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Continuous-time Markov chain

A Continuous-Time Markov Chain is a tuple C = (S, AP, L, o, P, E):

S - finite set of states;

AP - set of atomic propositions,

o L:8S — 2P _ Jabeling function;

a € Distr(S) - initial distribution;

P:S xS —0,1] - transition
probability matrix;

o I/: S5 — Ry - exit rate function
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Continuous-time Markov chain

A Continuous-Time Markov Chain is a tuple C = (S, AP, L, o, P, E):

S - finite set of states;

AP - set of atomic propositions,

o L:8S — 2P _ Jabeling function;

a € Distr(S) - initial distribution;

P:S xS —0,1] - transition
probability matrix;

o I/: S5 — Ry - exit rate function

A CTMC is a Kripke structure with random delays!
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]
CTMC semantics

Let C = (S,AP,L,a,P,E) be a CTMC

State residence time distribution

1 — e~ P()d is the probability to leave state s in interval [0, d]

Jump behaviour

(1 — e E()d) .P(s, ) is the probability to take s — s in [0, d]

Paths are alternating sequences of states and positive reals
©' 999 00

Pr¢ denotes the probability measure on CTMC paths

o-algebra of C is generated by cylinder sets over finite paths
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.
Properties are specified over CTMC paths
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Properties: branching time (CTL, PCTL, CSL) and linear time (LTL)
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.
Properties are specified over CTMC paths

Properties: branching time (CTL, PCTL, CSL) and linear time (LTL)

Today: linear real-time properties = deterministic timed automata
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Deterministic Timed Automata

A Deterministic Timed Automaton is a tuple A = (X, X,Q,qo, Qr,—):

e 3 - alphabet;
a,x <1,0
e X - finite set of clocks;
bz >1,2 e () - finite set of locations;

® o € Q - initial location,

Qr C Q - accept locations;

— € QXIXB(X) %2 xQ -
transition relation;

a,1 <z<2{z}

Determinism: q-22%. ¢ and ¢ —2X ¢ implies g N ¢’ = @
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Problem statement

Given a CTMC C and a DTA A compute the probability of all paths in C

which satisfy (accepting path) the property A

a
CTMC DTA

1 1 byx>1

Example accepting CTMC path:

R I e e
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Measurability and zenoness

Measurability theorem
For CTMC C and DTA A, Paths®(A) is measurable

Zeno behaviours
The set of Zeno (i.e., time-convergent) paths in CTMC C has measure zero
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Automata-based approaches

model automaton product property

LTS TS | Nondet. Biichi A | LTS TS® A O< ace
DTMC D | Deter. Rabin A | DTMC D ® A | Prob({ BSCCycc)

MDP M Deter. Rabin A | MDP M ® A | Prob(» BSCC,cc)

CTMCC Deter. Rabin A CTMCC® A | Prob( BSCCpec)
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.
Combining a CTMC with a DTA

For C = (S,AP,L,so,P,E) and A= (2*Y, X, Q, q0, Qr,—),
a CTMC a DTA
let the product C ® A = (Loc, X, Ly, Locp, E, ~) be defined by:

Loc:= 85 x Q;
60 = <507QO>;
Locp =S X Qp;

E((s,q)) == E(s);

~= is defined as:

P(s,s') >0 A q4>(s)g’ q

where (((s',q')) = P(s,s")
(s.q) Lo
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Standard automata-based approach

model automaton product property

LTS TS | Nondet. Biichi A | LTS TS® A O< ace
DTMC D | Deter. Rabin A | DTMC D® A | Prob( BSCCpcc)
MDP M | Deter. Rabin A | MDP M ® A | Prob(<) BSCCyc.)
CTMC C | Deter. Rabin A | CTMCC® A | Prob({ BSCCgcc)
CTMCC DTA A CHMC Ce A
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Let's consider a small example

vy {b} a,x <1,
bx>1,0
r3 {c} a1l <x<2{z}
(a) CTMC C (b) DTA A

1<z<2,{z}

(c) the product C ® A
C ® A is a deterministic Markovian timed automaton (DMTA)
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Deterministic Markovian Timed Automaton

A DMTA is a tuple (Loc, X, £y, Locg, E, ~~) with:

e [Loc - finite set of locations;
To > 1, {xl}, 1

ro I e X - finite set of clocks,
ﬂ e (o € Loc - initial location;
z1 < 2,{z2},1 e Locr C Loc - accept locations;

e E: Loc— Ry - exit rates;

~ C Loc x B(X) x 2% x Distr(Loc) - edge relation

Determinism: £ %3 ¢ and /¢ 9.5 ¢ impliesgng’ =@
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]
DMTA semantics

7X - . . .
The probability to take ¢ %e’ in [0,t] given clock valuation 7 is:
n=m+71)X:=0]
n . n+T . P, 1) @

- - o~
-- -4

t
Pyt 00) = /0 E() - P07 1+r) - P dr
density to leave £ at T n+7Eg?

