Model Checking Markov Chains Lecture 1: Probabilistic CTL

Joost-Pieter Katoen

Software Modeling and Verification Group

RWTH Aachen University

affiliated to University of Twente, Formal Methods and Tools

Lecture at Model Checking Summerschool, October 11, 2010

- When analysing system performance and dependability
 - to quantify arrivals, waiting times, time between failure, QoS, ...
- When modelling uncertainty in the environment
 - to quantify imprecisions in system inputs
 - to quantify unpredictable delays, express soft deadlines, ...
- When building protocols for networked embedded systems
 - randomized algorithms
- When problems are undecidable deterministically
 - repeated reachability of channel systems, ...

Illustrative examples

- Security: Crowds protocol
 - analysis of probability of anonymity
- IEEE 1394 Firewire protocol
 - proof that biased delay is optimal
- Systems biology
 - probability that enzymes are absent within the deadline
- Software in next generation of satellites
 - mission time probability (ESA project)

What is probabilistic model checking?

Probabilistic models

	Nondeterminism	Nondeterminism
	no	yes
Discrete time	discrete-time Markov chain (DTMC)	Markov decision process (MDP)
Continuous time	CTMC	CTMDP

Other models: probabilistic variants of (priced) timed automata, or hybrid automata

Discrete-time Markov chain

a DTMC D is a triple (S, \mathbf{P}, L) with state space S and state-labelling Land \mathbf{P} a stochastic matrix with $\mathbf{P}(s, s') =$ one-step probability to jump from s to s'

Craps

- Roll two dice and bet on outcome
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: loss ("craps")
 - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:
 - outcome 7: loss ("seven-out")
 - outcome the point: win
 - any other outcome: roll again

A DTMC model of Craps

- Come-out roll:
 - 7 or 11: win
 - 2, 3, or 12: loss
 - else: roll again
- Next roll(s):
 - 7: loss
 - point: win
 - else: roll again

Probability measure on DTMCs

- Events are *infinite paths* in the DTMC D, i.e., $\Omega = Paths(D)$
 - a path in a DTMC is just a sequence of states
- A σ -algebra on \mathcal{D} is generated by *cylinder sets* of finite paths $\hat{\pi}$:

 $Cyl(\hat{\pi}) = \{ \pi \in Paths(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$

- cylinder sets serve as basis events of the smallest σ -algebra on $Paths(\mathcal{D})$
- Pr is the *probability measure* on the σ -algebra on *Paths*(\mathcal{D}):

$$\Pr(Cyl(s_0\ldots s_n)) = \iota_{init}(s_0) \cdot \mathbf{P}(s_0\ldots s_n)$$

- where $\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \leq i < n} \mathbf{P}(s_i, s_{i+1})$ and $\mathbf{P}(s_0) = 1$, and
- $\iota_{init}(s_0)$ is the initial probability to start in state s_0

Reachability probabilities

- What is the probability to reach a set of states $B \subseteq S$ in DTMC \mathcal{D} ?
- Which event does $\Diamond B$ mean formally?
 - the union of all cylinders $Cyl(s_0 \ldots s_n)$ where
 - $s_0 \dots s_n$ is an initial path fragment in \mathcal{D} with $s_0, \dots, s_{n-1} \notin B$ and $s_n \in B$

$$\Pr(\diamondsuit B) = \sum_{s_0 \dots s_n \in Paths_{fin}(\mathcal{D}) \cap (S \setminus B)^* B} \Pr(Cyl(s_0 \dots s_n))$$
$$= \sum_{s_0 \dots s_n \in Paths_{fin}(\mathcal{D}) \cap (S \setminus B)^* B} \iota_{init}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)$$

