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Lecture 3: 

Software Model Checking 

via Abstraction 

 

Thanks: (most) slides for this lecture are borrowed from 

Ranjit Jhala and Rupak Majumdar 

Patrice Godefroid 

Software Model Checking 

• How to apply model checking to analyze 

software? 

• Two main approaches: 

 
Modeling languages 

Programming languages 

Model checking 

Systematic testing 

state-space exploration 

state-space exploration 

abstraction adaptation 

(SLAM, Bandera, 
FeaVer, BLAST, 
CBMC,…) 

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,… 

Data inputs:   DART, EXE, SAGE,… 

Model Checking Algorithm 

• Graph Search 

– Linear time in the size of the graph 

– Exponential time (or worse) in the size of 

the program 

Bad States 

Enumerative Model Checking 

• For each state, compute successor states 

 

• Implement classical graph algorithms 

– E.g., Depth-first or breadth-first search 

– Starting from initial states and searching 

forward for bad states 

– Or starting from bad states and searching 

backward for initial states 

State Space Explosion 

• Biggest problem is state space explosion 

– N bits  2N states 

• Techniques to fight state explosion: 

– Search on-the-fly 

– Partial order and symmetry reduction 

– Do not store dead variables 

– Etc. 

• Many successful implementations 
• Spin, Murphi, VeriSoft, … [Protocol verification] 

 

Symbolic Model Checking 

• Idea: Work with sets of states, rather 

than individual states 
 

 Given: Transition graph G, target states T 

 begin 

–  R = set of Initial states 

– repeat forever 

  if R ∩ T   then return “yes” (error) 

   if Post( R) ⊆ R then return “no” (safe) 

   R := R ∪ Post( R) 

 end 

 

Here, Post( ) = {s’| s .  s  s’} 
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Encoding Sets through Formulas 

• Idea: Represent sets of states 

symbolically, using constraints 

 

• E.g., 1 ≤ x ≤ 100 represents the 100 

states x =1, x =2, …, x =100 

 

• Represent both sets of initial states and 

transition relation implicitly 

Representing States as Formulas 

[F] = set of states satisfying F  

{s | s |= F } 

F = FOL formula over 

program variables 

[F1] ∩ [F2]  F1 ∧ F2 

[F1] U [F2]  F1 ∨ F2 

[F] ¬ F  

[F1] ⊆ [F2]  F1  F2 

Symbolic Transition Graph 

• A transition graph 

– A Formula Init(x) representing initial states 

– A Formula TR(x,x’) representing the 

transition relation 

 

• Example: C program 
x:=e   TR(x,x’): loc=pc loc’=pc’  x’=e  {y’=y|y x} 

Assume(p) TR(x,x’): loc=pc  loc’=pc’  p 

Symbolic Transition Graph 

• Operations: 

– Post(X) = {s’ | s X. s  s’} 

              = s. X(s)  TR(s,s’) 

 

– Pre(X)  = {s | s’ X. s  s’} 

              = s’. TR(s,s’)  X(s’) 

 

• Can implement using formula manipulations 

Symbolic Model Checking 

 

 Given: Transition graph G, target states T 

 begin 

–  R = Formula representing set of Initial states 

– repeat forever 

  if R  T is satisfiable then return “yes” (error) 

   if Post( R)  R then return “no” (safe) 

   R := R  Post( R) 

 end 

 

Here, Post( )(s’) = s. (s)  TR(s,s’) 

 

Can be implemented using decision procedures for the 
language of formulas 

 

 

 

Example: Mutual Exclusion 

Symbolic representation has variables 

   pc1, pc2, x1, x2, last 

Initial states: 

 pc1=out   pc2=out  x1=0  x2=0  

Transition relation: 

  pc1=out  x1’=1  last’=1  pc2’=pc2  x2’=x2 

  … 

loop 
   out:  x1 := 1; last := 1 
   req:  await  x2 = 0  or  last = 2 
   in:     x1 := 0 
end loop. 

loop 
   out:  x2 := 1; last := 2 
   req:  await  x1 = 0  or  last = 1 
   in:     x2 := 0 
end loop. 

|| 

No constraint 
on last 
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What about Software? 

• Can construct an infinite state transition system 
from a program 

 

• States: The state of the program 
– (stack, heap, pc location) 

 

• Transitions: q  q’ iff in the operational 
semantics, there is a transition of the program 
from q to q’ 

 

• Initial state: Initial state of the  program 

Termination 

• Each operation can be computed 

 

• But iterating Pre or Post operations may 
not terminate 

 

• What do we do now? 

