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Course overview 

•  3 sessions (Mon/Tue/Thur): 6 × 50 minute lectures 

−  1: Markov decision processes (MDPs) 
−  2: Probabilistic LTL model checking 
−  3: Compositional probabilistic verification 
−  4: Abstraction, refinement and probabilistic software 
−  5: Probabilistic timed automata (PTAs) 
−  6: Software with time and probabilities 

•  For additional background material 
−  and an accompanying list of references 
−  see: http://www.prismmodelchecker.org/lectures/ 



Probabilistic LTL model checking 

Part 2 
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Overview (Part 2) 

•  Linear temporal logic (LTL) for DTMCS/MDPs 

•  Strongly connected components (DTMCs) 

•  ω-automata (Büchi, Rabin) 

•  LTL model checking for DTMCs 

•  LTL model checking for MDPs 
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Limitations of PCTL 

•  PCTL, although useful in practice, has limited expressivity 
−  essentially: probability of reaching states in X, passing only 

through states in Y (and within k time-steps) 

•  One useful approach: extend models with costs/rewards 
−  see last lecture 

•  Another direction: Use more expressive logics. e.g.: 
−  LTL [Pnu77] – (non-probabilistic) linear-time temporal logic 
−  PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL 
−  both allow temporal (path) operators to be combined 
−  (in PCTL, P~p […] always contains a single temporal operator) 
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LTL - Linear temporal logic 

•  LTL syntax (path formulae only) 
−  ψ ::=  true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
−  where a ∈ AP is an atomic proposition 
−  usual equivalences hold: F φ ≡ true U φ, G φ ≡ ¬(F ¬φ) 

•  LTL semantics (for a path ω) 
− ω ⊨ true    always 
− ω ⊨ a    ⇔  a ∈ L(ω(0)) 
− ω ⊨ ψ1 ∧ ψ2  ⇔  ω ⊨ ψ1 and ω ⊨ ψ2 

− ω ⊨ ¬ψ    ⇔  ω ⊭ ψ 
− ω ⊨ X ψ   ⇔  ω[1…] ⊨ ψ 
− ω ⊨ ψ1 U ψ2  ⇔  ∃k≥0 s.t. ω[k…] ⊨ ψ2 ∧∀i<k ω[i…] ⊨ ψ1 

where ω(i) is ith state of ω, and ω[i…] is suffix starting at ω(i) 
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LTL examples 

•  (F tmp_fail1) ∧ (F tmp_fail2) 
−  “both servers suffer temporary failures at some point” 

•  GF ready 
−  “the server always eventually returns to a ready-state” 

•  FG error 
−  “an irrecoverable error occurs” 

•  G (req → X ack) 
−  “requests are always immediately acknowledged” 
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LTL for DTMCs and MDPs 

•  Same idea as PCTL: probabilities of sets of path formulae 
−  for a state s of a DTMC and an LTL formula ψ: 
−  Prs(ψ) = Prs { ω ∈ Paths | ω ⊨ ψ } 
−  all such path sets are measurable [Var85] 
−  and for an MDP: we have Prs

min(ψ), Prs
max(ψ) over adversaries 

•  A (probabilistic) LTL specification often comprises 
an LTL (path) formula and a probability bound 
−  e.g. P≥1 [ GF ready ] – “with probability 1, the server always 

eventually returns to a ready-state” 
−  e.g. P≤0.01 [ FG error ] – “with probability at most 0.01, an 

irrecoverable error occurs” 

•  PCTL* subsumes both LTL and PCTL 
−  e.g. P>0.5 [ GF crit1 ] ∧ P>0.5 [ GF crit2 ] 
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Overview (Part 2) 

•  Linear temporal logic (LTL) for DTMCS/MDPs 

•  Strongly connected components (DTMCs) 

•  ω-automata (Büchi, Rabin) 

•  LTL model checking for DTMCs 

•  LTL model checking for MDPs 
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Strongly connected components 

•  Long-run properties of DTMCs rely on an analysis of their 
underlying graph structure (i.e. ignoring probabilities) 

•  Strongly connected set of states T 
−  for any pair of states s and s’ in T, there is a path from s to s’,  

passing only through states in T 

•  Strongly connected component (SCC) 
−  a maximally strongly connected set of states 

(i.e. no superset of it is also strongly connected) 

