UNIVERSITY OF

OXFORD

Quantitative verification techniques
for probabilistic software

Marta Kwiatkowska
Oxford University Computing Laboratory

Summer School on Model Checking, Beijing, October 2010

Recap: Probabilistic model checking

Automatic verification of systems with probabilistic behaviour

Probabilistic model —) Result

System e.g. Markov chain

Quantitative

) I—b results
Probabilistic
model checker o P

—> e.g. PRISM

QQ:: Poi [Ffail]| mm—

Q Counter-
—) example

Systgm Probabilistic temporal —>o—>o<§>o

require- logic specification

ments e.g. PCTL, CSL, LTL

2

Quantitative verification of software

- What do we need to model?

— probability (e.g. randomisation, failures)

— nondeterminism (e.g. concurrency, underspecification)

— real-time behaviour and constraints (e.g. delays, time-outs)

- What do we want to verify?

— correctness, safety, reliability, performance, resource usage...

- Goal: efficient, fully-automated probabilistic verification
— directly from high-level programming languages

Needs:
— techniques/tools for verifying finite-state probabilistic models
— compositional probabilistic verification techniques

— abstractions for (possibly infinite-state) probabilistic models
— refinement: automatic methods to construct abstractions

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Ditsifr::te Markov chains processes (MDPs)

(DTMCs) (probabilistic automata)

Probabilistic timed

Conti Continuous-time automata (PTAS)
ontimléous Markov chains

(CTMCs)

CTMDPs/IMCs

Course overview

3 sessions (Mon/Tue/Thur): 6 X 50 minute lectures

— 1: Markov decision processes (MDPs)

— 2: Probabilistic LTL model checking

— 3: Compositional probabilistic verification

— 4: Abstraction, refinement and probabilistic software
— 5: Probabilistic timed automata (PTAs)

— 6: Software with time and probabilities

For additional background material
— and an accompanying list of references
— see: http://www.prismmodelchecker.org/lectures/

Part 1

Markov decision processes

Overview (Part 1)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

+ Properties of MDPs: The temporal logic PCTL
+ PCTL model checking for MDPs

- Case study: Firewire root contention

Recap: Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)

— state-transition systems augmented with probabilities
Formally: DTMC D = (S, s;., P, L) where:

— Sis a set of states and s, € S is the initial state

— P:S xS — [0,1]is the transition probability matrix

— L:S — 2AP labels states with atomic propositions
— define a probability space Pr, over paths Path,

Properties of DTMCs
— can be captured by the logic PCTL
— e.g. send — P_, 4 [F deliver]

— key question: what is the probability
of reaching states T < S from state s?

— reduces to graph analysis + linear equation system

Nondeterminism

- Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

- Concurrency - scheduling of parallel components

— e.g. randomised distributed algorithms — multiple probabilistic
processes operating asynchronously

Underspecification - unknown model parameters

— e.g. a probabilistic communication protocol designed for
message propagation delays of between d,;, and d, .,

Unknown environments
— e.g. probabilistic security protocols - unknown adversary

Markov decision processes

Markov decision processes (MDPs)
— extension of DTMCs which allow nondeterministic choice

Like DTMCs:

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur in discrete time-steps

Probabilities and nondeterminism

— in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states

10

Markov decision processes

Formally, an MDP M is a tuple (S,s;,;,%,0,L) where:
— Sis a set of states (“state space”)
— Si,ie € S is the initial state
— ot is an alphabet of action labels

(soh L3 |
— 0 € S X o X Dist(S) is the transition : : @3

probability relation, where Dist(S) is the set 0.3 {tails}
of all discrete probability distributions over S

— L:S — 2A7 s a labelling with atomic propositions

Notes:
— we also abuse notation and use 6 as a function
— j.e. 0 S — 2uxDist® where d(s) = { (a,M) | (s,a,u) € 0}
— we assume 0 (s) is always non-empty, i.e. no deadlocks
— MDPs, here, are identical to probabilistic automata [Segala]

11

Simple MDP example

- A simple communication protocol
— after one step, process starts trying to send a message

— then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart

12

Example - Parallel composition

1
Asynchronous parallel 0.5
composition of two @]
3-state DTMCs

Action labels
omitted here

13

Paths and probabilities

. A (finite or infinite) path through an MDP M
— is a sequence of states and action/distribution pairs
— e.g. Sp(@g,Mp)S (@, My)s5. ..
— such that (a;, ;) € 8(s)) and u(s;.;) > 0 for all i=0

