
Lecture 4:

May/Must Abstraction-Based Software Model Checking

Patrice Godefroid

Microsoft Research

state−space exploration
Modeling languages Model checking

Programming languages Systematic testing

adaptationabstraction

state−space exploration

Page 1

Automatic Abstraction

Current automatic abstraction tools typically proceed as follows:

• Given a concrete program C, they generate an abstract program A such that
“A simulates C”.

• For any ∀-properties φ, A |= φ implies C |= φ.

Limitations:

• Restricted to ∀-properties (no existential properties).

• A 6|= φ does not imply anything about C!

• Could the analysis be more precise for a comparable cost?

Page 2

A Solution: use 3-Valued Models [Bruns-G99]

Use richer models A that distinguish what is true, false and unknown (⊥) of C.

Example: partial Kripke structure (PKS) [Fitting92,Bruns-G99]

• A Kripke structure where
propositions can be
true, false or ⊥. p=unknown

p=trues

p=true

Example: Modal Transition System [Larsen-Thomsen88]

• A LTS with
may
−→ and must−→

transitions such that
must−→⊆

may
−→.

ba

Example: Kripke Modal Transition System [Huth-Jagadeesan-Schmidt01]

• A PKS with
may
−→ and must−→ transitions such that must−→⊆

may
−→.

These models are all equally expressive [G-Jagadeesan03].

Other examples: extended transition systems [Milner81],...

Page 3

3-Valued Temporal Logics

Reasoning about 3-valued models requires 3-valued TL.

Example: 3-valued Propositional Modal Logic φ ::= p | ¬φ | φ1 ∧ φ2 | AXφ

Semantics: (extension of Kleene’s strong 3-valued PL)

[(M, s) |= p] = L(s, p)

[(M, s) |= ¬φ] = comp([(M, s) |= φ])
where comp maps true 7→ false, false 7→ true, and ⊥7→⊥

[(M, s) |= φ1 ∧ φ2] = min([(M, s) |= φ1], [(M, s) |= φ2])
with min defined with false <⊥< true (“truth” ordering)

[(M, s) |= AXφ] =

true if ∀s′ : s
may
−→ s′ ⇒ [(M, s′) |= φ] = true

false if ∃s′ : s must−→ s′ ∧ [(M, s′) |= φ] = false

⊥ otherwise

• Ex: [(M, s) |= p] = true

• Ex: [(M, s) |= AXp] =⊥ p=unknown

p=trues

p=true

Page 4

Completeness Preorder

To measure the completeness of models (aka, refinement preorder, or abstraction−1.)

Let ≤ be the “information” ordering on truth values in which ⊥ ≤ true and
⊥ ≤ false.

Definition: The completeness preorder � is the greatest relation �⊆ S×S such
that sa � sc implies the following:

• ∀p ∈ P : LA(sa, p) ≤ LC(sc, p),

• if sa
must−→A s

′
a, there is some s′c ∈ SC such that sc

must−→C s
′
c and s′a � s′c,

• if sc
may
−→C s

′
c, there is some s′a ∈ SA such that sa

may
−→A s

′
a and s′a � s′c.

(Note: if no ⊥ and only
may
−→, � is simulation.)

Example: p=T

p=

p=F p=T

p=T⊥

s_cs_a

Page 5

Logical Characterization of Completeness Preorder

Theorem: Let Φ denote the set of all formulas of 3-valued propositional modal
logic. Then

sa � sc iff (∀φ ∈ Φ : [sa |= φ] ≤ [sc |= φ]).

Thus, models that are “more complete” with respect to � have more definite prop-
erties with respect to ≤.

Example:
p=T

p=

p=F p=T

p=T⊥

s_cs_a

Page 6

Completeness Preorder (Continued)

Corollary:
Let Φ denote the set of all formulas of 3-valued propositional modal logic. Then

(∀φ ∈ Φ : [(M1, s1) |= φ] = [(M2, s2) |= φ]) iff

(s1 � s2 and s2 � s1).

Note: If s1 and s2 are bisimilar, this implies s1 � s2 and s2 � s1,
but s1 � s2 and s2 � s1 does not imply s1 and s2 are bisimilar! [Bruns-G99]

Example: s0 and s′0 are not bisimilar, but cannot be distinguished by any formula
of 3-valued propositional modal logic.

s0

s1 s3s2

(true,)⊥ (,true)⊥(,)⊥⊥ (,)⊥⊥

s’1 s’3

s’0

s’2

(true,true) (true,true)

(true,true)(true,true)

Page 7

3-Valued Model Checking

Problem: Given a state s of a 3-valued model M and a formula φ,
how to compute the value [(M, s) |= φ] ?

Theorem: [Bruns-G00] The model-checking problem for a 3-valued temporal logic
can be reduced to two model-checking problems for the corresponding 2-valued logic.

STEP 1: complete M into two “extreme” complete Kripke structures, called the
optimistic and pessimistic completions:

• Extend P to P ′ such that, for every p ∈ P there exists a p̄ ∈ P ′ such that
L(s, p) = comp(L(s, p̄)) for all s in S.

•Mo = (S,Lo,
must−→) with

Lo(s, p)
def=

true if L(s, p) =⊥
L(s, p) otherwise

•Mp = (S,Lp,
may
−→) with

Lp(s, p)
def=

false if L(s, p) =⊥
L(s, p) otherwise

Page 8

3-Valued Model Checking (Continued)

STEP 2: transform φ to its positive form T (φ) with T (¬p) = p̄.

STEP 3: evaluate T (φ) on Mo and Mp using traditional 2-valued model checking,
and combine the results:

[(M, s) |= φ] =

true if (Mp, s) |= T (φ)
false if (Mo, s) 6|= T (φ)
⊥ otherwise

This can be done using existing model-checking tools!

Corollary: 3-valued model checking has the same complexity as traditional 2-
valued model checking.

Page 9

Examples

Application:
Generation of a partial Kripke structure from a partial state-space exploration such
that, by construction, s′0 � s0 [Bruns-G99].

Examples:

⊥p=⊥p=⊥p=

s2s1 s3
p=true

p=true

p=false p=false

p=true p=false

• [s1 |= A(trueU p)] = true

• [s2 |= A(trueU p)] =⊥

• [s3 |= A(trueU p)] = false

Page 10

New 3-Valued Semantics

Observation: One can argue that the previous semantics returns ⊥ more often
than it should...

Example: In a state sa where p =⊥ and q = true,

[sa |= q ∧ (p ∨ ¬p)] =⊥

while the same formula is true in every complete state sc such that sa � sc!

New 3-valued “thorough” semantics: [Bruns-G00]

[(M, s) |= φ]t =

true if (M ′, s′) |= φ for all (M ′, s′) : s � s′

false if (M ′, s′) 6|= φ for all (M ′, s′) : s � s′

⊥ otherwise

Is model checking more expensive with this semantics?

YES! Indeed, in general, one needs to solve two

Generalized Model-Checking Problems

Page 11

Generalized Model Checking [Bruns-G00]

Definition: Given a state s of a model M and a formula φ of a temporal logic L,
is there a state s′ of a complete system M ′ such that s � s′ and (M ′, s′) |= φ ?

This generalized model-checking problem is thus a generalization of both
satisfiability (all Kripke structures are potential solutions) and model checking
(a single Kripke structure needs to be checked).

SAT MC

p=false

⊥ p=false

p=true

s1 s2

Theorem: The satisfiability problem for a temporal logic L is reducible (in linear-
time and logarithmic space) to the generalized model-checking problem for L.

Thus, GMC is as hard as satisfiability. Is it harder?