•  Bottom strongly connected component (BSCC) 
−  an SCC T from which no state outside T is reachable from T 
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Example - (B)SCCs 

s0 
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BSCC BSCC 
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Fundamental property of DTMCs 

•  Fundamental property of (finite) DTMCs… 

•  With probability 1,  
a BSCC will be reached  
and all of its states 
visited infinitely often 

•  Formally: 
−  Prs { ω ∈ Paths | ∃ i≥0, ∃ BSCC T such that 

                            ∀ j≥i ω(i) ∈ T and  
                            ∀ s’∈T ω(k) = s' for infinitely many k }  =  1 

s0 

0.25 
1

s1 s2 

s3 s4 s5 

1

11

0.25 

0.5 

0.5 

0.5 
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LTL model checking for DTMCs 

•  LTL model checking for DTMCs relies on: 
−  computing the probability Prs(ψ) for LTL formula ψ 
−  reduces to probability of reaching a set of “accepting” BSCCs 
−  2 simple cases: GF a and FG a… 

•  Prs(GF a) = Prs(F TGFa) 
−  where TGFa = union of all BSCCs 

containing some state satisfying a 

•  Prs(FG a) = Prs(F TFGa) 
−  where TFGa = union of all BSCCs 

containing only a-states 

•  To extend this idea to arbitrary  
LTL formula, we use ω-automata… 

s0 

0.25 1 

s1 s2 

s3 s4 s5 

1 

1 1 

0.25 

0.5 

0.5 

0.5 

Example: 
Prs0(GF a) 
= Prs0(F TGFa) 
= Prs0(F {s3,s2,s5}) 
= 2/3 + 1/6 = 5/6 

{a} 

{a} 
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Overview (Part 2) 

•  Linear temporal logic (LTL) for DTMCS/MDPs 

•  Strongly connected components (DTMCs) 

•  ω-automata (Büchi, Rabin) 

•  LTL model checking for DTMCs 

•  LTL model checking for MDPs 
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Reminder – Finite automata 

•  A regular language over alphabet α 
−  is a set of finite words L ⊆ α* such that either: 
−  L = L(E) for some regular expression E 
−  L = L(A) for some nondeterministic finite automaton (NFA) A 
−  L = L(A) for some deterministic finite automaton (DFA) A 

•  Example:  

•  NFAs and DFAs have the same expressive power 
−  we can always determinise an NFA to an equivalent DFA 
−  (with a possibly exponential blow-up in size) 

q0 

c 

q1 q2 

d 

d 
d 

c 

NFA A: Regexp: (c+d)*d(c+d) 
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Büchi automata 

•  ω-automata represent sets of infinite words L ⊆ αω 
−  e.g. Büchi automata, Rabin automata, Streett, Muller, … 

•  A nondeterministic Büchi automaton (NBA) is… 
−  a tuple A = (Q, Qinit, α, δ, F) where: 
−  Q is a finite set of states 
−  Qinit ⊆ Q is a set of initial states 
−  α is an alphabet 
−  δ : Q × α → 2Q is a transition function 
−  F ⊆ Q is a set of “accept” states 

•  NBA acceptance condition 
−  language L(A) for A contains w ∈ αω if there is a 

corresponding run in A that passes through states in F 
infinitely often  

q0 q1 

d 

c 
c 

d 

Example: 
words w ∈ {c,d}ω  

with infinitely many c 
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ω-regular properties 

•  Consider a model, i.e. an LTS/DTMC/MDP/… 
−  for example: DTMC D = (S, sinit, P, Lab) 
−  where labelling Lab uses atomic propositions from set AP 

•  We can capture properties of these using ω-automata  
−  let ω ∈ PathD,s be some infinite path in D 
−  trace(ω) ∈ (2AP)ω denotes the projection of state labels of ω 
−  i.e. trace(s0s1s2s3…) = Lab(s0)Lab(s1)Lab(s2)Lab(s3)… 
−  can specify a set of paths of D with an ω-automata over 2AP 

•  Let PrD,s(A) denote the probability… 
−  from state s in a discrete-time Markov chain D 
−  of satisfying the property specified by automaton A 
−  i.e. PrD,s(A) = PrD,s { ω ∈ PathD,s | trace(ω) ∈ L(A) } 
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Example 

•  Nondeterministic Büchi automaton 
−  for LTL formula FG a, i.e. “eventually always a” 
−  for a DTMC with atomic propositions AP = {a,b} 

