9/30/2010

Lecture 3:
Software Model Checking
via Abstraction

Patrice Godefroid

Thanks: (most) slides for this lecture are borrowed from
Ranjit Jhala and Rupak Majumdar

Software Model Checking

» How to apply model checking to analyze
software?
» Two main approaches:
state-space exploration
Modeling languages —————————————— Model checking

(SLAM, Bandera,

abstraction | FeaVer, BLAST, adaptation
CBMC.,...)
N state-space exploration
T languag testing

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,...

Data inputs: DART, EXE, SAGE,...

Model Checking Algorithm

« Graph Search
- Linear time in the size of the graph
- Exponential time (or worse) in the size of

the program

Enumerative Model Checking

« For each state, compute successor states

« Implement classical graph algorithms
- E.g., Depth-first or breadth-first search
- Starting from initial states and searching
forward for bad states

- Or starting from bad states and searching
backward for initial states

State Space Explosion

« Biggest problem is state space explosion
- N bits = 2N states
» Techniques to fight state explosion:
- Search on-the-fly
- Partial order and symmetry reduction
- Do not store dead variables
- Etc.

« Many successful implementations
« Spin, Murphi, VeriSoft, ... [Protocol verification]

Symbolic Model Checking

« ldea: Work with sets of states, rather
than individual states

Given: Transition graph G, target states 7
begin
- of =set of Initial states
- repeat forever
if R n o7 = @ then return “yes” (error)
if Post(cR) € oR then return “no” (safe)
oR := oR U Post(cR)
end

Here, Post(c) = {s’| 3sec. s — s’}

9/30/2010

Encoding Sets through Formulas

« Idea: Represent sets of states
symbolically, using constraints

e E.g., 1 <x <100 represents the 100
states x =1, x =2, ..., x =100

« Represent both sets of initial states and
transition relation implicitly

Representing States as Formulas

[F] = set of states satisfying F | F = FOL formula over
{slsl=F} program variables

[F:1 N [F] F,AF,
[F1]U[F2] F,VF,

[F1 ~F

[Fi] s[F] Fi=F,

Symbolic Transition Graph

« A transition graph
- A Formula Init(x) representing initial states

- A Formula TR(x,x’) representing the
transition relation

« Example: C program
x:=e TR(x,Xx’): loc=pcaloc’=pc’a x’=e A {y’=y|y=x}
Assume(p) TR(x,x’): loc=pc A loc’=pc’A p

Symbolic Transition Graph

« Operations:
- Post(X) = {s’ | 3seX. s > s’}
=3s. X(s) A TR(s,s’)

- Pre(X) ={s | 3s’eX. s > s’}
=3s’. TR(s,s’) A X(s’)

« Can implement using formula manipulations

Symbolic Model Checking

Given: Transition graph G, target states '
begin
- of = Formula representing set of Initial states
- repeat forever
if oR A o7 is satisfiable then return “yes” (error)
if Post(cR) = oR then return “no” (safe)
oR := oR v Post(cR)
end

Here, Post(c)(s’) = 3s. o(s) » TR(s,s’)

Can be implemented using decision procedures for the
language of formulas

Example: Mutual Exclusion

loop [l loop
out: x1:=1; last:=1 out: x2 = L last := 2
req: await x2=0 or last=2 req: await x1=0 or last =1
inn x1:= inn x2:=0
end loop. end loop.
Symbolic representation has variables
pct, pc2, x1, x2, last
Initial states:
No constraint
pci=out A pc2=out A x1=0 A X2=0 o ast
Transition relation:
pcl=out A x1’=1a last’=1A pc2’=pc2 A x2’=x2

Vo

9/30/2010

What about Software?

« Can construct an infinite state transition system
from a program

« States: The state of the program
- (stack, heap, pc location)

« Transitions: q = q’ iff in the operational
semantics, there is a transition of the program
from q toq’

« Initial state: Initial state of the program

Termination

» Each operation can be computed

« But iterating Pre or Post operations may
not terminate

* What do we do now?