Reachability probabilities in finite DTMCs

- Let $\Pr(s \models \Diamond B) = \Pr_s(\Diamond B) = \Pr_s\{\pi \in Paths(s) \mid \pi \models \Diamond B\}$
 - where \Pr_s is the probability measure in $\mathcal D$ with single initial state s
- Let variable $x_s = \Pr(s \models \Diamond B)$ for any state s
 - if *B* is not reachable from *s* then $x_s = 0$
 - if $s \in B$ then $x_s = 1$
- For any state $s \in Pre^*(B) \setminus B$:

$$x_{s} = \underbrace{\sum_{t \in S \setminus B} \mathbf{P}(s, t) \cdot x_{t}}_{\text{reach } B \text{ via } t} + \underbrace{\sum_{u \in B} \mathbf{P}(s, u)}_{\text{reach } B \text{ in one step}}$$

Unique solution

Let \mathcal{D} be a finite DTMC with state space S partitioned into:

- $S_{=0} = Sat(\neg \exists (C \cup B))$
- $B \subseteq S_{=1} \subseteq \{s \in S \mid \Pr(s \models C \cup B) = 1\}$
- $S_? = S \setminus (S_{=0} \cup S_{=1})$

The vector
$$(\Pr(s \models C \cup B))_{s \in S_?}$$

is the *unique* solution of the linear equation system:

$$\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$$
 where $\mathbf{A} = (\mathbf{P}(s,t))_{s,t\in S_{?}}$ and $\mathbf{b} = (\mathbf{P}(s,S_{=1}))_{s\in S_{?}}$

Computing reachability probabilities

• The probabilities of the events $C \cup \leq n B$ can be obtained iteratively:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A}\mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leq i < n$

- where $\mathbf{A} = (\mathbf{P}(s,t))_{s,t \in \mathbf{C} \setminus \mathbf{B}}$ and $\mathbf{b} = (\mathbf{P}(s,\mathbf{B}))_{s \in \mathbf{C} \setminus \mathbf{B}}$
- Then: $\mathbf{x}^{(n)}(s) = \Pr(s \models \mathbf{C} \cup {}^{\leq n}\mathbf{B})$ for $s \in \mathbf{C} \setminus \mathbf{B}$

Example: Craps game

- $\Pr(start \models C \cup \mathbb{V}^{\leq n} B)$
- $S_{=0} = \{ 8, 9, 10, lost \}$
- $S_{=1} = \{ won \}$
- $S_? = \{ start, 4, 5, 6 \}$

Example: Craps game

• $\operatorname{Start} < 4 < 5 < 6$ • $\operatorname{A} = \frac{1}{36} \begin{pmatrix} 0 & 3 & 4 & 5 \\ 0 & 27 & 0 & 0 \\ 0 & 0 & 26 & 0 \\ 0 & 0 & 0 & 25 \end{pmatrix}$ • $\operatorname{b} = \frac{1}{36} \begin{pmatrix} 8 \\ 3 \\ 4 \\ 5 \end{pmatrix}$

 $\mathbf{x}^{(0)} = \mathbf{0}$ and $\mathbf{x}^{(i+1)} = \mathbf{A}\mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leq i < n$.

Example: Craps game

$$\mathbf{x}^{(2)} = \underbrace{\frac{1}{36} \begin{pmatrix} 0 & 3 & 4 & 5 \\ 0 & 27 & 0 & 0 \\ 0 & 0 & 26 & 0 \\ 0 & 0 & 0 & 25 \end{pmatrix}}_{\mathbf{A}} \cdot \underbrace{\frac{1}{36} \begin{pmatrix} 8 \\ 3 \\ 4 \\ 5 \end{pmatrix}}_{\mathbf{x}^{(1)}} + \underbrace{\frac{1}{36} \begin{pmatrix} 8 \\ 3 \\ 4 \\ 5 \end{pmatrix}}_{\mathbf{b}} = \left(\frac{1}{36}\right)^2 \begin{pmatrix} 338 \\ 189 \\ 248 \\ 305 \end{pmatrix}}_{\mathbf{b}}$$

PCTL Syntax

• For $a \in AP$, $J \subseteq [0, 1]$ an interval with rational bounds, and natural n:

$$\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \mathbb{P}_{J}(\varphi)$$
$$\varphi ::= \mathsf{X} \Phi \mid \Phi_{1} \mathsf{U} \Phi_{2} \mid \Phi_{1} \mathsf{U}^{\leqslant n} \Phi_{2}$$