•  We abbreviate this to just: 

q0 q1 
¬a a 

a true 

q2 

true 

q0 q1 
∅, {b} {a}, {a,b} 

{a}, {a,b} ∅, {a},  
{b}, {a,b} 

q2 

∅, {a},  
{b}, {a,b} 
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Büchi automata + LTL 

•  Nondeterministic Büchi automata (NBAs) 
−  define the set of ω-regular languages 

•  ω-regular languages are more expressive than LTL 
−  can convert any LTL formula ψ over atomic propositions AP 
−  into an equivalent NBA Aψ over 2AP 

−  i.e. ω ⊨ ψ ⇔ trace(ω) ∈ L(Aψ) for any path ω 
−  for LTL-to-NBA translation, see e.g. [VW94], [DGV99], [BK08] 
−  worst-case: exponential blow-up from |ψ| to |Aψ| 

•  But deterministic Büchi automata (DBAs) are less expressive 
−  e.g. there is no DBA for the LTL formula FG a 
−  for probabilistic model checking, need deterministic automata 
−  so we use deterministic Rabin automata (DRAs) 
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Deterministic Rabin automata 

•  A deterministic Rabin automaton is a tuple (Q,qinit,α,δ,Acc): 
−  Q is a finite set of states, qinit ∈ Q is an initial state 
−  α is an alphabet, δ : Q × α → Q is a transition function 
−  Acc = { (Li, Ki) }i=1..k ⊆ 2Q × 2Q is an acceptance condition 

•  A run of a word on a DRA is accepting iff: 
−  for some pair (Li, Ki), the states in Li are visited finitely often 

and (some of) the states in Ki are visited infinitely often 

−  or in LTL: 

•  Example: DRA for FG a 
−  acceptance condition is 

Acc = { ({q0},{q1}) } 

q0 

¬a 

a 
a 

¬a 

q1 
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Overview (Part 2) 

•  Linear temporal logic (LTL) for DTMCS/MDPs 

•  Strongly connected components (DTMCs) 

•  ω-automata (Büchi, Rabin) 

•  LTL model checking for DTMCs 

•  LTL model checking for MDPs 
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LTL model checking for DTMCs 

•  LTL model checking for DTMC D and LTL formula ψ 

•  1. Construct DRA Aψ for ψ 

•  2. Construct product D ⊗ A of DTMC D and DRA Aψ 

•  3. Compute PrD,s(ψ) from DTMC D ⊗ A 

•  Running example: 
−  compute probability of 

satisfying LTL formula  
ψ = G¬b ∧ GF a on: 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 
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Example - DRA 

•  DRA Aψ for ψ = G¬b ∧ GF a is shown below 
−  acceptance condition is Acc = { ({},{q1}) } 
−  (i.e. this is actually a deterministic Büchi automaton) 

q0 q1 
¬a∧¬b 

a∧¬b 
a∧¬b 

¬a∧¬b 
q2 

true 

b b 

If G¬b violated  
(because we see a b), 

end up stuck here 

Need to visit here 
infinitely often 
to satisfy GF a 
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Product DTMC for a DRA 

•  We construct the product DTMC 
−  for DTMC D and DRA A, denoted D ⊗ A 
−  D ⊗ A can be seen as an unfolding of D with states (s,q),  

where q records state of automata A for path fragment so far 
−  since A is deterministic, D ⊗ A is a also a DTMC 
−  each path in D has a corresponding (unique) path in D ⊗ A 
−  the probabilities of paths in D are preserved in D ⊗ A 

•  Formally, for D = (S,sinit,P,L) and A = (Q,α,δ,qinit,{(Li,Ki)}i=1..k) 
−  D ⊗ A is the DTMC (S×Q, (sinit,qsinit), P’, L’) where: 
−  qsinit = δ(qinit,L(sinit)) 
−    

−  li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki 
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Example – Product DTMC 

