Model Checking Markov Chains

Lecture 2: PCTL Counterexamples

Joost-Pieter Katoen

Software Modeling and Verification Group

RWTH Aachen University

affiliated to University of Twente, Formal Methods and Tools

Lecture at Model Checking Summerschool, October 11, 2010

Content of this lecture

- ⇒ What is a counterexample?
 - motivation, definition, properties
 - Counterexample generation
 - algorithms, time complexity, examples
 - Representing counterexamples
 - weighted regular expressions, optimisations

Probabilistic model checking

- Are of utmost importance:
 - diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
 - fit to paradigm "model checking = bug hunting"

- Are of utmost importance:
 - diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
 - fit to paradigm "model checking = bug hunting"
- LTL counterexamples are finite paths
 - \Box Φ: a path ending in a \neg Φ-state
 - $\Diamond \Phi$: a $\neg \Phi$ -path leading to a $\neg \Phi$ cycle
 - BFS yields shortest counterexamples

- Are of utmost importance:
 - diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
 - fit to paradigm "model checking = bug hunting"
- LTL counterexamples are finite paths
 - $\Box \Phi$: a path ending in a $\neg \Phi$ -state
 - $\Diamond \Phi$: a $\neg \Phi$ -path leading to a $\neg \Phi$ cycle
 - BFS yields shortest counterexamples
- CTL counterexamples are (mostly) finite trees
 - universal CTL\LTL: trees or proof-like counterexample
 - existential CTL: witnesses, annotated counterexample

- Are of utmost importance:
 - diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
 - fit to paradigm "model checking = bug hunting"
- LTL counterexamples are finite paths
 - $\Box \Phi$: a path ending in a $\neg \Phi$ -state
 - $\Diamond \Phi$: a ¬ Φ -path leading to a ¬ Φ cycle
 - BFS yields shortest counterexamples
- CTL counterexamples are (mostly) finite trees
 - universal CTL\LTL: trees or proof-like counterexample
 - existential CTL: witnesses, annotated counterexample
- This talk: PCTL counterexamples for DTMCs

Discrete-time Markov Chain

a DTMC is a triple (S,\mathbf{P},L) with state space S and state-labelling L and \mathbf{P} a stochastic matrix with $\mathbf{P}(s,s')=$ one-step probability to jump from s to s'

Probabilistic CTL (Hansson & Jonsson, 1994)

• For $a \in AP$, $J \subseteq [0,1]$ an interval with rational bounds, and $h \in \mathbb{N}$:

$$\Phi ::= a \mid \Phi \wedge \Phi \mid \neg \Phi \mid \mathbb{P}_{J}(\varphi)$$

$$\varphi ::= \Phi \cup \Phi \mid \Phi \cup^{\leqslant h} \Phi$$

- $s_0 s_1 s_2 \dots \models \Phi \cup^{\leqslant h} \Psi$ if Φ holds until Ψ holds within h steps
- $s \models \mathbb{P}_{J}(\varphi)$ if probability of set of φ -paths starting in s lies in J

abbreviate $\mathbb{P}_{[0,0.5]}(\varphi)$ by $\mathbb{P}_{\leqslant 0.5}(\varphi)$ and $\mathbb{P}_{]0,1]}(\varphi)$ by $\mathbb{P}_{>0}(\varphi)$ and so on

Topics of this lecture

- What is a PCTL counterexample?
 - a set of paths with sufficient probability mass
- How to determine smallest counterexamples?
 - exploit k-shortest path algorithms
- How about the size of counterexamples?
 - well, they may be excessively large and incomprehensible
- Can we do better?
 - yes, represent counterexamples by regular expressions!
- How to obtain (short) regular expressions?
 - use automata theory and some heuristics

PCTL counterexamples for $s \not\models \mathbb{P}_{\leq p}(\varphi)$

- ullet A counterexample C is a set of finite paths satisfying evidences
 - $\sigma \in C$ implies σ starts in s and $\sigma \models \varphi$
 - $\Pr(C) = \sum_{\sigma \in C} \mathbf{P}(\sigma)$ exceeds p