Page 12

Branching-Time Temporal Logics

Theorem: (CTL) Given a state s0 of partial Kripke structure M = (S,L,R) and
a CTL formula φ, one can construct an alternating Büchi word automaton A(M,s0),φ

over a 1-letter alphabet with at most O(|S| · 2O(|φ|)) states such that

(∃(M ′, s′0) : s0 � s′0 and (M ′, s′0) |= φ) iff L(A(M,s0),φ) 6= ∅.

Corollary: if such a M ′ exists, there exists one with at most |S| · 2O(|φ|) states.

Theorem: The generalized model-checking problem for a state s0 of a partial
Kripke structure M = (S,L,R) and a CTL formula φ can be decided in time
O(|S|2 · 2O(|φ|)).

Theorem: The generalized model-checking problem for CTL is EXPTIME-complete.

Theorem: (Summary) Let L denote propositional logic, propositional modal logic,
CTL, or any branching-time logic including CTL (such as CTL∗ or the modal µ-
calculus). The generalized model-checking problem for the logic L has the same
complexity as the satisfiability problem for L. [Bruns-G00]

Page 13

Linear-Time Temporal Logics [G-Piterman09]

Theorem: (LTL) Given a state s0 of partial Kripke structure M = (S,L,R)
and an LTL formula φ, one can construct an alternating parity word automaton

A(M,s0),φ over a 1-letter alphabet with at most O(|S| · 22|φ|log(|φ|)) states and 2O(|φ|)

priorities such that

(∃(M ′, s′0) : s0 � s′0 and (M ′, s′0) |= φ) iff L(A(M,s0),φ) 6= ∅.

Theorem: The generalized model-checking problem for a state s0 of a partial
Kripke structure M = (S,L,R) and an LTL formula φ can be decided in time
polynomial in |S| and doubly exponential in |φ|.

Theorem: The generalized model-checking problem for linear-time temporal logic
is 2EXPTIME-complete.

For LTL, generalized model checking is thus harder than satisfiability and model
checking! (both of these problems are PSPACE-complete for LTL)

Note: similar phenomenon for “realizability” and “synthesis” for LTL specifications
[Abadi-Lamport-Wolper89, Pnueli-Rosner89].

Page 14

Summary on Complexity in |φ|

Model Checking: (3-valued semantics)

• MC can be reduced to two 2-valued MC problems.

• MC has the same complexity as 2-valued MC.

Generalized Model Checking: (thorough 3-val. sem.)

• For BTL, GMC has the same complexity as satisfiablity.

• For LTL, GMC is harder than satisfiablity and MC.

Logic MC SAT GMC

PL Linear NP-Complete NP-Complete
PML Linear PSPACE-Complete PSPACE-Complete
CTL Linear EXPTIME-Complete EXPTIME-Complete

µ-calculus NP∩co-NP EXPTIME-Complete EXPTIME-Complete
LTL PSPACE-Complete PSPACE-Complete 2EXPTIME-Complete

Page 15

Complexity of GMC in |M |

For CTL, GMC can be solved in time quadratic in |M | [Bruns-G00].

For LTL, GMC can be solved in time polynomial in |M | [G-Piterman00]:

• linear for safety (2 p) and weak (recognizable by DWW) properties

• quadratic for response (2(p→ 3 q), persistence (3 2 p) and generalized reac-
tivity[1] properties [Kesten-Piterman-Pnueli03]

Note: for CTL and LTL, GMC is PTIME-hard in |M | while MC is NLOGSPACE-
complete in |M | [G03]

Page 16

Application: Automatic Abstraction

Idea: Given a concrete system C, if C |= φ cannot be decided, generate a (smaller)
abstraction A and check A |= φ instead.

Example: predicate abstraction

• Let ψ1, . . . , ψn be n predicates on variables of C.

• Abstract states are vectors of n bits bi.

• A concrete state c is abstracted by an abstract state

[c] = (b1, . . . , bn) iff ∀1 ≤ i ≤ n : bi = ψi(c).

State of the art: A is a traditional 2-valued model with

(c1 → c2) ⇒ ([c1] → [c2]).

In other words, A simulates C. Remember, this implies:

• If φ is a ∀-property, A |= φ implies C |= φ,

• but A 6|= φ does not imply anything about C!

Page 17

Automatic Abstraction Revisited

Observation: A should really be a 3-valued model!

For instance, A can be represented by a modal transition system.

Abstraction relation:

1. (c1 → c2) ⇒ ([c1] →may [c2])

2. (∀ci ∈ [a] : ∃ci → cj ∧ cj ∈ [a′]) ⇒ ([a] →must [a′])

By construction, A � C.

Computing an MTS A using (1)+(2) can be done at the same computational cost
(same complexity) as computing a “conservative” abstraction (simulation) using (1)
alone: (2) can be built by dualizing all the steps necessary to build (1).

This is shown for predicate and cartesian abstraction in [G-Huth-Jagadeesan01].

Page 18

Automatic Abstraction Process

Traditional iterative abstraction procedure:

1. Abstract: compute MA that simulates MC .

2. Check: given a universal property φ, check MA |= φ.

• if MA |= φ: stop (the property is proved: MC |= φ).

• if MA 6|= φ: go to Step 3.

3. Refine: refine MA. Then go to Step 1.

New procedure for automatic abstraction: (3 improvements)

1. Abstract: compute MA such that MA �MC (same cost as above [GHJ01])

2. Check: given any property φ,

1. (3-valued model checking) compute [MA |= φ].

• if [MA |= φ] = true or false: stop .

• if [MA |= φ] =⊥, continue.

2. (generalized model checking) compute [MA |= φ]t.

• if [MA |= φ]t = true or false: stop .
• if [MA |= φ]t =⊥, go to Step 3.

3. Refine: refine MA. Then go to Step 1.

Page 19

Example

Predicate abstraction with p : “is x odd?” and q : “is y odd?” such that M2 � C2:

program C2() {
x,y = 1,0;
x,y = 2*f(x),f(y);
x,y = 1,0;

}

M2

(p=T,q=F)s2’’

s2’

s2
(p=T,q=F)

(p=F,q=)⊥

For φ2 = 3 q ∧ 2(p ∨ ¬q), [(M2, s2) |= φ2] =⊥, but [(M2, s2) |= φ2]t = false

(i.e., there does not exist a concretization of (M2, s2) that satisfies φ2).

Thus, GMC is more precise than MC in this case.

(Same for the safety property φ′2 = Xq ∧ 2(p ∨ ¬q).)

Page 20

Precision of GMC Vs. MC

How often is GMC more precise than MC? See [G-Huth05]:

• Studies when it is possible to reduce GMC(M,φ) to MC(M,φ′).

• φ′ is called a semantic minimization of φ.

• Shows that PL (already known), PML, and µ-calculus are closed under semantic
minimization, but not LTL, CTL or CTL∗.

• Identifies self-minimizing formulas, i.e., φ’s for which GMC(M,φ) = MC(M,φ)

◦ semantically (using automata-theoretic techniques, EXPTIME-hard in |φ|
for µ-calculus) and

◦ syntactically (sufficient criterion only, linear in |φ|).

• Ex (syntactic): Any formula that does not contain any atomic proposition in
mixed polarity (in its negation normal form) is self-minimizing.

• Note: the converse is not true (e.g., (¬q1 ∨ q2) ∧ (¬q2 ∨ q1) is self-minimizing).

• For any self-minimizing formula, GMC and MC have the same precision.

• Good news: many frequent formulas of practical interest are self-minimizing,
and MC is as precise as GMC for those.

Page 21

3-Valued Abstractions for Open Systems

Open system: system interacting with its environment.

Module Checking (ModC) [Kupferman-Vardi96]: given an open system M

and a formula φ, does M satisfy φ in all possible environments?

Example: (vending machine)
is it always possible for M to eventually serve tea?