Product DTMC D ⊗ Aψ 

s0q0 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 
DTMC D 

q0 q1 
¬a∧¬b 

a∧¬b 
a∧¬b 

¬a∧¬b 
q2 

true 

b b 

DRA Aψ for ψ = G¬b ∧ GF a 

Acc ={ ({},{q1}) } 

s0 is initial  
state of DTMC D 

s0 satisfies neither a or b 
so we stay in q0 in DRA Aψ 
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Example – Product DTMC 

s1q2 

Product DTMC D ⊗ Aψ 

0.1 

0.3 
0.6 

s0q0 

s3q1 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 
DTMC D 

q0 q1 
¬a∧¬b 

a∧¬b 
a∧¬b 

¬a∧¬b 
q2 

true 

b b 

DRA Aψ for ψ = G¬b ∧ GF a 

Acc ={ ({},{q1}) } 

s1 satisfies b so 
we move to q2 in Aψ 

s3 satisfies a but not b  
so we move to q1 in Aψ 
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Example – Product DTMC 

Product DTMC D ⊗ Aψ 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 
DTMC D 

q0 q1 
¬a∧¬b 

a∧¬b 
a∧¬b 

¬a∧¬b 
q2 

true 

b b 

DRA Aψ for ψ = G¬b ∧ GF a 

Acc ={ ({},{q1}) } 

s2q2 s1q2 

s3q2 

0.1 

0.3 
0.6 0.2 0.3 

0.5 

1 
0.9 

0.1 

1 

1 
s4q2 

s0q0 

{k1} 
s5q2 s3q1 

1 

1 
s4q0 

2 copies of s3/s4, one after  
seeing a b and one no b’s 

label states 
satisfying 

acceptance pair 
(L1,K1) 
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Product DTMC for a DRA 

•  For DTMC D and DRA A 

−  where qs = δ(qinit,L(s)) 
•  Hence: 

−  where TAcc is the union of all accepting BSCCs in D⊗A 
−  an accepting BSCC T of D⊗A is such that, for some 1≤i≤k,  

no states in T satisfy li and some state in T satisfies ki 

•  Reduces to computing BSCCs and reachability probabilities 

PrD,s
 (A) = PrD⊗A,(s,qs)(F TAcc) 

PrD,s(A) = PrD⊗A,(s,qs)(∨1≤i≤k (FG ¬li ∧ GF ki)) 
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Example: LTL for DTMCs 

•  Compute PrD,s0(G¬b ∧ GF a) for DTMC D: 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 
DTMC D 

q0 q1 
¬a∧¬b 

a∧¬b 
a∧¬b 

¬a∧¬b 
q2 

true 

b b 

DRA Aψ for ψ = G¬b ∧ GF a 

Acc ={ ({},{q1}) } 
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Example: LTL for DTMCs 
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Acc ={ ({},{q1}) } 
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Example: LTL for DTMCs 

s2q2 s1q2 
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Product DTMC D ⊗ Aψ 
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DTMC D 

q0 q1 
¬a∧¬b 

a∧¬b 
a∧¬b 

¬a∧¬b 
q2 

true 

b b 

DRA Aψ for ψ = G¬b ∧ GF a 

Acc ={ ({},{q1}) } 

   PrD,s0(ψ) = PrD⊗Aψ,(s0,q0)(F T1) = 3/4 

T1 T2 

T3 
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Complexity of LTL model checking 

•  Complexity of model checking LTL formula ψ on DTMC D 
−  is doubly exponential in |ψ| and polynomial in |D| 
−  (for the algorithm presented in these lectures) 

•  Double exponential blow-up comes from use of DRAs 
−  size of NBA can be exponential in |ψ| 
−  and DRA can be exponentially bigger than NBA 
−  in practice, this does not occur and ψ is small anyway 

•  Polynomial-time operations required on product model 
−  BSCC computation – linear in (product) model size 
−  probabilistic reachability – cubic in (product) model size 

•  In total: O(poly(|D|,|Aψ|)) 

•  Complexity can be reduced to single exponential in |ψ| 
−  see e.g. [CY88,CY95] 
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PCTL* model checking 

•  PCTL* syntax: 
−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] 

−  ψ  ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
•  Example: 

−  P>p [ GF ( send → P>0 [ F ack ] ) ] 

•  PCTL* model checking algorithm 
−  bottom-up traversal of parse tree for formula (like PCTL) 
−  to model check P~p [ ψ ]: 

•  replace maximal state subformulae with atomic propositions 
•  (state subformulae already model checked recursively) 
•  modified formula ψ is now an LTL formula 
•  which can be model checked as for LTL 
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Overview (Part 2) 

•  Linear temporal logic (LTL) for DTMCS/MDPs 

•  Strongly connected components (DTMCs) 