— represents an execution (i.e. one possible behaviour) of the
system which the MDP is modelling

— note that a path resolves both types of choices:
nondeterministic and probabilistic

— Pathy, ; (or just Path,) is the set of all infinite paths starting
from state s in MDP M; the set of finite paths is PathFin,

- To consider the probability of some behaviour of the MDP
— first need to resolve the nondeterministic choices
— ...which results in a DTMC

— ...for which we can define a probability measure over paths 4

Overview (Part 1)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

+ Properties of MDPs: The temporal logic PCTL

- PCTL model checking for MDPs

- Case study: Firewire root contention

15

Adversaries

- An adversary resolves nondeterministic choice in an MDP

— also known as “schedulers”, “strategies” or “policies”

Formally:
— an adversary o of an MDP is a function mapping every finite
path w = sy(ay,My)s;---5, to an element of d(s,)

- Adversary o restricts the MDP to certain paths

— Path.© < Path.° and PathFin.,® < PathFin°

- Adversary o induces a probability measure Pr.° over paths
— constructed through an infinite state DTMC (PathFin_°, s, P.9)
— states of the DTMC are the finite paths of o starting in state s
— initial state is s (the path starting in s of length 0)

— P9 (w,w’)=u(s) if w’= w(a,m)s and o(w)=(a,u)

— P9 (w,w’)=0 otherwise
16

Adversaries — Examples

- Consider the simple MDP below
— note that s, is the only state for which [0(s)| > 1
— i.e. s, is the only state for which an adversary makes a choice

— let y, and u. denote the probability distributions associated
with actions b and c in state s,

- Adversary o,
— picks action c the first time

— 07(5¢S7)=(C, M)

- Adversary o,
— picks action b the first time, then c
— 0,(5¢51)=(b,Up), 0,(545151)=(C, M), T5(S0515¢S1)=(C,H.)

17

Adversaries — Examples

- Fragment of DTMC for adversary o,
— 0, picks action c the first time

18

Adversaries — Examples

- Fragment of DTMC for adversary o, theads}

— 0, picks action b, then c {init} 5 1 0.5 @B
OOt
0.3 -

Memoryless adversaries

Memoryless adversaries always pick same choice in a state
— also known as: positional, simple, Markov
— formally, for adversary o:
— 0(sg(ag,Mg)S;---S,) depends only on s,
— resulting DTMC can be mapped to a |S|-state DTMC

From previous example:
— adversary o, (picks c in s;) is memoryless, o, is not

20

Overview (Part 1)

- Markov decision processes (MDPs)

- Adversaries & probability spaces
+ Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs

- Case study: Firewire root contention

21

PCTL

- Temporal logic for properties of MDPs (and DTMCs)
— extension of (non-probabilistic) temporal logic CTL

— key addition is probabilistic operator P

— quantitative extension of CTL’s A and E operators

- PCTL syntax:

—¢ =truelaldAd| - [P, [P] (state formulas)
— P = Xd|pUskdp|dUGP (path formulas)

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=}, k € N

- Example: send — P_; o5 [true U=10 deliver]

22

PCTL semantics for MDPs

PCTL formulas interpreted over states of an MDP
— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

— for a state s of the MDP (S,s;,,;;,&,0,L):
—SskEa < a € L(s)

— SE¢; A P, < sEJ, and s E ¢,
— s kE —¢ < s E ¢ is false

- Semantics of path formulas:

— for a path w = sy(ag,Mg)s;(a;,M;)S5... in the MDP:
- wWEX® S TR)
— wE o, Uskd, <« dTi<ksuchthats, = ¢, and Vj<i, s, = ¢,

-~ wEed, Ud, < Jk=>0 such that w = ¢, Usk ¢,
23

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
— can only define probabilities for a specific adversary o

— s = P_, [@] means “the probability, from state s, that is true
for an outgoing path satisfies ~p for all adversaries o”

— formally s=P_[w] < ProW) ~ p for all adversaries o
— where we use Pr.°(p) to denote Pr,°{ w € Path,° | w = V }

- Some equivalences:
—Fd=0d=trueUd (eventually, “future”)
—-God=0¢d=—-(F—-¢) (always, “globally”) 24

Minimum and maximum probabilities

- Letting:

— Prymax(yp) = sup, Pro(Y)
— Pr,min(g) = inf, Pro(y)

- We have:

—if~e{z,>} thenseP [Y] & Prmn(P) ~p
—if~e{<,slthensEP_[W] & Prmxy)~p
- Model checking P_,[@] reduces to the computation over all
adversaries of either:

— the minimum probability of Y holding

— the maximum probability of Y holding
+ Crucial result for model checking PCTL on MDPs

— memoryless adversaries suffice, i.e. there are always
memoryless adversaries o, and o, for which:

~ Pr,omin() = Prymin(y) and Pr,omax(y) = Prymin(y)
25

Quantitative properties

For PCTL properties with P as the outermost operator
— quantitative form (two types): P.,.,[Ww]land P, [W]

— i.e. “what is the minimum/maximum probability (over all
adversaries) that path formula ¢ is true?”

