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Software Model Checking 

• How to apply model checking to analyze software? 

– “Real” programming languages (e.g., C, C++, Java), 

– “Real” size (e.g., 100,000’s lines of code). 

• Two main approaches to software model checking: 

 
Modeling languages 

Programming languages 

Model checking 

Systematic testing 

state-space exploration 

state-space exploration 

abstraction adaptation 

(SLAM, Bandera, 
FeaVer, BLAST, 
CBMC,…) 

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,… 

Data inputs:   DART, EXE, SAGE,… 
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Overview 

Note: DART: combines program analysis, testing, model 
checking and constraint solving (theorem proving) 

• SMASH: Compositional May-Must Program Analysis: 
Unleashing the Power of Alternation [POPL’10, with 
Aditya Nori, Sriram Rajamani, Sai Deep Tetali] 

• Proving Memory Safety of Floating-Point Computations 
by Combining Static and Dynamic Program Analysis  
[with Johannes Kinder] 
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Compositional May-Must Program Analysis: 

 
Unleashing the Power of Alternation 

 
[POPL’10] 

 

P. Godefroid, A. Nori, S. Rajamani, S. Tetali 
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Compositional May/Must Program Analysis 

• May: over-approximation 
– Sound proofs 

• Must: under-approximation 
– Sound bugs 

• May/Must: 3-valued world (Sound bugs and proofs!) 
– How connected? 

• Shared abstract states (Modal Transition Systems, etc.) 
• Shared transitions: Synergy/Dash (more later) 

• Compositional May/Must: (this paper) 
– memoize intermediate results as may/must summaries 

– Allows fine-grained coupling and alternation 
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Proofs 

2:ρ 

0 

2: ¬ρ 

3:ρ 4: ¬ρ 

5: ¬ρ 

1:ρ 

9:ρ 

6:ρ 7: ¬ρ 

8: ¬ρ 

11 10 
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1: ¬ρ 

4:ρ 3: ¬ρ 

5:ρ 

7:ρ 6::¬ρ 

8:ρ 

ρ = (lock != 1)  
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An Algorithm: SMASH = Compositional DASH 

• (Not-)May = predicate abstraction                          
(as in SLAM) 

• Must = symbolic execution                   
(precise, whole-program path, as in DART) 

• Frontier: Boundary between tested and 
untested regions (as in Synergy/DASH) 

– Intersection of the not-may (backward) and 
must (forward) abstractions 

– Extend the frontier  the not-may and must 
abstractions are refined in one step 
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May-Must analysis 
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May-Must analysis 
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May-Must analysis 
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• Synergy/Dash [FSE ’06, ISSTA ‘08]  

frontier 
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An Algorithm: SMASH = Compositional DASH 

• (Not-)May = predicate abstraction                          
(as in SLAM) 

• Must = symbolic execution                   
(precise, whole-program path, as in DART) 

• Frontier: Boundary between tested and 
untested regions (as in Synergy/DASH) 

– Intersection of the not-may (backward) and 
must (forward) abstractions 

– Extend the frontier  the not-may and must 
abstractions are refined in one step 

• SMASH = Compositional DASH 

– Do DASH intraprocedurally 

– Memoize and re-use may/must summaries 
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SMASH is implemented in YOGI (in SDV) 

We have unleashed the power of alternation ! 

Experiments with 69 Win7 device drivers (342KLOC), 85 properties 
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Summary 

• SMASH is a unified framework for compositional 
may-must program analysis 

• We have explained SMASH in the context of 
existing analyses (SLAM, DART, Synergy/Dash …) 
in the area 

• Empirical evaluation shows that SMASH can 
significantly outperform may-only, must-only 
and non-compositional may-must algorithms 

• http://research.microsoft.com/yogi 
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Remarks 

• C code is first abstractly interpreted (= simplified) 

– No pointer arithmetic (e.g., *(p+1) is treated as *p) 
• Strictly speaking, neither sound nor complete (as in SLAM) 

– Logic encoding: propositional logic, linear arithmetic and 
uninterpreted functions 

• The environment is modeled abstractly (as in SDV) 

• Each property is checked one by one 

– This is a “property-guided” setting (unlike DART and SAGE) 
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Proving Memory Safety of  
Floating-Point Computations by  

Combining Static and Dynamic Program Analysis 
 

[ISSTA’10] 

 

Patrice Godefroid         Johannes Kinder 
 

Page 17 October 2010 Patrice Godefroid 

SAGE: Current Limitations 

• Symbolic execution is incomplete – a full 
implementation for x86 would have to model hundreds 
of instructions 

– Floating point 

– SIMD extensions (Intel SSE, SSE2, SSE3, …) 

• Input data that passes through these instructions will 
not show up in the path constraint 

• Branches cannot be explored, bugs could be missed! 

• These kinds of instructions are commonly used in 
media codecs: is this an issue? 
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Naïve Handling of FP / SIMD code 

• Extend bit-precise symbolic execution to include all 
instructions and additional registers  

• But: Z3 cannot even reason about floating point 
numbers, so extend that, too! 

• Collect and solve even more constraints, worsen path 
explosion problem 

Will this really 
help us find 
more bugs? 
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Header vs. Payload 

• Bugs in media parsers are usually due to malformed header 
information about offsets, sizes, etc. 

• Processing of the payload should not interfere with address 
calculations 

– like “data independence” in protocol verification [Wolper86] 

• Intuition: 

– FP code is used for data-processing 

– Non-FP code is used for buffer allocation and indexing 

• Idea: prove memory safety of FP code  AND  
non-interference between FP and security critical non-FP code 

– SAGE can catch all unsafe memory accesses without 
understanding FP code 

– What level of precision is needed for the static analysis? 
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Example 

• Floating point instructions 
invisible to SAGE 

 

void process(double *inBuf, double 

*outBuf, int i) 

{ 

 … 

  outBuf[i] = 2.5 * inBuf[i]; 

 

 … 

} 

 

 … 

mov esi, [ebp + 8]       ;inBuf 

mov edi, [ebp + 12]      ;outBuf 

 … 

mov eax, [ebp + 16]      ;i 

fld qword ptr [const2.5] ;2.5 

fld [esi + eax]          ;inBuf[i] 

fmulp                    ;* 

fstp qword ptr [edi+eax] ;outBuf[i] 

 

 … 
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Example 

• Floating point instructions 
invisible to SAGE 

• An FP instruction is memory 
safe if its addresses are 
within bounds 

 

void process(double *inBuf, double 

*outBuf, int i) 

{ 

 … 

  outBuf[i] = 2.5 * inBuf[i]; 

 

 … 

} 

 

 … 

mov esi, [ebp + 8]       ;inBuf 

mov edi, [ebp + 12]      ;outBuf 

 … 

mov eax, [ebp + 16]      ;i 

fld qword ptr [const2.5] ;2.5 

fld [esi + eax]          ;inBuf[i] 

fmulp                    ;* 

fstp qword ptr [edi+eax] ;outBuf[i] 

 

 … 
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Example 

• Floating point instructions 
invisible to SAGE 

• An FP instruction is memory 
safe if its addresses are 
within bounds 

• An FP instruction cannot 
interfere with critical code, 
if its output is never used 
for 

– Computing an address 

– Conditional jumps 

void process(double *inBuf, double 

*outBuf, int i) 

{ 

 … 

  outBuf[i] = 2.5 * inBuf[i]; 

 

 … 

} 

 

 … 

mov esi, [ebp + 8]       ;inBuf 

mov edi, [ebp + 12]      ;outBuf 

 … 

mov eax, [ebp + 16]      ;i 

fld qword ptr [const2.5] ;2.5 

fld [esi + eax]          ;inBuf[i] 

fmulp                    ;* 

fstp qword ptr [edi+eax] ;outBuf[i] 

 

 … 
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Example 

• Floating point instructions 
invisible to SAGE 

• An FP instruction is memory 
safe if its addresses are 
within bounds 

• An FP instruction cannot 
interfere with critical code, 
if its output is never used 
for 

– Computing an address 

– Conditional jumps 

void process(double *inBuf, double 

*outBuf, int i) 

{ 

 … 

  outBuf[i] = 2.5 * inBuf[i]; 

 

 … 

} 

 

 … 

mov esi, [ebp + 8]       ;inBuf 

mov edi, [ebp + 12]      ;outBuf 

 … 

mov eax, [ebp + 16]      ;i 

fld qword ptr [const2.5] ;2.5 

fld [esi + eax]          ;inBuf[i] 

fmulp                    ;* 

fstp qword ptr [edi+eax] ;outBuf[i] 

 

 … 

 

 

Discharge to dynamic 
analysis as 

preconditions 

Discharge to dynamic 
analysis as 

postconditions 
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Statically Compute Pre/Postconditions 

• Statically generate pre/postconditions for FP instrs: 

– Preconditions for memory safety: list of registers used to 
compute addresses 

• Non-float dependent values: handled by SAGE’s bounds checker 

• Float dependent values: (not handled ) report unsafe! 

 

 

 

 

– Postconditions for side effects: list of registers and memory 
locations that become float dependent will be dynamically 
tagged by SAGE as “FP-tag” 

 

 

fstp qword ptr [edi+eax] 
Non-float: 
{ edi, eax } 

Float: 
{[edi + eax] : 8} 

Static Precondition Static Postcondition 
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Dynamically Check & Enforce at Runtime 

• Dynamically check preconditions for memory safety 

– Preconditions disallow addressing using FP-tagged variables 

• Dynamically enforce postconditions:  

– Tag variables at runtime as float dependent “FP-tag” (i.e., 
unusable in constraint solving) 

– Variables tagged as FP-tag propagate through SAGE’s 
regular symbolic execution when handled by non-FP code  

– Disallow conditional jumps that depend on FP-tagged 
variables (by reporting unsafe!) 

 Too restrictive since floating point values are used in 
conditional statements: too many “unsafe” are reported! 
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Example – Floating Point Conditional 

• SAGE cannot flip 
branches that depend 
on floating point values 

• Do we really need to 
flip the branch to prove 
memory safety? 

 

 

 

void process(double *inBuf, double 

*outBuf, int size) 

{ 

 outBuf[i] = 2.5 * inBuf[i]; 

 

 if (outBuf[i] > 10.3) 

 { 

    outBuf[i] = inBuf[i] / 4.3; 

 } 

… 

} 

 

• Memory safety of the complete block depends only on i 
• Idea: same scheme but applied to FP-tainted conditional blocks ! 

• Precondition for entire block: i is neither float nor “input dependent” 

• That is, i has no symbolic value 

• = new “attacker memory safety”  (=“not directly attacker-controllable”) 

• Postconditions require only to taint outBuf[i] with FP-tag 
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Block Summaries by Static Analysis 

• Statically, for every conditional jump, 
summarize pre- and postconditions in both 
branches 

– Every value that is modified becomes FP-tagged 
(control dependence) 

– For function calls inside branches, recursively 
generate function summaries 

• Dynamically, for every FP-tag dependent 
conditional jumps, SAGE 

– reads the static block summary and checks the 
preconditions for memory safety of the entire block 

– injects FP tags at the immediate postdominator for 
all variables in the postcondition 

 

IPDOM 

conditional 
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constraint 

constraint 

constraint 

constraint 

Old Symbolic Execution – Regular SAGE 

28 

• Start with concrete trace 
containing several conditional 
jumps which have either been 
taken or not 

• Generate constraints over inputs 
for conditionals 

• Symbolic values generalize 
concrete ones 

• Note: Only some conditionals are 
input dependent and become part 
of the path constraint 

Page 29 October 2010 Patrice Godefroid 

New FP-Aware Symbolic Execution 

• Start with concrete trace 

• When encountering FP code, tag 
variables according to 
postconditions 

• For FP dependent conditionals, 
use statically generated may-
summary to over-approximate 
ALL executions of the if-then-
else block 

FP code 

must 

 may 
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Real World Issues 

• C-runtime contains some SSE optimized assembly code 

• SSE2 versions of memzero and memcpy 

– Used depending on memory alignment 

– Handle non-payload data, inject lots of  
FP-tags,  lots of false alarms! 

• memzero 

– Assigns a constants, no tag needed 

– Extend static analysis to detect that 

• memcpy 

– Detect memcpy idiom in binary 

– Special postcondition for copying input and FP tags 
30 

Memzero: Clear 128 bytes 
per iteration 
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Experimental Results – Static Analysis 

• 14 DLLs shared by all three parsers 

• All conditionals processed, only dynamic analysis 
discriminates FP / non-FP 

– Safe: Precondition is true 

– Unsafe: Precondition is false 

– Conditionally safe: otherwise 

 
31 

DLLs All instr. FP 
instr. 

Conditio-
nals 

Safe Cond. 
Safe 

Unsafe Time 

JPEG 16 2,127,862 15,334 212,158 6.4% 9.8% 83.8% 418s 

GIF 19 2,860,801 41,455 275,635 6.4% 11.1% 82.5% 623s 

ANI 15 1,753,916 7,774 172,652 5.5% 11.7% 82.8% 306s 
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Experimental Results – Dynamic Analysis 

• 12 different seed files (~1Kbytes) per format, 1 execution per file 

• JPEG & GIF: unsafe warnings appear before any input is read – not 
attacker controllable, therefore safe 

• ANI: Same warnings, but after input is read (math error handler) 

• Runtime overhead: ~20% compared to regular symbolic execution 
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All instr. FP instr. Total FP 
cond. 

Safe FP cond. Unsafe FP cnd. 

Full Input Full Input Full Input Full Input Full Input 

JPEG Occurr 26,712,705 21,983,468 7,826 7,320 45 4 39 (87%) 4 6 (13%) 0 

Unique 86,763 104 89 28 1 26 (93%) 1 2 (7%) 0 

GIF Occurr 8,952,406 4,786,801 3,856 0 435 0 299(69%) 0 136 (31%) 0 

Unique 133,958 68 0 36 0 32 (89%) 0 4 (11%) 0 

ANI Occurr 1,581,268 1,207,886 134 39 41 21 35 (85%) 15 6 (15%) 6 

Unique 29,722 16 13 27 7 25 (93%) 5 2 (7%) 2 
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Limitations 

• Depends on soundness of SAGE 

– symbolic execution of the integer part 

• Depends on soundness of Vulcan 

– Dominator information inaccurate 

– Control flow information sometimes unreliable 

• Control flow through exceptions is not supported by 
the static analysis 
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Conclusions and Future Work 

• Proving memory safety of floating point computations 
by combining a lightweight static analysis and a 
precise dynamic analysis (SAGE) 

• Analysis of FP computations for JPEG, GIF, ANI 

– Static analysis quickly pre-processes large binaries 

– Intuition was correct – FP computations did not interfere 
with memory safety 

• Future work: 

– More experiments! 

– New bugs? 

– Identify other opportunities for cheap over-approximation 
instead of exploring precise paths 

 

 


