
Page 1 October 2010 Patrice Godefroid

Lecture 6:

What’s Next?
Compositional Testing and Verification

Patrice Godefroid

Microsoft Research

Page 2 October 2010 Patrice Godefroid

SAGE: Automated Whitebox Security Testing

Check for

Crashes
(AppVerifier)

Code

Coverage
(Nirvana)

Generate

Constraints
(TruScan)

Solve

Constraints
(Z3)

Input0
Coverage

Data
Constraints

Input1

Input2

…
 InputN

MSR algorithms
& code inside

1. Run the program with first inputs,
2. gather constraints on inputs at

conditional statements,

3. use a constraint solver to generate
new test inputs,

4. repeat - possibly forever!

Basic idea:

Results: since 1st internal release (April 2007)

many new security-critical bugs found! (number: confidential)

(would trigger MS security bulletins if known outside MS)
SAGE is now used daily in Windows, Office, DevDiv, etc.

Example: WEX Security team for Win7

Centralized security testing for Win7 WEX (=Windows client)
SAGE running 24/7 for 1+ year on (avg.) 100+ machines

~1/3 of all Win7 WEX security bugs found by SAGE !
Regression +
Random testing

All Others SAGE

How bugs were found
(Win7 WEX Security)

SAGE was developed in
collaboration with CSE

Page 3 October 2010 Patrice Godefroid

What Next? Towards “Verification”

• When can we safely stop testing?

– When we know that there are no more bugs ! = “Verification”

– “Testing can only prove the existence of bugs, not their absence.”

– Unless it is exhaustive! This is the “model checking thesis”

– “Model Checking” = exhaustive testing (state-space exploration)

– Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation

(SLAM, Bandera,
FeaVer, BLAST,…)

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,…

Data inputs: DART, EXE, SAGE,…

[Dijkstra]

Page 4 October 2010 Patrice Godefroid

Exhaustive Testing ?

• Model checking is always “up to some bound”
– Limited (often finite) input domain, for specific properties,

under some environment assumptions
• Ex: exhaustive testing of Win7 JPEG parser up to 1,000 input bytes

– 8000 bits  2^8000 possibilities  if 1 test per sec, 2^8000 secs
– FYI, 15 billion years = 473040000000000000 secs = 2^60 secs!
 MUST be “symbolic” !  How far can we go?

• Practical goals: (easier?)
– Eradicate all remaining buffer overflows in all Windows parsers

– Better coverage guarantees to justify “no new bug found”

– Reduce costs & risks for Microsoft: when to stop fuzzing?

– Increase costs & risks for Black Hats !
• Many have probably moved to greener pastures already… (Ex: Adobe)
• Ex: <5 security bulletins in all the SAGE-cleaned Win7 parsers
• If noone can find bugs in P, P is observationally equivalent to “verified”!

Page 5 October 2010 Patrice Godefroid

How to Get There?

1. Identify and patch holes in symbolic execution +
constraint solving

2. Tackle “path explosion” with compositional testing and
symbolic test summaries [POPL’07,TACAS’08,POPL’10]

 Fuzzing in the (Virtual) Cloud (Sagan)

– New centralized server collecting stats from all SAGE runs !

– Track results (bugs, concrete & symbolic test coverage),
incompleteness (unhandled tainted x86 instructions,
Z3 timeouts, divergences, etc.)

– Help troubleshooting (SAGE has 100+ options…)

– Tell us what works and what does not

Page 6 October 2010 Patrice Godefroid

The Art of Constraint Generation

• Static analysis: abstract away “irrelevant” details

– Good for focused search, can be combined with DART (Ex: [POPL’10])

– But for bit-precise analysis of low-level code (function pointers, in-lined
assembly,...) ? In a non-property-guided setting? Open problem…

• Bit-precise VC-gen: statically generate 1 formula from a program

– Good to prove complex properties of small programs (units)

– Does not scale (huge formula encodings), asks too much of the user

• SAT/SMT-based “Bounded Model Checking”: stripped-down VC-gen

– Emphasis on automation

– Unrolling all loops is naïve, does not scale

• “DART”: the only option today for large programs (Ex: Excel)

– Path-by-path exploration is naïve, but “whitebox fuzzing” can scale it to
large executions (Z3 is not the bottleneck) + zero false alarms !

– But suffers from “path explosion”…

Page 7 October 2010 Patrice Godefroid

DART is Beautiful

• Generates formulas where the only “free” symbolic
variables are whole-program inputs

– When generating tests, one can only control inputs !

• Strength: scalability to large programs

– Only tracks “direct” input dependencies (i.e., tests on inputs);
the rest of the execution is handled with the best constant-
propagation engine ever: running the code on the computer !

