# Model Checking CTMCs Against Timed Automata

Taolue Chen<sup>1</sup> Tingting Han<sup>2,3</sup>
Joost-Pieter Katoen<sup>2,3</sup> Alexandru Mereacre<sup>2</sup>

 $^1{\rm CWI}$ , The Netherlands  $^2{\rm RWTH}$  Aachen University, Germany  $^3{\rm University}$  of Twente, The Netherlands

Summerschool on Model Checking, Beijing, October 13, 2010

# Verifying Markov chains

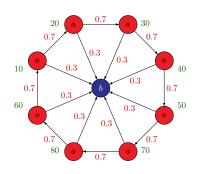
|                       | branching time                 |                                | linear time                       |  |                         |
|-----------------------|--------------------------------|--------------------------------|-----------------------------------|--|-------------------------|
|                       | PCTL                           |                                | LTL                               |  |                         |
| discrete-<br>time     | linear equations<br>[HJ94] (*) |                                | automata-ba<br>[V85,CSS03]        |  | tableau-based<br>[CY95] |
| (DTMC $\mathcal{D}$ ) | PTIME                          |                                | PSPACE-C                          |  |                         |
|                       | untimed<br>PCTL                | real-time<br>CSL               | untimed<br>LTL                    |  |                         |
| continuous-<br>time   | $emb(\mathcal{C})$ (*)         | integral equations<br>[BHHK03] | $emb(\mathcal{C}) \ (\star\star)$ |  |                         |
| (CTMC $\mathcal{C}$ ) | PTIME                          | PTIME                          | PSPACE-C                          |  |                         |

### Our contribution

|                       | branching time                 |                                | linear time                     |     |                                        |
|-----------------------|--------------------------------|--------------------------------|---------------------------------|-----|----------------------------------------|
|                       | PCTL                           |                                |                                 | LTL |                                        |
| discrete-<br>time     | linear equations<br>[HJ94] (*) |                                | automata-based [V85,CSS03] (**) |     | tableau-based<br>[CY95]                |
| (DTMC $\mathcal{D}$ ) | PTIME                          |                                | PSPACE-C                        |     |                                        |
|                       | untimed<br>PCTL                | real-time<br>CSL               | untimed<br>LTL                  |     | real-time<br>DTA                       |
| continuous-<br>time   | $emb(\mathcal{C})$ (*)         | integral equations<br>[BHHK03] | <i>emb</i> ( <i>C</i> ) (**)    |     | ntegral equations<br>econd type (PDPs) |
| (CTMC $\mathcal{C}$ ) | PTIME                          | PTIME                          | PSPACE-C                        |     |                                        |

### Continuous-time Markov chain

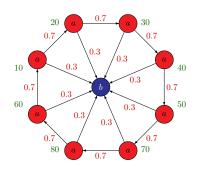
### A Continuous-Time Markov Chain is a tuple $C = (S, AP, L, \alpha, P, E)$ :



- S finite set of states;
- AP set of atomic propositions;
- $L: S \rightarrow 2^{\mathrm{AP}}$  labeling function;
- $\alpha \in Distr(S)$  initial distribution;
- $\mathbf{P}: S \times S \rightarrow [0,1]$  transition probability matrix;
- $E: S \to \mathbb{R}_{\geqslant 0}$  exit rate function

### Continuous-time Markov chain

### A Continuous-Time Markov Chain is a tuple $C = (S, AP, L, \alpha, P, E)$ :



- S finite set of *states*;
- AP set of atomic propositions;
- $L:S o 2^{\mathrm{AP}}$  labeling function;
- $\alpha \in Distr(S)$  initial distribution;
- $\mathbf{P}: S \times S \rightarrow [0,1]$  transition probability matrix;
- $E: S \to \mathbb{R}_{\geqslant 0}$  exit rate function

#### A CTMC is a Kripke structure with random delays!

### **CTMC** semantics

Let  $\mathcal{C} = (S, \operatorname{AP}, L, \alpha, \mathbf{P}, E)$  be a CTMC

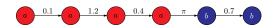
#### State residence time distribution

 $1-e^{-E(s)\cdot d}$  is the probability to leave state s in interval [0,d]

#### Jump behaviour

 $\left(1-e^{-E(s)\cdot d}\right)\cdot \mathbf{P}(s,s')$  is the probability to take  $s\to s'$  in [0,d]

#### Paths are alternating sequences of states and positive reals



 $\Pr^{\mathcal{C}}$  denotes the probability measure on CTMC paths  $\sigma$ -algebra of  $\mathcal{C}$  is generated by cylinder sets over finite paths

# Properties are specified over CTMC paths



Properties: branching time (CTL, PCTL, CSL) and linear time (LTL)

Today: linear real-time properties = deterministic timed automata

# Properties are specified over CTMC paths



Properties: branching time (CTL, PCTL, CSL) and linear time (LTL)

# Properties are specified over CTMC paths

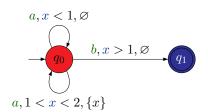


Properties: branching time (CTL, PCTL, CSL) and linear time (LTL)

