Software Model Checking Lecture 3: Software Model Checking • How to apply model checking to analyze via Abstraction software? • Two main approaches: state-space exploration Patrice Godefroid Modeling languages → Model checking (SLAM, Bandera, FeaVer, BLAST, CBMC,...) Thanks: (most) slides for this lecture are borrowed from adaptation abstraction Ranjit Jhala and Rupak Majumdar Programming languages ______ Systematic testing Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,... Data inputs: DART, EXE, SAGE,...

Model Checking Algorithm

- Graph Search
 - Linear time in the size of the graph
 - Exponential time (or worse) in the size of the program

Enumerative Model Checking

- For each state, compute successor states
- Implement classical graph algorithms
 - E.g., Depth-first or breadth-first search
 - Starting from initial states and searching forward for bad states
 - Or starting from bad states and searching backward for initial states

State Space Explosion

- Biggest problem is state space explosion - N bits $\Rightarrow 2^N$ states
- Techniques to fight state explosion:
 - Search on-the-fly
 - Partial order and symmetry reduction
 - Do not store dead variables
 - Etc.
- Many successful implementations • Spin, Murphi, VeriSoft, ... [Protocol verification]

Symbolic Model Checking • Idea: Work with sets of states, rather than individual states Given: Transition graph G, target states σ^{T} begin • σ^{R} = set of Initial states • repeat forever if $\sigma^{R} \cap \sigma^{T} \neq \emptyset$ then return "yes" (error) if Post(σ^{R}) $\subseteq \sigma^{R}$ then return "no" (safe) σ^{R} := $\sigma^{R} \cup Post(\sigma^{R})$ end Here, Post(σ) = {s' | $\exists s \in \sigma$. $s \to s'$ }

Encoding Sets through Formulas

- Idea: Represent sets of states symbolically, using constraints
- E.g., 1 ≤ x ≤ 100 represents the 100 states x =1, x =2, ..., x =100
- Represent both sets of initial states and transition relation implicitly

Representing States as Formulas				
<pre>[F] = set of states satisfying F {s s = F }</pre>	F = FOL formula over program variables			
$[F_1] \cap [F_2]$	$F_1 \wedge F_2$			
[F ₁] ∪ [F ₂]	$F_1 \vee F_2$			
[F]	¬ F			
$[F_1] \subseteq [F_2]$	$F_1 \Rightarrow F_2$			

Symbolic Transition Graph

- A transition graph
 - A Formula Init(x) representing initial states
 - A Formula TR(x,x') representing the transition relation

• Example: C program

x:=e Assum

- TR(x,x'): loc=pc^loc'=pc'^ x'=e ^ {y'=y | y≠x}
- Assume(p) TR(x,x'): loc=pc \land loc'=pc' \land p

Symbolic Transition Graph

- Operations:
 - Post(X) = {s' | $\exists s \in X. s \rightarrow s'$ } = $\exists s. X(s) \land TR(s,s')$
 - $Pre(X) = \{s \mid \exists s' \in X. s \rightarrow s'\}\$ = $\exists s'. TR(s,s') \land X(s')$
- Can implement using formula manipulations

Symbolic Model Checking

Given: Transition graph G, target states $\boldsymbol{\sigma}^{\mathsf{T}}$ begin

- σ^{R} = Formula representing set of Initial states
- repeat forever if $\sigma^R \wedge \sigma^T$ is satisfiable then return "yes" (error) if Post(σ^R) $\Rightarrow \sigma^R$ then return "no" (safe)
 - $\sigma^{\mathsf{R}} := \sigma^{\mathsf{R}} \vee \mathsf{Post}(\sigma^{\mathsf{R}})$
- end

Here, $Post(\sigma)(s') = \exists s. \sigma(s) \land TR(s,s')$

Can be implemented using decision procedures for the language of formulas

What about Software?

- Can construct an infinite state transition system from a program
- States: The state of the program - (stack, heap, pc location)
- Transitions: $q \rightarrow q'$ iff in the operational semantics, there is a transition of the program from q to q'
- Initial state: Initial state of the program

Termination

- Each operation can be computed
- But iterating Pre or Post operations may not terminate
- What do we do now?

Observation

- Often, we do not need the exact set of reachable states
 - We need a set of states that separates the reachable states from the bad states

Before we proceed

- What is the sign of the following product:
 - 12433454628 * 94329545771 ?

Idea

- One can "abstract" the behavior of the system, and yet reason about certain aspects of the program
- Abstraction:

-ve * +ve = -ve

Abstract Interpretation The state transition graph is large/infinite Suppose we put a finite grid on top Abstract states are equivalence classes of concrete states

Conservative Abstraction

- Every concrete state s is abstracted by [s]
- Every time $s \rightarrow s'$, we put $[s] \rightarrow [s']$
- This allows more behaviors ("may")

Abstract Model Checking

- Search the abstract graph until fixpoint
 - Can be much smaller than original graph
 - Can be finite, when original is infinite

Simulation Relations

- A relation ≤ ⊆ SxS is a simulation relation if s ≤ s' implies
 - Observation(s) = Observation(s')
 - For all t such that s → t there exists t' such that s' → t' and s' ≤ t'

Formally captures notion of "more behaviors" Implies containment of reachable behaviors

Main Theorem

- $s \leq [s]$ is a simulation relation
- If an error is unreachable in Abs(G) then it is unreachable in G
- Plan:
- 1. Find a suitable grid to make the graph finite state
- 2. Run the finite-state model checking algorithm on this abstract graph
- 3. If abstract graph is safe, say "safe" and stop

What if the Abstract Graph says Unsafe? • Or, put a finer grid on the state space • And try again • Finer grid is more precise but more expensive • Where do these grids come from?

Grids: Predicate Abstraction

- Suppose we fix a set of facts about program variables - E.g., old = new, lock = 0, lock = 1
- Grid: Two states of the program are equivalent if they agree on the values of all predicates
 N predicates = 2^N abstract states
- How do we compute the grid from the program?

Predicate Abstraction

Example

- I have predicates
 lock=0, new=old
- My current region is lock=0 ∧ new=old
- Consider the assignment new = new+1
- What is abstract post? lock=0 ∧ ¬ (new=old)

Symbolic Search with Predicates

Symbolic representation: Boolean formulas of (fixed set of) predicates

- Boolean operations: easy
- Emptiness check: Decision procedures
- Post: The abstract post computation algorithm
- Can now implement symbolic reachability search!
- (Similar with Pre instead of Post)

Big Question

- Who gives us these predicates?
- Answer 1: The user

- Manual abstractions

- Given a program and property, the user figures out what are the interesting predicates
- Dataflow analysis
 - For "generic" properties, come up with a family of predicates that are likely to be sufficient for most programs

Examp	le:			Pro IRF Wi	operty3: P Handler n NT DDK
Program	Lines*	Time	Predicates		localization
		(mins)	Total	Average≪	
kbfiltr	12k	3	72	6.5	
floppy	17k	25	240	7.7	
diskprf	14k	13	140	10	
cdaudio	18k	23	256	7.8	
parport	61k	74	753	8.1	
parclss	138k	77	382	7.2	
* Pre-processe	d				I