
Page 1 October 2010 Patrice Godefroid

Lecture 5:

Combining Static and Dynamic
Software Model Checking

Patrice Godefroid

Microsoft Research

Page 2 October 2010 Patrice Godefroid

Software Model Checking

• How to apply model checking to analyze software?

– “Real” programming languages (e.g., C, C++, Java),

– “Real” size (e.g., 100,000’s lines of code).

• Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation

(SLAM, Bandera,
FeaVer, BLAST,
CBMC,…)

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,…

Data inputs: DART, EXE, SAGE,…

Page 3 October 2010 Patrice Godefroid

Overview

Note: DART: combines program analysis, testing, model
checking and constraint solving (theorem proving)

• SMASH: Compositional May-Must Program Analysis:
Unleashing the Power of Alternation [POPL’10, with
Aditya Nori, Sriram Rajamani, Sai Deep Tetali]

• Proving Memory Safety of Floating-Point Computations
by Combining Static and Dynamic Program Analysis
[with Johannes Kinder]

Page 4 October 2010 Patrice Godefroid

Compositional May-Must Program Analysis:

Unleashing the Power of Alternation

[POPL’10]

P. Godefroid, A. Nori, S. Rajamani, S. Tetali

Page 5 October 2010 Patrice Godefroid

Compositional May/Must Program Analysis

• May: over-approximation
– Sound proofs

• Must: under-approximation
– Sound bugs

• May/Must: 3-valued world (Sound bugs and proofs!)
– How connected?

• Shared abstract states (Modal Transition Systems, etc.)
• Shared transitions: Synergy/Dash (more later)

• Compositional May/Must: (this paper)
– memoize intermediate results as may/must summaries

– Allows fine-grained coupling and alternation

Page 6 October 2010 Patrice Godefroid

a↦true
 b↦false
limit↦2

×

Tests

×

×

×

×

×

×

×

×

×

×
×

×

×

test

Page 7 October 2010 Patrice Godefroid

Proofs

2:ρ

0

2: ¬ρ

3:ρ 4: ¬ρ

5: ¬ρ

1:ρ

9:ρ

6:ρ 7: ¬ρ

8: ¬ρ

11 10

9: ¬ρ

1: ¬ρ

4:ρ 3: ¬ρ

5:ρ

7:ρ 6::¬ρ

8:ρ

ρ = (lock != 1)

Page 8 October 2010 Patrice Godefroid

An Algorithm: SMASH = Compositional DASH

• (Not-)May = predicate abstraction
(as in SLAM)

• Must = symbolic execution
(precise, whole-program path, as in DART)

• Frontier: Boundary between tested and
untested regions (as in Synergy/DASH)

– Intersection of the not-may (backward) and
must (forward) abstractions

– Extend the frontier  the not-may and must
abstractions are refined in one step

0

1

2

3

4

7

8

9

×

× ×

× ×

× ×

× ×

5

6

× ×

×
×

10

frontier

Page 9 October 2010 Patrice Godefroid

May-Must analysis

0

1

2

4

6

7

3

5

frontier

Page 10 October 2010 Patrice Godefroid

May-Must analysis

0

1

2

4

6

7

3

5

frontier

Page 11 October 2010 Patrice Godefroid

May-Must analysis

0

1

2

4

6

7

3

5

2

• Synergy/Dash [FSE ’06, ISSTA ‘08]

frontier

Page 12 October 2010 Patrice Godefroid

An Algorithm: SMASH = Compositional DASH

• (Not-)May = predicate abstraction
(as in SLAM)

• Must = symbolic execution
(precise, whole-program path, as in DART)

• Frontier: Boundary between tested and
untested regions (as in Synergy/DASH)

– Intersection of the not-may (backward) and
must (forward) abstractions

– Extend the frontier  the not-may and must
abstractions are refined in one step

• SMASH = Compositional DASH

– Do DASH intraprocedurally

– Memoize and re-use may/must summaries

0

1

2

3

4

7

8

9

×

× ×

× ×

× ×

× ×

5

6

× ×

×
×

10

frontier

Page 13 October 2010 Patrice Godefroid

SMASH is implemented in YOGI (in SDV)

We have unleashed the power of alternation !

