Model Checking Markov Chains

Lecture 2: PCTL Counterexamples

Joost-Pieter Katoen
Software Modeling and Verification Group

RWTH Aachen University

affiliated to University of Twente, Formal Methods and Tools

RHEINISCH-
WESTFALISCHE
TECHNISCHE
HHHHHHHHHH
AACHEN

Lecture at Model Checking Summerschool, October 11, 2010

© JPK

TeAzn

Content of this lecture

= What is a counterexample?

— motivation, definition, properties

e Counterexample generation

— algorithms, time complexity, examples

e Representing counterexamples

— weighted regular expressions, optimisations

© JPK

uuuuuuuuu
sssssssss e
nnnnnnnnnn
Hoctciite

Te4sn

Probabilistic model checking

: _ up to 10 states
requirements Inaccuracy
N
P<p.01 (¢deadlock) l o,

Q Formalizing Modeling

property

specification system model

y

— " |Model Checkingf<——

sael 0.678
the probabilit stae2 0.9797
sae3 0.1523

state4 0.2123

insufficient

memory

© JPK 2

Te4sn

Counterexamples

e Are of utmost importance:

— diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
— fit to paradigm “model checking = bug hunting”

© JPK 3

18458

Counterexamples

e Are of utmost importance:

— diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
— fit to paradigm “model checking = bug hunting”

e LTL counterexamples are finite paths

— O®: a path ending in a —®-state
— Od: a ~P-path leading to a =P cycle
— BFS yields shortest counterexamples

© JPK

TeAzn

Counterexamples

e Are of utmost importance:

— diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
— fit to paradigm “model checking = bug hunting”

e LTL counterexamples are finite paths

— O®: a path ending in a —®-state
— Od: a ~P-path leading to a =P cycle
— BFS yields shortest counterexamples

e CTL counterexamples are (mostly) finite trees

— universal CTL\LTL: trees or proof-like counterexample
— existential CTL: witnesses, annotated counterexample

© JPK 5

Te4sn

Counterexamples

e Are of utmost importance:

— diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
— fit to paradigm “model checking = bug hunting”

e LTL counterexamples are finite paths

— O®: a path ending in a —®-state
— O®: a ~P-path leading to a =P cycle
— BFS yields shortest counterexamples

e CTL counterexamples are (mostly) finite trees

— universal CTL\LTL: trees or proof-like counterexample
— existential CTL: witnesses, annotated counterexample

e This talk: PCTL counterexamples for DTMCs

© JPK 6

Te4sn

Discrete-time Markov Chain

S0 S1 ty

0.667,7 0.9
0.1

to
0.2 1

a DTMC is atriple (S, P, L) with state space S and state-labelling L

and P a stochastic matrix with P (s, s’) = one-step probability to jump from s to s’

© JPK 7

‘‘‘‘‘‘‘‘‘‘
it
b=

PI’O bab | | |St| C CTL (Hansson & Jonsson, 1994)

e Fora € AP, J C |0, 1] an interval with rational bounds, and h € N:

b ::= a ‘Q)/\Q)

o = dUP

- ‘ P ()

o U @

® 505152... = ® US" WU if @ holds until ¥ holds within h steps

e s = P;(y) if probability of set of p-paths starting in s lies in J

abbreviate Pjg o 51 () by P<o.5(¢) and Pyg 17() by Po(¢) and so on

© JPK

Te4sn

Topics of this lecture

e What is a PCTL counterexample?

— a set of paths with sufficient probability mass

e How to determine smallest counterexamples?

— exploit k-shortest path algorithms

e How about the size of counterexamples?

— well, they may be excessively large and incomprehensible

e Can we do better?

— yes, represent counterexamples by regular expressions!

e How to obtain (short) regular expressions?

— use automata theory and some heuristics

© JPK 9

Te4sn

PCTL counterexamples for s = P, (¢)

o A counterexample C'Is a set of finite paths satisfying

evidences

— o € C'implies o startsin sand o |= ¢
- Pr(C) = > .o P(o) exceeds p

© JPK 10

Te4sn

PCTL counterexamples for s = P, (¢)

e A counterexample C'Is a set of finite paths satisfying

evidences

— o € C'implies o startsin sand o |= ¢
- Pr(C) = > .- P(o) exceeds p

e Property: counterexamples for non-strict bounds < p are finite

{1
{a}

Q
D=

A DTMC with infinite counterexample for s = P-1(<a)

