Lecture 4:

May/Must Abstraction-Based Software Model Checking

Patrice Godefroid

Microsoft Research

state-space exploration
Modeling languages—— = Model checking

abstraction adaptatior

state—space exploration
Programming languages——— = Systematic test

Page 1

A Solution: use 3-Valued Models [Bruns-G99]

Use richer models A that distinguish what is true, false and unknown (L) of C'.

Example: partial Kripke structure (PKS) [Fittingd2,Bruns-G99)]
Sq p=true
e A Kripke structure where
propositions can be
true, false or L. p=unknow®<—o p=true
Example: Modal Transition System [Larsen-Thomsen8§]
O\\
o A LTS with ™% and 7 k
transitions such that

Example: Kripke Modal Transition System [Huth-Jagadeesan-Schmidt01]

- maj st i must — map
o A PKS with 2% and ™% transitions such that 244 C ™%

These models are all equally expressive [G-Jagadeesan03].

Other examples: extended transition systems [Milner81],...

Page 3

Completeness Preorder

To measure the completeness of models (aka, refinement preorder, or abstraction™.)

Let < be the “information” ordering on truth values in which L < true and
1 < false.

Definition: The completeness preorder < is the greatest relation <C S x S such
that s, = s. implies the following:

o Vp € P: La(sa,p) < Lo(se, p),
o if 5, st s, there is some s, € S¢ such that s, mus{ s,
o if s, %0 s there is some s/, € Sy such that s, =% 4 s,

N v
and s, < s,

and s}, < .

T e may . - .
(Note: if no L and only 2%, < is simulation.)

Example: p=T p=F p=1

Page 5

Automatic Abstraction

Current automatic abstraction tools typically proceed as follows:
e Given a concrete program C', they generate an abstract program A such that
“A simulates C”.
e For any V-properties ¢, A = ¢ implies C' = ¢.
Limitations:
e Restricted to V-properties (no existential properties).
e A}~ ¢ does not imply anything about C!

e Could the analysis be more precise for a comparable cost?

Page 2

3-Valued Temporal Logics

Reasoning about 3-valued models requires 3-valued TL.

Example: 3-valued Propositional Modal Logic ¢ :=p | ¢ | ¢1 A d2 | AX D
Semantics: (extension of Kleene'’s strong 3-valued PL)

(M, s) = p| = L(s,p)

[(M,) = =¢] = comp([(M, 5) =])

where comp maps true — false, false — true, and L—_L
(M, 5) | d1 A @] = min([(M, 5) |= ¢1],[(M, 5) = ¢0])
with min defined with false <1 < true (“truth” ordering)

L may

true Vs :s —> s = [(M,s) = ¢] = true
(M, s) = AX¢] =1 false if 3s' - s ™4 s/ A[(M, ') |= 8] = false

1 otherwise s
O p=true

o Ex: [(M,s) = p| = true
o Ex: [(M,s) E AXp] =L p=unknowno,

O O

p=true

Page 4

Logical Characterization of Completeness Preorder

Theorem: Let ® denote the set of all formulas of 3-valued propositional modal
logic. Then

Sq 2 s 1M (Vo € D s, E @] < [sc = 9)]).

Thus, models that are “more complete” with respect to < have more definite prop-
erties with respect to <.

Example:
p=T p=F p=T

Page 6

Completeness Preorder (Continued)

Corollary:
Let @ denote the set of all formulas of 3-valued propositional modal logic. Then

(V(Z) [SKOM [(]\/[h 81) ': (15] = [(]V[Q,Sg) '2 ¢]> iff
(s1 =< 89 and s2 < s1).
Note: If s; and s are bisimilar, this implies s; < s9 and s9 < s,

but s; < s9 and s3 < 51 does not imply s; and s2 are bisimilar! [Bruns-G99)

Example: s and s are not bisimilar, but cannot be distinguished by any formula
of 3-valued propositional modal logic.

sO s'0

(true,true) (true,true)

s3 s'1l s'3

(0.0)

s1,

(true,) (0,0) (0O,true)

(true,true) (true,true)

Page 7

3-Valued Model Checking (Continued)
STEP 2: transform ¢ to its positive form T'(¢) with T'(=p) = p.

STEP 3: evaluate T'(¢) on M, and M, using traditional 2-valued model checking,
and combine the results:

true if (M, s) = T()

(M, s) |E @] =1 false it (M,,s) = T(¢)
1 otherwise

This can be done using existing model-checking tools!

Corollary: 3-valued model checking has the same complexity as traditional 2-
valued model checking.

Page 9

New 3-Valued Semantics

Observation: One can argue that the previous semantics returns L more often
than it should...

