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Content of this lecture

= Negative exponential distribution

— definition, usage, properties

e Continuous-time Markov chains

— definition, semantics, examples

e Performance measures

— transient and steady-state probabilities, uniformization
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Time in DTMCs

e Time in a DTMC proceeds in discrete steps

e Two possible interpretations

— accurate model of (discrete) time units

x €.0., clock ticks in model of an embedded device
— time-abstract

* NO information assumed about the time transitions take

e Continuous-time Markov chains (CTMCs)

— dense model of time
— transitions can occur at any (real-valued) time instant
— modelled using negative exponential distributions
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Continuous random variables

e X is arandom variable (r.v., for short)

— on a sample space with probability measure Pr
— assume the set of possible values that X may take is dense

e X is continuously distributed if there exists a function f(x) such that:

d
Pr{X < d} = / f(x) dx  for each real number d

where f satisfies: f(x) >0 forallz and / flz)de =1

— Fx(d) = Pr{X < d} is the (cumulative) probability distribution function
— f(x) is the probability density function
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Negative exponential distribution

The density of an exponentially distributed r.v. Y with rate A € Ry IS:

fy(x) =Xe *® forz >0 and fy(z) = 0 otherwise

The cumulative distribution of Y:

d
Fy(d) = /0 Ne N dy = [—e M4 = 1 — e M

e expectation E[Y] = [“z-A-e " dx = +

e variance Var[Y] = 15

the rate A € R~ uniquely determines an exponential distribution.

© JPK



Te4sn

Exponential pdf and cdf

the higher A\, the faster the cdf approaches 1
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Why exponential distributions?

e Are adequate for many real-life phenomena

— the time until a radioactive particle decays
— the time between successive car accidents
— inter-arrival times of jobs, telephone calls in a fixed interval

e Are the continuous counterpart of geometric distribution
e Heavily used in physics, performance, and reliability analysis
e Can approximate general distributions arbitrarily closely

e Yield a maximal entropy if only the mean is known
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Memoryless property

1. For any random variable X with an exponential distribution:
Pr{X >t+d| X >t} = Pr{X > d}foranyt,d € R.

2.  Any continuous distribution which is memoryless is an exponential one.

Proof of 1. : Let X\ be the rate of X's distribution. Then we derive:

Pr{X >t+d N X >t}  Pr{X > t+d}

PriX>t+d| X >t} = —
X >tHd] X >t Pr{X >t} Pr{X >t}

o= (t+d)

= — = ¢ " = Pr{X>d}
€

Proof of 2. : by contradiction, using the total law of probability.
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Closure under minimum

For independent, exponentially distributed random variables X and Y with

Pr{min(X,Y) <t} = 1— e Tt forallt € Rsg

rates \, u € R, r.v. min( X, Y') is exponentially distributed with rate A+, i.e.,:
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Proof

Let A (1) be the rate of X'’s (Y's) distribution. Then we derive:

Pr{min(X,Y) <t} = Prxy{(z,y) € R? 2o | min(z,y) <t}

—/ (/ Lin(e.g)<t (2, ¥) - Ae " - e dy) da
— / / e M. ue ™ dy dx + / / e M ue M dx dy
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Winning the race with two competitors
For independent, exponentially distributed random variables
X and Y with rates A\, u € R+, it holds:
A
Pr{X <Y} = —
A p
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Proof

Let A (i) be the rate of X's (Y's) distribution. Then we derive:

Pr{X < Y} =Prxy{(z,y) € R, | z <y}

00 y
— / e MY (/ e M d:c) dy
0 0
— / pe MY (1 — _Ay> dy
0
— 1 — / He—uy.e—ky dy = 1 — / 'ue—(u+>\)y dy
0 0

—1- . +Ae(“+>yd
Y /T(M ) y

=1
A
"

p+A A
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@ RWTH::
Winning the race with many competitors
For independent, exponentially distributed random variables
X1, X9, ..., X, withrates A\, ..., X\, € Ry, it holds:
Pr{X in(X X,)} A
r . — 111n IR n — —n
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Te4sn

Content of this lecture

e Negative exponential distribution

— definition, usage, properties

= Continuous-time Markov chains

— definition, semantics, examples

e Performance measures

— transient and steady-state probabilities, uniformization
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Continuous-time Markov chain

A continuous-time Markov chain (CTMC) is a tuple (S, P, r, L) where:
e S IS a countable (today: finite) set of states

e P:Sx S5 —|0,1], astochastic matrix

— P(s, s') is one-step probability of going from state s to state s’
— s is called absorbing iff P(s,s) =1

e r: S — Ry, the exit-rate function

— r(s) is the rate of exponential distribution of residence time in state s

= a CTMC is a Kripke structure with random state residence times
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Continuous-time Markov chain

aCTMC (S, P, r, L) is a DTMC plus an exit-rate function r : S — R+

the average residence time in state s is

1
r(s)
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A classical (though equivalent) perspective

a CTMC is a triple (S, R, L) with R(s, s") = P(s,s')-r(s)
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CTMC semantics: example

e Transition s — s':=rv. X, , with rate R(s, s")

e Probability to go from state s to, say, state s Is:

Pr{XSO,S2 < Xso,sl M X80,82 < X80,83}
R (s0, 52) _ R(so, 52)
R(s0, s1) + R(s0, s2) + R(so, s3) 7(s0)

e Probability of staying at most ¢ time in sy is:

Pr{min(-XSO,Sl7 XSO,527 -XSO,Sg) < t}

1 — ¢~ (R(s0:51)+R(s0,52)+R(s0,53))t — 1 _ o=r(sp)t

© JPK 17
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CTMC semantics

e The probability that transition s — s’ is enabled in [0, t]:

1 — e—R(s,s/)-t

e The probability to move from non-absorbing s to s’ in [0, ¢] is:

S (e

e The probability to take some outgoing transition from s in [0, ¢] is:

t
/ r(s)-e " Cdy = 1 — ()
0

© JPK
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Enzyme-catalysed substrate conversion

J Enzyme - Wikiped

he free encyclopedia - Mozilla Firefox

EY

Eile Edit View History Bookmarks Tools Help
@ - - @ |\V hitp:/ien wikipedia.orgiwiki/Enzyme ) ‘ - | l>]
reaction, the reaction is effectively ireversible. Under these conditions the enzyme will, in fact, only etabilizes the transition state, reducing the energy nesded o -
catalyze the reaction in the thermodynamically allowed direction farm this species and thus reducing the energy required to
form products.
Kinetics
Main article: Enzyme kinelics
Catalvii Enzyme kinetics is the investigation of how enzymes bind substrates and turn them into products. The
atalytic step rate data used in kinetic analyses are obtained from enzyme assays.
—
In 1902 Victor Henri ¥ proposed a quantitative theory of enzyme kinetics, but his experimental data
E+S<—ES ——E+P ignif i i
+ — + were not useful because the significance of the hydrogen ion concentration was not yet appreciated.
After Peter Lauritz Serensen had defined the logarithmic pH-scale and introduced the concept of
Substrate binding buffering in 1909 the German chemist Leonor Michaelis and his Ganadian postdoc Maud Leonora
Mechanism for a single su bstrate enzyme catalyzed & Menten repeated Henri's experiments and confirmed his equation which is referred to as
reaction. The enzyme (E) binds a substrate (S) and produces Henri-Michaelis-Menten kinetics (sometimes also Michaelis-Menten kinehcs).[d?] Their work was further
A (e () developed by G. E. Briggs and J. B. S. Haldane, who derived kinetic equations that are still widely
used today.[‘g]
The major contribution of Henri was to think of enzyme reactions in two stages. In the first, the substrate binds reversibly to the enzyme, forming the
enzyme-substrate complex. This is sometimes called the Michaelis complex. The enzyme then catalyzes the chemical step in the reaction and releases the
product.
Enzymes can catalyze up to several million reactions per second. For example, the reaction catalyzed
by orotidine 5'-phosphate decarboxylase will consume half of its substrate in 78 million years if no
enzyme is present. However, when the decarboxylase is added, the same process takes just 25
milliseconds Enzyme rates depend on solution conditions and substrate concentration. Gonditions E)
@
that denature the protein abolish enzyme activity, such as high temperatures, extremes of pH or high c
salt concentrations, while raising substrate concentration tends to increase activity. To find the §
maximum speed of an enzymatic reaction, the substrate concentration is increased until a constant rate &
of product formation is seen. This is shown in the saturation curve on the right. Saturation happens Km
because, as substrate concentration increases, more and more of the free enzyme is converted into 0.051 e
the substrate-bound ES form. At the maximum velocity (V__ ) of the enzyme, all the enzyme active 0.00 - .
max Q 1000 2000 3000 4000
sites are bound to substrate, and the amount of ES complex is the same as the total amount of Substrate concantration
enzyme. However, v is only one kinefic constant of enzymes. The amount of substrate needed to Saturation curvs for an snzyms rection showing the &9
achieve a given rate of reaction is also important. This is given by the Michaelis-Menten constant (K ), relation between the subetrate concentration (S) and rate (v).
which is the substrate concentration required for an enzyme to reach one-half its maximum velocity.
Each enzyme has a characteristic K_ for a given substrate, and this can show how tight the binding of the substrate is to the enzyme. Another useful constantis ~ ~
Done

© JPK
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Stochastic chemical kinetics

e Types of reaction described by stochiometric equations:

k
E+S§ES£%E+P
2

e N different types of molecules that randomly collide

where state X (t) = (x1, ..., xN) With x; = # molecules of sort ¢

e Reaction probability within infinitesimal interval [, t+A):
an(T) - A = Pr{reaction min [t,t+A) | X (t) = &}

where a,, (%) = k,, - # possible combinations of reactant molecules in &

e Process is a continuous-time Markov chain

© JPK
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Enzyme-catalyzed substrate conversion as a CTMC

States: init  goal
enzymes 2 2
substrates 4 0
complex 0 0
products 0 4

L 1
Transitions: E 4+ S = c- LWl gy p

0.001-
€.d., (:Ban57wC7xP) R (wE +1,zg,2¢c — 1,xp + 1) forzc >0
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CTMCs are omnipresent!

e Markovian queueing networks

e Stochastic Petri nets

(Kleinrock 1975)

(Molloy 1977)

e Stochastic activity networks (Meyer & Sanders 1985)
e Stochastic process algebra (Herzog et al., Hillston 1993)
e Probabilistic input/output automata (Smolka et al. 1994)
e Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis

© JPK

22



Te4sn

Content of this lecture

e Negative exponential distribution

— definition, usage, properties

e Continuous-time Markov chains

— definition, semantics, examples

= Performance measures

— transient and steady-state probabilities, uniformization
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Time-abstract evolution of a CTMC

21 21
/’—\ 4
8 8 3
21 4 21 4 1 2

zero-th epoch first epoch

4
1 2
1

21 21

4 S 4
8 8

21 4 1 2 21 4 1 2
- 1 -

second epoch third epoch

10
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On the long run

O O——Qs

21 4 1 2

1OCVG 2 é

[
NeJies
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Transient distribution of a CTMC
Let X (¢) denote the state of a CTMC at time ¢ € R-.

Probabillity to be in state s at time ¢:

ps(t) = Pr{X(t)=s}
= 3 PHX(O) =} Pr{X() = 5| X(0) = '}
s'es

Transient probability vector p(t) = (ps, (%), ..., ps,(t)) satisfies:

p'(t)=p(t)- (R—r) given p(0)

where r is the diagonal matrix of vector r.

© JPK 26
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A triple modular redundant system

e 3 processors and a single voter:

— processors run same program; voter takes a majority vote
— each component (processor and voter) is failure-prone
— there iIs a single repairman for repairing processors and voter

Proc 1 e Modelling assumptions:

— if voter fails, entire system goes down

input utput

Proc 2

— after voter-repair, system starts “as new”

Proc 3

— state = (#processors, #voters)

© JPK 27
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Modelling a TMR system as a CTMC

ups 3\ up2

1,1

UPo up; °

processor failure rate is A fph;
its repair rate is p rph

voter failure rate is v fph;
its repair rate is é rph

rate matrix: e.g., R((3,1), (2,1)) = 3\
exit rates: e.g., 7((3,1)) = 3A+v
probability matrix: e.g.,

3

P((37 1)7 (2> 1)) — m

© JPK
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Transient probabilities

