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Probabilistic bisimulation: intuition

• Strong bisimulation is used to compare labeled transition systems

• Strongly bisimilar states exhibit the same step-wise behaviour

• We like to adapt bisimulation to DTMCs

• This yields a probabilistic variant of strong bisimulation

• When do two DTMC states exhibit the same step-wise behaviour?

• Key: if their transition probability for each equivalence class coincides

for simplicity, assume a unique initial state
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Probabilistic bisimulation

• Let M = (S,P, AP, L) be a DTMC and R ⊆ S × S an equivalence

• R is a probabilistic bisimulation on S if for any (s, s′) ∈ R:

L(s) = L(s′) and P(s, C) = P(s′, C) for all C in S/R

where P(s, C) =
∑

s′∈C P(s, s′) [Larsen & Skou, 1989]

• s ∼ s′ if ∃ a probabilistic bisimulation R with (s, s′) ∈ R
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Quotient DTMC under ∼

M/∼ = (S′,P′, AP, L′), the quotient of M = (S,P, AP, L) under ∼:

• S′ = S/∼= { [s]∼ | s ∈ S }

• P′([s]∼, C) = P(s, C)

• L′([s]∼) = L(s)

get M/∼ by partition-refinement in time O(M · log N + |AP|·N) [Derisavi et al., 2001]
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A DTMC model of Craps
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Minimizing Craps
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initial partitioning for the atomic propositions AP = { loss }
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A first refinement
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refine (“split”) with respect to the set of red states
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A second refinement
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Quotient DTMC
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Preservation of PCTL

s ∼ s′ ⇔ (∀Φ ∈ PCTL : s |= Φ if and only if s′ |= Φ)
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IEEE 802.11 group communication protocol

original CTMC lumped CTMC red. factor

OD states transitions ver. time blocks lump + ver. time states time
4 1125 5369 121.9 71 13.5 15.9 9.00

12 37349 236313 7180 1821 642 20.5 11.2

20 231525 1590329 50133 10627 5431 21.8 9.2

28 804837 5750873 195086 35961 24716 22.4 7.9

36 2076773 15187833 5103900 91391 77694 22.7 6.6

40 3101445 22871849 7725041 135752 127489 22.9 6.1
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BitTorrent-like P2P protocol

symmetry reduction
original CTMC reduced CTMC red. factor

N states ver. time states red. time ver. time states time
2 1024 5.6 528 12 2.9 1.93 0.38
3 32768 410 5984 100 59 5.48 2.58
4 1048576 22000 52360 360 820 20.0 18.3

bisimulation minimisation
original CTMC lumped CTMC red. factor

N states ver. time blocks lump time ver. time states time
2 1024 5.6 56 1.4 0.3 18.3 3.3
3 32768 410 252 170 1.3 130 2.4
4 1048576 22000 792 10200 4.8 1324 2.2

bisimulation may reduce a factor 66 after (manual) symmetry reduction
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Weak probabilistic bisimulation

• Let M = (S,P, AP, L) be a DTMC and R ⊆ S × S an equivalence

• R is a weak probabilistic bisimulation on S if for any (s1, s2) ∈ R:

– L(s1) = L(s2)
– s1 can reach a state outside [s1]R iff s2 can do so
– if P(si, [si]R) < 1 for i=1, 2 then:

P(s1, C)
1 − P(s1, [s1]R)

=
P(s2, C)

1 − P(s2, [s2]R)
for all C ∈ S/R,C �= [s1]R

• s ≈ s′ if ∃ a weak probabilistic bisimulation R with (s, s′) ∈ R
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Logical characterization

s ≈ s′ ⇔ (∀Φ ∈ PCTL\© : s |= Φ if and only if s′ |= Φ
)
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Probabilistic simulation

• For transition systems, state s′ simulates state s if

– for each successor t of s there is a one-step successor t′ of s′ that simulates t

⇒ simulation of two states is defined in terms of simulation of successor states

• What are successor states in the probabilistic setting?

– the target of a transition is in fact a probability distribution

⇒ the simulation relation � needs to be lifted from states to distributions
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Weight function ∆

• ∆ “distributes” a distribution µ over set X to one µ′ over set Y

– such that the total probability assigned by ∆ to y ∈ Y

. . . equals the original probability µ′(y) on Y

– and symmetrically for the total probability mass of x ∈ X assigned by ∆

• ∆ is a distribution on R ⊆ X × Y such that:

– the probability to select (x, y) with (x, y) ∈ R is one, and
– the probability to select (x, ·) ∈ R equals µ(x), and
– the probability to select (·, y) ∈ R equals µ′(y)
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Weight function

• Let R ⊆ S × S, and µ, µ′ ∈ Distr(S)