Example: In a state s, where p =L and q = true,
[sa F an(pVv-p) =1L
while the same formula is ¢rue in every complete state s. such that s, < s.!

New 3-valued “thorough” semantics: [Bruns-G00]
true if (M',s") = ¢ forall (M')s"):s =<4
(M, s) =@l =1 false if (M',s") £ ¢ forall (M',s'):s<¢
€ otherwise

Is model checking more expensive with this semantics?
YES! Indeed, in general, one needs to solve two

Generalized Model-Checking Problems

Page 11

3-Valued Model Checking

Problem: Given a state s of a 3-valued model M and a formula ¢,
how to compute the value [(M, s) = ¢] ?

Theorem: [Bruns-G00] The model-checking problem for a 3-valued temporal logic
can be reduced to two model-checking problems for the corresponding 2-valued logic.

STEP 1: complete M into two “extreme” complete Kripke structures, called the
optimistic and pessimistic completions:
e Extend P to P’ such that, for every p € P there exists a p € P’ such that
L(s,p) = comp(L(s, p)) for all sin S.
o M, = (S, Ly, ™) with

aof [true if L(s,p) =L
Ly(s,p) { (7]

L(s,p) otherwise
o M, = (S, Ly, ™) with

Ly(s,p) {false if L(s,p) =1

L(s,p) otherwise

Page 8

Examples

Application:
Generation of a partial Kripke structure from a partial state-space exploration such
that, by construction, s{, < s¢ [Bruns-G99].

Examples:
s3

p=false

p=0 p=false

o 51 |= A(trueld p)] = true
o sy = A(trueU p)] =L
o [s3 = A(trueld p)] = false

Page 10

Generalized Model Checking [Bruns-G00]

Definition: Given a state s of a model M and a formula ¢ of a temporal logic L,
is there a state s" of a complete system M’ such that s < s" and (M, s') ¢ ?

This generalized model-checking problem is thus a generalization of both
satisfiability (all Kripke structures are potential solutions) and model checking
(a single Kripke structure needs to be checked).

SAT MC
Sb[' 2, p=talse
fat

p=true p=false

Theorem: The satisfiability problem for a temporal logic L is reducible (in linear-
time and logarithmic space) to the generalized model-checking problem for L.

Thus, GMC is as hard as satisfiability. Is it harder?

Page 12

Branching-Time Temporal Logics

Theorem: (CTL) Given a state s of partial Kripke structure M = (S, L, R) and
a CTL formula ¢, one can construct an alternating Biichi word automaton Az)¢
over a I-letter alphabet with at most O(|S| - 200D states such that

(M, s0) = so = s and (M, s0) = @) iff L(As,s).0) 7 0.

Corollary: if such a M’ exists, there exists one with at most |S] - 200¢D states.

Theorem: The generalized model-checking problem for a state sy of a partial
Kripke structure M = (S, L, R) and a CTL formula ¢ can be decided in time
O(|S? - 200Dy,

Theorem: The generalized model-checking problem for CTL is EXPTIME-complete.

Theorem: (Summary) Let L denote propositional logic, propositional modal logic,
CTL, or any branching-time logic including CTL (such as CTL* or the modal p-
calculus). The generalized model-checking problem for the logic L has the same
complexity as the satisfiability problem for L. [Bruns-G00]

Page 13

Summary on Complexity in |¢|

Model Checking: (3-valued semantics)

o MC can be reduced to two 2-valued MC problems.

o MC has the same complexity as 2-valued MC.
Generalized Model Checking: (thorough 3-val. sem.)

e For BTL, GMC has the same complexity as satisfiablity.
e For LTL, GMC is harder than satisfiablity and MC.

Logic MC SAT GMC

PL Linear NP-Complete NP-Complete
PML Linear PSPACE-Complete | PSPACE-Complete
CTL Linear EXPTIME-Complete | EXPTIME-Complete

p-calculus NPNco-NP EXPTIME-Complete | EXPTIME-Complete

LTL PSPACE-Complete | PSPACE-Complete | 2EXPTIME-Complete

Page 15

Application: Automatic Abstraction

Idea: Given a concrete system C, if C' |= ¢ cannot be decided, generate a (smaller)
abstraction A and check A = ¢ instead.

Example: predicate abstraction
e Let 9, ...,1, be n predicates on variables of C.

o Abstract states are vectors of n bits b;.

e A concrete state ¢ is abstracted by an abstract state
[= (by,...,by) EV1 <i<mn:b =c).
State of the art: A is a traditional 2-valued model with
(c1 = e2) = ([a1] = [e2]).
In other words, A simulates C'. Remember, this implies:
o If ¢ is a V-property, A = ¢ implies C' = ¢,
e but A £ ¢ does not imply anything about C'!