- $s_0s_1s_2... \models \Phi \cup \leq n \Psi$ if Φ holds until Ψ holds within n steps
- $s \models \mathbb{P}_J(\varphi)$ if probability that paths starting in s fulfill φ lies in J

abbreviate $\mathbb{P}_{[0,0.5]}(\varphi)$ by $\mathbb{P}_{\leqslant 0.5}(\varphi)$ and $\mathbb{P}_{]0,1]}(\varphi)$ by $\mathbb{P}_{>0}(\varphi)$ and so on

Derived operators

 $\Diamond \Phi \,=\, {\rm true}\, {\rm U}\, \Phi$

 $\diamondsuit^{\leqslant n}\Phi\,=\,{\rm true}\,{\rm U}^{\leqslant n}\,\Phi$

$$\mathbb{P}_{\leqslant p}(\Box \Phi) = \mathbb{P}_{\geqslant 1-p}(\Diamond \neg \Phi)$$

$$\mathbb{P}_{]p,q]}(\Box^{\leqslant n}\Phi) = \mathbb{P}_{[1-q,1-p[}(\diamondsuit^{\leqslant n}\neg\Phi)$$

operators like weak until W or release R can be derived analogously

Example properties

• With probability \ge 0.92, a goal state is reached via legal ones:

 $\mathbb{P}_{\geq 0.92} \left(\neg \textit{illegal U goal} \right)$

- ... in maximally 137 steps: $\mathbb{P}_{\geq 0.92} \left(\neg \text{ illegal } \cup^{\leq 137} \text{ goal}\right)$
- ... once there, remain there almost surely for the next 31 steps:

$$\mathbb{P}_{\geq 0.92}\left(\neg \textit{illegal } \mathsf{U}^{\leq 137} \mathbb{P}_{=1}(\Box^{[0,31]} \textit{goal})\right)$$

PCTL semantics (1)

 $\mathcal{D}, \mathbf{s} \models \Phi$ if and only if formula Φ holds in state \mathbf{s} of DTMC \mathcal{D}

Relation \models is defined by:

$$\begin{split} s &\models a & \text{iff} \quad a \in L(s) \\ s &\models \neg \Phi & \text{iff} \quad \mathsf{not} \ (s \models \Phi) \\ s &\models \Phi \lor \Psi & \text{iff} \quad (s \models \Phi) \text{ or } \ (s \models \Psi) \\ s &\models \mathbb{P}_{J}(\varphi) & \text{iff} \quad \Pr(s \models \varphi) \in J \end{split}$$

where
$$\Pr(s \models \varphi) = \Pr_s \{ \pi \in \textit{Paths}(s) \mid \pi \models \varphi \}$$

PCTL semantics (2)

A *path* in \mathcal{D} is an infinite sequence $s_0 s_1 s_2 \dots$ with $\mathbf{P}(s_i, s_{i+1}) > 0$ Semantics of path-formulas is defined as in CTL:

$$\begin{split} \pi &\models \bigcirc \Phi & \text{iff} \quad s_1 \models \Phi \\ \pi &\models \Phi \cup \Psi & \text{iff} \quad \exists n \ge 0.(s_n \models \Psi \land \forall 0 \leqslant i < n. s_i \models \Phi) \\ \pi &\models \Phi \cup^{\leqslant n} \Psi & \text{iff} \quad \exists k \ge 0.(k \leqslant n \land s_k \models \Psi \land \forall 0 \leqslant i < k. s_i \models \Phi) \\ \forall 0 \leqslant i < k. s_i \models \Phi) \end{split}$$

Measurability

For any PCTL path formula φ and state s of DTMC \mathcal{D} the set { $\pi \in Paths(s) \mid \pi \models \varphi$ } is measurable

PCTL model checking

- Given a finite DTMC \mathcal{D} and PCTL formula Φ , how to check $\mathcal{D} \models \Phi$?
- Check whether state s in a DTMC satisfies a PCTL formula:
 - compute recursively the set $Sat(\Phi)$ of states that satisfy Φ
 - check whether state s belongs to $Sat(\Phi)$
 - \Rightarrow bottom-up traversal of the parse tree of Φ (like for CTL)
- For the propositional fragment: as for CTL
- How to compute $Sat(\Phi)$ for the probabilistic operators?