PCTL counterexamples for $s \not\models \mathbb{P}_{\leq p}(\varphi)$

- ullet A counterexample C is a set of finite paths satisfying evidences
 - $\sigma \in C$ implies σ starts in s and $\sigma \models \varphi$
 - $\Pr(C) = \sum_{\sigma \in C} \mathbf{P}(\sigma)$ exceeds p
- Property: counterexamples for non-strict bounds $\leq p$ are *finite*

A DTMC with infinite counterexample for $s \not\models \mathbb{P}_{<1}(\lozenge a)$

PCTL counterexamples for $s \not\models \mathbb{P}_{\leq p}(\varphi)$

- ullet A counterexample C is a set of finite paths satisfying evidences
 - $\sigma \in C$ implies σ starts in s and $\sigma \models \varphi$
 - $\Pr(C) = \sum_{\sigma \in C} \mathbf{P}(\sigma)$ exceeds p
- Property: counterexamples for non-strict bounds $\leq p$ are *finite*
- C is *minimal* if $|C| \leqslant |C'|$ for any counterexample C'
- *C* is *smallest* if:

C is minimal, and $\Pr(C)\geqslant\Pr(C')$ for any minimal counterexample C'

Evidences for $s_0 \not\models \mathbb{P}_{\leqslant \frac{1}{2}}(\boldsymbol{a} \cup \boldsymbol{b})$

evidences	prob.
$\sigma_1 = s_0 s_1 t_1$	0.2
$\sigma_2=s_0s_1s_2t_1$	0.2
$\sigma_3 = s_0s_2t_1$	0.15
$\sigma_4=s_0s_1s_2t_2$	0.12
$\sigma_5=s_0s_2t_2$	0.09
•••	

Strongest evidences (SEs)

evidences	prob.
$\sigma_1 = s_0 s_1 t_1$	0.2
$\sigma_2=s_0s_1s_2t_1$	0.2
$\sigma_3 = s_0s_2t_1$	0.15
$\sigma_4=s_0s_1s_2t_2$	0.12
$\sigma_5=s_0s_2t_2$	0.09
• • •	• • •

Counterexamples for $s_0 \not\models \mathbb{P}_{\leqslant \frac{1}{2}}(\boldsymbol{a} \cup \boldsymbol{b})$

evidences	prob.
$\sigma_1 = s_0 s_1 t_1$	0.2
$\sigma_2 = s_0 s_1 s_2 t_1$	0.2
$\sigma_3=s_0s_2t_1$	0.15
$\sigma_4 = s_0 s_1 s_2 t_2$	0.12
$\sigma_5 = s_0s_2t_2$	0.09

counterexample	card.	prob.
$\set{\sigma_1,\ldots,\sigma_5}$	5	0.76
$\set{\sigma_1 \text{ or } \sigma_2, \ldots, \sigma_5}$	4	0.56
$\set{\sigma_1,\sigma_2,\sigma_4}$	3	0.52
$\set{\sigma_1,\sigma_2,\sigma_3}$	3	0.55

Counterexamples for $s_0 \not\models \mathbb{P}_{\leqslant \frac{1}{2}}(\boldsymbol{a} \cup \boldsymbol{b})$

evidences	prob.
$\sigma_1 = s_0 s_1 t_1$	0.2
$\sigma_2 = s_0 s_1 s_2 t_1$	0.2
$\sigma_3 = s_0 s_2 t_1$	0.15
$\sigma_4=s_0s_1s_2t_2$	0.12
$\sigma_5 = s_0 s_2 t_2$	0.09

counterexample	card.	prob.
$\set{\sigma_1,\ldots,\sigma_5}$	5	0.76
$\set{\sigma_1 \text{ or } \sigma_2, \ldots, \sigma_5}$	4	0.56
$minimal \longrightarrow \set{\sigma_1, \sigma_2, \sigma_4}$	3	0.52
$minimal \longrightarrow \set{\sigma_1, \sigma_2, \sigma_3}$	3	0.55