•  ω-automata (Büchi, Rabin) 

•  LTL model checking for DTMCs 

•  LTL model checking for MDPs 
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End components 

•  Consider an MDP M = (S,sinit,αM,δM,L) 

•  A sub-MDP of M is a pair (T,δT) where: 
−  T ⊆ S is a (non-empty) subset of M’s states 
−  δT(s) ⊆ δ(s) for each s ∈ T 

•  which: 
−  is closed under probabilistic branching, i.e.: 
−  { s’ | µ(s’)>0 for some (a,µ)∈δT(s) } ⊆ T  

•  An end component of M is a  
strongly connected sub-MDP 

s0 

s1 s2 

s5 s4 s3 

s7 s8 s6 

0.6 

0.3 

0.3 

0.7 

0.1 0.9 

0.1 
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End components 

•  For finite MDPs… 

•  For every end component, there  
is an adversary which,  
with probability 1, forces the MDP 
to remain in the end component 
and visit all its states infinitely often 

•  Under every adversary A,  
with probability 1 an end component 
will be reached and all of its states 
visited infinitely often 

−  (analogue of fundamental property of finite DTMCs) 

s0 

s1 s2 

s5 s4 s3 

s7 s8 s6 

0.6 

0.3 

0.3 

0.7 

0.1 0.9 

0.1 
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Long-run properties of MDPs 

•  Maximum probabilities 
−  Prs

max(GF a) = Prs
max(F TGFa) 

•  where TGFa is the union of sets T for all end components 
(T,δT) with T ∩ Sat(a) ≠ ∅ 

−  Prs
max(FG a) = Prs

max(F TFGa) 
•  where TFGa is the union of sets T for all end components 

(T,δT) with T ⊆ Sat(a) 

•  Minimum probabilities 
−  need to compute from maximum probabilities… 
−  Prs

min(GF a) = 1- Prs
max(FG¬a) 

−  Prs
min(FG a) = 1- Prs

max(GF¬a) 
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Example 

•  Model check: P<0.8 [ GF b ] for s0 

•  Compute Prs0
max(GF b) 

−  Prs0
max(GF b) = Prs0

max(F TGFb) 
−  TGFb is the union of sets T  

for all end components 
with T ∩ Sat(b) ≠ ∅ 

−  Sat(b) = { s4, s6 } 
−  TGFb = T1∪T2∪T3 = { s1, s3 s4, s6 } 
−  Prs0

max(F TGFb) = 0.75 
−  Prs0

max(GF b) = 0.75 

•  Result: s0 ⊨ P<0.8 [ GF b ] 

s0 

s1 s2 

s5 s4 s3 

s7 s8 s6 

0.6 

0.3 

0.3 

0.7 

0.1 0.9 

0.1 
T1 

T2 

T3 

T4 

{b} 

{b} 
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Automata-based properties for MDPs 

•  For an MDP M and automaton A over alphabet 2AP 
−  consider probability of “satisfying” language L(A) ⊆ (2AP)ω  
−  PrM,s

σ(A) = PrM,s
σ { ω ∈ PathM,s

σ | trace(ω) ∈ L(A) } 
−  PrM,s

max(A) = supσ∈Adv PrM,s
σ(A) 

−  PrM,s
min(A) = infσ∈Adv PrM,s

σ(A) 

•  Might need minimum or maximum probabilities 
−  e.g. s ⊨ P≥0.99 [ ψgood ] ⇔ PrM,s

min(ψgood) ≥ 0.99 
−  e.g. s ⊨ P≤0.05 [ ψbad ] ⇔ PrM,s

max(ψbad) ≤ 0.05 
•  But, ψ-regular properties are closed under negation 

−  as are the automata that represent them 
−  so can always consider maximum probabilities… 
−  PrM,s

max(ψbad) or 1 - PrM,s
max(¬ψgood)  
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LTL model checking for MDPs 

•  Model check LTL specification P~p [ ψ ]  against MDP M 

•  1. Convert problem to one needing maximum probabilities 
−  e.g. convert P>p [ ψ ] to P<1-p [ ¬ψ ] 

•  2. Generate a DRA for ψ (or ¬ψ) 
−  build nondeterministic Büchi automaton (NBA) for ψ [VW94] 
−  convert the NBA to a DRA [Saf88] 

