Automatic Abstraction

Lecture 4:

May/Must Abstraction-Based Software Model Checking

Patrice Godefroid

A Solution: use 3-Valued Models [Bruns-G99]

Use richer models A that distinguish what is *true*, *false* and unknown (\perp) of C.

Example: partial Kripke structure (PKS) [Fitting92,Bruns-G99]

• A Kripke structure where propositions can be true, false or \bot .

Example: Modal Transition System [Larsen-Thomsen88]

• A LTS with \xrightarrow{may} and \xrightarrow{must} transitions such that $\xrightarrow{must} \subseteq \xrightarrow{may}$.

Example: Kripke Modal Transition System [Huth-Jagadeesan-Schmidt01]

• A PKS with \xrightarrow{may} and \xrightarrow{must} transitions such that $\xrightarrow{must} \subset \xrightarrow{may}$.

These models are all equally expressive [G-Jagadeesan03].

Other examples: extended transition systems [Milner81],...

Page 3

Completeness Preorder

To measure the *completeness* of models (aka, *refinement* preorder, or *abstraction*⁻¹.) Let < be the "information" ordering on truth values in which $\perp < true$ and

 $\perp \leq false.$

Definition: The *completeness preorder* \preceq is the greatest relation $\preceq \subseteq S \times S$ such that $s_a \preceq s_c$ implies the following:

- $\forall p \in P : L_A(s_a, p) \leq L_C(s_c, p),$
- if $s_a \xrightarrow{must} s'_a$, there is some $s'_c \in S_C$ such that $s_c \xrightarrow{must} s'_c$ and $s'_a \preceq s'_c$,
- if $s_c \xrightarrow{may}_C s'_c$, there is some $s'_a \in S_A$ such that $s_a \xrightarrow{may}_A s'_a$ and $s'_a \preceq s'_c$.

(Note: if no \perp and only \xrightarrow{may} , \preceq is simulation.)

Example:

Current automatic abstraction tools typically proceed as follows:

- \bullet Given a concrete program C, they generate an abstract program A such that "A simulates C ".
- For any \forall -properties ϕ , $A \models \phi$ implies $C \models \phi$.

Limitations:

- Restricted to ∀-properties (no existential properties).
- $A \not\models \phi$ does not imply anything about C!
- Could the analysis be more precise for a comparable cost?

Page 2

3-Valued Temporal Logics

Reasoning about 3-valued models requires 3-valued TL.

Example: 3-valued Propositional Modal Logic $\phi ::= p \mid \neg \phi \mid \phi_1 \land \phi_2 \mid AX\phi$

Semantics: (extension of Kleene's strong 3-valued PL)

 $[(M,s)\models p] = L(s,p)$

$$\begin{split} [(M,s) \models \neg \phi] = \operatorname{comp}([(M,s) \models \phi]) \\ \text{where comp maps } true \mapsto false, false \mapsto true, \text{ and } \bot \mapsto \bot \end{split}$$

 $[(M,s) \models \phi_1 \land \phi_2] = min([(M,s) \models \phi_1], [(M,s) \models \phi_2])$ with min defined with *false* < \perp < *true* ("truth" ordering)

$$[(M,s) \models AX\phi] = \begin{cases} true & \text{if } \forall s' : s \xrightarrow{may} s' \Rightarrow [(M,s') \models \phi] = true \\ false & \text{if } \exists s' : s \xrightarrow{must} s' \land [(M,s') \models \phi] = false \\ \bot & \text{otherwise} \end{cases}$$
• Ex: $[(M,s) \models p] = true$
• Ex: $[(M,s) \models AXp] = \bot$
p=unknown ϕ = p=true
p=unknown ϕ = p=true

Page 4

Logical Characterization of Completeness Preorder

Theorem: Let Φ denote the set of all formulas of 3-valued propositional modal logic. Then

$$s_a \preceq s_c \text{ iff } (\forall \phi \in \Phi : [s_a \models \phi] \le [s_c \models \phi]).$$

Thus, models that are "more complete" with respect to \preceq have more definite properties with respect to $\leq.$

Example:

Completeness Preorder (Continued)

3-Valued Model Checking

Corollary:

Let Φ denote the set of all formulas of 3-valued propositional modal logic. Then

$$(\forall \phi \in \Phi : [(M_1, s_1) \models \phi] = [(M_2, s_2) \models \phi]) \text{ iff}$$
$$(s_1 \prec s_2 \text{ and } s_2 \prec s_1).$$

Note: If s_1 and s_2 are bisimilar, this implies $s_1 \leq s_2$ and $s_2 \leq s_1$, but $s_1 \leq s_2$ and $s_2 \leq s_1$ does not imply s_1 and s_2 are bisimilar! [Bruns-G99]

Example: s_0 and s'_0 are not bisimilar, but cannot be distinguished by any formula of 3-valued propositional modal logic.

