
9/30/2010

1

Lecture 3:

Software Model Checking

via Abstraction

Thanks: (most) slides for this lecture are borrowed from

Ranjit Jhala and Rupak Majumdar

Patrice Godefroid

Software Model Checking

• How to apply model checking to analyze

software?

• Two main approaches:

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation

(SLAM, Bandera,
FeaVer, BLAST,
CBMC,…)

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,…

Data inputs: DART, EXE, SAGE,…

Model Checking Algorithm

• Graph Search

– Linear time in the size of the graph

– Exponential time (or worse) in the size of

the program

Bad States

Enumerative Model Checking

• For each state, compute successor states

• Implement classical graph algorithms

– E.g., Depth-first or breadth-first search

– Starting from initial states and searching

forward for bad states

– Or starting from bad states and searching

backward for initial states

State Space Explosion

• Biggest problem is state space explosion

– N bits 2N states

• Techniques to fight state explosion:

– Search on-the-fly

– Partial order and symmetry reduction

– Do not store dead variables

– Etc.

• Many successful implementations
• Spin, Murphi, VeriSoft, … [Protocol verification]

Symbolic Model Checking

• Idea: Work with sets of states, rather

than individual states

 Given: Transition graph G, target states T

 begin

– R = set of Initial states

– repeat forever

 if R ∩ T then return “yes” (error)

 if Post(R) ⊆ R then return “no” (safe)

 R := R ∪ Post(R)

 end

Here, Post() = {s’| s . s s’}

9/30/2010

2

Encoding Sets through Formulas

• Idea: Represent sets of states

symbolically, using constraints

• E.g., 1 ≤ x ≤ 100 represents the 100

states x =1, x =2, …, x =100

• Represent both sets of initial states and

transition relation implicitly

Representing States as Formulas

[F] = set of states satisfying F

{s | s |= F }

F = FOL formula over

program variables

[F1] ∩ [F2] F1 ∧ F2

[F1] U [F2] F1 ∨ F2

[F] ¬ F

[F1] ⊆ [F2] F1 F2

Symbolic Transition Graph

• A transition graph

– A Formula Init(x) representing initial states

– A Formula TR(x,x’) representing the

transition relation

• Example: C program
x:=e TR(x,x’): loc=pc loc’=pc’ x’=e {y’=y|y x}

Assume(p) TR(x,x’): loc=pc loc’=pc’ p

Symbolic Transition Graph

• Operations:

– Post(X) = {s’ | s X. s s’}

 = s. X(s) TR(s,s’)

– Pre(X) = {s | s’ X. s s’}

 = s’. TR(s,s’) X(s’)

• Can implement using formula manipulations

Symbolic Model Checking

 Given: Transition graph G, target states T

 begin

– R = Formula representing set of Initial states

– repeat forever

 if R T is satisfiable then return “yes” (error)

 if Post(R) R then return “no” (safe)

 R := R Post(R)

 end

Here, Post()(s’) = s. (s) TR(s,s’)

Can be implemented using decision procedures for the
language of formulas

Example: Mutual Exclusion

Symbolic representation has variables

 pc1, pc2, x1, x2, last

Initial states:

 pc1=out pc2=out x1=0 x2=0

Transition relation:

 pc1=out x1’=1 last’=1 pc2’=pc2 x2’=x2

 …

loop
 out: x1 := 1; last := 1
 req: await x2 = 0 or last = 2
 in: x1 := 0
end loop.

loop
 out: x2 := 1; last := 2
 req: await x1 = 0 or last = 1
 in: x2 := 0
end loop.

||

No constraint
on last

9/30/2010

3

What about Software?

• Can construct an infinite state transition system
from a program

• States: The state of the program
– (stack, heap, pc location)

• Transitions: q  q’ iff in the operational
semantics, there is a transition of the program
from q to q’

• Initial state: Initial state of the program

Termination

• Each operation can be computed

• But iterating Pre or Post operations may
not terminate

• What do we do now?

Observation

• Often, we do not need the exact set of

reachable states

– We need a set of states that separates the reachable

states from the bad states

Before we proceed

• What is the sign of the following product:

- 12433454628 * 94329545771 ?

