that may behave differently

– dynamic alias analysis is easy

*(0x2FC3) := 3

independent

s

coarse
static

analysis
precise

dynamic

analysis

*(0x1DA7) := 7

s’

backtrack set { }

exit()

Page 29 October 2010 Patrice Godefroid

backtrack set { }

Dynamic partial-order reduction

• Execute initial arbitrary execution trace to completion

• Examine transitions performed by each thread

– identify and explore other interleavings that may behave differently

– dynamic alias analysis is easy

*(0x2FC3) := 3

dependent

s

precise
dynamic

analysis

s’

backtrack set { red }

*(0x2FC3) := 7

Page 30 October 2010 Patrice Godefroid

Dynamic partial-order reduction algorithm

• Dynamic POR algorithm for

– safety properties (deadlocks, assertion violations, etc.)

– acyclic state spaces

• Dynamically computes a persistent set in each explored state

– compatible and complementary with sleep sets

• Complexity: O(m2.r)

– m = number of threads

– r = size of reduced state space

– some assumptions on dependence relation

• See [POPL’05, with Cormac Flanagan]

Page 31 October 2010 Patrice Godefroid

Filesystem Benchmark

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of threads

N
u

m
b

e
r

o
f

tr
a
n

s
it

io
n

s

Dynamic POR, stateless, no sleep sets Dynamic POR, stateless, sleep sets
Static POR, stateless, no sleep sets Static POR, stateless, sleep sets
Static POR, stateful, no sleep sets Static POR, stateful, sleep sets
No POR, stateless, no sleep sets No POR, stateless, sleep sets
No POR, stateful, no sleep sets No POR, stateful, sleep sets

Page 32 October 2010 Patrice Godefroid

CHESS (MSR): Preemption Bounding

• Focus on multi-threaded concurrent software (Win32, CLR)

• Focus on executions with small number of preemptions

– Heuristic: most bugs can be found with a small number of preemptions

• Many bugs found this way; CHESS is available on the web

– Can deal with very large state spaces, complementary to (D)POR

x = 1;
if (p != 0)
{
 x = p->f;
}

x = 1;
if (p != 0)
{

 x = p->f;
}

p = 0;

Thread 1 Thread 2

preemption

non-preemption

Page 33 October 2010 Patrice Godefroid

Other Related Work: Heuristics

• Other heuristics for partially exploring large state spaces

– Genetic algorithms (with property-specific fitness functions)

– Heuristics based on concurrent dependencies

– “Principled random searches” (e.g., see Cuzz from MSR)

CrThrd (child);

p = malloc();

Parent

do_init();

p->f ++;

Child

If dereference before initialization, BUG!

Thus, ONE ordering constraint is sufficient for this bug

 heuristic = delay malloc() as much as possible!

Page 34 October 2010 Patrice Godefroid

• Software Model Checking via Systematic Testing

– Lecture 1: Dealing with Concurrency

Conclusion

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation

(SLAM, Bandera,
FeaVer, BLAST,
CBMC,…)

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,…

Data inputs: DART, EXE, SAGE,…