Page 17

Linear-Time Temporal Logics [G-Piterman09]

Theorem: (LTL) Given a state sy of partial Kripke structure M = (S, L, R)
and an LTL formula ¢, one can construct an alternating parity word automaton
A5, over a l-letter alphabet with at most O(]S] - 22‘0“0{’(‘0‘)) states and 20(7))
priorities such that

(3(M', s0) = so = s and (M, s0) = @) iff L(Aas,s).0) 7 0.

Theorem: The generalized model-checking problem for a state sy of a partial
Kripke structure M = (S, L, R) and an LTL formula ¢ can be decided in time
polynomial in |S| and doubly exponential in |¢].

Theorem: The generalized model-checking problem for linear-time temporal logic
is 2EXPTIME-complete.

For LTL, generalized model checking is thus harder than satisfiability and model
checking! (both of these problems are PSPACE-complete for LTL)

Note: similar phenomenon for “realizability” and “synthesis” for LTL specifications
[Abadi-Lamport-Wolper89, Pnueli-Rosner89].

Page 14

Complexity of GMC in |M]|

For CTL, GMC can be solved in time quadratic in |A/| [Bruns-G00].
For LTL, GMC can be solved in time polynomial in |M| [G-Piterman00]:
e linear for safety (Op) and weak (recognizable by DWW) properties

e quadratic for response (O(p — < q), persistence (& Op) and generalized reac-
tivity[1] properties [Kesten-Piterman-Pnueli03]

Note: for CTL and LTL, GMC is PTIME-hard in | M| while MC is NLOGSPACE-
complete in |M| [GO3]

Page 16

Automatic Abstraction Revisited

Observation: A should really be a 3-valued model!
For instance, A can be represented by a modal transition system.
Abstraction relation:
L (e1 = &) = ([c1] —may [c2])
2. (Ve € [a] - Fe; — ¢j Aej € [d]) = ([a] —must [@])
By construction, A < C.

Computing an MTS A using (1)+(2) can be done at the same computational cost
(same complexity) as computing a “conservative” abstraction (simulation) using (1)
alone: (2) can be built by dualizing all the steps necessary to build (1).

This is shown for predicate and cartesian abstraction in [G-Huth-Jagadeesan01].

Page 18

Automatic Abstraction Process

Traditional iterative abstraction procedure:

1. Abstract: compute M4 that simulates M.

2. Check: given a universal property ¢, check My = ¢.
o if M4 |= ¢: stop (the property is proved: M¢ = ¢).
o if My [£ ¢: go to Step 3.

3. Refine: refine My. Then go to Step 1.

New procedure for automatic abstraction: (3 improvements)
1. Abstract: compute My such that My < M¢ (same cost as above [GHJO01])
2. Check: given any property ¢,

1. (3-valued model checking) compute [M4 = ¢].
o if [My |= ¢] = true or false: stop .
o if [M4 = ¢] =L, continue.
2. (generalized model checking) compute [My = ;.

o if [My |= @, = true or false: stop .
o if [My = ¢ =L, go to Step 3.

3. Refine: refine M. Then go to Step 1.

Page 19

Precision of GMC Vs. MC

How often is GMC more precise than MC? See [G-Huth05]:

e Studies when it is possible to reduce GMC(M, ¢) to MC(M, ¢').
e ¢/ is called a semantic minimization of .

e Shows that PL (already known), PML, and pi-calculus are closed under semantic
minimization, but not LTL, CTL or CTL*.

o Identifies self-minimizing formulas, i.e., ¢’s for which GMC(M, ¢) = MC(M, ¢)
o semantically (using automata-theoretic techniques, EXPTIME-hard in |4
for p-calculus) and
o syntactically (sufficient criterion only, linear in |@|).
e Ex (syntactic): Any formula that does not contain any atomic proposition in
mixed polarity (in its negation normal form) is self-minimizing.
o Note: the converse is not true (e.g., (—q1 V ¢2) A (=2 V 1) s self-minimizing).
o For any self-minimizing formula, GMC and MC have the same precision.
e Good news: many frequent formulas of practical interest are self-minimizing,
and MC is as precise as GMC for those.

Page 21

3-Valued Abstractions for Games

Study abstractions of games where moves of each player can now be abstracted,
while preserving winning strategies of both players [de Alfaro-G-Jagadeesan04]:

e An abstraction of a game is now a game where each player has both may and
must moves (yielding may/must strategies).

e Completeness preorder is now an alternating refinement relation, logically
characterized by 3-valued alternating p-calculus [Alur-Henzinger-Kupferman02].