Today: linear real-time properties = deterministic timed automata

### Deterministic Timed Automata

### A Deterministic Timed Automaton is a tuple $\mathcal{A} = (\Sigma, \mathcal{X}, Q, q_0, Q_F, \rightarrow)$ :

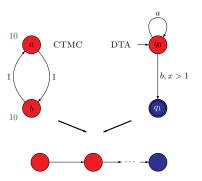


- $\Sigma$  alphabet;
- X finite set of clocks;
- Q finite set of locations;
- $q_0 \in Q$  initial location;
- $Q_F \subseteq Q$  accept locations;
- $\rightarrow \in Q \times \Sigma \times \mathcal{B}(\mathcal{X}) \times 2^{\mathcal{X}} \times Q$  transition relation;

Determinism:  $q \xrightarrow{a,g,X} q'$  and  $q \xrightarrow{a,g',X'} q''$  implies  $g \cap g' = \emptyset$ 

### Problem statement

Given a CTMC  $\mathcal C$  and a DTA  $\mathcal A$  compute the probability of all paths in  $\mathcal C$  which satisfy (accepting path) the property  $\mathcal A$ 



Example accepting CTMC path:

### Measurability and zenoness

#### Measurability theorem

For CTMC  $\mathcal{C}$  and DTA  $\mathcal{A}$ ,  $Paths^{\mathcal{C}}(\mathcal{A})$  is measurable

#### Zeno behaviours

The set of Zeno (i.e., time-convergent) paths in CTMC  ${\cal C}$  has measure zero

# Automata-based approaches

| model              | automaton                | product                                | property                          |
|--------------------|--------------------------|----------------------------------------|-----------------------------------|
| LTS TS             | Nondet. Büchi ${\cal A}$ | LTS $TS \otimes \mathcal{A}$           | $\Box \Diamond acc$               |
| DTMC $\mathcal{D}$ | Deter. Rabin ${\cal A}$  | DTMC $\mathcal{D} \otimes \mathcal{A}$ | $Prob(\diamondsuit \ BSCC_{acc})$ |
| $MDP\mathcal{M}$   | Deter. Rabin ${\cal A}$  | $MDP\;\mathcal{M}\otimes\mathcal{A}$   | $Prob(\diamondsuit \ BSCC_{acc})$ |
| CTMC $\mathcal C$  | Deter. Rabin ${\cal A}$  | CTMC $\mathcal{C}\otimes\mathcal{A}$   | $Prob(\diamondsuit \ BSCC_{acc})$ |

# Combining a CTMC with a DTA

For 
$$\underline{\mathcal{C} = (S, \operatorname{AP}, L, s_0, \mathbf{P}, E)}$$
 and  $\underline{\mathcal{A} = (2^{\operatorname{AP}}, \mathcal{X}, Q, q_0, Q_F, \rightarrow)}$ , a DTA

let the product  $\mathcal{C} \otimes \mathcal{A} = (Loc, \mathcal{X}, \ell_0, Loc_F, E, \leadsto)$  be defined by:

- $Loc := S \times Q$ ;
- $\ell_0 := \langle s_0, q_0 \rangle$ ;
- $Loc_F := S \times Q_F$ ;
- $E(\langle s, q \rangle) := E(s);$
- → is defined as:

$$\frac{\mathbf{P}(s,s') > 0 \ \land \ q \xrightarrow{L(s),g,X} q'}{\langle s,q \rangle} \text{ where } \zeta(\langle s',q' \rangle) = \mathbf{P}(s,s')$$



# Standard automata-based approach

| model              | automaton                | product                                  | property                          |
|--------------------|--------------------------|------------------------------------------|-----------------------------------|
| LTS TS             | Nondet. Büchi ${\cal A}$ | LTS $TS \otimes \mathcal{A}$             | $\Box \Diamond acc$               |
| DTMC $\mathcal{D}$ | Deter. Rabin ${\cal A}$  | DTMC $\mathcal{D} \otimes \mathcal{A}$   | $Prob(\diamondsuit \ BSCC_{acc})$ |
| $MDP\mathcal{M}$   | Deter. Rabin ${\cal A}$  | $MDP\;\mathcal{M}\otimes\mathcal{A}$     | $Prob(\diamondsuit \ BSCC_{acc})$ |
| CTMC $\mathcal C$  | Deter. Rabin ${\cal A}$  | $CTMC\; \mathcal{C} \otimes \mathcal{A}$ | $Prob(\diamondsuit \ BSCC_{acc})$ |
| CTMC $\mathcal C$  | DTA ${\cal A}$           | STMC $C \otimes A$                       |                                   |

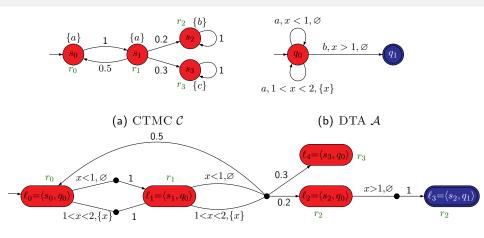
# Standard automata-based approach

| model              | automaton                | product                                  | property                          |
|--------------------|--------------------------|------------------------------------------|-----------------------------------|
| LTS TS             | Nondet. Büchi ${\cal A}$ | LTS $TS \otimes \mathcal{A}$             | $\Box \diamondsuit acc$           |
| DTMC $\mathcal{D}$ | Deter. Rabin ${\cal A}$  | DTMC $\mathcal{D} \otimes \mathcal{A}$   | $Prob(\diamondsuit \ BSCC_{acc})$ |
| MDP $\mathcal{M}$  | Deter. Rabin ${\cal A}$  | $MDP\;\mathcal{M}\otimes\mathcal{A}$     | $Prob(\diamondsuit \ BSCC_{acc})$ |
| CTMC $\mathcal C$  | Deter. Rabin ${\cal A}$  | $CTMC\; \mathcal{C} \otimes \mathcal{A}$ | $Prob(\diamondsuit \ BSCC_{acc})$ |
| CTMC $\mathcal C$  | DTA ${\cal A}$           | $DMTA\; \mathcal{C} \otimes \mathcal{A}$ |                                   |