Page 7

3-Valued Model Checking (Continued)

STEP 2: transform ϕ to its positive form $T(\phi)$ with $T(\neg p) = \bar{p}$.

STEP 3: evaluate $T(\phi)$ on M_o and M_p using traditional 2-valued model checking, and combine the results:

$$[(M,s) \models \phi] = \begin{cases} true & \text{if } (M_p,s) \models T(\phi) \\ false & \text{if } (M_o,s) \not\models T(\phi) \\ \bot & \text{otherwise} \end{cases}$$

This can be done using existing model-checking tools!

Corollary: 3-valued model checking has the same complexity as traditional 2-valued model checking.

Problem: Given a state s of a 3-valued model M and a formula ϕ , how to compute the value $[(M, s) \models \phi]$?

Theorem: [Bruns-G00] The model-checking problem for a 3-valued temporal logic can be reduced to two model-checking problems for the corresponding 2-valued logic.

STEP 1: complete M into two "extreme" complete Kripke structures, called the **optimistic** and **pessimistic** completions:

- Extend P to P' such that, for every $p \in P$ there exists a $\bar{p} \in P'$ such that $L(s,p) = \text{comp}(L(s,\bar{p}))$ for all s in S.
- $M_o = (S, L_o, \xrightarrow{must})$ with

$$L_o(s,p) \stackrel{\text{def}}{=} \begin{cases} true & \text{if } L(s,p) = \bot \\ L(s,p) & \text{otherwise} \end{cases}$$

•
$$M_p = (S, L_p, \xrightarrow{may})$$
 with
 $L_p(s, p) \stackrel{\text{def}}{=} \begin{cases} false & \text{if } L(s, p) = \perp \\ L(s, p) & \text{otherwise} \end{cases}$

Page 8

Examples

Application:

Generation of a partial Kripke structure from a partial state-space exploration such that, by construction, $s'_0 \leq s_0$ [Bruns-G99].

Examples:

- $[s_1 \models A(true \,\mathcal{U} \, p)] = true$
- $[s_2 \models A(true \,\mathcal{U} \, p)] = \bot$

•
$$[s_3 \models A(true \,\mathcal{U} \, p)] = false$$

Page 10

New 3-Valued Semantics

Observation: One can argue that the previous semantics returns \bot more often than it should...

Example: In a state s_a where $p = \perp$ and q = true,

 $[s_a \models q \land (p \lor \neg p)] = \bot$

while the same formula is *true* in every complete state s_c such that $s_a \leq s_c!$

New 3-valued "thorough" semantics: [Bruns-G00]

 $[(M,s) \models \phi]_t = \begin{cases} true & \text{if } (M',s') \models \phi \text{ for all } (M',s') : s \preceq s' \\ false & \text{if } (M',s') \not\models \phi \text{ for all } (M',s') : s \preceq s' \\ \bot & \text{otherwise} \end{cases}$

Is model checking more expensive with this semantics?

YES! Indeed, in general, one needs to solve two

Generalized Model-Checking Problems

Page 9

Generalized Model Checking [Bruns-G00]

Definition: Given a state s of a model M and a formula ϕ of a temporal logic L, is there a state s' of a complete system M' such that $s \prec s'$ and $(M', s') \models \phi$?

This **generalized model-checking problem** is thus a generalization of both **satisfiability** (all Kripke structures are potential solutions) and **model checking** (a single Kripke structure needs to be checked).

Theorem: The satisfiability problem for a temporal logic L is reducible (in lineartime and logarithmic space) to the generalized model-checking problem for L.

Thus, GMC is as hard as satisfiability. Is it harder?

Branching-Time Temporal Logics

Theorem: (CTL) Given a state s_0 of partial Kripke structure $M = (S, L, \mathcal{R})$ and a CTL formula ϕ , one can construct an alternating Büchi word automaton $A_{(M,s_0),\phi}$ over a 1-letter alphabet with at most $O(|S| \cdot 2^{O(|\phi|)})$ states such that

 $(\exists (M', s'_0) : s_0 \preceq s'_0 \text{ and } (M', s'_0) \models \phi) \text{ iff } \mathcal{L}(A_{(M, s_0), \phi}) \neq \emptyset.$

Corollary: if such a M' exists, there exists one with at most $|S| \cdot 2^{O(|\phi|)}$ states.

Theorem: The generalized model-checking problem for a state s_0 of a partial Kripke structure $M = (S, L, \mathcal{R})$ and a CTL formula ϕ can be decided in time $O(|S|^2 \cdot 2^{O(|\phi|)})$.

Theorem: The generalized model-checking problem for CTL is EXPTIME-complete.

Theorem: (Summary) Let L denote propositional logic, propositional modal logic, CTL, or any branching-time logic including CTL (such as CTL* or the modal μ calculus). The generalized model-checking problem for the logic L has the same complexity as the satisfiability problem for L. [Bruns-G00]

Page 13

Summary on Complexity in $|\phi|$

Model Checking: (3-valued semantics)

- MC can be reduced to two 2-valued MC problems.
- MC has the same complexity as 2-valued MC.

Generalized Model Checking: (thorough 3-val. sem.)

- For BTL, GMC has the same complexity as satisfiablity.
- For LTL, GMC is harder than satisfiablity and MC.

MC SAT GMC Logic PLLinear NP-Complete NP-Complete PML Linear **PSPACE-Complete PSPACE-Complete** EXPTIME-Complete EXPTIME-Complete CTL Linear μ -calculus NP∩co-NP **EXPTIME**-Complete EXPTIME-Complete **PSPACE-Complete** PSPACE-Complete 2EXPTIME-Complete LTL

Page 15

Application: Automatic Abstraction

Idea: Given a concrete system C, if $C \models \phi$ cannot be decided, generate a (smaller) abstraction A and check $A \models \phi$ instead.

Example: predicate abstraction

- Let ψ_1, \ldots, ψ_n be *n* predicates on variables of *C*.
- Abstract states are vectors of n bits b_i .
- \bullet A concrete state c is abstracted by an abstract state

 $[c] = (b_1, \ldots, b_n) \text{ iff } \forall 1 \le i \le n : b_i = \psi_i(c).$

State of the art: A is a traditional 2-valued model with

 $(c_1 \to c_2) \Rightarrow ([c_1] \to [c_2]).$

In other words, A simulates C. Remember, this implies:

- If ϕ is a \forall -property, $A \models \phi$ implies $C \models \phi$,
- but $A \not\models \phi$ does not imply anything about C!

Linear-Time Temporal Logics [G-Piterman09]

Theorem: (LTL) Given a state s_0 of partial Kripke structure $M = (S, L, \mathcal{R})$ and an LTL formula ϕ , one can construct an alternating parity word automaton $A_{(M,s_0),\phi}$ over a 1-letter alphabet with at most $O(|S| \cdot 2^{2^{|\phi| \log(|\phi|)}})$ states and $2^{O(|\phi|)}$ priorities such that

 $(\exists (M', s'_0) : s_0 \leq s'_0 \text{ and } (M', s'_0) \models \phi) \text{ iff } \mathcal{L}(A_{(M, s_0), \phi}) \neq \emptyset.$

Theorem: The generalized model-checking problem for a state s_0 of a partial Kripke structure M = (S, L, R) and an LTL formula ϕ can be decided in time polynomial in |S| and doubly exponential in $|\phi|$.

Theorem: The generalized model-checking problem for linear-time temporal logic is 2EXPTIME-complete.

For LTL, generalized model checking is thus **harder** than satisfiability and model checking! (both of these problems are PSPACE-complete for LTL)

Note: similar phenomenon for "realizability" and "synthesis" for LTL specifications [Abadi-Lamport-Wolper89, Pnueli-Rosner89].

Page 14

Complexity of GMC in |M|

For CTL, GMC can be solved in time quadratic in |M| [Bruns-G00].