— corresponds to an analysis of best-case or worst-case
behaviour of the system

— model checking is no harder since compute the values of
Pr.min(p) or Pr,ma(yY) anyway

— useful to spot patterns/trends

1

0.8
g‘06
Example: CSMA/CD protocol 3~
Q
— “min/max probability £ 04|
that a message is sent 02| —_mesimur|
within the deadline” ' ——minimum

800 1000 12‘00T14‘00 1600 1800
26

Other classes of adversary

- A more general semantics for PCTL over MDPs
— parameterise by a class of adversaries Adv

+ Only change is:
— S Eagy Pop [W] = Pro(p) ~ p for all adversaries o € Adv

- Original semantics obtained by taking Adv to be the set of
all adversaries for the MDP

- Alternatively, take Adv to be the set of all fair adversaries

— path fairness: if a state is occurs on a path infinitely often,
then each non-deterministic choice occurs infinite often

— see e.g. [BK98]

27

Some real PCTL examples

Byzantine agreement protocol
— P, [F (agreement A rounds<2)]

— “what is the minimum probability that agreement is reached
within two rounds?”

- CSMA/CD communication protocol

— Pax_> [F collisions=k]
— “what is the maximum probability of k collisions?”

- Self-stabilisation protocols

— Pin— [FSt stable]

— “what is the minimum probability of reaching a stable state
within k steps?”

28

Overview (Part 1)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

+ Properties of MDPs: The temporal logic PCTL
+ PCTL model checking for MDPs

- Case study: Firewire root contention

29

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
— inputs: MDP M=(S,s;,;,&,0,L), PCTL formula ¢
— output: Sat(d) ={s €S |s E ¢} =setof states satisfying ¢

.+ Basic algorithm same as PCTL model checking for DTMCs

— proceeds by induction on parse tree of ¢
— non-probabilistic operators (true, a, —, A) straightforward

- Only need to consider P_, [@] formulas

— reduces to computation of Pr,m"(p) or Pr,mx(p) forall s € S
— dependent on whether ~ € {>=,>} or ~ € {<,<}

— these slides cover the case Pr.,m"($p, U §,), i.e. ~ € {=,>}

— case for maximum probabilities is very similar

— next (X ¢) and bounded until (¢, U=k ¢,) are straightforward
extensions of the DTMC case 30

PCTL until for MDPs

- Computation of probabilities Pr;m"(¢p, U ¢,) forall s € S
First identify all states where the probability is 1 or O

— “precomputation” algorithms, yielding sets Sves, Sno
- Then compute (min) probabilities for remaining states (5
— either: solve linear programming problem
— or: approximate with an iterative solution method
— or: use policy iteration

0.5

Example:
P.,[Fa]

P.,[trueUa]

0.25 31

PCTL until - Precomputation

Identify all states where Pr,mn(¢d, U ¢,)is 1 or 0
- Syes — Sat(PZ] [CI)] U ¢2]), SI’IO — Sat(_' P>0 [CI)] U d)z])
- Two graph-based precomputation algorithms:

— algorithm ProbTA computes Sves
. for all adversaries the probability of satisfying ¢, U ¢, is 1

— algorithm ProbOE computes S"°
. there exists an adversary for which the probability is O

Sves = Sat(P., [Fa])

Example:
P.,[Fal]

Method 1 - Linear programming

- Probabilities Pr,mn(¢b, U ¢,) for remaining states in the set
S? =S\ (Sves U S"°) can be obtained as the unique solution
of the following linear programming (LP) problem:

maximize ESES? X, subject to the constraints:

for all s€S’ and for all (a,u) €8(s)

- Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

- This can be solved with standard techniques

— e.g. Simplex, ellipsoid method, branch-and-cut
33

Example - PCTL until (LP)

Let x; = Pr,™"(F a)
Sves: x,=1, S"o: x3=0
For S* = {Xq, X;}:
Maximise x,+X,; subject to constraints:

e Xo = X
° XO < O.25'XO + 0.5
e X; <0.1-Xy+0.5-x;, +0.4

34

Example - PCTL until (LP)