7 is the clock valuation on entering ¢
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Equivalent measures

o {b} a,x<1,@
bx>10
r3 {c} a,1 <z <2 {z}
(d) CTMC C (e) DTA A

l<w<2{z}¥ 1 l<w<2{x} 2

(f) the product C ® A
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Equivalent measures

o {b} a,x<1,2
bx>10
r3 {c} a,1 <z <2 {z}
(g) CTMC C (h) DTA A

l<z<2{z} 1 1<z<2{z} 2

(i) the product C® A

Theorem: Pr€ (PathsC(A)) = Prg®“4 (PathsC®A(<>LocF))
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Roadmap

CTMC C + DTA A P1C (Paths®(A))

! |
DMTA C® A PrE®4 (Paths®®4(¢$ Locr))
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Roadmap

CTMC C + DTA A P1C (Paths®(A))

! |
DMTA C® A PrE®4 (Paths®®4(¢$ Locr))

But how to effectively compute these probabilities?
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.
Calculating reachability probabilities in PDPs

CTMC C + DTA A P1C (Paths®(A))
! I
DMTA C® A Pré®4 (Paths®®4(¢ Locr))

! !

region graph = PDP Z reachability probabilities
! !

embedded DTMP emb(Z)  Pr™®) ((vg,0), (Vp, "))
!

partial differential equations
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|
Region graph
The region graph G(M) = (V,vg, Ve, A, —) of DMTA M is given by:

o V:= Loc x B(X) - set of vertices, consisting of a location and a region;

e vy = (Lo,0) - initial vertex;

Vi :={v | v|1 € Locp} - set of accepting vertices;

AV — Ry - exit rate function where A(v) := E(vl]1);

— CV x (([0,1] x 2%) U{d}) x V - transition (edge) relation

5, .
e v — v - delay transition

X , . ..
e v — v’ - Markovian transition
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Region graph example

0.5

l<z<2{z} 1 1<a<2{z} 2 o

V0,70 V1, To

{ ly, 0<z<1 }—5—{ o, 1<e<2

1( >0_5 reset, 0.5 1
V2,71 U3, T1
‘ 0,0<z<1 ‘ ‘ 0. 1<a<2 ‘
0.2 0.2
Vg, T2 V5, T2 Vg, T2
‘ £5,0<z<1 } U } y,1<2<2 } 5 } o, 2>2
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-
This is a piecewise deterministic Markov process!

Vo, T0 V1,70

6,0<z<1

0.2 0.2
V4,72 V5, T2 V6, T2

£5,0<z<1 I by 1<
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Piecewise Deterministic Markov Processes [Davisg4]

A Piecewise-Deterministic (Markov) Process is a tuple

Z = (Z7 X? '[n/UJ (bJ A7 /’l’)

e 7 and X - finite sets of locations and variables;
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e 7 and X - finite sets of locations and variables;

o Inv:Z — B,(X) - invariant function; e.g., r<2
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Piecewise Deterministic Markov Processes [Davisg4]

A Piecewise-Deterministic (Markov) Process is a tuple

Z - (Z7 X? Inv? (b? A7 /’L)
e 7 and X - finite sets of locations and variables;

o Inv:Z — B,(X) - invariant function; e.g., r<2

oS = {£=(z,m) | z€ Z,n e Inv(z)} is the state space;
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Piecewise Deterministic Markov Processes [Davisg4]

A Piecewise-Deterministic (Markov) Process is a tuple

Z = (Z7 X? '[n/UJ (bJ A7 /’l’)

e 7 and X - finite sets of locations and variables;
o Inv:Z — B,(X) - invariant function; e.g., r<2
oS = {£=(z,m) | z€ Z,n e Inv(z)} is the state space;

e S = U,cz({#z} x OInv(z)) the boundary of S (z,2=2)
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Piecewise Deterministic Markov Processes [Davisg4]

A Piecewise-Deterministic (Markov) Process is a tuple

Z = (Z7 X? '[n/UJ (bJ A7 /’l’)

e 7 and X - finite sets of locations and variables;
o Inv:Z — B,(X) - invariant function; e.g., r<2

oS = {{=(z2,n)| 2 € Z,n € Inv(z)} is the state space;
e S = U,cz({#z} x OInv(z)) the boundary of S (z,2=2)

o ¢:ZxV(X)xR— V(X) - flow function; n now, ¢(z,7m,t) in t time
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Piecewise Deterministic Markov Processes [Davisg4]

A Piecewise-Deterministic (Markov) Process is a tuple

Z = (Z7 X? In/u? (bJ A7 /’l’)

e 7 and X - finite sets of locations and variables;
o Inv:Z — B,(X) - invariant function; e.g., r<2

oS = {{=(z2,n)| 2 € Z,n € Inv(z)} is the state space;
e S = U,cz({#z} x OInv(z)) the boundary of S (z,2=2)

o ¢:ZxV(X)xR— V(X) - flow function; n now, ¢(z,7m,t) in t time

deterministic!
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Piecewise Deterministic Markov Processes [Davisg4]

A Piecewise-Deterministic (Markov) Process is a tuple

Z = (Z7 X? In/u? (bJ A7 /’l’)
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oS = {£=(z,m) | z€ Z,n e Inv(z)} is the state space;
e S = U,cz({#z} x OInv(z)) the boundary of S (z,2=2)
o ¢:ZxV(X)xR— V(X) - flow function; n now, ¢(z,7m,t) in t time
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e A:S — Ry - exit rate function;
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Piecewise Deterministic Markov Processes [Davisg4]

A Piecewise-Deterministic (Markov) Process is a tuple

Z = (Z7 X? '[n/UJ (bJ A7 /’l’)

e 7 and X - finite sets of locations and variables;
o Inv:Z — B,(X) - invariant function; e.g., r<2
oS = {£=(z,m) | z€ Z,n e Inv(z)} is the state space;
e S = U,cz({#z} x OInv(z)) the boundary of S (z,2=2)
o ¢:ZxV(X)xR— V(X) - flow function; n now, ¢(z,7m,t) in t time
deterministic!
e A:S — Ry - exit rate function;
o 1 :SUJS — Distr(S) - transition probability function;
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]
PDP semantics

A PDP may reside in state (z,7) as long as n |= Inv(z) holds

In state £ = (z,7n) the PDP can delay or jump probabilistically

Delay to (2, @ t) € SU OIS where

e 1@t updates the variable according to flow function ¢
e and the target variable valuation n @ t |= Inv(z)

Markovian jump to state £’ € S with probability (&, {¢'})

On hitting the “"boundary” of Inv(z) take a forced Markovian jump
o from state £ to & € S with probability p(&, {¢'})
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PDP semantics

locations

22

forced Markovian jump

Z1

§@b(¢)

Markovian jump with prob. u(¢, {&'})

20

time

A PDP-state £ = (z,n) with n |E Inv(z)
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PDP semantics

locations

)

forced Markovian jump

B & ®b(e)
Markovian jump with prob. u(&,{¢'})

20

time
In state &, the PDP can delay or take a Markovian jump
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PDP semantics

locations

22

forced Markovian jump

Z1

§@b(¢)

Markovian jump with prob. u(¢, {&'})

20

time

Markovian jump to state £’ € S with probability u(&, {¢'})
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PDP semantics

locations

22

forced Markovian jump

B & @h()
Markovian jump with prob. u(&, {¢'})

20

time

Delay to £ @t = (2, D t) € SUIS where

- 11 @t updates the variable according to flow function ¢
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PDP semantics

locations

22

forced Markovian jump

. & @h()
Markovian jump with prob. u(&, {¢'})

20

time

Delay to £ @t = (2, @ t) € SU IS where
- 11 @t updates the variable according to flow function ¢
- if hitting the “boundary” of Inuv(z) take a forced Markovian jump
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The region graph of C ® A is indeed a PDP!

V0,70 1,70

% ly, 0<z<1 }—‘5-{ ly, 1<z<2

1( >0_5 reset, 0.5 1

TZA]@Q ‘ Alszgn

[ a0<act 2] picecs |2 a2
e 7 - set of locations; the set of vertices
e X - set of variables; the set of clocks
o Inv:Z — B,(X) - invariant function; regions
o ¢:Z X V(X)xR— V(X) - flow function; simply # =1
e A:S — Ryg - exit rate function; simply A(v,t) = A(v)
e 1 :SUOS — Distr(S) - transition probability function; the distribution in —
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Discrete transition probabilities [Costa & Davis'88]

The one -jump probability from state & to set A C S of states:

AEA) = O (Qua)EDt) A€ @t)e hAEOMd g

trans. prob. £ &t — A density at time ¢

O (QLA)(E B D(E)) - e Jo ¥ Ale@) dr

probability to take forced transition

where b(§) = inf{t> 0]t € IS} is the minimal time to hit the boundary

These are the transition probabilities of the embedded DTMP emb(Z)
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Main results

Recall that:

Pr¢ (Pathsc(.A)) = Prg®A (Pathsc®A(<>L00p))
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We now have in addition that:

PrE®4 (Paths“® (G Locp)) = Prom™2) ((vg,0), (V. -))

Thus:

Pr¢ (Pathsc(.A)) = premb(2) ((Uo,a),(VF,‘))
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N —
Main results

Recall that:

Pr¢ (Pathsc(.A)) = Pr09®“4 (Pathsc®A(<>L00p))

We now have in addition that:

PrE®4 (Paths“® (G Locp)) = Prom™2) ((vg,0), (V. -))

Thus:

Pr¢ (Pathsc(.A)) = premb(2) ((Uo,a),(VF,‘))

The probability that CTMC C satisfies DTA A reduces to computing
simple reachability probabilities in a PDP
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-
Characterizing reachability probabilities

Reachability probabilities of untimed events in a PDP Z can be
characterised in the embedded DTMP emb(Z) as follows:

e for the delay transition v N v,
Probv?(;(n) = e~ AMWP(m) | Pmb? (77 + (v, 77))

. .. p, X
e for the Markovian transition v — v/,

b(v,m)
Prob;}Dﬂ}/ (n) = / p'A(v)-e_A(”)T-ProbE((n +7)[X = 0]) dr
0
e for each vertex v € V, we obtain:

b, | Probls(n) +3 ,x Probl . (n), ifv ¢ Ve
Prob,; (n) = v .
1, otherwise
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-
Approximating reachability probabilities

Augment the DTA A with a new clock y and with guard y < {7, and get
Alty]:

Paths®(Alty]) C Paths®(A)
limy, oo Pr¢(Paths® (A[ty])) = Pr¢(Paths®(A))
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.
PDEs as reachability probabilities

Approximate Pr¢ (Pathsc(.A)) by solving the following system of PDEs:
e Forve V\ Vg

x|
f’b‘ bl af’b‘ bl
3L(y77)+2 w(y,m)

oy on()
A()- D p(hur (y,n[X = 0]) = hy(y,m)) =0

P, X
v <!

=1

e Forv e Vp:

8hbyn Zﬁhbyn

hy(y,m) is the probability to reach (Vp,-) starting from (v,n,y) with
y <t
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Generalization for w-regular properties

model automaton product property

LTS TS | Nondet. Biichi A LTS TS® A O < ace
DTMC D | Deter. Rabin A DTMCD® A Prob( BSCCacc)
MDP M | Deter. Rabin A MDP M ® A Prob(<¢» BSCCacc)
CTMC C | Deter. Rabin A CTMCC® A Prob(<¢» BSCCacc)
CcTMC C DTA A DMTAC® A Prob(<> acc) in a PDP
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LTS TS | Nondet. Biichi A LTS TS® A O < ace
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MDP M | Deter. Rabin A MDP M ® A Prob(<¢» BSCCacc)
CTMC C | Deter. Rabin A CTMCC® A Prob(<¢» BSCCacc)
CcTMC C DTA A DMTAC® A Prob(<> acc) in a PDP
cTMCC DTA* A DMTA* C ® A“ | Prob({» BSCCqcc) in a PDP
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Related work

e PTCTL model checking of PTA (Kwiatkowska et el. TCS 2002)
e CSL with regular expressions (Baier et al. IEEE TSE 2007)
e CSL with single-clock DTA as time constraints  (Donateli et ai. IEEE TSE 2009)

e our results coincide with Donatelli's for single-clock DTA

e ... but we obtain the results in a different manner
o Probabilistic semantics of TA (Baier et al. LICS 2008)
e Quantitative model checking of such TA (Bertrand et al. QEST 2008)
e Optimal stopping times in PDPs (Costa & Davis MCSS 1988)
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Epilogue

o Problem: verifying a CTMC C against a deterministic TA A

Main result:

The probability that C satisfies A coincides
with a simple reachability probability in a PDP

e Approximate solutions are obtained by solving a system of PDEs

For single clock DTA this reduces to a system of linear equations
e whose coefficients are obtained by solving a system of ODEs

Results generalize to DTA with w-regular acceptance conditions
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