Page 23

Example

Predicate abstraction with p : “is x odd?” and ¢ : “is y odd?” such that My < Cy:

program C2() { 2
xy = 10; (P=T.4=F)
xy = 2 ()

x,y = 1,0; s2° O (p=F.q0

}

s2"() (P=T,q=F)

M2

For o = O qgANO(pV —q), [(Ma,s2) |= ¢o] =L, but [(My, s2) = ¢o)s = false
(i.e., there does not exist a concretization of (Ma, s2) that satisfies ¢).

Thus, GMC is more precise than MC in this case.

(Same for the safety property ¢y = Xq A O(pV —q).)

Page 20

3-Valued Abstractions for Open Systems

Open system: system interacting with its environment.

Module Checking (ModC) [Kupferman-Vardio6]: given an open system M
and a formula ¢, does M satisfy ¢ in all possible environments?

Example: (vending machine)
is it always possible for M to eventually serve tea?

o MC(M, AGEF tea) = true
o ModC(M, AGEF tea) = false !

.~’choose™.

coffee tes

Generalized Module Checking (GModC) [G03]: given A and ¢, does there
exist a concretization C' of A such that C' satisfies ¢ in all possible environments?

Two simulataneous games here: one with the environment, one with L values...

Yet, GModC can be solved at the same cost as GMC (for LTL and BTL) [G03].

Page 22

Semantic Completeness

Given any infinite-state system C' and property ¢, if C' satisfies ¢, then there exists
a finite-state abstraction A such that A satisfies ¢.

e LTL: True if abstractions extended with fairness constraints [Kesten-Pnueli00]

Example: TN
o var x; actions (-) if (x>0) x:=x-1; ‘\ x
o property: AF(= P) with P= (x> 0) oL, _ /O
o self-loop is unfair (models termination) R

P=F P=T

e y~calculus: True if must transitions can be nondeterministic [Larsen-Xinxin90]
(aka hyper-must) [Namjoshi03, Dams-Namjoshi04, deAlfaro-G-Jagadeesan04]

STTTTelAY +
])OO
C op=T

Example: [Namjoshi03]
o var x;

actions (-) x:=x-1; (+) x:=x+1; _%
o property: EF(P) with P= (x> 0)

o hyper-must transition (P=F, P=F or P=T) b

The construction of abstraction is now compositional (cf. [G-Huth-Jagadeesan01],
[Shoham-Grumberg04], [de Alfaro-G-Jagadeesan04]).

Page 24

Conclusions

3-Valued models and logics can be used to check any property, while guaranteeing
soundness of counter-examples.

Generalized Model Checking means checking whether there exists a concretization
of an abstraction that satisfies a temporal logic formula.

It can be used to improve precision of automatic abstraction, for a reasonable cost:

o Cost can be higher in the size of the formula...
but only worst-case and formulas are short.

e Cost can be higher (e.g., quadratic) in the size of the model...
but is the same (linear) for popular properties (e.g., safety).
In an “abstract-check-refine” procedure, GMC is only polynomial in the size of the
abstraction, and may prevent the unnecessary generation and analysis of possibly

exponentially larger refinements of that abstraction.

In practice, use first a syntactic formula check for self-minimization:
MC has then the same precision as GMC (often the case).

Page 25

Some Other Related Work

“Mixed transition systems” [Dams-Gerth-Grumberg94]
o Intuitively, a mixed transition system is an MTS without the constraint 244 C %
o More expressive: some mixed T'S cannot be refined into any complete system.
o Still, their goal is very similar (i.e., design may/must abstractions for MC).
“Extended transition systems” [Milner81] = LTS + “divergence predicate”
o In [Bruns-G99], it is shown that 3-valued Hennessy-Milner Logic logically char-
acterizes the “divergence preorder” [Milner81,Walker90].
e Close correspondence with Plotkin’s intuitionistic modal logic (inspired Bruns-
GO0 reduction from 3-val to 2-val MC).
3-Valued logic for program analysis: [Sagiv-Reps-Wilhelm99] shape graphs, first-
order 3-valued logic, “focussing”,... (roughly inspired the beginning of this work
but technical details are fairly different — e.g., no 3-valued abstraction on control)
Conservative abstraction for the full mu-calculus: [Saidi-Shankar99)
Yasm: 3-valued predicate abstraction tool [Gurfinkel-Chechik]

Abstraction refinement for 3-valued models [Shoham-Grumberg] ete.

Page 26