For LTL, GMC can be solved in time polynomial in |M| [G-Piterman00]:

- *linear* for safety $(\Box p)$ and weak (recognizable by DWW) properties
- quadratic for response $(\Box(p \to \Diamond q), \text{ persistence } (\Diamond \Box p)$ and generalized reactivity[1] properties [Kesten-Piterman-Pnueli03]

Note: for CTL and LTL, GMC is PTIME-hard in |M| while MC is NLOGSPACE-complete in |M| [G03]

Page 16

Automatic Abstraction Revisited

Observation: A should really be a 3-valued model!

For instance, A can be represented by a modal transition system.

Abstraction relation:

1. $(c_1 \to c_2) \Rightarrow ([c_1] \to_{\max} [c_2])$ 2. $(\forall c_i \in [a] : \exists c_i \to c_j \land c_j \in [a']) \Rightarrow ([a] \to_{\max} [a'])$

By construction, $A \prec C$.

Computing an MTS A using (1)+(2) can be done at the same computational cost (same complexity) as computing a "conservative" abstraction (simulation) using (1) alone: (2) can be built by dualizing all the steps necessary to build (1).

This is shown for predicate and cartesian abstraction in [G-Huth-Jagadeesan01].

Automatic Abstraction Process

Traditional iterative abstraction procedure:

- 1. Abstract: compute M_A that simulates M_C .
- 2. Check: given a universal property ϕ , check $M_A \models \phi$.
 - if $M_A \models \phi$: stop (the property is proved: $M_C \models \phi$).
 - if $M_A \not\models \phi$: go to Step 3.
- 3. Refine: refine M_A . Then go to Step 1.

New procedure for automatic abstraction: (3 improvements)

- 1. Abstract: compute M_A such that $M_A \preceq M_C$ (same cost as above [GHJ01])
- 2. Check: given any property ϕ ,
 - 1. (3-valued model checking) compute $[M_A \models \phi]$.
 - if $[M_A \models \phi] = true$ or false: stop.
 - if $[M_A \models \phi] = \bot$, continue.
 - 2. (generalized model checking) compute $[M_A \models \phi]_t$.
 - if $[M_A \models \phi]_t = true \text{ or } \underline{false}$: stop.
 - if $[M_A \models \phi]_t = \bot$, go to Step 3.
- 3. Refine: refine M_A . Then go to Step 1.

Page 19

Precision of GMC Vs. MC

How often is GMC more precise than MC? See [G-Huth05]:

- Studies when it is possible to reduce $GMC(M, \phi)$ to $MC(M, \phi')$.
- ϕ' is called a *semantic minimization* of ϕ .
- Shows that PL (already known), PML, and μ -calculus are closed under semantic minimization, but not LTL, CTL or CTL*.
- Identifies self-minimizing formulas, i.e., ϕ 's for which $\text{GMC}(M, \phi) = \text{MC}(M, \phi)$ \circ semantically (using automata-theoretic techniques, EXPTIME-hard in $|\phi|$ for μ -calculus) and
 - \circ syntactically (sufficient criterion only, linear in $|\phi|$).
- Ex (syntactic): Any formula that does not contain any atomic proposition in mixed polarity (in its negation normal form) is self-minimizing.
- Note: the converse is not true (e.g., $(\neg q_1 \lor q_2) \land (\neg q_2 \lor q_1)$ is self-minimizing).
- For any self-minimizing formula, GMC and MC have the same precision.
- Good news: many frequent formulas of practical interest are self-minimizing, and MC is as precise as GMC for those.

Page 21

3-Valued Abstractions for Games

Study abstractions of games where moves of each player can now be abstracted. while preserving winning strategies of both players [de Alfaro-G-Jagadeesan04]

- An abstraction of a game is now a game where each player has both may and must moves (yielding may/must strategies).
- Completeness preorder is now an *alternating refinement* relation, logically characterized by 3-valued alternating µ-calculus [Alur-Henzinger-Kupferman02]

Example

Predicate abstraction with p: "is x odd?" and q: "is y odd?" such that $M_2 \preceq C_2$:

$$\begin{array}{c} \text{program C2() } \{ & & & \text{s2} \\ x,y = 1,0; \\ x,y = 2^*f(x),f(y); \\ x,y = 1,0; \\ \} & & \text{s2'} \bigoplus^{(p=T,q=F)} \\ \text{s2'} \bigoplus^{(p=T,q=F)} \\ \text{s2'} \bigoplus^{(p=T,q=F)} \\ \end{array}$$

For $\phi_2 = \Diamond q \land \Box(p \lor \neg q)$, $[(M_2, s_2) \models \phi_2] = \bot$, but $[(M_2, s_2) \models \phi_2]_t = false$ (i.e., there does not exist a concretization of (M_2, s_2) that satisfies ϕ_2).