Experiments with 69 Win7 device drivers (342KLOC), 85 properties

Page 14 October 2010 Patrice Godefroid

Summary

• SMASH is a unified framework for compositional
may-must program analysis

• We have explained SMASH in the context of
existing analyses (SLAM, DART, Synergy/Dash …)
in the area

• Empirical evaluation shows that SMASH can
significantly outperform may-only, must-only
and non-compositional may-must algorithms

• http://research.microsoft.com/yogi

Page 15 October 2010 Patrice Godefroid

Remarks

• C code is first abstractly interpreted (= simplified)

– No pointer arithmetic (e.g., *(p+1) is treated as *p)
• Strictly speaking, neither sound nor complete (as in SLAM)

– Logic encoding: propositional logic, linear arithmetic and
uninterpreted functions

• The environment is modeled abstractly (as in SDV)

• Each property is checked one by one

– This is a “property-guided” setting (unlike DART and SAGE)

Page 16 October 2010 Patrice Godefroid

Proving Memory Safety of
Floating-Point Computations by

Combining Static and Dynamic Program Analysis

[ISSTA’10]

Patrice Godefroid Johannes Kinder

Page 17 October 2010 Patrice Godefroid

SAGE: Current Limitations

• Symbolic execution is incomplete – a full
implementation for x86 would have to model hundreds
of instructions

– Floating point

– SIMD extensions (Intel SSE, SSE2, SSE3, …)

• Input data that passes through these instructions will
not show up in the path constraint

• Branches cannot be explored, bugs could be missed!

• These kinds of instructions are commonly used in
media codecs: is this an issue?

Page 18 October 2010 Patrice Godefroid

Naïve Handling of FP / SIMD code

• Extend bit-precise symbolic execution to include all
instructions and additional registers

• But: Z3 cannot even reason about floating point
numbers, so extend that, too!

• Collect and solve even more constraints, worsen path
explosion problem

Will this really
help us find
more bugs?

Page 19 October 2010 Patrice Godefroid

Header vs. Payload

• Bugs in media parsers are usually due to malformed header
information about offsets, sizes, etc.

• Processing of the payload should not interfere with address
calculations

– like “data independence” in protocol verification [Wolper86]

• Intuition:

– FP code is used for data-processing

– Non-FP code is used for buffer allocation and indexing

• Idea: prove memory safety of FP code AND
non-interference between FP and security critical non-FP code

– SAGE can catch all unsafe memory accesses without
understanding FP code

– What level of precision is needed for the static analysis?

Page 20 October 2010 Patrice Godefroid

Example

• Floating point instructions
invisible to SAGE

void process(double *inBuf, double

*outBuf, int i)

{

 …

 outBuf[i] = 2.5 * inBuf[i];

 …

}

 …

mov esi, [ebp + 8] ;inBuf

mov edi, [ebp + 12] ;outBuf

 …

mov eax, [ebp + 16] ;i

fld qword ptr [const2.5] ;2.5

fld [esi + eax] ;inBuf[i]

fmulp ;*

fstp qword ptr [edi+eax] ;outBuf[i]

 …

Page 21 October 2010 Patrice Godefroid

Example

• Floating point instructions
invisible to SAGE

• An FP instruction is memory
safe if its addresses are
within bounds

void process(double *inBuf, double

*outBuf, int i)

{

 …

 outBuf[i] = 2.5 * inBuf[i];

 …

}

 …

mov esi, [ebp + 8] ;inBuf

mov edi, [ebp + 12] ;outBuf

 …

mov eax, [ebp + 16] ;i

fld qword ptr [const2.5] ;2.5

fld [esi + eax] ;inBuf[i]

fmulp ;*

fstp qword ptr [edi+eax] ;outBuf[i]