Observation 

• Often, we do not need the exact set of 

reachable states 

– We need a set of states that separates the reachable 

states from the bad states 

Before we proceed 

• What is the sign of the following product: 

 

- 12433454628 * 94329545771 ? 

Idea 

 

• One can “abstract” the behavior of the 

system, and yet reason about certain 

aspects of the program 

 

• Abstraction: 

 -ve * +ve = -ve 

Abstract Interpretation 

• The state transition graph is large/infinite 

• Suppose we put a finite grid on top 

• Abstract states are equivalence classes of 

concrete states 
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Conservative Abstraction 

• Every concrete state s is abstracted by [s] 

• Every time s  s’, we put [s]  [s’] 

• This allows more behaviors (“may”) 

Abstract Model Checking 

• Search the abstract graph until fixpoint 

– Can be much smaller than original graph 

– Can be finite, when original is infinite 

Simulation Relations 

• A relation ≤ ⊆ SxS is a simulation relation         
if s ≤ s’ implies 
– Observation(s) = Observation(s’) 

– For all t such that s  t 

  there exists t’ such that s’  t’ 

  and s’ ≤ t’ 

 

Formally captures notion of “more behaviors” 

Implies containment of reachable behaviors  

Main Theorem 

• s ≤ [s] is a simulation relation 

 

• If an error is unreachable in Abs(G) then it 
is unreachable in G 

 

• Plan:  

1. Find a suitable grid to make the graph 
finite state 

2. Run the finite-state model checking 
algorithm on this abstract graph 

3. If abstract graph is safe, say “safe” and 
stop 

What if the Abstract Graph says Unsafe? 

• The error may or may not be reachable in 

the actual system 

– Stop and say “Don’t know” 

What if the Abstract Graph says Unsafe? 

• Or, put a finer grid on the state space 

• And try again 

– Finer grid is more precise but more expensive 

– Where do these grids come from? 
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Grids: Predicate Abstraction 

• Suppose we fix a set of facts about program variables 
– E.g., old = new, lock = 0, lock = 1 

 

• Grid: Two states of the program are equivalent if they 
agree on the values of all predicates 
– N predicates = 2N abstract states 

 

• How do we compute the grid from the program? 

Predicate Abstraction 

P1 : x = y 

P3 : x  z+1 

P2 : z = t + y 

P4 : *u = x 

   Karnaugh Map 

¬P1, ¬ P2 

P1, P2 

 P1, ¬ P2 

¬ P1, P2 

¬P3 ¬ P4 

¬ P3 P4 

P3 P4 

P3 ¬ P4 

Set of states 

Abstract Set: P1P2P4 ∨ ¬ P1 P2 P3 P4 

Region Representation:  formulas over predicates 

Example 

• I have predicates  

– lock=0, new=old 

• My current region is lock=0 ∧ new old 

• Consider the assignment new = new+1 

 

• What is abstract post? 

lock=0 ∧ ¬ (new=old) 

 

Symbolic Search with Predicates 

Symbolic representation:  

 Boolean formulas of (fixed set of) predicates 

 

• Boolean operations: easy 

• Emptiness check: Decision procedures 

 

• Post: The abstract post computation algorithm 

 

• Can now implement symbolic reachability search! 

• (Similar with Pre instead of Post) 

Big Question  

• Who gives us these predicates? 

 

• Answer 1: The user 

– Manual abstractions 

• Given a program and property, the user figures 

out what are the interesting predicates 

 

– Dataflow analysis 

• For “generic” properties, come up with a family 

of predicates that are likely to be sufficient for 

most programs 

 

1. Add predicates to distinguish 

    states across cut 

2. Build refined abstraction 

Solution 

Use spurious counterexamples 

to refine abstraction 

Answ2: Counterex.-Guided Refinement 

 

Imprecision due to merge 
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Iterative Abstraction-Refinement 

 

1. Add predicates to distinguish 

    states across cut 

2. Build refined abstraction 

 -eliminates counterexample 

3. Repeat search 

 Till real counterexample 

 or system proved safe 

Solution 

Use spurious counterexamples 

to refine abstraction 

[Kurshan et al 93] [Clarke et al 00] 

[Ball-Rajamani 01] 

Implemented in tools like SLAM and BLAST 

Example: 

  

  

  

Program Lines* 

 

Time 

(mins) 

Predicates 

   Total        Average 

kbfiltr 12k 3 72 6.5 

floppy  17k 25 240 7.7 

diskprf 14k 13 140 10 

cdaudio 18k 23 256 7.8 

parport 61k 74 753 8.1 

parclss 138k 77 382 7.2 

* Pre-processed 

Property3: 

IRP Handler 

Win NT DDK 

localization 