# Standard automata-based approach

| model             | automaton                | product                                  | property                          |
|-------------------|--------------------------|------------------------------------------|-----------------------------------|
| LTS TS            | Nondet. Büchi ${\cal A}$ | LTS $TS \otimes \mathcal{A}$             | $\Box \diamondsuit acc$           |
| $DTMC\mathcal{D}$ | Deter. Rabin ${\cal A}$  | DTMC $\mathcal{D} \otimes \mathcal{A}$   | $Prob(\diamondsuit \ BSCC_{acc})$ |
| MDP $\mathcal{M}$ | Deter. Rabin ${\cal A}$  | $MDP\;\mathcal{M}\otimes\mathcal{A}$     | $Prob(\diamondsuit \ BSCC_{acc})$ |
| CTMC $\mathcal C$ | Deter. Rabin ${\cal A}$  | $CTMC\; \mathcal{C} \otimes \mathcal{A}$ | $Prob(\diamondsuit \ BSCC_{acc})$ |
| CTMC $\mathcal C$ | DTA ${\cal A}$           | $DMTA\; \mathcal{C} \otimes \mathcal{A}$ | ?                                 |

# Let's consider a small example

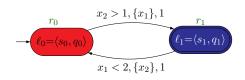


(c) the product  $\mathcal{C} \otimes \mathcal{A}$ 

### $\mathcal{C} \otimes \mathcal{A}$ is a deterministic Markovian timed automaton (DMTA)

#### Deterministic Markovian Timed Automaton

A DMTA is a tuple  $(Loc, \mathcal{X}, \ell_0, Loc_F, E, \leadsto)$  with:



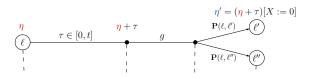
- Loc finite set of locations;
- X finite set of clocks;
- $\ell_0 \in Loc$  initial location;
- $Loc_F \subseteq Loc$  accept locations;
- $E: Loc \rightarrow \mathbb{R}_{\geqslant 0}$  exit rates;

$$\leadsto \subseteq Loc \times \mathcal{B}(\mathcal{X}) \times 2^{\mathcal{X}} \times \underline{\textit{Distr}(Loc)}$$
 - edge relation

Determinism:  $\ell \overset{g,X}{\leadsto} \zeta$  and  $\ell \overset{g',X'}{\leadsto} \zeta'$  implies  $g \cap g' = \varnothing$ 

### DMTA semantics

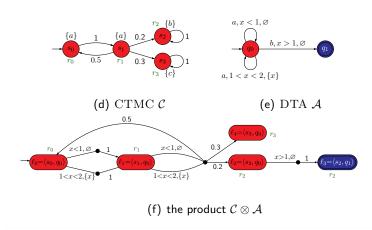
The probability to take  $\ell \xrightarrow[\mathbf{P}(\ell,\ell')]{g,X} \ell'$  in [0,t] given clock valuation  $\eta$  is:



$$p_{\pmb{\eta}}(\ell,\ell',t) \quad = \quad \int_0^t \quad \underbrace{E(\ell) \cdot e^{-E(\ell)\tau}}_{\text{density to leave $\ell$ at $\tau$}} \quad \cdot \quad \underbrace{\mathbf{1}_g(\pmb{\eta}+\tau)}_{\pmb{\eta}+\tau\models g?} \quad \cdot \quad \mathbf{P}(\ell,\ell') \quad d\tau$$

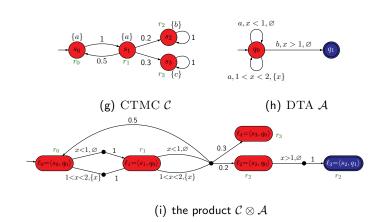
 $\eta$  is the clock valuation on entering  $\ell$ 

## Equivalent measures



Theorem:  $\Pr^{\mathcal{C}}\left(Paths^{\mathcal{C}}(\mathcal{A})\right) = \Pr^{\mathcal{C}\otimes\mathcal{A}}_{0}\left(Paths^{\mathcal{C}\otimes\mathcal{A}}(\diamondsuit Loc_{F})\right)$ 

### Equivalent measures



**Theorem:** 
$$\Pr^{\mathcal{C}}\left(Paths^{\mathcal{C}}(\mathcal{A})\right) = \Pr^{\mathcal{C}\otimes\mathcal{A}}_{\vec{0}}\left(Paths^{\mathcal{C}\otimes\mathcal{A}}(\diamondsuit Loc_F)\right)$$



# Roadmap

CTMC 
$$C + DTA \mathcal{A}$$
  $\operatorname{Pr}^{\mathcal{C}}\left(\operatorname{Paths}^{\mathcal{C}}(\mathcal{A})\right)$ 

$$\downarrow \qquad \qquad ||$$
DMTA  $C \otimes \mathcal{A}$   $\operatorname{Pr}^{\mathcal{C} \otimes \mathcal{A}}_{\vec{0}}\left(\operatorname{Paths}^{\mathcal{C} \otimes \mathcal{A}}(\diamondsuit Loc_F)\right)$ 

But how to effectively compute these probabilities?