Idea

• One can “abstract” the behavior of the

system, and yet reason about certain

aspects of the program

• Abstraction:

 -ve * +ve = -ve

Abstract Interpretation

• The state transition graph is large/infinite

• Suppose we put a finite grid on top

• Abstract states are equivalence classes of

concrete states

9/30/2010

4

Conservative Abstraction

• Every concrete state s is abstracted by [s]

• Every time s  s’, we put [s]  [s’]

• This allows more behaviors (“may”)

Abstract Model Checking

• Search the abstract graph until fixpoint

– Can be much smaller than original graph

– Can be finite, when original is infinite

Simulation Relations

• A relation ≤ ⊆ SxS is a simulation relation
if s ≤ s’ implies
– Observation(s) = Observation(s’)

– For all t such that s  t

 there exists t’ such that s’  t’

 and s’ ≤ t’

Formally captures notion of “more behaviors”

Implies containment of reachable behaviors

Main Theorem

• s ≤ [s] is a simulation relation

• If an error is unreachable in Abs(G) then it
is unreachable in G

• Plan:

1. Find a suitable grid to make the graph
finite state

2. Run the finite-state model checking
algorithm on this abstract graph

3. If abstract graph is safe, say “safe” and
stop

What if the Abstract Graph says Unsafe?

• The error may or may not be reachable in

the actual system

– Stop and say “Don’t know”

What if the Abstract Graph says Unsafe?

• Or, put a finer grid on the state space

• And try again

– Finer grid is more precise but more expensive

– Where do these grids come from?

9/30/2010

5

Grids: Predicate Abstraction

• Suppose we fix a set of facts about program variables
– E.g., old = new, lock = 0, lock = 1

• Grid: Two states of the program are equivalent if they
agree on the values of all predicates
– N predicates = 2N abstract states

• How do we compute the grid from the program?

Predicate Abstraction

P1 : x = y

P3 : x z+1

P2 : z = t + y

P4 : *u = x

 Karnaugh Map

¬P1, ¬ P2

P1, P2

 P1, ¬ P2

¬ P1, P2

¬P3 ¬ P4

¬ P3 P4

P3 P4

P3 ¬ P4

Set of states

Abstract Set: P1P2P4 ∨ ¬ P1 P2 P3 P4

Region Representation: formulas over predicates

Example

• I have predicates

– lock=0, new=old

• My current region is lock=0 ∧ new old

• Consider the assignment new = new+1

• What is abstract post?

lock=0 ∧ ¬ (new=old)

Symbolic Search with Predicates

Symbolic representation:

 Boolean formulas of (fixed set of) predicates

• Boolean operations: easy

• Emptiness check: Decision procedures

• Post: The abstract post computation algorithm

• Can now implement symbolic reachability search!

• (Similar with Pre instead of Post)

Big Question

• Who gives us these predicates?

• Answer 1: The user

– Manual abstractions

• Given a program and property, the user figures

out what are the interesting predicates

– Dataflow analysis

• For “generic” properties, come up with a family

of predicates that are likely to be sufficient for

most programs

1. Add predicates to distinguish

 states across cut

2. Build refined abstraction

Solution

Use spurious counterexamples

to refine abstraction

Answ2: Counterex.-Guided Refinement

Imprecision due to merge

9/30/2010

6

Iterative Abstraction-Refinement

1. Add predicates to distinguish

 states across cut

2. Build refined abstraction

 -eliminates counterexample

3. Repeat search

 Till real counterexample

 or system proved safe

Solution

Use spurious counterexamples

to refine abstraction

[Kurshan et al 93] [Clarke et al 00]

[Ball-Rajamani 01]

Implemented in tools like SLAM and BLAST

Example:

Program Lines*

Time

(mins)

Predicates

 Total Average

kbfiltr 12k 3 72 6.5

floppy 17k 25 240 7.7

diskprf 14k 13 140 10

cdaudio 18k 23 256 7.8

parport 61k 74 753 8.1

parclss 138k 77 382 7.2

* Pre-processed

Property3:

IRP Handler

Win NT DDK

localization