Counterexamples for $s_0 \not\models \mathbb{P}_{\leqslant \frac{1}{2}}(\boldsymbol{a} \cup \boldsymbol{b})$

evidences	prob.
$\sigma_1 = s_0 s_1 t_1$	0.2
$\sigma_2 = s_0 s_1 s_2 t_1$	0.2
$\sigma_3=s_0s_2t_1$	0.15
$\sigma_4 = s_0 s_1 s_2 t_2$	0.12
$\sigma_5 = s_0 s_2 t_2$	0.09

counterexample	card.	prob.
$\set{\sigma_1,\ldots,\sigma_5}$	5	0.76
$\set{\sigma_1 \text{ or } \sigma_2, \ldots, \sigma_5}$	4	0.56
$\set{\sigma_1,\sigma_2,\sigma_4}$	3	0.52
$smallest \longrightarrow \set{\sigma_1, \sigma_2, \sigma_3}$	3	0.55

Obtaining smallest counterexamples

Step 1: make all Ψ -states and all $\neg \Phi \land \neg \Psi$ -states absorbing

Adapting a bit more

Step 2: insert a sink state and redirect all outgoing edges of Ψ -states to it

A weighted digraph

Step 3: turn it into a weighted digraph with $w(s,s') = \log\left(\frac{1}{\mathbf{P}(s,s')}\right)$

A simple derivation

For finite path $\sigma = s_0 s_1 s_2 \dots s_n$:

$$w(\sigma) = w(s_0, s_1) + w(s_1, s_2) + \dots + w(s_{n-1}, s_n)$$

$$= \log \frac{1}{\mathbf{P}(s_0, s_1)} + \log \frac{1}{\mathbf{P}(s_1, s_2)} + \dots + \log \frac{1}{\mathbf{P}(s_{n-1}, s_n)}$$

$$= \log \frac{1}{\mathbf{P}(s_0, s_1) \cdot \mathbf{P}(s_1, s_2) \cdot \dots \cdot \mathbf{P}(s_{n-1}, s_n)}$$

$$= \log \frac{1}{\mathbf{P}(\sigma)}$$

$$\underbrace{\Pr(\widehat{\sigma}) \geqslant \Pr(\sigma)}_{\text{in DTMC }\mathcal{D}} \quad \text{if and only if} \quad \underbrace{w(\widehat{\sigma}) \leqslant w(\sigma)}_{\text{in digraph }G(\mathcal{D})}$$

Content of this lecture

- What is a counterexample?
 - motivation, definition, properties
- ⇒ Counterexample generation
 - algorithms, time complexity, examples
 - Representing counterexamples
 - weighted regular expressions, optimisations

What does this mean?

- Finding a strongest evidence is a shortest path (SP) problem
 - apply standard SP algorithms, or Viterbi's algorithm ⇒ linear time complexity

What does this mean?

- Finding a strongest evidence is a shortest path (SP) problem
 - apply standard SP algorithms, or Viterbi's algorithm ⇒ linear time complexity
- Finding a shortest counterex is a k-shortest path (KSP) problem
 - dynamically determine k: generate C incrementally and halt when Pr(C) > p

What does this mean?