# Roadmap

CTMC 
$$C + DTA \mathcal{A}$$
  $\operatorname{Pr}^{\mathcal{C}}\left(\operatorname{Paths}^{\mathcal{C}}(\mathcal{A})\right)$ 

$$\downarrow \qquad \qquad ||$$
DMTA  $C \otimes \mathcal{A}$   $\operatorname{Pr}^{\mathcal{C} \otimes \mathcal{A}}_{\vec{0}}\left(\operatorname{Paths}^{\mathcal{C} \otimes \mathcal{A}}(\diamondsuit Loc_F)\right)$ 

But how to effectively compute these probabilities?

# Calculating reachability probabilities in PDPs

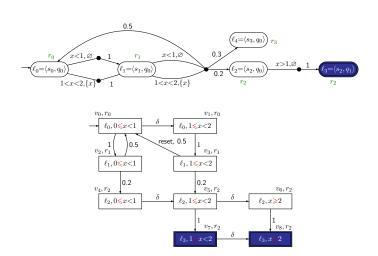
# Region graph

The region graph  $\mathcal{G}(\mathcal{M}) = (V, v_0, V_F, \Lambda, \hookrightarrow)$  of DMTA  $\mathcal{M}$  is given by:

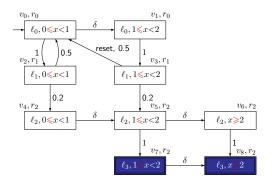
- ullet  $V:=Loc imes \mathcal{B}(\mathcal{X})$  set of *vertices*, consisting of a location and a region;
- $v_0 = (\ell_0, \vec{0})$  initial vertex;
- $V_F := \{v \mid v|_1 \in Loc_F\}$  set of accepting vertices;
- $\Lambda: V \to \mathbb{R}_{\geqslant 0}$  exit rate function where  $\Lambda(v) := E(v|_1)$ ;
- $\hookrightarrow \subseteq V \times (([0,1] \times 2^{\mathcal{X}}) \cup \{\delta\}) \times V$  transition (edge) relation
  - $v \overset{\delta}{\hookrightarrow} v'$  delay transition
  - $v \overset{p,X}{\hookrightarrow} v'$  Markovian transition



# Region graph example



# This is a piecewise deterministic Markov process!



A Piecewise-Deterministic (Markov) Process is a tuple

$$\mathcal{Z} = (Z, \mathcal{X}, Inv, \phi, \Lambda, \mu)$$

Z and X - finite sets of locations and variables;

A Piecewise-Deterministic (Markov) Process is a tuple

$$\mathcal{Z} = (Z, \mathcal{X}, Inv, \phi, \Lambda, \mu)$$

- Z and  $\mathcal{X}$  finite sets of *locations* and *variables*;
- $Inv: Z \to \mathcal{B}_{o}(\mathcal{X})$  invariant function;

e.g., x < 2

A Piecewise-Deterministic (Markov) Process is a tuple

$$\mathcal{Z} = (Z, \mathcal{X}, Inv, \phi, \Lambda, \mu)$$

- Z and  $\mathcal{X}$  finite sets of *locations* and *variables*;
- $Inv: Z \to \mathcal{B}_o(\mathcal{X})$  invariant function;

e.g., x < 2

•  $\mathbb{S} = \{ \xi = (z, \eta) \mid z \in Z, \eta \in Inv(z) \}$  is the state space;

A Piecewise-Deterministic (Markov) Process is a tuple

$$\mathcal{Z} = (Z, \mathcal{X}, Inv, \phi, \Lambda, \mu)$$

- Z and X finite sets of *locations* and *variables*;
- $Inv: Z \to \mathcal{B}_{\mathbf{o}}(\mathcal{X})$  invariant function;

e.g., 
$$x < 2$$

- $\mathbb{S} = \{ \xi = (z, \eta) \mid z \in \mathbb{Z}, \eta \in Inv(z) \}$  is the state space;
- $\partial \mathbb{S} = \bigcup_{z \in \mathbb{Z}} (\{z\} \times \partial Inv(z))$  the boundary of  $\mathbb{S}$ (z, x=2)

### A Piecewise-Deterministic (Markov) Process is a tuple

$$\mathcal{Z} = (Z, \mathcal{X}, Inv, \phi, \Lambda, \mu)$$

- Z and X finite sets of *locations* and *variables*;
- $Inv: Z \to \mathcal{B}_{o}(\mathcal{X})$  invariant function;