– (The size of) path constraints only depend on (the number of)
program tests on inputs, not on the size of the program

 = the right metric: complexity only depends on nondeterminism!

• Price to pay: “path explosion” [POPL’07]

– Solution = symbolic test summaries

Page 8 October 2010 Patrice Godefroid

Example

void top(char input[4])

{

 int cnt = 0;

 if (input[0] == ‘b’) cnt++;

 if (input[1] == ‘a’) cnt++;

 if (input[2] == ‘d’) cnt++;

 if (input[3] == ‘!’) cnt++;

 if (cnt >= 3) crash();

}

input = “good”

I0!=„b‟

I1!=„a‟

I2!=„d‟

I3!=„!‟

Negate each constraint in path constraint
Solve new constraint  new input

Path constraint:

good

goo!

bood

gaod

godd

 I0=„b‟

 I1=„a‟

 I2=„d‟

 I3=„!‟

Gen 1

Page 9 October 2010 Patrice Godefroid

Compositionality = Key to Scalability

• Idea: compositional dynamic test generation [POPL’07]
– use summaries of individual functions (or program blocks, etc.)

• like in interprocedural static analysis
• but here “must” formulas generated dynamically

– If f calls g, test g, summarize the results, and
use g’s summary when testing f

– A summary φ(g) is a disjunction of path constraints expressed in
terms of g’s input preconditions and g’s output postconditions:

 φ(g) = φ(w) with φ(w) = pre(w) post(w)

– g’s outputs are treated as fresh symbolic inputs to f, all bound
to prior inputs and can be “eliminated” (for test generation)

• Can provide same path coverage exponentially faster !
• See details and refinements in [POPL’07,TACAS’08,POPL’10]

Page 10 October 2010 Patrice Godefroid

Example

int is_positive(int x) {

 if (x>0) return 1;

 return 0;

}

#define N 100

void top(int s[N]) {//N inputs

 int i,cnt=0;

 for (i=0;i<N;i++)

 cnt=cnt+is_positive(s[i]);

 if (cnt == 3) error(); //(*)

 return;

}

Program P={top,is_positive} has
2^N feasible whole-program paths
 DART will perform 2^N runs

SMART will perform only 4 runs !
• 2 to compute the summary
Φ = (x>0 ret=1) (x=<0 ret=0)
for function is_positive()

• 2 to execute both branches of (*),
by solving the constraint
[(s[0]>0 ret0=1) (s[0]=<0 ret0=0)]

 [(s[1]>0 ret1=1) (s[1]=<0 ret1=0)]
 ... [(s[N-1]>0 retN-1=1) (s[N-1]=<0
 retN-1=0)]
 (ret0+ret1+…+retN-1 = 3)

Page 11 October 2010 Patrice Godefroid

The Engineering of Test Summaries

• Systematically summarizing everywhere is foolish

– Very expensive and not necessary (costs outweigh benefits)

– Don’t fall into the “VC-gen or BMC traps” ! 

• Summarization on-demand: (100% algorithmic)

– When? At search bottlenecks (with dynamic feedback loop)

– Where? At simple interfaces (with simple data types)

– How? With limited side-effects (to be manageable and “sound”)

• Goal: use summaries intelligently

– THE KEY to scalable bit-precise whole-program analysis ?
• It is necessary! But in what form(s)? Is it sufficient?

• Stay tuned…

Page 12 October 2010 Patrice Godefroid

• Across different program paths

• Across different program versions

– [“Incremental Compositional Dynamic
Test Generation”, with S. Lahiri and
C. Rubio-Gonzalez, MSR TR, Feb 2010]

• Across different applications 

• Summaries avoid unnecessary work

• What if central server of
summaries for all code?... Sagan 2.0

Summaries Cure Search Redundancy

IF…THEN…ELSE

Page 13 October 2010 Patrice Godefroid

Conclusion: Towards Verification

• Tracking all(?) sources of incompleteness

• Summaries (on-demand…) against path explosion

• How far can we go?

– Reduce costs & risks for Microsoft: when to stop fuzzing?

– Increase costs & risks for Black Hats (goal already achieved?)

• For history books:

2000 2005 2010 2015

Blackbox Fuzzing Whitebox Fuzzing Verification

Page 14 October 2010 Patrice Godefroid

Conclusion: Software Model Checking

• Several independent dimensions:

– May vs. Must (universal vs. existential)

– Static vs. Dynamic (but what’s the difference really?)

– Proofs vs. Bugs (verification vs. testing)

• Dijkstra vs. Model Checking

– “Testing can only prove the existence of bugs, not their absence.”

– Unless it is exhaustive! This is the “model checking thesis”

– In practice, verification is not binary: it is a continuum

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation

