Model Checking Markov Chains

Lecture 4: Continuous-Time Markov Chains

Joost-Pieter Katoen

Software Modeling and Verification Group

RWTH Aachen University

affiliated to University of Twente, Formal Methods and Tools

Lecture at Model Checking Summerschool, October 12, 2010

Content of this lecture

- ⇒ Negative exponential distribution
 - definition, usage, properties
 - Continuous-time Markov chains
 - definition, semantics, examples
 - Performance measures
 - transient and steady-state probabilities, uniformization

Time in DTMCs

- Time in a DTMC proceeds in discrete steps
- Two possible interpretations
 - accurate model of (discrete) time units
 - * e.g., clock ticks in model of an embedded device
 - time-abstract
 - * no information assumed about the time transitions take
- Continuous-time Markov chains (CTMCs)
 - dense model of time
 - transitions can occur at any (real-valued) time instant
 - modelled using negative exponential distributions

Continuous random variables

- X is a random variable (r.v., for short)
 - on a sample space with probability measure Pr
 - assume the set of possible values that X may take is dense
- X is *continuously distributed* if there exists a function f(x) such that:

$$\Pr\{X \leqslant d\} = \int_{-\infty}^{d} f(x) \ dx$$
 for each real number d

where f satisfies: $f(x) \ge 0$ for all x and $\int_{-\infty}^{\infty} f(x) \ dx = 1$

- $F_X(d) = \Pr\{X \leq d\}$ is the (cumulative) probability distribution function
- f(x) is the probability density function

Negative exponential distribution

The density of an *exponentially distributed* r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$f_Y(x) = \lambda \cdot e^{-\lambda \cdot x}$$
 for $x > 0$ and $f_Y(x) = 0$ otherwise

The cumulative distribution of Y:

$$F_Y(d) = \int_0^d \lambda \cdot e^{-\lambda \cdot x} dx = [-e^{-\lambda \cdot x}]_0^d = 1 - e^{-\lambda \cdot d}$$

- expectation $E[Y] = \int_0^\infty x \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \frac{1}{\lambda}$
- variance $Var[Y] = \frac{1}{\lambda^2}$

the rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Exponential pdf and cdf

the higher λ , the faster the cdf approaches 1

© JPK

5

Why exponential distributions?

- Are adequate for many real-life phenomena
 - the time until a radioactive particle decays
 - the time between successive car accidents
 - inter-arrival times of jobs, telephone calls in a fixed interval
- Are the continuous counterpart of geometric distribution
- Heavily used in physics, performance, and reliability analysis
- Can approximate general distributions arbitrarily closely
- Yield a maximal entropy if only the mean is known

Memoryless property

1. For any random variable X with an exponential distribution:

$$\Pr\{X > t + d \mid X > t\} = \Pr\{X > d\} \text{ for any } t, d \in \mathbb{R}_{\geq 0}.$$

2. Any continuous distribution which is memoryless is an exponential one.

Proof of 1. : Let λ be the rate of X's distribution. Then we derive:

$$\Pr\{X > t + d \mid X > t\} = \frac{\Pr\{X > t + d \cap X > t\}}{\Pr\{X > t\}} = \frac{\Pr\{X > t + d\}}{\Pr\{X > t\}}$$
$$= \frac{e^{-\lambda \cdot (t + d)}}{e^{-\lambda \cdot t}} = e^{-\lambda \cdot d} = \Pr\{X > d\}.$$

Proof of 2.: by contradiction, using the total law of probability.

Closure under minimum

For independent, exponentially distributed random variables X and Y with rates λ , $\mu \in \mathbb{R}_{>0}$, r.v. $\min(X, Y)$ is exponentially distributed with rate $\lambda + \mu$, i.e.,:

$$\Pr\{\min(X, Y) \leqslant t\} = 1 - e^{-(\lambda + \mu) \cdot t} \text{ for all } t \in \mathbb{R}_{\geqslant 0}$$

© JPK

Proof

Let λ (μ) be the rate of X's (Y's) distribution. Then we derive:

$$\Pr{\min(\boldsymbol{X}, \boldsymbol{Y}) \leq t} = \Pr_{\boldsymbol{X}, \boldsymbol{Y}} \{ (x, y) \in \mathbb{R}^{2}_{\geq 0} \mid \min(x, y) \leq t \}$$

$$= \int_{0}^{\infty} \left(\int_{0}^{\infty} \mathbf{I}_{\min(x, y) \leq t}(x, y) \cdot \boldsymbol{\lambda} e^{-\boldsymbol{\lambda} x} \cdot \mu e^{-\mu y} \, dy \right) \, dx$$

$$= \int_{0}^{t} \int_{x}^{\infty} \boldsymbol{\lambda} e^{-\boldsymbol{\lambda} x} \cdot \mu e^{-\mu y} \, dy \, dx + \int_{0}^{t} \int_{y}^{\infty} \boldsymbol{\lambda} e^{-\boldsymbol{\lambda} x} \cdot \mu e^{-\mu y} \, dx \, dy$$

$$= \int_{0}^{t} \boldsymbol{\lambda} e^{-\boldsymbol{\lambda} x} \cdot e^{-\mu x} \, dx + \int_{0}^{t} e^{-\boldsymbol{\lambda} y} \cdot \mu e^{-\mu y} \, dy$$

$$= \int_{0}^{t} \boldsymbol{\lambda} e^{-(\boldsymbol{\lambda} + \mu)x} \, dx + \int_{0}^{t} \mu e^{-(\boldsymbol{\lambda} + \mu)y} \, dy$$

$$= \int_{0}^{t} (\boldsymbol{\lambda} + \mu) \cdot e^{-(\boldsymbol{\lambda} + \mu)z} \, dz = 1 - e^{-(\boldsymbol{\lambda} + \mu)t}$$

Winning the race with two competitors

For independent, exponentially distributed random variables

X and Y with rates λ , $\mu \in \mathbb{R}_{>0}$, it holds:

$$\Pr\{X \leqslant Y\} = \frac{\lambda}{\lambda + \mu}$$

Proof

Let λ (μ) be the rate of X's (Y's) distribution. Then we derive:

$$\Pr\{X \leqslant Y\} = \Pr_{X,Y}\{(x,y) \in \mathbb{R}^{2}_{\geqslant 0} \mid x \leqslant y\}$$

$$= \int_{0}^{\infty} \mu e^{-\mu y} \left(\int_{0}^{y} \lambda e^{-\lambda x} dx \right) dy$$

$$= \int_{0}^{\infty} \mu e^{-\mu y} \left(1 - e^{-\lambda y} \right) dy$$

$$= 1 - \int_{0}^{\infty} \mu e^{-\mu y} \cdot e^{-\lambda y} dy = 1 - \int_{0}^{\infty} \mu e^{-(\mu + \lambda)y} dy$$

$$= 1 - \frac{\mu}{\mu + \lambda} \cdot \int_{0}^{\infty} (\mu + \lambda) e^{-(\mu + \lambda)y} dy$$

$$= 1 - \frac{\mu}{\mu + \lambda} = \frac{\lambda}{\mu + \lambda}$$

Winning the race with many competitors

For independent, exponentially distributed random variables

$$X_1, X_2, \ldots, X_n$$
 with rates $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_{>0}$, it holds:

$$\Pr\{X_i = \min(X_1, \dots, X_n)\} = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j}$$

Content of this lecture

- Negative exponential distribution
 - definition, usage, properties
- ⇒ Continuous-time Markov chains
 - definition, semantics, examples
 - Performance measures
 - transient and steady-state probabilities, uniformization

Continuous-time Markov chain

A continuous-time Markov chain (CTMC) is a tuple (S, \mathbf{P}, r, L) where:

- *S* is a countable (today: finite) set of *states*
- $\mathbf{P}: S \times S \rightarrow [0,1]$, a stochastic matrix
 - P(s, s') is one-step probability of going from state s to state s'
 - s is called *absorbing* iff P(s, s) = 1
- $r: S \to \mathbb{R}_{>0}$, the *exit-rate function*
 - r(s) is the rate of exponential distribution of residence time in state s

⇒ a CTMC is a Kripke structure with random state residence times

Continuous-time Markov chain

a CTMC (S,\mathbf{P},r,L) is a DTMC plus an exit-rate function $r:S \to \mathbb{R}_{>0}$

the average residence time in state s is $\frac{1}{r(s)}$

A classical (though equivalent) perspective

a CTMC is a triple (S, \mathbf{R}, L) with $\mathbf{R}(s, s') = \mathbf{P}(s, s') \cdot r(s)$

© JPK

CTMC semantics: example

- Transition $s \to s' := \text{r.v. } X_{s,s'} \text{ with rate } \mathbf{R}(s,s')$
- Probability to go from state s₀ to, say, state s₂ is:

$$\Pr\{X_{s_0,s_2} \leqslant X_{s_0,s_1} \cap X_{s_0,s_2} \leqslant X_{s_0,s_3}\}$$

$$= \frac{\mathbf{R}(s_0,s_2)}{\mathbf{R}(s_0,s_1) + \mathbf{R}(s_0,s_2) + \mathbf{R}(s_0,s_3)} = \frac{\mathbf{R}(s_0,s_2)}{r(s_0)}$$

• Probability of staying at most t time in s_0 is:

$$\Pr\{\min(X_{s_0,s_1}, X_{s_0,s_2}, X_{s_0,s_3}) \leqslant t\}$$

$$=$$

$$1 - e^{-(\mathbf{R}(s_0,s_1) + \mathbf{R}(s_0,s_2) + \mathbf{R}(s_0,s_3)) \cdot t} = 1 - e^{-r(s_0) \cdot t}$$

CTMC semantics

• The probability that transition $s \to s'$ is *enabled* in [0, t]:

$$1 - e^{-\mathbf{R}(s,s') \cdot t}$$

• The probability to *move* from non-absorbing s to s' in [0,t] is:

$$\frac{\mathbf{R}(s,s')}{r(s)} \cdot \left(1 - e^{-r(s)\cdot t}\right)$$

• The probability to *take some* outgoing transition from s in [0, t] is:

$$\int_0^t r(s) \cdot e^{-r(s) \cdot x} dx = 1 - e^{-r(s) \cdot t}$$

Enzyme-catalysed substrate conversion

Stochastic chemical kinetics

Types of reaction described by stochiometric equations:

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_3}{\longrightarrow} E + P$$

- N different types of molecules that randomly collide where state $X(t)=(x_1,\ldots,x_N)$ with $x_i=\#$ molecules of sort i
- Reaction probability within infinitesimal interval $[t, t+\Delta)$:

$$\alpha_m(\vec{x}) \cdot \Delta = \Pr\{\text{reaction } m \text{ in } [t, t+\Delta) \mid X(t) = \vec{x}\}$$

where $\alpha_m(\vec{x}) = k_m \cdot \#$ possible combinations of reactant molecules in \vec{x}

Process is a continuous-time Markov chain

Enzyme-catalyzed substrate conversion as a CTMC

States: enzymes substrates	init 2 4	goal 2
complex products	0	$0\\4$

$$\begin{array}{c} \text{Transitions: } E+S \stackrel{1}{\rightleftharpoons} C \stackrel{0.001}{\longrightarrow} E+P \\ \text{e.g., } (x_E,x_S,x_C,x_P) \stackrel{0.001 \cdot x_C}{\longrightarrow} (x_E+1,x_S,x_C-1,x_P+1) \text{ for } x_C>0 \end{array}$$

© JPK

CTMCs are omnipresent!

Markovian queueing networks

(Kleinrock 1975)

Stochastic Petri nets

(Molloy 1977)

Stochastic activity networks

(Meyer & Sanders 1985)

• Stochastic process algebra

(Herzog et al., Hillston 1993)

Probabilistic input/output automata

(Smolka et al. 1994)

Calculi for biological systems

(Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis

Content of this lecture

- Negative exponential distribution
 - definition, usage, properties
- Continuous-time Markov chains
 - definition, semantics, examples
- ⇒ Performance measures
 - transient and steady-state probabilities, uniformization

Time-abstract evolution of a CTMC

zero-th epoch

first epoch

second epoch

third epoch

On the long run

© JPK

Transient distribution of a CTMC

Let X(t) denote the state of a CTMC at time $t \in \mathbb{R}_{\geqslant 0}$.

Probability to be in state *s* at time *t*:

$$p_s(t) = \Pr\{X(t) = s\}$$

= $\sum_{s' \in S} \Pr\{X(0) = s'\} \cdot \Pr\{X(t) = s \mid X(0) = s'\}$

Transient probability vector $p(t) = (p_{s_1}(t), \dots, p_{s_k}(t))$ satisfies:

$$p'(t) = p(t) \cdot (\mathbf{R} - \mathbf{r})$$
 given $p(0)$

where ${\bf r}$ is the diagonal matrix of vector \underline{r} .

A triple modular redundant system

- 3 processors and a single voter:
 - processors run same program; voter takes a majority vote
 - each component (processor and voter) is failure-prone
 - there is a single repairman for repairing processors and voter

Modelling assumptions:

- if voter fails, entire system goes down
- after voter-repair, system starts "as new"
- state = (#processors, #voters)

Modelling a TMR system as a CTMC

- processor failure rate is λ fph; its repair rate is μ rph
- voter failure rate is ν fph; its repair rate is δ rph
- rate matrix: e.g., $\mathbf{R}((3,1),(2,1)) = 3\lambda$
- exit rates: e.g., $r((3,1)) = 3\lambda + \nu$
- probability matrix: e.g.,

$$\mathbf{P}((3,1),(2,1)) = \frac{3\lambda}{3\lambda + \nu}$$

Transient probabilities

 $p_{s_{3,1}}(t)$ for $t\leqslant$ 10 hours

p(t) for $t \le 10$ hours (log-scale)

$$\lambda=0.01$$
 fph, $\nu=0.001$ fph $\mu=1$ rph and $\delta=0.2$ rph

(© book by B.R. Haverkort)

Steady-state distribution of a CTMC

For any finite and strongly connected CTMC it holds:

$$p_s = \lim_{t \to \infty} p_s(t) \quad \Leftrightarrow \quad \lim_{t \to \infty} p_s'(t) = 0 \quad \Leftrightarrow \quad \lim_{t \to \infty} p_s(t) \cdot (\mathbf{R} - \mathbf{r}) = 0$$

Steady-state probability vector $\underline{p} = (p_{s_1}, \dots, p_{s_k})$ satisfies:

$$\underline{p} \cdot (\mathbf{R} - \mathbf{r}) = 0$$
 where $\sum_{s \in S} p_s = 1$

Steady-state distribution

s	$s_{3,1}$	$s_{2,1}$	$s_{1,1}$	$s_{0,1}$	$s_{0,0}$
p(s)	$9.655 \cdot 10^{-1}$	$2.893 \cdot 10^{-2}$	$5.781 \cdot 10^{-4}$	$5.775 \cdot 10^{-6}$	$4.975 \cdot 10^{-3}$

The probability of \geqslant two processors and the voter are up once the CTMC has reached an equilibrium is 0.9655+0.02893 \approx 0.993

$$\lambda=0.01$$
 fph, $\nu=0.001$ fph $\mu=1$ rph and $\delta=0.2$ rph

Computing transient probabilities

• Transient probability vector $p(t) = (p_{s_1}(t), \dots, p_{s_k}(t))$ satisfies:

$$\underline{p}'(t) = \underline{p}(t) \cdot (\mathbf{R} - \mathbf{r})$$
 given $\underline{p}(0)$

Solution using Taylor-Maclaurin expansion:

$$\underline{p}(t) = \underline{p}(0) \cdot e^{(\mathbf{R} - \mathbf{r}) \cdot t} = \underline{p}(0) \cdot \sum_{i=0}^{\infty} \frac{((\mathbf{R} - \mathbf{r}) \cdot t)^{i}}{i!}$$

