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Probabilistic bisimulation: intuition

e Strong bisimulation is used to compare labeled transition systems
e Strongly bisimilar states exhibit the same step-wise behaviour

e We like to adapt bisimulation to DTMCs

e This yields a probabilistic variant of strong bisimulation

e When do two DTMC states exhibit the same step-wise behaviour?

e Key: if their transition probability for each equivalence class coincides

for simplicity, assume a unique initial state
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Probabilistic bisimulation

e Llet M = (S, P,AP, L) bea DTMC and R C S x S an equivalence
e R is a probabilistic bisimulation on S if for any (s, s’) € R:
L(s)=L(s") and P(s,C) =P(s',C) forall CinS/R
where P(s,C) = > .~ P(s,s') [Larsen & Skou, 1989]

e s ~ s’ if 4a probabilistic bisimulation R with (s,s’) € R
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Quotient DTMC under ~

M/~ = (S P AP, L"), the quotient of M = (S, P, AP, L) under ~:
o S'=5/~= {[s]~]s€5}
e P'([s].,C)=P(s,C)

o L'([s]) = L(s)

get M/ ~ by partition-refinement in time O(M -log N + |AP|-N)  [Derisavi et al., 2001]
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A DTMC model of Craps
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Minimizing Craps

Nell\}

initial partitioning for the atomic propositions AP = { loss }
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A first refinement

Nel|\V]

refine (“split”) with respect to the set of red states
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A second refinement

Nel|\V]

refine (“split”) with respect to the set of green states
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Quotient DTMC
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Preservation of PCTL
s~s & (VPePCTL: s =®ifand only if 5" = )
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IEEE 802.11 group communication protocol
original CTMC lumped CTMC red. factor

oD states transitions ver. time blocks | lump + ver.time | states | time
4 1125 5369 121.9 71 13.5 159 | 9.00
12 37349 236313 7180 1821 642 205 | 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 22.4 7.9
36 | 2076773 | 15187833 | 5103900 91391 77694 22.7 6.6
40 | 3101445 22871849 7725041 135752 127489 22.9 6.1
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BitTorrent-like P2P protocol

symmetry reduction

original CTMC reduced CTMC red. factor
N states ver. time | states | red. time | ver.time | states time
2 1024 5.6 528 12 2.9 1.93 0.38
3 32768 410 5984 100 59 5.48 2.58
4 1048576 22000 52360 360 820 20.0 18.3

bisimulation minimisation

original CTMC lumped CTMC red. factor
N states ver. time | blocks | lumptime | ver. time states time
2 1024 5.6 56 1.4 0.3 18.3 3.3
3 32768 410 252 170 1.3 130 2.4
4 1048576 22000 792 10200 4.8 | 1324 2.2

bisimulation may reduce a factor 66 after (manual) symmetry reduction
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Weak probabilistic bisimulation

Let M = (S,P,AP, L) bea DTMC and R C S x S an equivalence

R is a weak probabilistic bisimulation on S if for any (s, s2) € R:

— L(Sl) = L(Sg)
— s1 can reach a state outside [s1]g Iff s3 can do so
— if P(s;, [s;|r) < 1 fori=1,2 then:

P(Sl,C) P(SQ,C)

TP (s [s1ln) =1 P (55, (59170 forall C' € S/R,C # [s1|r

s ~ s' if 4 a weak probabilistic bisimulation R with (s,s’) € R
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Logical characterization
s~s & (V® € PCTL\ : s =@ ifand only if s’ |= @)
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Probabilistic simulation

e For transition systems, state s’ simulates state s if

— for each successor t of s there is a one-step successor ¢’ of s’ that simulates ¢

= simulation of two states is defined in terms of simulation of successor states

e What are successor states in the probabilistic setting?