• ∆ ∈ Distr(S × S) is a weight function for (µ, µ′) and R whenever:

∆(s, s′) > 0 implies (s, s′) ∈ R and

µ(s) =
∑

s′∈S

∆(s, s′) and µ′(s′) =
∑

s∈S

∆(s, s′) for any s, s′ ∈ S

• µ 
R µ′ iff there exists a weight function for (µ, µ′) and R
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Weight function example
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Probabilistic simulation

• Let M = (S,P, AP, L) be a DTMC and R ⊆ S × S

• R is a probabilistic simulation on S if for all (s, s′) ∈ R:

L(s) = L(s′) and P(s, ·) 
R P(s′, ·)

• s 
p s′ if there exists a probabilistic simulation R with (s, s′) ∈ R
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Probabilistic simulation example
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R =
{

(s1, s2), (s, u), (t, u), (t, v), (w1, w2), (w1, w3)
}

is a probabilistic simulation (cf. weight function before)
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Simulation equivalence = bisimulation

For any DTMC:

probabilistic simulation equivalence

coincides with

probabilistic bisimulation

this does only hold for deterministic labeled transition systems
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Logical characterization

s 
 s′ ⇔ (∀Φ ∈ safePCTL : s′ |= Φ implies s |= Φ)

The syntax of the safe fragment of PCTL is given by:

Φ ::= true
˛̨

a
˛̨ ¬a

˛̨
Φ ∧ Φ

˛̨
Φ ∨ Φ

˛̨
P�p(Φ W Φ)

˛̨
P�p(Φ W�nΦ)

A typical safe PCTL formula: P�0.99(�
�100¬ error)
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Overview

strong weak strong weak
bisimulation bisimulation simulation simulation

∼ ≈ � �

logical PCTL PCTL\© safePCTL safePCTL\©
preservation

checking partition partition parametric maximal parametric maximal
equivalence refinement refinement flow problem flow problem

O(m log n) O(n3) O(m2·n) O(m2·n3)

graph
minimization O(m log n) O(n3) – –
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Can we abstract more?

• Partition the state space into groups of concrete states

– allow any partitioning, not just grouping of bisimilar states

• Use a three-valued semantics

– abstraction is conservative for both negative and positive verification results
– if verification yields don’t know, validity in concrete model is unknown

• Challenges:

– what are abstract probabilistic models?
– how to interpret PCTL on these abstract models?
– how to verify abstractions?
– how accurate are abstractions in practice?
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The discrete-time setting

An abstract MC (AMC) is a quintuple D = (S,Pl,Pu, L) with:

• Pl,Pu : S × S �→ [0, 1], transition probability bounds where

Pl(s, S) � 1 � Pu(s, S) < ∞ for all s ∈ S

• L : S × AP �→ {�,⊥, ? }, the labeling function

This is also known as interval Markov chains (Kozine & Utkin, 2002)
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Abstraction

For A = {A1, . . . , An } let AMC α(A,D) := (A, P̃l, P̃u, L̃) with:

P̃l
(Ai, Aj) = inf

s∈Ai
Pl

(s, Aj) and P̃u
(Ai, Aj) = min{ 1, sup

s∈Ai

Pu
(s, Aj) }

and L̃(Ai, a) =

8<
:


 if L(s, a) = 
 for all s ∈ Ai

⊥ if L(s, a) = ⊥ for all s ∈ Ai

? otherwise
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Normalization

removes illegal probability combinations
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an AMC is normalized if for each pair (s, s′) and p ∈ [Pl(s, s′), Pu(s, s′)]
there exists a distribution µ with µ(s′) = p
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Correctness

For AMC D with state space S, and partitioning A of S:

D � α(A,D)

For states s and s′ of AMC D with s � s′:

∀Φ ∈ PCTL : [[ Φ ]](s′) 
= ? implies [[ Φ ]](s) = [[ Φ ]](s′)
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Policies

• A policy resolves the nondeterminism as given by the intervals

– consider history-dependent deterministic policies
– there are infinitely many of such policies
– on an AMC, such policies induce an (infinite-state) Markov chain

• Extreme policies only select bounds of intervals

– there are finitely (possibly exponentially) many extreme policies

For any measurable event E (in the σ-algebra on infinite paths):

inf
extreme S

S

Pr(E) = inf
any S

S

Pr(E) and sup
extreme S

S

Pr(E) = sup
any S

S

Pr(E)
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Reachability probabilities

For D ⊆ D′ and compatible sets G ⊆ S, G′ ⊆ S′

there exists for any policy S on D a policy S′ on D′ such that:

S

Pr(��k G) =
S′
Pr(��k G′) for any k ∈ N

S

Pr(�G) =
S′
Pr(�G′)

computing (step-)bounded probabilities is as in MDPs
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