- Main problems: infinite summation + numerical instability due to
 - non-sparsity of $(\mathbf{R}-\mathbf{r})^i$ and presence positive and negative entries

Uniform CTMCs

- A CTMC is uniform if r(s) = r for all s for some $r \in \mathbb{R}_{>0}$
- Any CTMC can be changed into a weak bisimilar uniform CTMC
- Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max_{s \in S} r(s)$
 - $-\frac{1}{r}$ is at most the shortest mean residence time in CTMC $\mathcal C$
- Then $u(r, C) = (S, \overline{P}, \overline{r}, L)$ with $\overline{r}(s) = r$ for any s, and:

$$\overline{\mathbf{P}}(s,s') = \frac{r(s)}{r} \cdot \mathbf{P}(s,s') \text{ if } s' \neq s \quad \text{and} \quad \overline{\mathbf{P}}(s,s) = \frac{r(s)}{r} \cdot \mathbf{P}(s,s) + 1 - \frac{r(s)}{r} \cdot \mathbf{P}(s,s')$$

Uniformization

all state transitions in CTMC $u(r,\mathcal{C})$ occur at an average pace of r per time unit

© JPK

Computing transient probabilities

$$\bullet \ \, \text{Now:} \ \, \underline{p}(t) = \underline{p}(0) \cdot e^{r \cdot (\overline{\mathbf{P}} - \mathbf{I})t} = \underline{p}(0) \cdot e^{-rt} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}} = \underline{p}(0) \cdot \sum_{i=0}^{\infty} \underbrace{e^{-r \cdot t} \underbrace{(r \cdot t)^i}_{i!}}_{\text{Poisson prob.}} \cdot \overline{\mathbf{P}}^i$$

• Summation can be truncated *a priori* for a given error bound $\varepsilon > 0$:

$$\left\| \sum_{i=0}^{\infty} e^{-rt} \frac{(rt)^{i}}{i!} \cdot \underline{p}(i) - \sum_{i=0}^{k_{\varepsilon}} e^{-rt} \frac{(rt)^{i}}{i!} \cdot \underline{p}(i) \right\| = \left\| \sum_{i=k_{\varepsilon}+1}^{\infty} e^{-rt} \frac{(rt)^{i}}{i!} \cdot \underline{p}(i) \right\|$$

• Choose k_{ε} minimal s.t.: $\sum_{i=k_{\varepsilon+1}}^{\infty}e^{-rt}\frac{(rt)^i}{i!} = 1 - \sum_{i=0}^{k_{\varepsilon}}e^{-rt}\frac{(rt)^i}{i!} \leqslant \varepsilon$

Transient probabilities: example

Let initial distribution p(0) = (1, 0), and time bound t=1.

Then:

$$\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-3} \frac{3^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}$$

$$= (1,0) \cdot e^{-3} \frac{1}{0!} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + (1,0) \cdot e^{-3} \frac{3}{1!} \cdot \begin{bmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} \\
+ (1,0) \cdot e^{-3} \frac{9}{2!} \cdot \begin{bmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}^{2} + \dots$$

$$\approx (0.404043, 0.595957)$$

CTMC paths

• An infinite path σ in a CTMC $\mathcal{C} = (S, \mathbf{P}, r, L)$ is of the form:

$$\sigma = s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \xrightarrow{t_2} s_3 \dots$$

with s_i is a state in S, $t_i \in \mathbb{R}_{>0}$ is a duration, and $\mathbf{P}(s_i, s_{i+1}) > 0$.

- A Borel space on infinite paths exists (cylinder construction)
 - reachability, timed reachability, and ω -regular properties are measurable
- A path is Zeno if $\sum_i t_i$ is converging
- Theorem: the probability of the set of Zeno paths in any CTMC is 0

Summarizing

- Negative exponential distribution
 - suitable for many practical phenomena
 - nice mathematical properties
- Continuous-time Markov chains
 - Kripke structures with exponential state residence times
 - used in many different fields, e.g., performance, biology, . . .
- Performance measures
 - transient probability vector: where is a CTMC at time t?
 - steady-state probability vector: where is a CTMC on the long run?

谢谢大家!

© JPK