Model Checking Markov Chains

Lecture 3: Abstraction

Joost-Pieter Katoen

Software Modeling and Verification Group

RWTH Aachen University

affiliated to University of Twente, Formal Methods and Tools

Lecture at Model Checking Summerschool, October 12, 2010

Probabilistic bisimulation: intuition

- Strong bisimulation is used to compare labeled transition systems
- Strongly bisimilar states exhibit the same step-wise behaviour
- We like to adapt bisimulation to DTMCs
- This yields a probabilistic variant of strong bisimulation
- When do two DTMC states exhibit the same step-wise behaviour?
- Key: if their transition probability for each equivalence class coincides

for simplicity, assume a unique initial state

Probabilistic bisimulation

- Let $\mathcal{M} = (S, \mathbf{P}, AP, L)$ be a DTMC and $R \subseteq S \times S$ an equivalence
- R is a *probabilistic bisimulation* on S if for any $(s, s') \in R$:

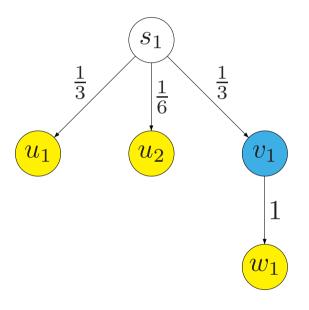
$$L(s) = L(s')$$
 and $\mathbf{P}(s, C) = \mathbf{P}(s', C)$ for all C in S/R

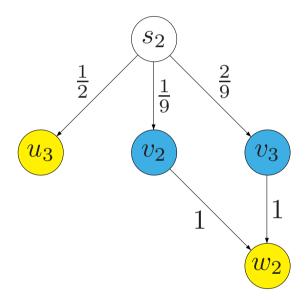
where
$$\mathbf{P}(s,C) = \sum_{s' \in C} \mathbf{P}(s,s')$$

[Larsen & Skou, 1989]

• $s \sim s'$ if \exists a probabilistic bisimulation R with $(s,s') \in R$

Example





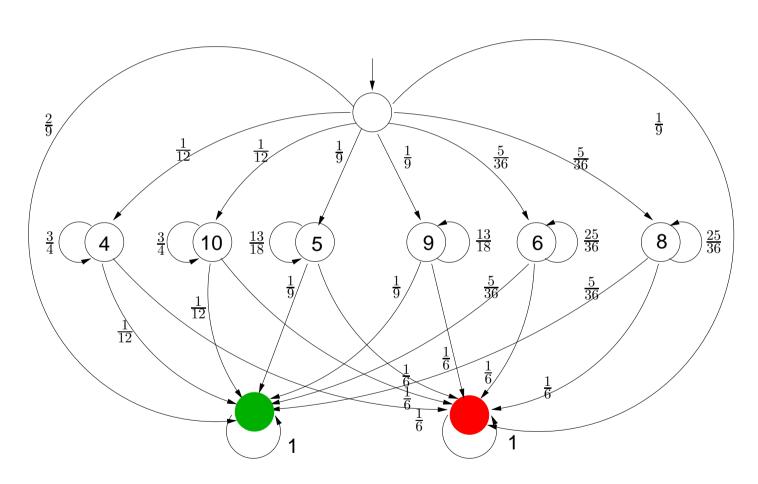
Quotient DTMC under \sim

 $\mathcal{M}/\sim = (S', \mathbf{P}', AP, L'),$ the quotient of $\mathcal{M} = (S, \mathbf{P}, AP, L)$ under \sim :

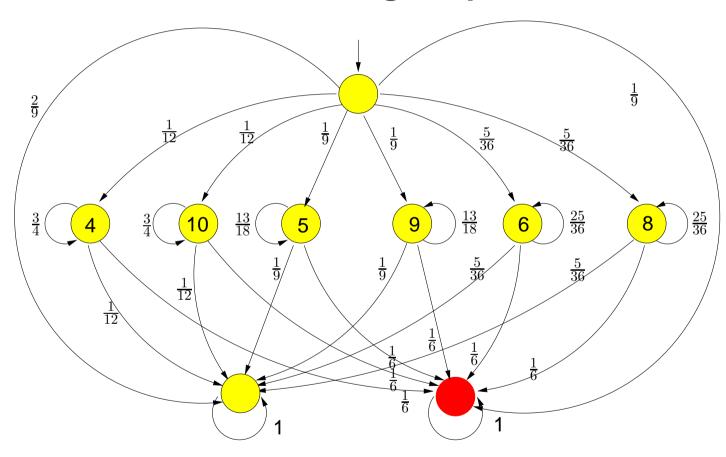
- $S' = S/\sim = \{ [s]_{\sim} \mid s \in S \}$
- $\mathbf{P}'([s]_{\sim}, C) = \mathbf{P}(s, C)$
- $L'([s]_{\sim}) = L(s)$

get \mathcal{M}/\sim by partition-refinement in time $\mathcal{O}(M\cdot \log N + |AP|\cdot N)$ [Derisavi et al., 2001]