- e.g., x < 2
- $\mathbb{S} = \{ \xi = (z, \eta) \mid z \in Z, \eta \in Inv(z) \}$  is the state space;
- $\bullet \ \partial \mathbb{S} \ = \ \bigcup_{z \in Z} (\{z\} \times \partial \mathit{Inv}(z)) \ \text{the boundary of} \ \mathbb{S} \qquad \qquad (z, x = 2)$
- $\bullet \ \phi: Z \times \mathcal{V}(\mathcal{X}) \times \mathbb{R} \to \mathcal{V}(\mathcal{X}) \text{ flow function;} \qquad \quad \eta \text{ now, } \phi(z,\eta,t) \text{ in } t \text{ time}$

A Piecewise-Deterministic (Markov) Process is a tuple

$$\mathcal{Z} = (Z, \mathcal{X}, Inv, \phi, \Lambda, \mu)$$

- Z and X finite sets of *locations* and *variables*;
- $Inv: Z \to \mathcal{B}_o(\mathcal{X})$  invariant function;

- e.g., x < 2
- $\mathbb{S} = \{ \xi = (z, \eta) \mid z \in Z, \eta \in Inv(z) \}$  is the state space;
- $\bullet \ \partial \mathbb{S} \ = \ \bigcup_{z \in Z} (\{z\} \times \partial \mathit{Inv}(z)) \ \text{the boundary of } \mathbb{S} \qquad \qquad (z,x{=}2)$
- $\phi: Z \times \mathcal{V}(\mathcal{X}) \times \mathbb{R} \to \mathcal{V}(\mathcal{X})$  flow function;  $\eta$  now,  $\phi(z, \eta, t)$  in t time

deterministic!

A Piecewise-Deterministic (Markov) Process is a tuple

$$\mathcal{Z} = (Z, \mathcal{X}, Inv, \phi, \Lambda, \mu)$$

- Z and X finite sets of *locations* and *variables*;
- $Inv: Z \to \mathcal{B}_{o}(\mathcal{X})$  invariant function;

e.g., 
$$x < 2$$

- $\mathbb{S} = \{ \xi = (z, \eta) \mid z \in Z, \eta \in Inv(z) \}$  is the state space;
- $\partial \mathbb{S} = \bigcup_{z \in Z} (\{z\} \times \partial Inv(z))$  the boundary of  $\mathbb{S}$  (z, x=2)
- $\phi: Z \times \mathcal{V}(\mathcal{X}) \times \mathbb{R} \to \mathcal{V}(\mathcal{X})$  flow function;  $\eta$  now,  $\phi(z, \eta, t)$  in t time

deterministic!

•  $\Lambda: \mathbb{S} \to \mathbb{R}_{\geq 0}$  - exit rate function;



A Piecewise-Deterministic (Markov) Process is a tuple

$$\mathcal{Z} = (Z, \mathcal{X}, Inv, \phi, \Lambda, \mu)$$

- Z and X finite sets of *locations* and *variables*;
- $Inv: Z \to \mathcal{B}_{o}(\mathcal{X})$  invariant function;

e.g., 
$$x < 2$$

(z, x=2)

- $\mathbb{S} = \{ \xi = (z, \eta) \mid z \in \mathbb{Z}, \eta \in Inv(z) \}$  is the state space;
- $\partial \mathbb{S} = \bigcup_{z \in Z} (\{z\} \times \partial Inv(z))$  the boundary of  $\mathbb{S}$
- $\bullet \ \phi: Z \times \mathcal{V}(\mathcal{X}) \times \mathbb{R} \to \mathcal{V}(\mathcal{X}) \text{ flow function;} \qquad \quad \eta \text{ now, } \phi(z,\eta,t) \text{ in } t \text{ time}$

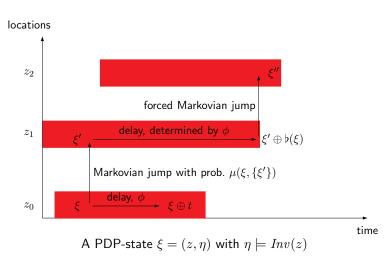
deterministic!

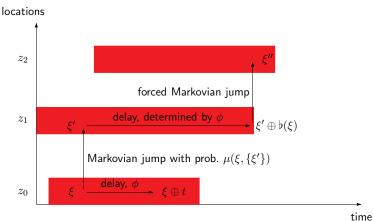
- $\Lambda: \mathbb{S} \to \mathbb{R}_{\geq 0}$  exit rate function;
- $\mu : \mathbb{S} \cup \partial \mathbb{S} \to Distr(\mathbb{S})$  transition probability function;



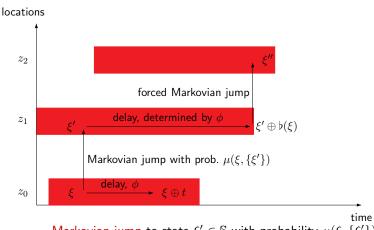
- A PDP may reside in state  $(z, \eta)$  as long as  $\eta \models Inv(z)$  holds
- In state  $\xi = (z, \eta)$  the PDP can delay or jump probabilistically
- Delay to  $(z, \eta \oplus t) \in \mathbb{S} \cup \partial \mathbb{S}$  where
  - $\eta \oplus t$  updates the variable according to flow function  $\phi$
  - and the target variable valuation  $\eta \oplus t \models Inv(z)$
- Markovian jump to state  $\xi' \in \mathbb{S}$  with probability  $\mu(\xi, \{\xi'\})$
- $\bullet$  On hitting the "boundary" of Inv(z) take a forced Markovian jump
  - from state  $\xi$  to  $\xi' \in \mathbb{S}$  with probability  $\mu(\xi, \{\xi'\})$