Checking probabilistic reachability

- $s \models \mathbb{P}_J(\Phi \cup \mathbb{Q}^{\leq h} \Psi)$ if and only if $\Pr(s \models \Phi \cup \mathbb{Q}^{\leq h} \Psi) \in J$
- $\Pr(s \models \Phi \cup \mathbb{U}^{\leq h} \Psi)$ is the least solution of:

(Hansson & Jonsson, 1990)

- 1 if $s \models \Psi$

- for
$$h > 0$$
 and $s \models \Phi \land \neg \Psi$:

$$\sum_{s' \in S} \mathbf{P}(s, s') \cdot \Pr(s' \models \Phi \, \mathsf{U}^{\leqslant h-1} \, \Psi)$$

- 0 otherwise
- Standard reachability for $\mathbb{P}_{>0}(\Phi \cup \mathbb{U}^{\leq h} \Psi)$ and $\mathbb{P}_{\geq 1}(\Phi \cup \mathbb{U}^{\leq h} \Psi)$
 - for efficiency reasons (avoiding solving system of linear equations)

Reduction to transient analysis

- Make all $\Psi\text{-}$ and all $\neg\,(\Phi\,\lor\,\Psi)\text{-}states$ absorbing in $\mathcal D$
- Check $\diamondsuit^{=h} \Psi$ in the obtained DTMC \mathcal{D}'
- This is a standard transient analysis in \mathcal{D}' :

$$\sum_{s'\models\Psi} \Pr_{s}\{\pi \in \textit{Paths}(s) \mid \sigma[h] = s'\}$$

- compute by $(\mathbf{P}')^h \cdot \iota_{\Psi}$ where ι_{Ψ} is the characteristic vector of $Sat(\Psi)$

 \Rightarrow Matrix-vector multiplication

Time complexity

For finite DTMC \mathcal{D} and PCTL formula Φ , $\mathcal{D} \models \Phi$ can be solved in time

 $\mathcal{O}(poly(|\mathcal{D}|) \cdot n_{\max} \cdot |\Phi|)$

where $n_{\max} = \max\{ n \mid \Psi_1 \cup U^{\leq n} \Psi_2 \text{ occurs in } \Phi \}$ with $\max \emptyset = 1$

The qualitative fragment of PCTL

• For $a \in AP$:

$$\Phi ::= \operatorname{true} | a | \Phi \land \Phi | \neg \Phi | \mathbb{P}_{>0}(\varphi) | \mathbb{P}_{=1}(\varphi)$$
$$\varphi ::= X \Phi | \Phi_1 \cup \Phi_2$$

• The probability bounds = 0 and < 1 can be derived:

$$\mathbb{P}_{=0}(\varphi) \equiv \neg \mathbb{P}_{>0}(\varphi) \text{ and } \mathbb{P}_{<1}(\varphi) \equiv \neg \mathbb{P}_{=1}(\varphi)$$

• No bounded until, and only > 0, = 0, > 1 and = 1 intervals

so: $\mathbb{P}_{=1}(\Diamond \mathbb{P}_{>0}(X a))$ and $\mathbb{P}_{<1}(\mathbb{P}_{>0}(\Diamond a) \cup b)$ are qualitative PCTL formulas

Qualitative PCTL versus CTL

- There is no CTL-formula that is equivalent to $\mathbb{P}_{=1}(\diamondsuit a)$
- There is no CTL-formula that is equivalent to $\mathbb{P}_{>0}(\Box a)$
- There is no qualitative PCTL-formula that is equivalent to $\forall \diamondsuit a$
- There is no qualitative PCTL-formula that is equivalent to $\exists \Box a$
- \Rightarrow PCTL with $\forall \varphi$ and $\exists \varphi$ is more expressive than PCTL
 - For finite DTMCs, qualitative PCTL \equiv CTL + strong fairness

谢谢大家!