 …

Page 22 October 2010 Patrice Godefroid

Example

• Floating point instructions
invisible to SAGE

• An FP instruction is memory
safe if its addresses are
within bounds

• An FP instruction cannot
interfere with critical code,
if its output is never used
for

– Computing an address

– Conditional jumps

void process(double *inBuf, double

*outBuf, int i)

{

 …

 outBuf[i] = 2.5 * inBuf[i];

 …

}

 …

mov esi, [ebp + 8] ;inBuf

mov edi, [ebp + 12] ;outBuf

 …

mov eax, [ebp + 16] ;i

fld qword ptr [const2.5] ;2.5

fld [esi + eax] ;inBuf[i]

fmulp ;*

fstp qword ptr [edi+eax] ;outBuf[i]

 …

Page 23 October 2010 Patrice Godefroid

Example

• Floating point instructions
invisible to SAGE

• An FP instruction is memory
safe if its addresses are
within bounds

• An FP instruction cannot
interfere with critical code,
if its output is never used
for

– Computing an address

– Conditional jumps

void process(double *inBuf, double

*outBuf, int i)

{

 …

 outBuf[i] = 2.5 * inBuf[i];

 …

}

 …

mov esi, [ebp + 8] ;inBuf

mov edi, [ebp + 12] ;outBuf

 …

mov eax, [ebp + 16] ;i

fld qword ptr [const2.5] ;2.5

fld [esi + eax] ;inBuf[i]

fmulp ;*

fstp qword ptr [edi+eax] ;outBuf[i]

 …

Discharge to dynamic
analysis as

preconditions

Discharge to dynamic
analysis as

postconditions
Page 24 October 2010 Patrice Godefroid

Statically Compute Pre/Postconditions

• Statically generate pre/postconditions for FP instrs:

– Preconditions for memory safety: list of registers used to
compute addresses

• Non-float dependent values: handled by SAGE’s bounds checker

• Float dependent values: (not handled ) report unsafe!

– Postconditions for side effects: list of registers and memory
locations that become float dependent will be dynamically
tagged by SAGE as “FP-tag”

fstp qword ptr [edi+eax]
Non-float:
{ edi, eax }

Float:
{[edi + eax] : 8}

Static Precondition Static Postcondition

Page 25 October 2010 Patrice Godefroid

Dynamically Check & Enforce at Runtime

• Dynamically check preconditions for memory safety

– Preconditions disallow addressing using FP-tagged variables

• Dynamically enforce postconditions:

– Tag variables at runtime as float dependent “FP-tag” (i.e.,
unusable in constraint solving)

– Variables tagged as FP-tag propagate through SAGE’s
regular symbolic execution when handled by non-FP code

– Disallow conditional jumps that depend on FP-tagged
variables (by reporting unsafe!)

 Too restrictive since floating point values are used in
conditional statements: too many “unsafe” are reported!

Page 26 October 2010 Patrice Godefroid

Example – Floating Point Conditional

• SAGE cannot flip
branches that depend
on floating point values

• Do we really need to
flip the branch to prove
memory safety?

void process(double *inBuf, double

*outBuf, int size)

{

 outBuf[i] = 2.5 * inBuf[i];

 if (outBuf[i] > 10.3)

 {

 outBuf[i] = inBuf[i] / 4.3;

 }

…

}

• Memory safety of the complete block depends only on i
• Idea: same scheme but applied to FP-tainted conditional blocks !

• Precondition for entire block: i is neither float nor “input dependent”

• That is, i has no symbolic value

• = new “attacker memory safety” (=“not directly attacker-controllable”)

• Postconditions require only to taint outBuf[i] with FP-tag

Page 27 October 2010 Patrice Godefroid

Block Summaries by Static Analysis

• Statically, for every conditional jump,
summarize pre- and postconditions in both
branches

– Every value that is modified becomes FP-tagged
(control dependence)

– For function calls inside branches, recursively
generate function summaries

• Dynamically, for every FP-tag dependent
conditional jumps, SAGE

– reads the static block summary and checks the
preconditions for memory safety of the entire block