A DTMC model of Craps

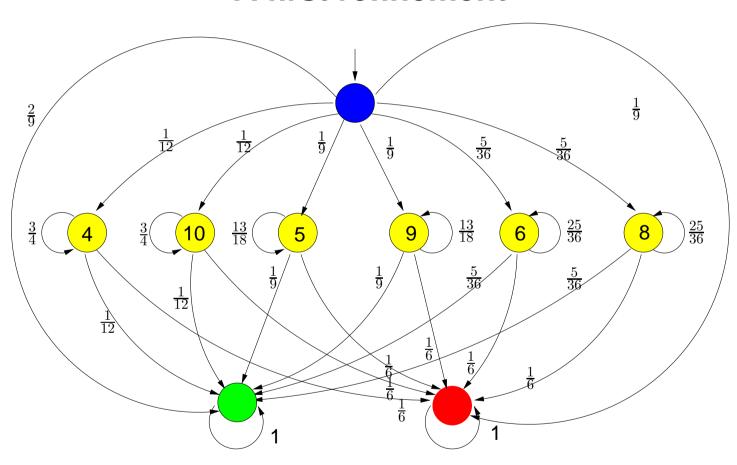


Minimizing Craps



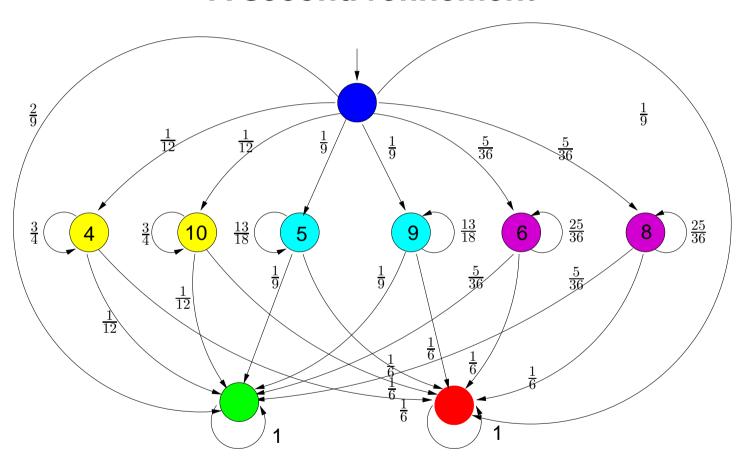
initial partitioning for the atomic propositions $AP = \{ loss \}$

A first refinement



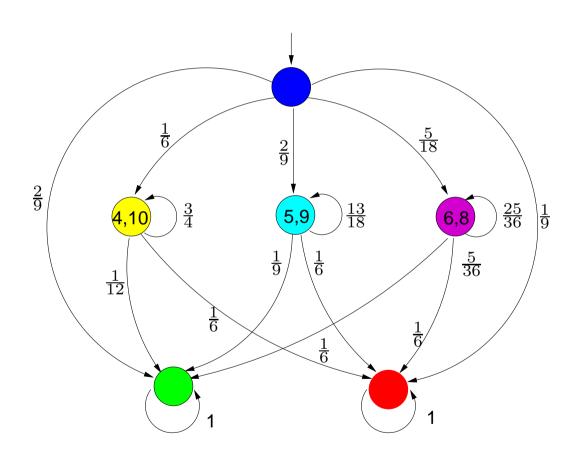
refine ("split") with respect to the set of red states

A second refinement



refine ("split") with respect to the set of green states

Quotient DTMC



Preservation of PCTL

$$s \sim s' \Leftrightarrow (\forall \Phi \in \textit{PCTL} : s \models \Phi \text{ if and only if } s' \models \Phi)$$

IEEE 802.11 group communication protocol

	original CTMC			lumped CTMC		red. factor	
OD	states	transitions	ver. time	blocks	lump + ver. time	states	time
4	1125	5369	121.9	71	13.5	15.9	9.00
12	37349	236313	7180	1821	642	20.5	11.2
20	231525	1590329	50133	10627	5431	21.8	9.2
28	804837	5750873	195086	35961	24716	22.4	7.9
36	2076773	15187833	5103900	91391	77694	22.7	6.6
40	3101445	22871849	7725041	135752	127489	22.9	6.1

BitTorrent-like P2P protocol

			symmetry reduction				
original CTMC			reduced CTMC			red. factor	
N	states	ver. time	states	red. time	ver. time	states	time
2	1024	5.6	528	12	2.9	1.93	0.38
3	32768	410	5984	100	59	5.48	2.58
4	1048576	22000	52360	360	820	20.0	18.3

			bisimulation minimisation				
original CTMC			lumped CTMC			red. factor	
N	states	ver. time	blocks	lump time	ver. time	states	time
2	1024	5.6	56	1.4	0.3	18.3	3.3
3	32768	410	252	170	1.3	130	2.4
4	1048576	22000	792	10200	4.8	1324	2.2

bisimulation may reduce a factor 66 after (manual) symmetry reduction

Weak probabilistic bisimulation

- Let $\mathcal{M} = (S, \mathbf{P}, AP, L)$ be a DTMC and $R \subseteq S \times S$ an equivalence
- R is a weak probabilistic bisimulation on S if for any $(s_1, s_2) \in R$:
 - $-L(s_1) = L(s_2)$
 - s_1 can reach a state outside $[s_1]_R$ iff s_2 can do so
 - if $P(s_i, [s_i]_R) < 1$ for i=1, 2 then:

$$\frac{\mathbf{P}(s_1, C)}{1 - \mathbf{P}(s_1, [s_1]_R)} = \frac{\mathbf{P}(s_2, C)}{1 - \mathbf{P}(s_2, [s_2]_R)} \quad \text{for all } C \in S/R, C \neq [s_1]_R$$

• $s \approx s'$ if \exists a weak probabilistic bisimulation R with $(s,s') \in R$

Logical characterization

$$s \approx s' \Leftrightarrow \left(\forall \Phi \in \mathit{PCTL}_{\backslash \bigcirc} : s \models \Phi \text{ if and only if } s' \models \Phi \right)$$

Probabilistic simulation

- ullet For transition systems, state s' simulates state s if
 - for each successor t of s there is a one-step successor t^\prime of s^\prime that simulates t
 - ⇒ simulation of two states is defined in terms of simulation of successor states
- What are successor states in the probabilistic setting?
 - the target of a transition is in fact a probability distribution
 - \Rightarrow the simulation relation \sqsubseteq needs to be lifted from states to distributions

Weight function Δ

- Δ "distributes" a distribution μ over set X to one μ' over set Y
 - such that the total probability assigned by Δ to $y \in Y$. . . equals the original probability $\mu'(y)$ on Y
 - and symmetrically for the total probability mass of $x \in X$ assigned by Δ
- Δ is a distribution on $R \subseteq X \times Y$ such that:
 - the probability to select (x,y) with $(x,y)\in R$ is one, and
 - the probability to select $(x,\cdot) \in R$ equals $\mu(x)$, and
 - the probability to select $(\cdot, y) \in R$ equals $\mu'(y)$

Weight function

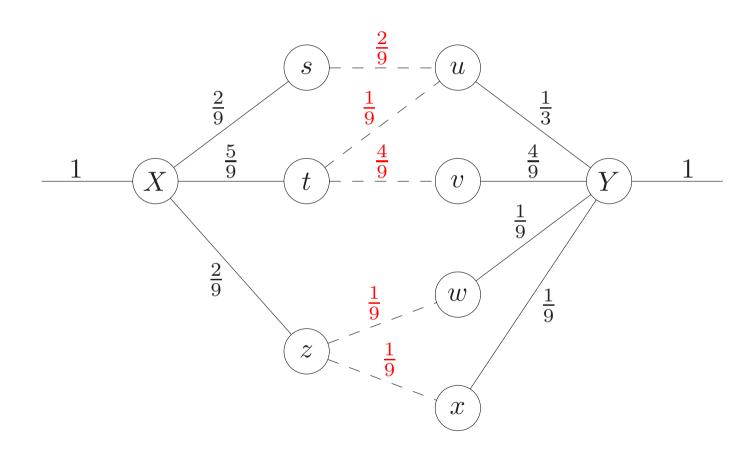
- Let $R \subseteq S \times S$, and $\mu, \mu' \in \textit{Distr}(S)$
- $\Delta \in \textit{Distr}(S \times S)$ is a *weight function* for (μ, μ') and R whenever:

$$\Delta(s,s')>0$$
 implies $(s,s')\in R$ and

$$\mu(s) = \sum_{s' \in S} \Delta(s, s') \ \text{ and } \ \mu'(s') = \sum_{s \in S} \Delta(s, s') \text{ for any } s, s' \in S$$

