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Probabilities help

• When analysing system performance and dependability

– to quantify arrivals, waiting times, time between failure, QoS, ...

• When modelling uncertainty in the environment

– to quantify imprecisions in system inputs
– to quantify unpredictable delays, express soft deadlines, ...

• When building protocols for networked embedded systems

– randomized algorithms

• When problems are undecidable deterministically

– repeated reachability of channel systems, ...
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Illustrative examples

• Security: Crowds protocol

– analysis of probability of anonymity

• IEEE 1394 Firewire protocol

– proof that biased delay is optimal

• Systems biology

– probability that enzymes are absent within the deadline

• Software in next generation of satellites

– mission time probability (ESA project)
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What is probabilistic model checking?
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Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC CTMDP

Other models: probabilistic variants of (priced) timed automata, or hybrid automata
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Discrete-time Markov chain
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a DTMC D is a triple (S, P, L) with state space S and state-labelling L

and P a stochastic matrix with P(s, s′) = one-step probability to jump from s to s′
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Craps
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Craps

• Roll two dice and bet on outcome

• Come-out roll (“pass line” wager):

– outcome 7 or 11: win
– outcome 2, 3, or 12: loss (“craps”)
– any other outcome: roll again (outcome is “point”)

• Repeat until 7 or the “point” is thrown:

– outcome 7: loss (“seven-out”)
– outcome the point: win
– any other outcome: roll again
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A DTMC model of Craps

• Come-out roll:

– 7 or 11: win
– 2, 3, or 12: loss
– else: roll again

• Next roll(s):

– 7: loss
– point: win
– else: roll again
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Probability measure on DTMCs

• Events are infinite paths in the DTMC D, i.e., Ω = Paths(D)

– a path in a DTMC is just a sequence of states

• A σ-algebra on D is generated by cylinder sets of finite paths π̂:

Cyl(π̂) =
{

π ∈ Paths(D) | π̂ is a prefix of π
}

– cylinder sets serve as basis events of the smallest σ-algebra on Paths(D)

• Pr is the probability measure on the σ-algebra on Paths(D):

Pr
(
Cyl(s0 . . . sn)

)
= ιinit(s0) · P(s0 . . . sn)

– where P(s0 s1 . . . sn) =
Q

0�i<n

P(si, si+1) and P(s0) = 1, and

– ιinit(s0) is the initial probability to start in state s0

c© JPK 9



Reachability probabilities

• What is the probability to reach a set of states B ⊆ S in DTMC D?

• Which event does �B mean formally?

– the union of all cylinders Cyl(s0 . . . sn) where
– s0 . . . sn is an initial path fragment in D with s0, . . . , sn−1 /∈ B and sn ∈ B

Pr(�B) =
∑

s0...sn∈Pathsfin(D)∩(S\B)∗B
Pr

(
Cyl(s0 . . . sn)

)

=
∑

s0...sn∈Pathsfin(D)∩(S\B)∗B
ιinit(s0) · P(s0 . . . sn)
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Reachability probabilities in finite DTMCs

• Let Pr(s |= �B) = Prs(�B) = Prs{π ∈ Paths(s) | π |= �B}
– where Prs is the probability measure in D with single initial state s

• Let variable xs = Pr(s |= �B) for any state s

– if B is not reachable from s then xs = 0

– if s ∈ B then xs = 1

• For any state s ∈ Pre∗(B) \ B:

xs =
∑

t∈S\B

P(s, t) · xt

︸ ︷︷ ︸
reach B via t

+
∑
u∈B

P(s, u)

︸ ︷︷ ︸
reach B in one step
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Unique solution
Let D be a finite DTMC with state space S partitioned into:

• S=0 = Sat(¬∃(C UB))

• B ⊆ S=1 ⊆ {s ∈ S | Pr(s |= C UB) = 1}

• S? = S \ (S=0 ∪ S=1)

The vector
(
Pr(s |= C UB)

)
s∈S?

is the unique solution of the linear equation system:

x = Ax+b where A =
(
P(s, t)

)
s,t∈S?

and b =
(
P(s, S=1)

)
s∈S?
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Computing reachability probabilities

• The probabilities of the events C U�n B can be obtained iteratively:

x(0) = 0 and x(i+1) = Ax(i) + b for 0 � i < n

• where A =
(
P(s, t)

)
s,t∈C\B

and b =
(
P(s, B)

)
s∈C\B

• Then: x(n)(s) = Pr(s |= C U �nB) for s ∈ C \ B
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Example: Craps game

• Pr(start |= C U�n B)

• S=0 = { 8, 9, 10, lost }

• S=1 = {won }

• S? = { start, 4, 5, 6 }
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Example: Craps game

• start < 4 < 5 < 6

• A = 1
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x(0) = 0 and x(i+1) = Ax(i) + b for 0 � i < n.
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Example: Craps game
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PCTL Syntax

• For a ∈ AP, J ⊆ [0, 1] an interval with rational bounds, and natural n:

Φ ::= true
∣∣ a

∣∣ Φ ∧ Φ
∣∣ ¬Φ

∣∣ PJ(ϕ)

ϕ ::= X Φ
∣∣ Φ1 UΦ2

∣∣ Φ1 U�n Φ2

• s0s1s2 . . . |= Φ U�n Ψ if Φ holds until Ψ holds within n steps

• s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J

abbreviate P[0,0.5](ϕ) by P�0.5(ϕ) and P]0,1](ϕ) by P>0(ϕ) and so on
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Derived operators

�Φ = true UΦ

��nΦ = true U�n Φ

P�p(�Φ) = P�1−p(�¬Φ)

P]p,q](��n Φ) = P[1−q,1−p[(��n ¬Φ)

operators like weak until W or release R can be derived analogously
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Example properties

• With probability � 0.92, a goal state is reached via legal ones:

P� 0.92 (¬ illegal U goal)

• . . . in maximally 137 steps: P� 0.92

(¬ illegal U� 137 goal
)

• . . . once there, remain there almost surely for the next 31 steps:

P� 0.92

(
¬ illegal U � 137

P=1(�[0,31] goal)
)
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PCTL semantics (1)

D, s |= Φ if and only if formula Φ holds in state s of DTMC D

Relation |= is defined by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∨ Ψ iff (s |= Φ) or (s |= Ψ)

s |= PJ(ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ}
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PCTL semantics (2)

A path in D is an infinite sequence s0 s1 s2 . . . with P(si, si+1) > 0

Semantics of path-formulas is defined as in CTL:

π |= ©Φ iff s1 |= Φ

π |= Φ UΨ iff ∃n � 0.( sn |= Ψ ∧ ∀0 � i < n. si |= Φ )

π |= Φ U�n Ψ iff ∃k � 0.( k � n ∧ sk |= Ψ∧
∀0 � i < k. si |= Φ )
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Measurability

For any PCTL path formula ϕ and state s of DTMC D
the set {π ∈ Paths(s) | π |= ϕ } is measurable
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PCTL model checking

• Given a finite DTMC D and PCTL formula Φ, how to check D |= Φ?

• Check whether state s in a DTMC satisfies a PCTL formula:

– compute recursively the set Sat(Φ) of states that satisfy Φ
– check whether state s belongs to Sat(Φ)
⇒ bottom-up traversal of the parse tree of Φ (like for CTL)

• For the propositional fragment: as for CTL

• How to compute Sat(Φ) for the probabilistic operators?
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Checking probabilistic reachability

• s |= PJ(Φ U�h Ψ) if and only if Pr(s |= Φ U�h Ψ) ∈ J

• Pr(s |= Φ U�h Ψ) is the least solution of: (Hansson & Jonsson, 1990)

– 1 if s |= Ψ

– for h > 0 and s |= Φ∧¬Ψ:

X
s′∈S

P(s, s′) · Pr(s′ |= Φ U�h−1 Ψ)

– 0 otherwise

• Standard reachability for P>0(Φ U�h Ψ) and P�1(Φ U�h Ψ)

– for efficiency reasons (avoiding solving system of linear equations)
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Reduction to transient analysis

• Make all Ψ- and all ¬ (Φ ∨ Ψ)-states absorbing in D

• Check �=h Ψ in the obtained DTMC D′

• This is a standard transient analysis in D′:
X
s′|=Ψ

Pr
s
{π ∈ Paths(s) | σ[h] = s

′}

– compute by (P′)h·ιΨ where ιΨ is the characteristic vector of Sat(Ψ)

⇒ Matrix-vector multiplication

c© JPK 25



Time complexity

For finite DTMC D and PCTL formula Φ, D |= Φ can be solved in time

O(
poly(|D|) · nmax · |Φ| )

where nmax = max{n | Ψ1 U�n Ψ2 occurs in Φ } with max ∅ = 1
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The qualitative fragment of PCTL

• For a ∈ AP:

Φ ::= true
∣∣ a

∣∣ Φ ∧ Φ
∣∣ ¬Φ

∣∣ P>0(ϕ)
∣∣ P=1(ϕ)

ϕ ::= X Φ
∣∣ Φ1 UΦ2

• The probability bounds = 0 and < 1 can be derived:

P=0(ϕ) ≡ ¬P>0(ϕ) and P<1(ϕ) ≡ ¬P=1(ϕ)

• No bounded until, and only > 0, = 0, > 1 and = 1 intervals

so: P=1(�P>0(X a)) and P<1(P>0(�a) U b) are qualitative PCTL formulas
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Qualitative PCTL versus CTL

• There is no CTL-formula that is equivalent to P=1(�a)

• There is no CTL-formula that is equivalent to P>0(�a)

• There is no qualitative PCTL-formula that is equivalent to ∀�a

• There is no qualitative PCTL-formula that is equivalent to ∃�a

⇒ PCTL with ∀ϕ and ∃ϕ is more expressive than PCTL

• For finite DTMCs, qualitative PCTL ≡ CTL + strong fairness
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