Thus, GMC is more precise than MC in this case.

(Same for the safety property $\phi'_2 = Xq \wedge \Box(p \vee \neg q)$.)

Page 20

3-Valued Abstractions for Open Systems

Open system: system interacting with its environment.

Module Checking (ModC) [Kupferman-Vardi96]: given an open system M and a formula ϕ , does M satisfy ϕ in all possible environments?

Example: (vending machine) is it always possible for M to eventually serve tea?

- MC(M, AGEF tea) = true
- ModC(M, AGEF tea) = false !

Generalized Module Checking (GModC) [G03]: given A and ϕ , does there exist a concretization C of A such that C satisfies ϕ in all possible environments?

Two simulataneous games here: one with the environment, one with \perp values...

Yet, GModC can be solved at the same cost as GMC (for LTL and BTL) [G03].

Page 22

Semantic Completeness

Given any infinite-state system C and property ϕ , if C satisfies ϕ , then there exists a finite-state abstraction A such that A satisfies ϕ .

• LTL: True if abstractions extended with *fairness* constraints [Kesten-Pnueli00] Example:

$$\circ$$
 var x; actions (-) if (x \geq 0) x:=x-1;

◦ property:
$$AF(¬ P)$$
 with $P=(x≥ 0)$

• self-loop is unfair (models termination)

• *µ*-calculus: True if must transitions can be *nondeterministic* [Larsen-Xinxin90] (aka hyper-must) [Namjoshi03, Dams-Namjoshi04, deAlfaro-G-Jagadeesan04] Example: [Namjoshi03]

o var x;

- actions (-) x := x 1; (+) x := x + 1;

 \circ property: EF(P) with P= (x \ge 0) ◦ hyper-must transition (P=F, P=F or P=T) $\mathbf{P} = \mathbf{F}$

P = F

The construction of abstraction is now compositional (cf. [G-Huth-Jagadeesan01] [Shoham-Grumberg04], [de Alfaro-G-Jagadeesan04])

P = T

Conclusions

3-Valued models and logics can be used to check any property, while guaranteeing soundness of counter-examples.

Generalized Model Checking means checking whether there exists a concretization of an abstraction that satisfies a temporal logic formula.

It can be used to improve precision of automatic abstraction, for a reasonable cost:

- Cost can be higher in the size of the formula... but only worst-case and formulas are short.
- Cost can be higher (e.g., quadratic) in the size of the model... but is the same (linear) for popular properties (e.g., safety).

In an "abstract-check-refine" procedure, GMC is only polynomial in the size of the abstraction, and may prevent the unnecessary generation and analysis of possibly exponentially larger refinements of that abstraction.

In practice, use first a syntactic formula check for self-minimization: MC has then the same precision as GMC (often the case).

Page 25

Some Other Related Work

"Mixed transition systems" [Dams-Gerth-Grumberg94]

- Intuitively, a mixed transition system is an MTS without the constraint $\stackrel{must}{\subseteq} \stackrel{may}{\longrightarrow}$.
- More expressive: some mixed TS cannot be refined into any complete system.
- Still, their goal is very similar (i.e., design may/must abstractions for MC).

"Extended transition systems" [Milner81] = LTS + "divergence predicate"

- In [Bruns-G99], it is shown that 3-valued Hennessy-Milner Logic logically characterizes the "divergence preorder" [Milner81,Walker90].
- Close correspondence with Plotkin's intuitionistic modal logic (inspired Bruns-G00 reduction from 3-val to 2-val MC).

3-Valued logic for program analysis: [Sagiv-Reps-Wilhelm99] shape graphs, first-order 3-valued logic, "focussing",... (roughly inspired the beginning of this work but technical details are fairly different – e.g., no 3-valued abstraction on control)

Conservative abstraction for the full mu-calculus: [Saidi-Shankar99]

Yasm: 3-valued predicate abstraction tool [Gurfinkel-Chechik]

Abstraction refinement for 3-valued models [Shoham-Grumberg] etc.

Page 26