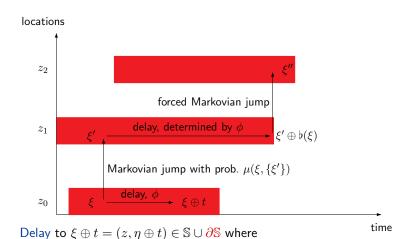




In state  $\xi$ , the PDP can delay or take a Markovian jump



Markovian jump to state  $\xi' \in \mathbb{S}$  with probability  $\mu(\xi, \{\xi'\})$ 



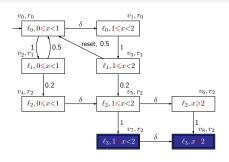
-  $\eta \oplus t$  updates the variable according to flow function  $\phi$ 



Delay to  $\xi \oplus t = (z, \eta \oplus t) \in \mathbb{S} \cup \partial \mathbb{S}$  where

- $\eta \oplus t$  updates the variable according to flow function  $\phi$
- if hitting the "boundary" of  $\mathit{Inv}(z)$  take a forced Markovian jump

# The region graph of $\mathcal{C} \otimes \mathcal{A}$ is indeed a PDP!



- Z set of locations:
- X set of variables:
- $Inv: Z \to \mathcal{B}_o(\mathcal{X})$  invariant function;
- $\phi: Z \times \mathcal{V}(\mathcal{X}) \times \mathbb{R} \to \mathcal{V}(\mathcal{X})$  flow function;
- $\Lambda: \mathbb{S} \to \mathbb{R}_{\geq 0}$  exit rate function;

the set of vertices

the set of clocks

regions

simply  $\dot{x}=1$ 

simply  $\Lambda(v,t) = \Lambda(v)$ 

Beijing

•  $\mu: \mathbb{S} \cup \partial \mathbb{S} \to Distr(\mathbb{S})$  - transition probability function; the distribution in  $\hookrightarrow$ 

# Discrete transition probabilities [Costa & Davis'88]

The one -jump probability from state  $\xi$  to set  $A \subseteq \mathbb{S}$  of states:

$$\begin{array}{cccc} \hat{\mu}(\xi,A) & = & \int_0^{\flat(\xi)} & \underbrace{(\mathcal{Q}\mathbf{1}_A)(\xi\oplus t)}_{\text{trans. prob. } \xi\oplus t\to A} \cdot \underbrace{\Lambda(\xi\oplus t)\cdot e^{-\int_0^t\Lambda(\xi\oplus\tau)\,d\tau}}_{\text{density at time } t} \, dt \\ & + & \underbrace{(\mathcal{Q}\mathbf{1}_A)(\xi\oplus\flat(\xi))\cdot e^{-\int_0^{\flat(\xi)}\Lambda(\xi\oplus\tau)\,d\tau}}_{\text{probability to take forced transition}} \end{array}$$

where  $\flat(\xi) \ = \ \inf\{\, t>0 \mid \xi\oplus t\in\partial\mathbb{S}\,\}$  is the minimal time to hit the boundary

These are the transition probabilities of the embedded DTMP  $emb(\mathcal{Z})$ 

#### Recall that:

$$\operatorname{Pr}^{\mathcal{C}}\left(\operatorname{Paths}^{\mathcal{C}}(\mathcal{A})\right) = \operatorname{Pr}^{\mathcal{C}\otimes\mathcal{A}}_{\vec{0}}\left(\operatorname{Paths}^{\mathcal{C}\otimes\mathcal{A}}(\diamondsuit Loc_{F})\right)$$

We now have in addition that:

$$\mathbb{P}_{0}^{\mathcal{L}\otimes\mathcal{A}}\left(Paths^{\mathcal{L}\otimes\mathcal{A}}(\diamondsuit Loc_{F})\right) = \mathbb{P}_{1}^{emb(\mathcal{Z})}\left((v_{0},\overline{0}),(V_{F},\cdot)\right)$$

Thus

$$\Pr^{\mathcal{C}}\left(Paths^{\mathcal{C}}(\mathcal{A})\right) = \Pr^{cmb(\mathcal{Z})}\left((v_0, \overline{0}), (V_F, \cdot)\right)$$

The probability that CTMC  $\mathcal{C}$  satisfies DTA  $\mathcal{A}$  reduces to computing simple reachability probabilities in a PDP

#### Recall that:

$$\operatorname{Pr}^{\mathcal{C}}\left(\operatorname{Paths}^{\mathcal{C}}(\mathcal{A})\right) = \operatorname{Pr}^{\mathcal{C}\otimes\mathcal{A}}_{\vec{0}}\left(\operatorname{Paths}^{\mathcal{C}\otimes\mathcal{A}}(\diamondsuit Loc_{F})\right)$$