Observation

« Often, we do not need the exact set of
reachable states

- We need a set of states that separates the reachable
states from the bad states

Before we proceed

» What is the sign of the following product:

- 12433454628 * 943295457717

Idea

» One can “abstract” the behavior of the
system, and yet reason about certain
aspects of the program

« Abstraction:
-ve * +ve = -ve

Abstract Interpretation

« The state transition graph is large/infinite
» Suppose we put a finite grid on top
» Abstract states are equivalence classes of

concrete states

9/30/2010

Conservative Abstraction

« Every concrete state s is abstracted by [s]
« Every time s 2 s’, we put [s] 2 [s’]
« This allows more behaviors (“may”)

|

Abstract Model Checking

« Search the abstract graph until fixpoint
- Can be much smaller than original graph
- Can be finite, when original is infinite

Simulation Relations

» Arelation < < SxS is a simulation relation
if s <s” implies
- Observation(s) = Observation(s’)
- Forall t such thats > t
there exists t’ such thats’ > t’
ands’ <t’

Formally captures notion of “more behaviors”
Implies containment of reachable behaviors

Main Theorem

e s <[s]is asimulation relation

o If an error is unreachable in Abs(G) then it
is unreachable in G

« Plan:
1. Find a suitable grid to make the graph
finite state

2. Run the finite-state model checking
algorithm on this abstract graph

3. |If abstract graph is safe, say “safe” and
stop

What if the Abstract Graph says Unsafe?

« The error may or may not be reachable in
the actual system
- Stop and say “Don’t know”

What if the Abstract Graph says Unsafe?

« Or, put a finer grid on the state space

» And try again
- Finer grid is more precise but more expensive
- Where do these grids come from?

9/30/2010

Grids: Predicate Abstraction

« Suppose we fix a set of facts about program variables
- E.g., old = new, lock = 0, lock =1

« Grid: Two states of the program are equivalent if they
agree on the values of all predicates
- N predicates = 2N abstract states

» How do we compute the grid from the program?

Predicate Abstraction

Region Representation: formulas over predicates
B "By By -B;

Ptlx:y Pziz:t+y
Py~ P,
SPLP, Pyix < z+41 Pyi*u = x
PuP J Set of states
P~ P, ‘

Abstract Set: P,P,P,v-P; P, P; P,
Karnaugh Map

Example

« | have predicates

- lock=0, new=old
« My current region is lock=0 A new=old
« Consider the assignment new = new+1

« What is abstract post?
lock=0 A = (new=old)

Symbolic Search with Predicates

Symbolic representation:
Boolean formulas of (fixed set of) predicates

« Boolean operations: easy
« Emptiness check: Decision procedures

« Post: The abstract post computation algorithm

« Can now implement symbolic reachability search!
« (Similar with Pre instead of Post)

Big Question

» Who gives us these predicates?

e Answer 1: The user

- Manual abstractions

« Given a program and property, the user figures
out what are the interesting predicates

- Dataflow analysis

« For “generic” properties, come up with a family
of predicates that are likely to be sufficient for
most programs

Answ2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples
to refine abstraction

L2
)/ 1. Add predicates to distinguish
/?33 states across cut
—J 2. Build refined abstraction
P i (O

Imprecision due to merge

9/30/2010

Iterative Abstraction-Refinement

Solution
Use spurious counterexamples
to refine abstraction

LS

l/ 1. Add predicates to distinguish
A states across cut

L __,]\‘ 2. Build refined abstraction

Y et ° -eliminates counterexample

3. Repeat search

[Kurshan et al 93] [Clarke et al 00] Till real counterexample

[Ball-Rajamani 01] or system proved safe
Implemented in tools like SLAM and BLAST

Property3:

Example: i oo
Program | Lines* Time Predicates localization
(mins)| Total Averageq—

kbfiltr 12k 3 72 6.5

floppy 17k 25 240 7.7

diskprf 14k 13 140 10

cdaudio 18k 23 256 7.8

parport 61k 74 753 8.1

parclss 138k 77 382 7.2

* Pre-processed