- Finding a strongest evidence is a shortest path (SP) problem
 - apply standard SP algorithms, or Viterbi's algorithm ⇒ linear time complexity
- Finding a shortest counterex is a k-shortest path (KSP) problem
 - dynamically determine k: generate C incrementally and halt when Pr(C) > p
- This also applies to $\mathbb{P}_{\geqslant p}(\varphi)$ properties, as

$$\begin{array}{ll} \mathbb{P}_{\geqslant p}(\mathbf{\Phi}\,\mathsf{U}\,\Psi) & \equiv & \mathbb{P}_{\leqslant 1-p}(\underbrace{(\mathbf{\Phi}\,\wedge\,\neg\Psi)}_{\Phi^*}\,\mathsf{W}\,\underbrace{(\neg\Phi\,\wedge\,\neg\Psi)}_{\Psi^*})\\ \\ & \equiv & \mathbb{P}_{\leqslant 1-p}(\Phi^*\,\mathsf{U}\,(\Psi^*\,\vee\,\textit{at}_{\mathsf{bscc}(\Phi^*)})) \end{array}$$

Time complexity

counterexample problem	shortest path problem	algorithm	time complexity
unbounded SE	SP	Dijkstra	$\mathcal{O}(M + N \cdot \log N)$
bounded h SE	HSP	Bellman-Ford / Viterbi	$\mathcal{O}(h\!\cdot\! M)$
unbounded SC	KSP	Eppstein	$\mathcal{O}(M + N \cdot \log N + k)$
bounded h SC	HKSP	adapted REA	$\mathcal{O}\left(h \cdot M + h \cdot k \cdot \log N\right)$

N = |S|, M = # transitions, h = hop count, k = # shortest paths

including costs yields an instance of the NP-complete RSP problem

Content of this lecture

- What is a counterexample?
 - motivation, definition, properties
- Counterexample generation
 - algorithms, time complexity, examples
- ⇒ Representing counterexamples
 - weighted regular expressions, optimisations

On the size of counterexamples

A smallest counterexample for $s \not\models \mathbb{P}_{\leq 0.9999}(\diamondsuit a)$ contains paths

$$sut, susut, sususut, \ldots, \underbrace{su}_{k \text{ times}} t$$

where k is the smallest integer such that $1-0.99^{k-1} > 0.9999$

The smallest counterexample has k=689 evidences

Synchronous leader election $\mathbb{P}_{\leq 0.99}(\lozenge leader)$

size of counterexample is double exponential in problem size (see paper)

Use regular expressions!

- Size of counterexamples is mainly influenced by loops
 - each loop-traversal yields another path in counterexample
- Idea: represent sets of "similar" finite paths by a regular expression
- How?
 - DTMC (rooted at s) \longrightarrow DFA
 - DFA \longrightarrow most probable paths \longrightarrow regular expression r
- Such that:
 - probability of regular expression r exceeds p (= r is a counterexample)
 - r is "minimal": deletion of some "branch" of r yields no counterexample

From DTMCs to DFAs

alphabet Σ consist of symbols of the form (p, s)

From DTMCs to DFA

For DTMC $\mathcal{D}=(S,\mathbf{P},L)$, state s, and property $\mathbb{P}(\diamondsuit^{\leqslant h}\mathbf{t})$, DFA $\mathcal{A}_{\mathcal{D}}=(S',\Sigma,\tilde{\mathbf{s}},\delta,\mathbf{t})$

	DTMC	DFA	
state space	S	$S \cup \{\tilde{\boldsymbol{s}}\}$	
initial state	s	$\tilde{s} \notin S$	
goal/accepting state	t	t	
alphabet	_	$\Sigma \subset \boxed{[0,1] imes S}$	
transitions	$s_1 \xrightarrow{p} s_2$	$s_1 \xrightarrow{(p, s_2)} s_2$	
	_	$ ilde{oldsymbol{s}} \stackrel{(1,s)}{\longrightarrow} s$	

Regular expressions [Daws'04]

The set of regular expressions $\mathcal{R}(\Sigma)$:

$$r,r'::=arepsilon \qquad empty \ | \ (p,s) \quad ext{letter} \ | \ r|r' \quad ext{choice} \ | \ r.r' \quad ext{catenation} \ | \ r^* \quad ext{repetition}$$

Regular expressions [Daws'04]

The set of regular expressions $\mathcal{R}(\Sigma)$:

Evaluation $val: \mathcal{R}(\Sigma) \to \mathbb{R}_{\geqslant 0}$:

$$\begin{array}{lll} val(\varepsilon) & = & 1 \\ val((p,s)) & = & p \\ val(r|r') & = & val(r) + val(r') \\ val(r.r') & = & val(r) \cdot val(r') \\ val(r^*) & = & \begin{cases} 1 & \text{if } val(r) = 1 \\ \frac{1}{1-val(r)} & \text{otherwise} \end{cases} \end{array}$$

Regular expressions [Daws'04]

The set of regular expressions $\mathcal{R}(\Sigma)$:

$$\begin{array}{cccc} r,r' & ::= & \varepsilon & \text{ empty} \\ & | & (p,s) & \text{ letter} \\ & | & r|r' & \text{ choice} \\ & | & r.r' & \text{ catenation} \\ & | & r^* & \text{ repetition} \end{array}$$

Evaluation $val: \mathcal{R}(\Sigma) \to \mathbb{R}_{\geqslant 0}$:

$$val(arepsilon) = 1$$

$$val((p,s)) = p$$

$$val(r|r') = val(r) + val(r')$$

$$val(r.r') = val(r) \cdot val(r')$$

$$val(r^*) = \begin{cases} 1 & \text{if } val(r) = 1 \\ \frac{1}{1-val(r)} & \text{otherwise} \end{cases}$$

For regular expression r of DFA $\mathcal{A}_{\mathcal{D}}$ with accept state t:

$$val(r) = \Pr^{\mathcal{D}} \{ \sigma \in \mathit{Paths}(s) \mid \sigma \models \Diamond t \}$$

State elimination [Brzozowski & McCluskey jr., 1962]

$$-\underbrace{a.(a.b)^*.(a.a^*.b|a.b)}_{}$$

Ordering matters

Ordering s < u < t yields $(aa|b)(a|cb)^*(cd|d)$

Ordering s < t < u yields $(aa|b)a^*c(ba^*c)^*(ba^*d|d)|(aa|b)a^*d$

Ordering matters

Finding the optimal removal ordering takes time $\mathcal{O}(N!)$ where |S|=N

© JPK

Heuristic [Han & Wood'07]

"eliminate all non-bridge states before bridge states"

- 1. Find all *bridge* states q_1 through q_{n-1}
 - the path of every word $w \in \mathcal{L}(\mathcal{A})$ goes through q_i
 - ullet once this path visits q_i it will not visit states visited prior to q_i
- 2. Perform vertical chopping
 - $\mathcal{A} = \mathcal{A}_1 \cdot \mathcal{A}_2 \cdot \ldots \cdot \mathcal{A}_n$ where \mathcal{A}_i is "connected" to \mathcal{A}_i via bridge q_i
- 3. For each A_i perform *horizontal chopping*
 - $\bullet \ \mathcal{A}_i = \mathcal{A}_{i,1} | \mathcal{A}_{i,2} | \dots | \mathcal{A}_{i,k}$
- 4. For each automaton A_i , j goto step 1.

Time complexity

"eliminate all non-bridge states before bridge states"

1. Find all *bridge* states q_1 through q_{n-1}

in linear time

- the path of every word $w \in \mathcal{L}(\mathcal{A})$ goes through q_i
- ullet once this path visits q_i it will not visit states visited prior to q_i
- 2. Perform vertical chopping

in linear time

- ullet $\mathcal{A}=\mathcal{A}_1\cdot\mathcal{A}_2\cdot\ldots\cdot\mathcal{A}_n$ where \mathcal{A}_i is "connected" to \mathcal{A}_i via bridge q_i
- 3. For each A_i perform *horizontal chopping*

in linear time

- $\bullet \ \mathcal{A}_i = \mathcal{A}_{i,1} | \mathcal{A}_{i,2} | \ldots | \mathcal{A}_{i,k}$
- 4. For each automaton $A_{i,j}$ goto step 1.