We now have in addition that:

$$\Pr_{\vec{0}}^{\mathcal{C} \otimes \mathcal{A}} \left( Paths^{\mathcal{C} \otimes \mathcal{A}} (\lozenge Loc_F) \right) = \Pr^{emb(\mathcal{Z})} \left( (v_0, \vec{0}), (V_F, \cdot) \right)$$

Thus:

 $\Pr^{\mathcal{C}}\left(Paths^{\mathcal{C}}(\mathcal{A})\right) = \Pr^{emb(\mathcal{Z})}\left((v_0, \overline{0}), (V_F, \cdot)\right)$ 

The probability that CTMC  $\mathcal{C}$  satisfies DTA  $\mathcal{A}$  reduces to computing simple reachability probabilities in a PDP

#### Recall that:

$$\operatorname{Pr}^{\mathcal{C}}\left(\operatorname{Paths}^{\mathcal{C}}(\mathcal{A})\right) = \operatorname{Pr}^{\mathcal{C}\otimes\mathcal{A}}_{\vec{0}}\left(\operatorname{Paths}^{\mathcal{C}\otimes\mathcal{A}}(\diamondsuit Loc_{F})\right)$$

We now have in addition that:

$$\operatorname{Pr}_{\vec{0}}^{\mathcal{C} \otimes \mathcal{A}} \left( \operatorname{Paths}^{\mathcal{C} \otimes \mathcal{A}} (\lozenge \operatorname{Loc}_{F}) \right) = \operatorname{Pr}^{\operatorname{emb}(\mathcal{Z})} \left( (v_{0}, \vec{0}), (V_{F}, \cdot) \right)$$

Thus:

$$\operatorname{Pr}^{\mathcal{C}}\left(\operatorname{Paths}^{\mathcal{C}}(\mathcal{A})\right) = \operatorname{Pr}^{\operatorname{emb}(\mathcal{Z})}\left((v_0, \vec{0}), (V_F, \cdot)\right)$$

The probability that CTMC C satisfies DTA A reduces to computing simple reachability probabilities in a PDP

Recall that:

$$\operatorname{Pr}^{\mathcal{C}}\left(\operatorname{Paths}^{\mathcal{C}}(\mathcal{A})\right) = \operatorname{Pr}^{\mathcal{C}\otimes\mathcal{A}}_{\vec{0}}\left(\operatorname{Paths}^{\mathcal{C}\otimes\mathcal{A}}(\diamondsuit Loc_{F})\right)$$

We now have in addition that:

$$\operatorname{Pr}_{\vec{0}}^{\mathcal{C} \otimes \mathcal{A}} \left( \operatorname{Paths}^{\mathcal{C} \otimes \mathcal{A}} (\lozenge \operatorname{Loc}_{F}) \right) = \operatorname{Pr}^{\operatorname{emb}(\mathcal{Z})} \left( (v_{0}, \vec{0}), (V_{F}, \cdot) \right)$$

Thus:

$$\operatorname{Pr}^{\mathcal{C}}\left(\operatorname{Paths}^{\mathcal{C}}(\mathcal{A})\right) = \operatorname{Pr}^{\operatorname{emb}(\mathcal{Z})}\left((v_0, \vec{0}), (V_F, \cdot)\right)$$

The probability that CTMC  $\mathcal C$  satisfies DTA  $\mathcal A$  reduces to computing simple reachability probabilities in a PDP

# Characterizing reachability probabilities

Reachability probabilities of untimed events in a PDP  $\mathcal{Z}$  can be characterised in the embedded DTMP  $emb(\mathcal{Z})$  as follows:

• for the delay transition  $v \overset{\delta}{\hookrightarrow} v'$ ,

$$Prob_{v,\delta}^{\mathcal{D}}(\eta) = e^{-\Lambda(v)\flat(v,\eta)} \cdot Prob_{v'}^{\mathcal{D}}(\eta + \flat(v,\eta))$$

• for the Markovian transition  $v \stackrel{p,X}{\hookrightarrow} v'$ ,

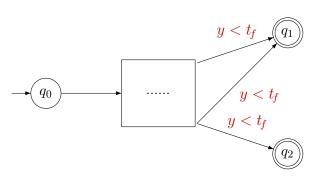
$$Prob_{v,v'}^{\mathcal{D}}(\eta) = \int_0^{\flat(v,\eta)} p \cdot \Lambda(v) \cdot e^{-\Lambda(v)\tau} \cdot Prob_{v'}^{\mathcal{D}} \left( (\eta + \tau)[X := 0] \right) d\tau$$

• for each vertex  $v \in V$ , we obtain:

$$Prob_{v}^{\mathcal{D}}(\eta) = \begin{cases} Prob_{v,\delta}^{\mathcal{D}}(\eta) + \sum_{v \overset{p,X}{\hookrightarrow} v'} Prob_{v,v'}^{\mathcal{D}}(\eta), & \text{if } v \notin V_F \\ 1, & \text{otherwise} \end{cases}$$

## Approximating reachability probabilities

Augment the DTA  ${\cal A}$  with a new clock y and with guard  $y < t_f$ , and get  ${\cal A}[t_f]$ :



$$Paths^{\mathcal{C}}(\mathcal{A}[t_f]) \subseteq Paths^{\mathcal{C}}(\mathcal{A})$$
$$\lim_{t_f \to \infty} \Pr^{\mathcal{C}}(Paths^{\mathcal{C}}(\mathcal{A}[t_f])) = \Pr^{\mathcal{C}}(Paths^{\mathcal{C}}(\mathcal{A}))$$