_LC)_L

.0,
o@i\b

531.511, t)

$3.1, 2]2t= :
53198007

al /
$3.1,531,1) ] -Sf W(i“ﬂ sQ1.t)
I : ' i -6 F 1
0.960——=—46 & o -70 5o
Pss 1 (t) for ¢ < 10 hours p(t) for t < 10 hours (log-scale)

A = 0.01 fph, v = 0.001 fph
pw = 1lrphand é = 0.2 rph

(© book by B.R. Haverkort)
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Steady-state distribution of a CTMC

For any finite and strongly connected CTMC it holds:

ps = lim py(t) < limp,(t)=0 < lim py(t)-(R—r)=0

t— o0 t— o0 t— o0

Steady-state probability vector p = (ps,, ..., ps,) satisfies:

p- (R—r) = 0 where ZSQS ps =1
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Steady-state distribution

S | 53,1 | S2,1 | 51,1 | 50,1 | S0,0

p(s)‘9.655-10_1 2.893-107% | 5.781-10°* | 5.775-107°% | 4.975.-107°

The probability of > two processors and the voter are up

once the CTMC has reached an equilibrium is 0.9655+0.02893 ~ 0.993

A = 0.01 fph, v = 0.001 fph
pw = 1lrphand é = 0.2 rph
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Computing transient probabilities

e Transient probability vector p(t) = (ps,(t), - - ., ps,(t)) satisfies:

p'(t) =p(t) - (R-r) given p(0)

e Solution using Taylor-Maclaurin expansion:

B(t) — p(O).e(R—r).t _ B(()) . Z ((R—Z'r)t)z

1=0

e Main problems: infinite summation + numerical instability due to

— non-sparsity of (R—r)* and presence positive and negative entries

© JPK
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Uniform CTMCs

e A CTMC is uniform if r(s) = r for all s for some r € R+

e Any CTMC can be changed into a weak bisimilar uniform CTMC

e Letr € R.( such that » > maXcgs r(s)

— % IS at most the shortest mean residence time in CTMC C

e Thenu(r,C) = (S,P,7, L) with 7(s) = r for any s, and:

P(s,s) = T—)°P(S,S,) ifs"£s and P(s,s) = T(T—S).P(S’ s)+ _@

S
r r
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Uniformization
1 % 4 6 % %
& 1 e :(® 1 @)
N~ - N~
% 1 4 3
R s~

uniformization with k£ = 6

all state transitions in CTMC (7, C) occur at an average pace of r per time unit
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Computing transient probabilities

r(P— —rt it P — o (rt) =
o Now: p(t) = p(0)-e"F D" = p(0)-e7-e""F = p(0)- > e 2 Z,') P
Poisson prob.

e Summation can be truncated a priori for a given error bound ¢ > 0:

) R ) = ()t
Ze t i 'B(Z)_Ze t i p(i) || = Z e i p()
1=0 ) 1=0 ) i=ke+1 )
S e(rt)’ S (rt)’
o . —r _ o —r
e Choose k. minimal s.t.: Zkz e =1 ;e <€
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Transient probabilities: example

3

QL v-[{ 4 [2] mume[1 |
2

Let initial distribution p(0) = (1,0), and time bound t=1.
Then:

wivy O

Wl =t
I

~ (0.404043,0.595957)
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CTMC paths

e An infinite path ¢ ina CTMC C = (S, P, r, L) is of the form:

t t t
O':SQ—O—>81 1/82 2/83 ......

with s; is a state in S, t; € Ry ¢ is a duration, and P(s;, s;11) > 0.

e A Borel space on infinite paths exists (cylinder construction)

— reachability, timed reachability, and w-regular properties are measurable
e Apathis Zenoif ) . ¢; is converging

e Theorem: the probability of the set of Zeno paths in any CTMC is 0

© JPK
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Summarizing

e Negative exponential distribution
— suitable for many practical phenomena
— nice mathematical properties

e Continuous-time Markov chains

— Kripke structures with exponential state residence times
— used in many different fields, e.g., performance, biology, ...

e Performance measures

— transient probability vector: where is a CTMC at time ¢?
— steady-state probability vector: where is a CTMC on the long run?
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