© JPK 11

Te4sn

‘‘‘‘‘‘‘‘‘‘
ot
g

PCTL counterexamples for s = P, (¢)

e A counterexample C'is a set of finite paths satisfying

. Vv
evidences

— o € C'implies o startsin sand o |= ¢
- Pr(C) = >, .- P(o) exceeds p

e Property: counterexamples for non-strict bounds < p are finite

e Cis minimal if |C| < |C| for any counterexample C”

e (Is smallest if;

C'is minimal, and Pr(C) > Pr(C’) for any minimal counterexample C’

© JPK

12

Evidences for sg = P_1(a UD)
S0 S1 t1 .
evidences prob.
01 = Sg 81t 0.2
09 = 809 S1S8211 0.2
0.667,70.9
0.1 o3 = So 2t 0.15
04 = 80 S1 8212 0.12
t _
' 59 U 0.3 U 2 05 = 50 5212 0.09
0.8 0.2 1
© JPK 3

Strongest evidences (SES)

S0 S1 t1 -
evidences prob.
o1 = Sg 81t 0.2
09 = 80 S1 8211 0.2

0.667, 0.9
0.1 o3 = Sg S2t1 0.15

04 = 80 S1 8212 0.12

0.8 0.2 1

© JPK ”

Te4sn

Counterexamples for sg = Pg%(a Ub)
S0 S1 t1
evidences prob.
o1 = 80 S1 tl 0.2

O9 = 80 S1 S92 tl 0.2

0.667, 0.9
0.1

O3 = S0 $2 tl 0.15

o4 = S0 S1 82 tz 0.12

3 &
' U O5 =— 80 S2 t2 0.09
1

0.2

0.8
counterexample | card. | prob.

{o1,...,05} | B 0.76
{o10ro9,...,05} | 4 0.56
{o1,02,04} | 3 0.52

{o1,02,03} | 3 0.55

© JPK 15

Te4sn

Counterexamples for sg = Pg%(a Ub)
S0 S1 t1
evidences prob.
o1 = 80 S1 tl 0.2

0.667,70.9 09 = SgS1S2t1 | 0.2

0.1
O3 = S0 $2 tl 0.15

o4 = S0 S1 82 tz 0.12

2(0) >3) o5 = so5aty | 0.09

0.8 0.2 1
counterexample | card. | prob.

{o1,...,05} | B 0.76

{o10ro9,...,05} | 4 0.56

minimal — { o1, 092,04} | 3 0.52

minimal — { o1, 092,03} | 3 0.55

© JPK 16

Te4sn

Counterexamples for sg = Pg%(a Ub)
S0 S1 t1
evidences prob.
o1 = 80 S1 tl 0.2

0.667,70.9 09 = SgS1S2t1 | 0.2

0.1
O3 = S0 $2 tl 0.15

o4 = S0 S1 82 tz 0.12

2(0) >3) o5 = so5aty | 0.09

0.8 0.2 1
counterexample | card. | prob.

{o1,...,05} | B 0.76

{o10ro9,...,05} | 4 0.56

{o1,02,04} | 3 0.52

smallest — { o1,02,03} | 3 0.55

© JPK 17

Te4sn

Step 1: make all &-states and all =& A —W-states absorbing

© JPK 18

Te4sn

Adapting a bit more

Step 2: insert a sink state and redirect all outgoing edges of W-states to it

© JPK 19

Te4sn

A weighted digraph

50 51 t
log % log 3

1
Step 3: turn it into a weighted digraph with w(s, s') = log (B (s,))

© JPK 20

Te4sn

uuuuuuuu
sssssssssss
cccccccccc
Hoctciite

A simple derivation
For finite path 0 = sgs1 59 ... Su:

w(o) = w(se,s1) +w(sy,s2) + ... +w(Sn_1,Sn)

1

1 1
= log prg, oy 108 prg oy + - T8 b

1
log P(s0,51)-P(s1,52) ...-P(spn—1,5n)

— lOg Pr%a)

Pr(o) > Pr(o) ifandonlyif w(o) < w(o)

\ 7 \

in DTMC D in digraE)rh G(D)

© JPK

21

18458

Content of this lecture

e What is a counterexample?

— motivation, definition, properties

= Counterexample generation

— algorithms, time complexity, examples

e Representing counterexamples

— weighted regular expressions, optimisations

© JPK 22

Te4sn

What does this mean?

e Finding a strongest evidence is a shortest path (SP) problem

— apply standard SP algorithms, or Viterbi’'s algorithm =- linear time complexity

© JPK 23

Te4sn

What does this mean?

e Finding a strongest evidence is a shortest path (SP) problem

— apply standard SP algorithms, or Viterbi’'s algorithm =- linear time complexity

e Finding a shortest counterex is a k-shortest path (KSP) problem

— dynamically determine k: generate C incrementally and halt when Pr(C') > p

© JPK 24

Te4sn

What does this mean?
e Finding a strongest evidence is a shortest path (SP) problem
— apply standard SP algorithms, or Viterbi’'s algorithm =- linear time complexity

e Finding a shortest counterex is a k-shortest path (KSP) problem

— dynamically determine k: generate C' incrementally and halt when Pr(C') > p

e This also applies to P~ ,(y) properties, as

P.,(® U W) Peip((® A =0) W (=& A)

o+ W

Pei—p(@* U (W" V atpsee(ax)))

© JPK 25

Te4sn

Time complexity

counterexample | shortest path algorithm time complexity
problem problem
unbounded SE SP Dijkstra O(M + N-log N)
bounded » SE HSP Bellman-Ford / Viterbi O(h-M)
unbounded SC KSP Eppstein O(M + N-log N + k)
bounded . SC HKSP adapted REA O (h-M + h-k-log N)

N =S|, M = # transitions, h = hop count, k = # shortest paths

iIncluding costs yields an instance of the NP-complete RSP problem

© JPK

26

18458

Content of this lecture

e What is a counterexample?

— motivation, definition, properties

e Counterexample generation

— algorithms, time complexity, examples

= Representing counterexamples

— weighted regular expressions, optimisations

© JPK 27

Te4sn

NNNNNNNNN
it
b=

On the size of counterexamples

1
0.99

la}

A smallest counterexample for s = P<g.9999(<a) contains paths

sut, susut,sususut,...... ,y Su, t
~~

k times

where k is the smallest integer such that 1 — 0.99*~! > (0.9999

The smallest counterexample has k = 689 evidences

© JPK

28

Te4sn

Synchronous leader election P« g9(<leader)

=
o

—— Probability

—— #evidences
K:2 —K:4 K:8 K :12

size of counterexample is double exponential in problem size (see paper)

© JPK 29

Te4sn

Use regular expressions!

e Size of counterexamples is mainly influenced by loops

— each loop-traversal yields another path in counterexample

e Idea: represent sets of “similar” finite paths by a regular expression

e HOw?

— DTMC (rooted at s) —— DFA
— DFA —— most probable paths —— regular expression r

e Such that:

— probability of regular expression r exceeds p (= r is a counterexample)
— ris “minimal”: deletion of some “branch” of r yields no counterexample

© JPK 30

Te4sn

From DTMCs to DFAs

alphabet X2 consist of symbols of the form (p, s)

© JPK 31

Te4sn

From DTMCs to DFA

For DTMC D = (S, P, L), state s, and property P(CS"), DFA Ap = (S', %, 5, 5, t)

state space
initial state

goal/accepting state

alphabet

transitions

DTMC DFA
S S u {5}
S s¢ S
t t

- >»C [0,1] x S

(vaQ)

S1 — S2 S1)

(1,s)

— § ———s

© JPK

32

Te4sn

Regular expressions pawsos

The set of regular expressions R (X):

rr' = ¢ empty

(p,s) letter

|

| 7|’ choice

| r.r’ catenation
| " repetition

© JPK 33

Te4sn

Regular expressions pawsos

Evaluation val : R(X) — Rxy:
The set of regular expressions R (3):
val(e) = 1
r,r = ¢ empty
val((p,s)) = p
(p,s) letter

: o hoice val(r|r') = wval(r) + val(r")
r|r
val(r.r') = wal(r) - val(r")
| r.r’ catenation
. 1 if val(r) =1
| rt repetition val(r™) = . _
Tay Otherwise

© JPK 34

Te4sn

Regular expressions pawsos

Evaluation val : R(X) — Ry:
The set of regular expressions R (3):
val(e) =1
rr = ¢ empty

(p,s) letter vall(p, &) = p

: |7’ choice val (r|r’) = wval(r) + val(r’)
T
val(r.r') = wval(r) - val(r')
| T r’ catenation
. ! ifval(r) =1
| r” repetition val(r*) _ 1 |
ey Otherwise

For regular expression r» of DFA Ap with accept state ¢:

val(r) = PrP” {o € Paths(s) | o |= <Ot}

© JPK 35

a.(a.b)*.(a.a*.bla.b)

a.b
) Q a.a*.b|a.b=© 0

O

© JPK 36

Te4sn

Ordering matters

Ordering s < u < tyields (aa|b)(a|cb)*(cd|d)

Ordering s < t < w yields (aa|b)ac(ba™c)*(ba”d|d)|(aalb)a™d

© JPK 37

Te4sn

Ordering matters

Finding the optimal removal ordering takes time O(N!) where |S| = N

© JPK 38

Te4sn

Heuristic [Han & Wood'07]

“eliminate all non-bridge states before bridge states”

1. Find all bridge states ¢; through ¢,,_1

e the path of every word w € L£(.A) goes through g;
e once this path visits g; it will not visit states visited prior to g;

2. Perform vertical chopping
o A=A, -A,-...- A, where A, is “connected” to .A; via bridge g;

3. For each A; perform horizontal chopping
® .Al = Ai,ﬂAi,z‘ ce ‘A@,]g

4. For each automaton A;, 7 goto step 1.

© JPK 39

Te4sn

Time complexity

“eliminate all non-bridge states before bridge states”

1. Find all bridge states ¢; through ¢,,_1 in linear time

e the path of every word w € L£(.A) goes through g;
e once this path visits g; it will not visit states visited prior to g;

2. Perform vertical chopping in linear time
o A=A, -A,-...- A, where A, is “connected” to .A; via bridge g;

3. For each A, perform horizontal chopping in linear time
® Ai:Ai,l‘Ai,Q‘ |.Az,k;

4. For each automaton 4; ; goto step 1.

© JPK 40

Te4sn

Vertical chopping

© JPK 41

Te4sn

Horizontal chopping

© JPK 42

Te4sn

Maximal union subexpressions

r1 1S @ maximal union subexpression (MUS) of regular expression r if:
r = r1|re modulo the congruence (R;)-(Rs3)

where for some r, € R(X):

(R1) r = rle
(Rz) T1|T2 — 7“2’7“1
(Rs) ril(rafrs) = (ri|r2) |73

a MUS can be regarded as a main path from the initial state to a accept state

© JPK 43

Te4sn

Algorithm for regular expressions

Require: DFA Ap = (S, X, s,6, {t}),and p € [0, 1]
Ensure: regular expression r € R(X2) with val(r) > p

A := Ap, pr := 0; priority queue pq := @; k := 1;
while pr < p do
o := the strongest evidence in A,
forall s' € o \ {s, §,t} do pg.enqueue(s’); end;
while pg # @ do
A :=eliminate(pq.dequeue()); rx := the created MUS;
pr = pr + val(rg); A :=eliminate(rg);
if (pr > p) then break elsek :=k+ 1;
endwhile;
endwhile;
return ry | ... | rg.

this approach works for strict and non-strict bounds

© JPK 44

Leader election revisited
next leader
Regular expression for the counterexample:
r(N,K) = start. [(u1| - - |u;) .next. start]”. (si|---|s;). leader
© JPK 45

Te4sn

Model reduction

The size of a counterexample is determined by

e traversing the same loop for different times

—> using Kleene stars in regular expressions

e large number of states
—> model reduction

1. bisimulation minimization
2. SCC minimization

Model reduction is done prior to counterexample generation

© JPK 46

Te4sn

Leader election re-revisited

Bisimulation quotient:
1

NE _w(N,K)
U - S -
next 1 Ml’{K) %t leader

N

r(N, K) = start. (u.next.start)”.s. leader

After aggregating SCCs: SCC aggregation of bisimulation quotient:

NEK 1 NE_w(,K) !
W (N,K NE
.‘WO e M &)
start 2 leader start leader

W (N,K)
NEK
r*“(N, K) = start.start”.(s1| - - - |s;).leader — r°°(N, K) = start.start”.s.leader

© JPK =

Te4sn

Other approaches

e Heuristic search algorithms for CTMCs (Aljazzar et al. FORMATS 2005, 2006)
e Counterexamples for CTMCs (Han & Katoen ATVA 2007)
e Counterexamples for conditional PCTL (Andres & van Rossum TACAS 2008)
e Proof refutations for probabilistic programs (Mclver et al. FM 2008)

e Counterexample-guided abstraction refinement (Hermanns et al. CAV 2008)
e Counterexamples for MDPs (Andres et al., HVC 2008, Aljazzar & Leue TR 2007)

e Bounded MC for DTMC counterexamples (Becker et al. VMCAI 2009)

© JPK 48

Te4sn

uuuuuuuu
sssssssssss
cccccccccc
Hoctciite

Epilogue
e What is a PCTL (or quantitative LTL) counterexample?

— a set of paths with sufficient probability mass

e How to determine smallest counterexamples?

— exploit k-shortest path algorithms

e How about the size of counterexamples?

— well, they may be excessively large and incomprehensible

e Can we do better?

— yes, represent counterexamples by regular expressions!

e How to obtain (short) regular expressions?

— use automata theory and some heuristics

© JPK

49

W KRR/