# PDEs as reachability probabilities

Approximate  $\Pr^{\mathcal{C}}(Paths^{\mathcal{C}}(\mathcal{A}))$  by solving the following system of PDEs:

• For  $v \in V \setminus V_F$ :

$$\frac{\partial \hbar_{v}(y,\eta)}{\partial y} + \sum_{i=1}^{|\mathcal{X}|} \frac{\partial \hbar_{v}(y,\eta)}{\partial \eta^{(i)}} + \Lambda(v) \cdot \sum_{\substack{v \to v' \\ v \to v'}} p \cdot (\hbar_{v'}(y,\eta[X:=0]) - \hbar_{v}(y,\eta)) = 0$$

• For  $v \in V_F$ :

$$\frac{\partial h_v(y,\eta)}{\partial y} + \sum_{i=1}^{|\mathcal{X}|} \frac{\partial h_v(y,\eta)}{\partial \eta^{(i)}} + 1 = 0$$

 $\hbar_v(y,\eta)$  is the probability to reach  $(V_F,\cdot)$  starting from  $(v,\eta,y)$  with  $y\leq t_f$ 

# Generalization for $\omega$ -regular properties

| model              | automaton                | product                                | property                               |
|--------------------|--------------------------|----------------------------------------|----------------------------------------|
| LTS TS             | Nondet. Büchi ${\cal A}$ | LTS $TS \otimes \mathcal{A}$           | $\Box \diamondsuit acc$                |
| DTMC $\mathcal{D}$ | Deter. Rabin ${\cal A}$  | DTMC $\mathcal{D} \otimes \mathcal{A}$ | $Prob(\diamondsuit \ BSCC_{acc})$      |
| MDP $\mathcal{M}$  | Deter. Rabin ${\cal A}$  | $MDP\ \mathcal{M}\otimes\mathcal{A}$   | $Prob(\diamondsuit \ BSCC_{acc})$      |
| CTMC $\mathcal C$  | Deter. Rabin ${\cal A}$  | CTMC $\mathcal{C}\otimes\mathcal{A}$   | $Prob(\diamondsuit \ BSCC_{acc})$      |
| CTMC $\mathcal{C}$ | DTA ${\cal A}$           | DMTA $\mathcal{C}\otimes\mathcal{A}$   | $Prob(\diamondsuit{\it acc})$ in a PDP |

# Generalization for $\omega$ -regular properties

| model              | automaton                 | product                                               | property                                |
|--------------------|---------------------------|-------------------------------------------------------|-----------------------------------------|
| LTS TS             | Nondet. Büchi ${\cal A}$  | LTS $TS \otimes \mathcal{A}$                          | $\Box \diamondsuit acc$                 |
| DTMC $\mathcal{D}$ | Deter. Rabin ${\cal A}$   | DTMC $\mathcal{D} \otimes \mathcal{A}$                | $Prob(\diamondsuit \ BSCC_{acc})$       |
| $MDP\ \mathcal{M}$ | Deter. Rabin ${\cal A}$   | $MDP\ \mathcal{M} \otimes \mathcal{A}$                | $Prob(\diamondsuit \ BSCC_{acc})$       |
| CTMC $\mathcal C$  | Deter. Rabin ${\cal A}$   | CTMC $\mathcal{C}\otimes\mathcal{A}$                  | $Prob(\diamondsuit \ BSCC_{acc})$       |
| CTMC $\mathcal{C}$ | DTA ${\cal A}$            | $DMTA\; \mathcal{C} \otimes \mathcal{A}$              | $Prob(\lozenge{\mathit{acc}})$ in a PDP |
| CTMC $\mathcal C$  | $DTA^\omega  \mathcal{A}$ | $DMTA^\omega  \mathcal{C} \otimes \mathcal{A}^\omega$ | $Prob(\lozenge BSCC_{acc})$ in a $PDP$  |

#### Related work

PTCTL model checking of PTA

(Kwiatkowska et el. TCS 2002)

• CSL with regular expressions

(Baier et al. IEEE TSE 2007)

- CSL with single-clock DTA as time constraints (Donatelli et al. IEEE TSE 2009)
  - our results coincide with Donatelli's for single-clock DTA
  - ... but we obtain the results in a different manner

Probabilistic semantics of TA

(Baier et al. LICS 2008)

• Quantitative model checking of such TA

(Bertrand et al. QEST 2008)

Optimal stopping times in PDPs

(Costa & Davis MCSS 1988)

## **Epilogue**

- ullet Problem: verifying a CTMC  ${\mathcal C}$  against a deterministic TA  ${\mathcal A}$
- Main result:

The probability that  $\mathcal C$  satisfies  $\mathcal A$  coincides with a simple reachability probability in a PDP

- Approximate solutions are obtained by solving a system of PDEs
- For single clock DTA this reduces to a system of linear equations
  - whose coefficients are obtained by solving a system of ODEs
- Results generalize to DTA with  $\omega$ -regular acceptance conditions