Let x; = Pr,™"(F a)
Sves: x,=1, S"°: x5=0
For S* = {Xq, X;}:
Maximise x,+X,; subject to constraints:

e Xg = X
« Xg=2/3
e X3 <0.2-x, + 0.8

- Xo < 2/3 | x, < 0.2-x,
' ' + 0.8

23 1 % "o p 0
35

— PCTL until (LP)

Let x; = Pr,™"(F a)
Sves: x,=1, S"o: x3=0
For S* = {Xq, X;}:
Maximise x,+X,; subject to constraints:

e Xg = X
« Xg=2/3
e X3 <0.2-x, + 0.8

Solution:

| . ma% (XO’ x])

(2/3,14/15)

2/3 1 36

— PCTL until (LP)

Let x; = Pr,™"(F a)
Sves: x,=1, S"o: x3=0
For S* = {Xq, X;}:
Maximise x,+X,; subject to constraints:

e Xg = X
« Xg=2/3
e X3 <0.2-x, + 0.8

@,
X; <0.2-xy + 0.8 . ma% \;
wo memoryless
// adversaries
X < X g
XO S 2/3 XO 0 T T T T > XO
0 2/3 1

37

Method 2 - Value iteration

- For probabilities Pr,min(¢, U ¢,) it can be shown that:

~ Prmn(hy U) = lim,,_, X, where;

1 ifs &S
0 ifseS™
(n)
X, = 0 ifseS"andn=0

. 1 (n-1) . ?
MIN,)esteps(s) (E u(s')- X..) ifseS"andn>0

s'ES

- This forms the basis for an (approximate) iterative solution
— iterations terminated when solution converges sufficiently

38

Example — PCTL until (value iteration)

Compute: Pr,m"(F a)
Sves = {X,}, S"° ={x3}, $* = {Xq, X}

[Xo(n)’xl(n)’xz(n)’xs(n)]
n=0: [0,0,1,0]
n=1: [min(0,0.25-0+0.5),
0.1-0+0.5-0+0.4,1,0]
=[0,0.4,1,0]
n=2: [min(0.4,0.25-0+0.5),
0.1-0+0.5-0.4+0.4,1, 0]
=[0.4,0.6,1,0]
n=3:

39

Example — PCTL until (value iteration)

[XO(”),X1(“),X2(”),X3(”)]
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, 0]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]
[0.666650, 0.929902, 1, 0]

3 3 3 3 3 3 3 3 35 S
|

[
© X NS U hWNZOQ

[0.666667, 0.933332,1,0]
n=21: [0.666667,0.933332,1,0]
~[2/3,14/15,1,0]

=
|

N
<

40

Example - Value iteration + LP

[XO(”),X1(“),X2(”),X3(”)]
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, 0]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]
[0.666650, 0.929902, 1, 0]

3 3 3 3 3 3 3 3 35 S
|

[
© X NS U hWNZOQ

[0.666667, 0.933332,1,0]
n=21: [0.666667,0.933332,1,0]
~[2/3,14/15,1,0]

0 2/3 Xo

=
|

N
<

41

Method 3 - Policy iteration

- Value iteration:

— iterates over (vectors of) probabilities

Policy iteration:
— iterates over adversaries (“policies”)

1. Start with an arbitrary (memoryless) adversary o

- 2. Compute the reachability probabilities Pro (F a) for o
3. Improve the adversary in each state

- 4. Repeat 2/3 until no change in adversary

- Termination:

— finite number of memoryless adversaries
— improvement in (minimum) probabilities each time

42

Method 3 - Policy iteration

1. Start with an arbitrary (memoryless) adversary o
— pick an element of d(s) for each state s € S
- 2. Compute the reachability probabilities Pro(F a) for o
— probabilistic reachability on a DTMC
— i.e. solve linear equation system

- 3. Improve the adversary in each state

o' (s) = argmin {E w(s')- Pri(Fa) | (a,u) € 6(5)}

s'eS

- 4. Repeat 2/3 until no change in adversary

43

Example - Policy iteration

Arbitrary adversary o:
Compute: Pro(F a)
Let x; = PrSiG(F a)

X,=1, x3=0 and:

* Xo = Xy

*X; =0.1-Xy + 0.5-x;, + 0.4
Solution:

Pre(Fa)=[1,1,1,0]

Refine o in state s;:

min{1(1), 0.5(1)+0.25(0)+0.25(1)}
= min{1, 0.75} = 0.75

44

Example - Policy iteration

Refined adversary o’:
Compute: Pro'(F a)
Let x; = Pr o (F a)