• MC(M , AGEF tea) = true

• ModC(M , AGEF tea) = false !

boil

teacoffee

choose

Generalized Module Checking (GModC) [G03]: given A and φ, does there
exist a concretization C of A such that C satisfies φ in all possible environments?

Two simulataneous games here: one with the environment, one with ⊥ values...

Yet, GModC can be solved at the same cost as GMC (for LTL and BTL) [G03].

Page 22

3-Valued Abstractions for Games

Study abstractions of games where moves of each player can now be abstracted,
while preserving winning strategies of both players [de Alfaro-G-Jagadeesan04]:

• An abstraction of a game is now a game where each player has both may and
must moves (yielding may/must strategies).

• Completeness preorder is now an alternating refinement relation, logically
characterized by 3-valued alternating µ-calculus [Alur-Henzinger-Kupferman02].

Page 23

Semantic Completeness

Given any infinite-state system C and property φ, if C satisfies φ, then there exists
a finite-state abstraction A such that A satisfies φ.

• LTL: True if abstractions extended with fairness constraints [Kesten-Pnueli00]
Example:
◦ var x; actions (-) if (x≥0) x:=x-1;

◦ property: AF(¬ P) with P= (x≥ 0)

◦ self-loop is unfair (models termination)

X

P = F P = T

−

−

−

• µ-calculus: True if must transitions can be nondeterministic [Larsen-Xinxin90]
(aka hyper-must) [Namjoshi03, Dams-Namjoshi04, deAlfaro-G-Jagadeesan04]

Example: [Namjoshi03]
◦ var x;

actions (-) x:=x-1; (+) x:=x+1;

◦ property: EF(P) with P= (x≥ 0)

◦ hyper-must transition (P=F, P=F or P=T)

X

P = F P = T

+
+

+
−

−

−
X

The construction of abstraction is now compositional (cf. [G-Huth-Jagadeesan01],
[Shoham-Grumberg04], [de Alfaro-G-Jagadeesan04]).

Page 24

Conclusions

3-Valued models and logics can be used to check any property, while guaranteeing

soundness of counter-examples.

Generalized Model Checking means checking whether there exists a concretization
of an abstraction that satisfies a temporal logic formula.

It can be used to improve precision of automatic abstraction, for a reasonable cost:

• Cost can be higher in the size of the formula...
but only worst-case and formulas are short.

• Cost can be higher (e.g., quadratic) in the size of the model...
but is the same (linear) for popular properties (e.g., safety).

In an “abstract-check-refine” procedure, GMC is only polynomial in the size of the
abstraction, and may prevent the unnecessary generation and analysis of possibly
exponentially larger refinements of that abstraction.

In practice, use first a syntactic formula check for self-minimization:
MC has then the same precision as GMC (often the case).

Page 25

Some Other Related Work

“Mixed transition systems” [Dams-Gerth-Grumberg94]

• Intuitively, a mixed transition system is an MTS without the constraint must−→⊆
may
−→.

• More expressive: some mixed TS cannot be refined into any complete system.

• Still, their goal is very similar (i.e., design may/must abstractions for MC).

“Extended transition systems” [Milner81] = LTS + “divergence predicate”

• In [Bruns-G99], it is shown that 3-valued Hennessy-Milner Logic logically char-
acterizes the “divergence preorder” [Milner81,Walker90].

• Close correspondence with Plotkin’s intuitionistic modal logic (inspired Bruns-
G00 reduction from 3-val to 2-val MC).

3-Valued logic for program analysis: [Sagiv-Reps-Wilhelm99] shape graphs, first-
order 3-valued logic, “focussing”,... (roughly inspired the beginning of this work
but technical details are fairly different – e.g., no 3-valued abstraction on control)

Conservative abstraction for the full mu-calculus: [Saidi-Shankar99]

Yasm: 3-valued predicate abstraction tool [Gurfinkel-Chechik]

Abstraction refinement for 3-valued models [Shoham-Grumberg] etc.

Page 26