• $\mu \sqsubseteq_R \mu'$ iff there exists a weight function for (μ, μ') and R

Weight function example



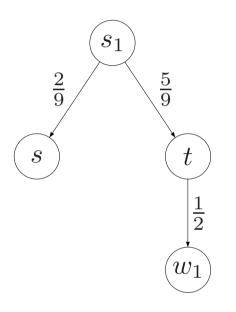
Probabilistic simulation

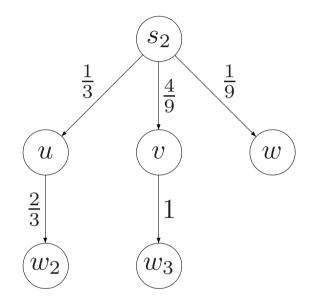
- Let $\mathcal{M} = (S, \mathbf{P}, AP, L)$ be a DTMC and $R \subseteq S \times S$
- R is a *probabilistic simulation* on S if for all $(s, s') \in R$:

$$L(s) = L(s')$$
 and $\mathbf{P}(s,\cdot) \sqsubseteq_R \mathbf{P}(s',\cdot)$

• $s \sqsubseteq_p s'$ if there exists a probabilistic simulation R with $(s, s') \in R$

Probabilistic simulation example





$$R = \{(s_1, s_2), (s, u), (t, u), (t, v), (w_1, w_2), (w_1, w_3)\}$$

is a probabilistic simulation (cf. weight function before)

Simulation equivalence = bisimulation

For any DTMC:

probabilistic simulation equivalence coincides with

probabilistic bisimulation

this does only hold for deterministic labeled transition systems

Logical characterization

$$s \sqsubseteq s' \Leftrightarrow (\forall \Phi \in \mathit{safePCTL} : s' \models \Phi \text{ implies } s \models \Phi)$$

The syntax of the safe fragment of PCTL is given by:

$$\Phi ::= \mathit{true} \mid a \mid \neg a \mid \Phi \land \Phi \mid \Phi \lor \Phi \mid \mathbb{P}_{\geqslant p}(\Phi \, \mathsf{W} \, \Phi) \mid \mathbb{P}_{\geqslant p}(\Phi \, \mathsf{W}^{\leqslant n} \Phi)$$

A typical safe PCTL formula: $\mathbb{P}_{\geqslant 0.99}(\Box^{\leqslant 100} \neg \textit{error})$

Overview

	strong bisimulation ~	weak bisimulation $pprox$	strong simulation ⊑	weak simulation ≋
logical preservation	PCTL	PCTL _{\O}	safePCTL	safePCTL _\
checking equivalence	partition refinement $\mathcal{O}(m \log n)$	partition refinement $\mathcal{O}(n^3)$	parametric maximal flow problem $\mathcal{O}(m^2 \cdot n)$	parametric maximal flow problem $\mathcal{O}(m^2 \cdot n^3)$
graph minimization	$\mathcal{O}(m \log n)$	$\mathcal{O}(n^3)$	_	_

Can we abstract more?

- Partition the state space into groups of concrete states
 - allow any partitioning, not just grouping of bisimilar states
- Use a three-valued semantics
 - abstraction is conservative for both negative and positive verification results
 - if verification yields don't know, validity in concrete model is unknown

• Challenges:

- what are abstract probabilistic models?
- how to interpret PCTL on these abstract models?
- how to verify abstractions?
- how accurate are abstractions in practice?