X,=1, x3=0 and:

*Xo = 0.25-x, + 0.5

*X; =0.1-x+ 0.5-x;, + 0.4
Solution:
Pro(Fa)=1[2/3,14/15,1,0]

This is optimal

45

Example - Policy iteration

—
Xo=X ___—|

A ,)
X; = 0.2-x, + 0.8 - vsc
Xo

0 2/3 1

46

PCTL model checking - Summary

- Computation of set Sat(®) for MDP M and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X ® : one matrix-vector multiplication, O(|S|?)
— &, U=k &, : k matrix-vector multiplications, O(k|S|?)

— ¢, U ®, : linear programming problem, polynomial in [S]
(assuming use of linear programming)

- Complexity:

— linear in |®| and polynomial in |S|
— S is states in MDP, assume |d(s)| is constant

47

Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit

Extend logic PCTL with R operator, for “expected reward”
— as for PCTL, either R_ [... |, Rpyines [.- JOr R o [-2]

Some examples:
— Ryine? [1720], Ry [C=90]) R, - [F “end”]
— “the minimum expected queue size after exactly 90 seconds”
— “the maximum expected power consumption over one hour”

— the maximum expected time for the algorithm to terminate
48

Overview (Part 1)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

+ Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs

- Case study: Firewire root contention

49

The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source (GPL), runs on all major OSs ‘

- Support for:

— discrete-/continuous-time Markov chains (D/CTMCs)

— Markov decision processes (MDPs)

— probabilistic timed automata (PTAs)

— PCTL, CSL, LTL, PCTL*, costs/rewards, ...
Multiple efficient model checking engines

— mostly symbolic (BDDs) (up to 1019 states, 107-108 on avg.)
- Successfully applied to a wide range of case studies

— communication protocols, security protocols, dynamic power
management, cell signalling pathways, ...

— http://www.prismmodelchecker.orq/

50

Case study: FireWire protocol

FireWire (IEEE 1394)

— high-performance serial bus for networking
multimedia devices; originally by Apple

— "hot-pluggable” - add/remove
devices at any time

— no requirement for a single PC (need acyclic topology)

&

Root contention protocol
— leader election algorithm, when nodes join/leave
— symmetric, distributed protocol
— uses electronic coin tossing and timing delays
— nodes send messages: "be my parent”
— root contention: when nodes contend leadership
— random choice: "fast"/"slow" delay before retry

51

FireWire example

FireWire leader election

FireWire root contention

FireWire root contention

FireWire analysis

Probabilistic model checking
— model constructed and analysed using PRISM m

— timing delays taken from standard
— model includes:

. concurrency: messages between nodes and wires
. underspecification of delays (upper/lower bounds)

— max. model size: 170 million states

uuuuuu

B, Em
snd sck,

Analysis:

— verified that root contention always
resolved with probability 1

— investigated time taken for leader election
— and the effect of using biased coin =3

snddie, |

. based on a conjecture by Stoelinga

56

FireWire: Analysis results

o
(o)}

o
~

minimum probability of electing a leader by T

- shor wire
- |ong wire

4

6
T (10° ns)

8

10

“minimum probability
of electing leader
by time T”

57

o
Co
/

o
(2]
/

o
N
Vi

o

min. probab. electing leader by T
N

FireWire: Analysis results

—
/

Yo
v

10

“minimum probability
of electing leader

by time T”

(short wire length)

Using a biased coin

58

FireWire: Analysis results

’2\ x 10

= 10f

5

()

kS

o 8 “« .

= maximum expected
() . »
° time to elect a leader
S 6

£

g 4 .

3 (short wire length)
<

o 2

g Using a biased coin
s 0 1

£ 0.2 0.4 0.6 0.8

probability of choosing fast

59

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin
--- 1 is beneficial!

0.45 0.5 0.55 0.6 0.65 0.7
probability of choosing fast

60

Summary (Part 1)

Markov decision processes (MDPs)
— extend DTMCs with nondeterminism
— to model concurrency, underspecification, ...

. Adversaries resolve nondeterminism in an MDP

— induce a probability space over paths

— consider minimum/maximum probabilities over all adversaries
Property specifications

— PCTL: exactly same syntax as for DTMCs

— but quantify over all adversaries
Model checking algorithms

— covered three basic techniques for MDPs: linear programming,
value iteration, or policy iteration

Next: LTL model checking (for DTMCs and MDPs)
61