– injects FP tags at the immediate postdominator for
all variables in the postcondition

IPDOM

conditional

Page 28 October 2010 Patrice Godefroid

constraint

constraint

constraint

constraint

Old Symbolic Execution – Regular SAGE

28

• Start with concrete trace
containing several conditional
jumps which have either been
taken or not

• Generate constraints over inputs
for conditionals

• Symbolic values generalize
concrete ones

• Note: Only some conditionals are
input dependent and become part
of the path constraint

Page 29 October 2010 Patrice Godefroid

New FP-Aware Symbolic Execution

• Start with concrete trace

• When encountering FP code, tag
variables according to
postconditions

• For FP dependent conditionals,
use statically generated may-
summary to over-approximate
ALL executions of the if-then-
else block

FP code

must

 may

Page 30 October 2010 Patrice Godefroid

Real World Issues

• C-runtime contains some SSE optimized assembly code

• SSE2 versions of memzero and memcpy

– Used depending on memory alignment

– Handle non-payload data, inject lots of
FP-tags, lots of false alarms!

• memzero

– Assigns a constants, no tag needed

– Extend static analysis to detect that

• memcpy

– Detect memcpy idiom in binary

– Special postcondition for copying input and FP tags
30

Memzero: Clear 128 bytes
per iteration

Page 31 October 2010 Patrice Godefroid

Experimental Results – Static Analysis

• 14 DLLs shared by all three parsers

• All conditionals processed, only dynamic analysis
discriminates FP / non-FP

– Safe: Precondition is true

– Unsafe: Precondition is false

– Conditionally safe: otherwise

31

DLLs All instr. FP
instr.

Conditio-
nals

Safe Cond.
Safe

Unsafe Time

JPEG 16 2,127,862 15,334 212,158 6.4% 9.8% 83.8% 418s

GIF 19 2,860,801 41,455 275,635 6.4% 11.1% 82.5% 623s

ANI 15 1,753,916 7,774 172,652 5.5% 11.7% 82.8% 306s

Page 32 October 2010 Patrice Godefroid

Experimental Results – Dynamic Analysis

• 12 different seed files (~1Kbytes) per format, 1 execution per file

• JPEG & GIF: unsafe warnings appear before any input is read – not
attacker controllable, therefore safe

• ANI: Same warnings, but after input is read (math error handler)

• Runtime overhead: ~20% compared to regular symbolic execution

32

All instr. FP instr. Total FP
cond.

Safe FP cond. Unsafe FP cnd.

Full Input Full Input Full Input Full Input Full Input

JPEG Occurr 26,712,705 21,983,468 7,826 7,320 45 4 39 (87%) 4 6 (13%) 0

Unique 86,763 104 89 28 1 26 (93%) 1 2 (7%) 0

GIF Occurr 8,952,406 4,786,801 3,856 0 435 0 299(69%) 0 136 (31%) 0

Unique 133,958 68 0 36 0 32 (89%) 0 4 (11%) 0

ANI Occurr 1,581,268 1,207,886 134 39 41 21 35 (85%) 15 6 (15%) 6

Unique 29,722 16 13 27 7 25 (93%) 5 2 (7%) 2

Page 33 October 2010 Patrice Godefroid

Limitations

• Depends on soundness of SAGE

– symbolic execution of the integer part

• Depends on soundness of Vulcan

– Dominator information inaccurate

– Control flow information sometimes unreliable

• Control flow through exceptions is not supported by
the static analysis

Page 34 October 2010 Patrice Godefroid

Conclusions and Future Work

• Proving memory safety of floating point computations
by combining a lightweight static analysis and a
precise dynamic analysis (SAGE)

• Analysis of FP computations for JPEG, GIF, ANI

– Static analysis quickly pre-processes large binaries

– Intuition was correct – FP computations did not interfere
with memory safety

• Future work:

– More experiments!

– New bugs?

– Identify other opportunities for cheap over-approximation
instead of exploring precise paths