•  3. Construct product MDP M⊗A 
•  4. Identify accepting end components (ECs) of M⊗A 
•  5. Compute max. probability of reaching accepting ECs 

−  from all states of the D⊗A 
•  6. Compare probability for (s, qs) against p for each s 
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Product MDP for a DRA 

•  For an MDP M = (S, sinit, αM, δM, L) 
•  and a (total) DRA A = (Q, qinit, αA, δA, Acc) 

−  where Acc = { (Li, Ki) | 1≤i≤k } 

•  The product MDP M ⊗ A is: 
−  the MDP (S×Q, (sinit,qsinit), αM, δ⊗, L⊗) where: 
      qsinit = δ(qinit,L(sinit)) 
      δ⊗(s,q) = { (a,µq) | (a,µ) ∈ δM(s) } 

   li ∈ L⊗(s,q) if q ∈ Li and ki ∈ L⊗(s,q) if q ∈ Ki 
      (i.e. state sets of acceptance condition used as labels)  

  

€ 

µq(s',q' ) =
µ(s' ) if q'= δA(q,L(s))
0 otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 



42 

Product MDP for a DRA 

•  For MDP M and DRA A 

−  where qs = δA(qinit,L(s)) 

•  Hence: 

−  where TAcc is the union of all sets T for accepting end 
components (T,δT) in D⊗A 

−  an accepting end components is such that, for some 1≤i≤k: 
•  (s,q) ⊨ ¬li for all (s,q) ∈ T and (s,q) ⊨ ki for some (s,q) ∈ T 
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅ 

PrM,s
max(A) = PrM⊗A,(s,qs)

max(F TAcc) 

PrM,s
max(A) = PrM⊗A,(s,qs)

max(∨1≤i≤k (FG ¬li ∧ GF ki)) 
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Example: LTL for MDPs 

•  Model check P<0.8 [ G ¬b ∧ GF a ] for state s0 in MDP M: 
−  need to compute PrM,s0

max(G ¬b ∧ GF a) 

MDP M 

q0 q1 
¬a∧¬b 

a∧¬b 
a∧¬b 

¬a∧¬b 
q2 

true 

b b 

DRA Aψ for ψ = G¬b ∧ GF a 

Acc ={ ({},{q1}) } 

s0 

s2 s1 s3 

0.3 0.7 {b} 
{a} 
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Example: LTL for MDPs 

Product MDP M ⊗ Aψ 

MDP M 

q0 q1 
¬a∧¬b 

a∧¬b 
a∧¬b 

¬a∧¬b 
q2 

true 

b b 

DRA Aψ for ψ = G¬b ∧ GF a 

Acc ={ ({},{q1}) } 

   PrM,s0
max(ψ) = PrM⊗Aψ,(s0,q0)

max(F T1) = 0.7 

s0 

s2 s1 s3 

0.3 0.7 {b} 
{a} 

s0q2 

s1q2 s3q2 s2q0 s3q1 

0.3 

0.7 

s0q0 

0.3 0.7 

s2q2 {k1} 

T1 
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LTL model checking for MDPs 

•  Complexity of model checking LTL formula ψ on MDP M 
−  is doubly exponential in |ψ| and polynomial in |M| 
−  unlike DTMCs, this cannot be improved upon 

•  PCTL* model checking 
−  LTL model checking can be adapted to PCTL*, as for DTMCs 

•  Maximal end components 
−  can optimise LTL model checking using maximal end 

components (there may be exponentially many ECs) 

•  Optimal adversaries for LTL formulae 
−  e.g. memoryless adversary always exists for PrM,s

max(GF a),  
but not for PrM,s

max(FG a) 
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Summary (Part 2) 

•  Linear temporal logic (LTL) 
−  combines path operators; PCTL* subsumes LTL and PCTL 

•  ω-automata: represent ω-regular languages/properties 
−  can translate any LTL formula into a Büchi automaton 
−  for deterministic ω-automata, we use Rabin automata 

•  Long-run properties of DTMCs 
−  need bottom strongly connected components (BSCCs) 

•  LTL model checking for DTMCs 
−  construct product of DTMC and Rabin automaton 
−  identify accepting BSCCs, compute reachability probability 

•  LTL model checking for MDPs 
−  MDP-DRA product, reachability of accepting end components 

•  Next: Compositional probabilistic verification 