The discrete-time setting

An abstract MC (AMC) is a quintuple $\mathcal{D} = (S, \mathbf{P}^l, \mathbf{P}^u, L)$ with:

• $\mathbf{P}^l, \mathbf{P}^u : S \times S \mapsto [0,1]$, transition probability bounds where

$$\mathbf{P}^l(s,S) \leqslant 1 \leqslant \mathbf{P}^u(s,S) < \infty$$
 for all $s \in S$

• $L: S \times AP \mapsto \{\top, \bot, ?\}$, the labeling function

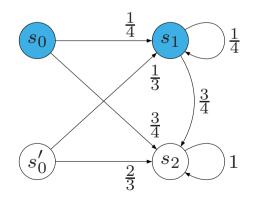
This is also known as interval Markov chains (Kozine & Utkin, 2002)

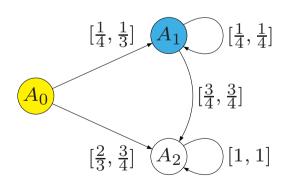
Abstraction

For $\mathcal{A} = \{A_1, \dots, A_n\}$ let AMC $\alpha(\mathcal{A}, \mathcal{D}) := (\mathcal{A}, \tilde{\mathbf{P}}^l, \tilde{\mathbf{P}}^u, \tilde{L})$ with:

$$\tilde{\mathbf{P}}^l(A_i, A_j) = \inf_{s \in A_i} \mathbf{P}^l(s, A_j) \quad \text{and} \quad \tilde{\mathbf{P}}^u(A_i, A_j) = \min\{1, \sup_{s \in A_i} \mathbf{P}^u(s, A_j)\}$$

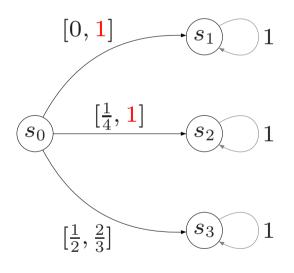
and
$$\tilde{L}(A_i,a) = \left\{ \begin{array}{ll} \top & \text{if } L(s,a) = \top \text{ for all } s \in A_i \\ \bot & \text{if } L(s,a) = \bot \text{ for all } s \in A_i \\ \text{? otherwise} \end{array} \right.$$

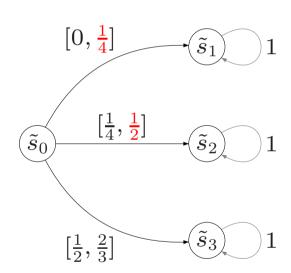




Normalization

removes illegal probability combinations





an AMC is normalized if for each pair (s,s') and $p \in [\mathbf{P}^l(s,s'),\mathbf{P}^u(s,s')]$ there exists a distribution μ with $\mu(s')=p$

Correctness

For AMC \mathcal{D} with state space S, and partitioning \mathcal{A} of S:

$$\mathcal{D} \sqsubseteq \alpha(\mathcal{A}, \mathcal{D})$$

For states s and s' of AMC \mathcal{D} with $s \sqsubseteq s'$:

 $\forall \Phi \in \mathsf{PCTL} : \llbracket \Phi \rrbracket(s') \neq ? \quad \mathsf{implies} \quad \llbracket \Phi \rrbracket(s) = \llbracket \Phi \rrbracket(s')$

Policies

- A policy resolves the nondeterminism as given by the intervals
 - consider history-dependent deterministic policies
 - there are infinitely many of such policies
 - on an AMC, such policies induce an (infinite-state) Markov chain
- Extreme policies only select bounds of intervals
 - there are finitely (possibly exponentially) many extreme policies

For any measurable event E (in the σ -algebra on infinite paths):

$$\inf_{\mathsf{extreme}\ \mathfrak{S}}\Pr^{\mathfrak{S}}(E) \ = \ \inf_{\mathsf{any}\ \mathfrak{S}}\Pr^{\mathfrak{S}}(E) \quad \mathsf{and} \quad \sup_{\mathsf{extreme}\ \mathfrak{S}}\Pr^{\mathfrak{S}}(E) \ = \ \sup_{\mathsf{any}\ \mathfrak{S}}\Pr^{\mathfrak{S}}(E)$$

Reachability probabilities

For $\mathcal{D}\subseteq\mathcal{D}'$ and compatible sets $G\subseteq S$, $G'\subseteq S'$ there exists for any policy \mathfrak{S} on \mathcal{D} a policy \mathfrak{S}' on \mathcal{D}' such that:

$$\Pr^{\mathfrak{S}}(\diamondsuit^{\leqslant k} G) = \Pr^{\mathfrak{S}'}(\diamondsuit^{\leqslant k} G') \text{ for any } k \in \mathbb{N}$$

$$\Pr^{\mathfrak{S}}(\diamondsuit G) = \Pr^{\mathfrak{S}'}(\diamondsuit G')$$

computing (step-)bounded probabilities is as in MDPs

谢谢大家!