Vertical chopping

Horizontal chopping

Maximal union subexpressions

 r_1 is a maximal union subexpression (MUS) of regular expression r if:

$$r = r_1 \mid r_2$$
 modulo the congruence $(\mathbf{R_1})$ - $(\mathbf{R_3})$

where for some $r_2 \in \mathcal{R}(\Sigma)$:

$$(\mathbf{R_1}) \qquad \qquad r \equiv r \mid \varepsilon$$

$$(\mathbf{R_2}) \qquad \qquad r_1 \mid r_2 \equiv r_2 \mid r_1$$

$$(\mathbf{R_3}) \qquad \qquad r_1 \mid (r_2 \mid r_3) \equiv (r_1 \mid r_2) \mid r_3$$

a MUS can be regarded as a main path from the initial state to a accept state

Algorithm for regular expressions

```
Require: DFA \mathcal{A}_{\mathcal{D}} = (S, \Sigma, s, \delta, \{t\}), and p \in [0, 1]
Ensure: regular expression r \in \mathcal{R}(\Sigma) with val(r) > p
   \mathcal{A} := \mathcal{A}_{\mathcal{D}}, \ pr := 0; \ \text{priority queue} \ pq := \emptyset; \ k := 1;
   while pr \leqslant p do
      \sigma := the strongest evidence in \mathcal{A};
      forall s' \in \sigma \setminus \{s, \hat{s}, t\} do pq.enqueue(s'); end;
      while pq \neq \emptyset do
         \mathcal{A} := \text{eliminate}(pq.\text{dequeue}()); \quad r_k := \text{the created MUS};
         pr := pr + val(r_k); \quad \mathcal{A} := \mathsf{eliminate}(r_k);
         if (pr > p) then break else k := k + 1;
      endwhile;
   endwhile:
   return r_1 \mid \ldots \mid r_k.
```

this approach works for strict and non-strict bounds

Leader election revisited

Regular expression for the counterexample:

$$r(N,K) = start. [(u_1|\cdots|u_i).next. start]^*. (s_1|\cdots|s_j). leader$$

© JPK

Model reduction

The size of a counterexample is determined by

- traversing the same loop for different times
 - ⇒ using Kleene stars in regular expressions

- large number of states
 - → model reduction
 - 1. bisimulation minimization
 - 2. SCC minimization

Model reduction is done prior to counterexample generation

Leader election re-revisited

Bisimulation quotient:

$$r_{\sim}(N,K) = start. (u.next.start)^*.s. leader$$

After aggregating SCCs:

SCC aggregation of bisimulation quotient:

$$r^{scc}(N,K) = start.start^*.(s_1|\cdots|s_j).leader \qquad r^{scc}_{\sim}(N,K) = start.start^*.s.leader$$

Other approaches

Heuristic search algorithms for CTMCs

(Aljazzar et al. FORMATS 2005, 2006)

Counterexamples for CTMCs

(Han & Katoen ATVA 2007)

Counterexamples for conditional PCTL

(Andres & van Rossum TACAS 2008)

Proof refutations for probabilistic programs

(McIver et al. FM 2008)

Counterexample-guided abstraction refinement

(Hermanns et al. CAV 2008)

Counterexamples for MDPs

(Andres et al., HVC 2008, Aljazzar & Leue TR 2007)

Bounded MC for DTMC counterexamples

(Becker et al. VMCAI 2009)

Epilogue

- What is a PCTL (or quantitative LTL) counterexample?
 - a set of paths with sufficient probability mass
- How to determine smallest counterexamples?
 - exploit k-shortest path algorithms
- How about the size of counterexamples?
 - well, they may be excessively large and incomprehensible
- Can we do better?
 - yes, represent counterexamples by regular expressions!
- How to obtain (short) regular expressions?
 - use automata theory and some heuristics

谢谢大家!

© JPK