— the target of a transition is in fact a probability distribution

= the simulation relation T needs to be lifted from states to distributions
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Weight function A

e A “distributes” a distribution . over set X to one u' over set Y

— such that the total probability assigned by Atoy € Y
. .. equals the original probability x'(y) on' Y
— and symmetrically for the total probability mass of x € X assigned by A

e A is adistribution on R C X x Y such that:

— the probability to select (x, y) with (x,y) € R is one, and
— the probability to select (=, -) € R equals u(x), and
— the probability to select (-, y) € R equals u'(y)
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Weight function

e Let RC S xS, and u,u’ € Distr(.S)
e A € Distr(S x ) is a weight function for (u, 4') and R whenever:
A(s,s") > 0 implies (s,s’) € R and

p(s) = Z A(s,s’) and p'(s') = ZA(S, s') forany s, s’ € S

s'eS seS

e 1 C g p iff there exists a weight function for (i, ') and R
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Weight function example
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Probabilistic simulation

o let M= (S, P,AP,L)beaDTMCand RC S x S
e R is a probabilistic simulation on S if for all (s, s’) € R:

L(s) = L(s") and P(s,:) Cg P(s',")

e s, s'if there exists a probabilistic simulation R with (s,s’) € R
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R = { (817 82)7 (Sa U), (t7 U’)7 (t7 U)) (w17 w2)7 (w17 ’lU3) }
IS a probabillistic simulation (cf. weight function before)
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Simulation equivalence = bisimulation

For any DTMC:
probabilistic simulation equivalence
coincides with

probabilistic bisimulation

this does only hold for deterministic labeled transition systems
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Logical characterization
sC s & (VO € safePCTL : s’ = ® implies s = ®)
The syntax of the safe fragment of PCTL is given by:
® u=true|a|—a| P AR|DV D|Poy(PWS) |Psp(dWS"D)
A typical safe PCTL formula: Pg.g9 (3519 error)
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Overview
strong weak strong weak
bisimulation | bisimulation simulation simulation
logical PCTL PCTL\O safePCTL safePCTL\O
preservation
checking partition partition parametric maximal | parametric maximal
equivalence refinement refinement flow problem flow problem
O(mlogn) O(n?) O(m?-n) O(m?-n?)
graph
minimization || O(mlogn) O(n?) — —

© JPK
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Can we abstract more?

e Partition the state space into groups of concrete states

— allow any partitioning, not just grouping of bisimilar states

e Use a three-valued semantics

— abstraction is conservative for both negative and positive verification results
— if verification yields don’t know, validity in concrete model is unknown

e Challenges:

— what are abstract probabilistic models?

— how to interpret PCTL on these abstract models?
— how to verify abstractions?

— how accurate are abstractions in practice?
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The discrete-time setting

An abstract MC (AMC) is a quintuple D = (S, P!, P“, L) with:
e PLP“: S xS+~ |0,1], transition probability bounds where

P'(5,9) <1< P%s,5) <oo forallse S

e :SXxAP— {T,1,?}, the labeling function

This is also known as interval Markov chains (kozine & Utkin, 2002)
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Abstraction

For A={A,...,A,}let AMC a(A, D) := (A, P',P*, L) with:

P'(A;, A)) = inf P'(s, A;) and P“(A;, A;) = min{ 1, sup P"(s, A;) }

) T ifL(s,a) =T foralls € A,
and L(A;,a) = 1 ifL(s,a) =1 foralls € A,
?  otherwise

© JPK
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Normalization

removes illegal probability combinations

an AMC is normalized if for each pair (s, s’) and p € [P'(s, s'), P“(s, )]
there exists a distribution p with u(s’) = p
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Correctness
For AMC D with state space S, and partitioning A of S:
D C oA, D)
For states s and s’ of AMC D with s C s’
V® € PCTL: [®](s") #? implies [®](s) =[®?](s)
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e A policy resolves the nondeterminism as given by the intervals

Policies

— consider history-dependent deterministic policies
— there are infinitely many of such policies
— on an AMC, such policies induce an (infinite-state) Markov chain

e Extreme policies only select bounds of intervals

— there are finitely (possibly exponentially) many extreme policies

For any measurable event E (in the o-algebra on infinite paths):

S S S S
inf Pr(E) = inf Pr(EF) and sup Pr(FE) = sup Pr(F)

extreme & any 6 extreme & any 6
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Reachability probabilities

For D C D’ and compatiblesets G C S, G’ C &’

there exists for any policy & on D a policy &’ on D’ such that:

S &'
Pr(¢™ G) = Pr(S @) forany k € N

S e’ ,
Pr(¢G) = Pr(¢G)

computing (step-)bounded probabilities is as in MDPs
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