

# Quantitative verification techniques for probabilistic software

#### Marta Kwiatkowska

Oxford University Computing Laboratory

Summer School on Model Checking, Beijing, October 2010

#### Course overview

#### + 3 sessions (Mon/Tue/Thur): 6 $\times$ 50 minute lectures

- 1: Markov decision processes (MDPs)
- 2: Probabilistic LTL model checking
- 3: Compositional probabilistic verification
- 4: Abstraction, refinement and probabilistic software
- 5: Probabilistic timed automata (PTAs)
- 6: Software with time and probabilities
- For additional background material
  - and an accompanying list of references
  - see: <u>http://www.prismmodelchecker.org/lectures/</u>

# Part 2

# Probabilistic LTL model checking

# Overview (Part 2)

- Linear temporal logic (LTL) for DTMCS/MDPs
- Strongly connected components (DTMCs)
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

# Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
  - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- One useful approach: extend models with costs/rewards

   see last lecture
- Another direction: Use more expressive logics. e.g.:
  - LTL [Pnu77] (non-probabilistic) linear-time temporal logic
  - PCTL\* [ASB+95,BdA95] which subsumes both PCTL and LTL
  - both allow temporal (path) operators to be combined
  - (in PCTL,  $P_{-p}$  [...] always contains a single temporal operator)

# LTL – Linear temporal logic

- LTL syntax (path formulae only)
  - $\psi ::= true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$
  - where  $a \in AP$  is an atomic proposition
  - usual equivalences hold: F  $\varphi$   $\equiv$  true U  $\varphi$ , G  $\varphi$   $\equiv$   $\neg$  (F  $\neg\varphi)$

#### • LTL semantics (for a path $\omega$ )

- $-\omega \models true$  always
- $\ \omega \vDash a \qquad \Leftrightarrow \ a \in L(\omega(0))$
- $\omega \vDash \psi_1 \land \psi_2 \qquad \Leftrightarrow \ \omega \vDash \psi_1 \text{ and } \omega \vDash \psi_2$
- $\omega \vDash \neg \psi \qquad \Leftrightarrow \omega \nvDash \psi$
- $\omega \vDash X \psi \qquad \Leftrightarrow \omega[1...] \vDash \psi$
- $\omega \vDash \psi_1 \cup \psi_2 \qquad \Leftrightarrow \ \exists k \ge 0 \text{ s.t. } \omega[k...] \vDash \psi_2 \land \forall i < k \ \omega[i...] \vDash \psi_1$

where  $\omega(i)$  is  $i^{th}$  state of  $\omega,$  and  $\omega[i\ldots]$  is suffix starting at  $\omega(i)$ 

# LTL examples

- (F tmp\_fail<sub>1</sub>)  $\land$  (F tmp\_fail<sub>2</sub>)
  - "both servers suffer temporary failures at some point"
- GF ready
  - "the server always eventually returns to a ready-state"
- FG error
  - "an irrecoverable error occurs"
- G (req  $\rightarrow$  X ack)
  - "requests are always immediately acknowledged"

# LTL for DTMCs and MDPs

- Same idea as PCTL: probabilities of sets of path formulae
  - for a state s of a DTMC and an LTL formula  $\psi$ :
  - $\Pr_{s}(\psi) = \Pr_{s} \{ \omega \in \mathsf{Path}_{s} \mid \omega \vDash \psi \}$
  - all such path sets are measurable [Var85]
  - and for an MDP: we have  $Pr_s^{min}(\psi)$ ,  $Pr_s^{max}(\psi)$  over adversaries
- A (probabilistic) LTL specification often comprises an LTL (path) formula and a probability bound
  - e.g.  $P_{\geq 1}$  [GF ready] "with probability 1, the server always eventually returns to a ready-state"
  - e.g.  $P_{\leq 0.01}$  [FG error] "with probability at most 0.01, an irrecoverable error occurs"
- PCTL\* subsumes both LTL and PCTL
  - e.g.  $P_{>0.5}$  [ GF crit\_1 ]  $\wedge$   $P_{>0.5}$  [ GF crit\_2 ]

# Overview (Part 2)

- Linear temporal logic (LTL) for DTMCS/MDPs
- Strongly connected components (DTMCs)
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

# Strongly connected components

- Long-run properties of DTMCs rely on an analysis of their underlying graph structure (i.e. ignoring probabilities)
- Strongly connected set of states T
  - for any pair of states s and s' in T, there is a path from s to s', passing only through states in T
- Strongly connected component (SCC)
  - a maximally strongly connected set of states
     (i.e. no superset of it is also strongly connected)
- Bottom strongly connected component (BSCC)
  - an SCC T from which no state outside T is reachable from T

# Example – (B)SCCs



11

# Fundamental property of DTMCs

• Fundamental property of (finite) DTMCs...

 With probability 1, a BSCC will be reached and all of its states visited infinitely often



- Formally:
  - $\Pr_{s}$  {  $\omega \in Path_{s} \mid \exists i \ge 0, \exists BSCC T such that$

 $\forall$  j  $\geq$  i  $\omega$ (i)  $\in$  T and  $\forall$  s'  $\subset$  T  $\omega$ (k) - s' for infinitoly many

 $\forall$  s' $\in$ T  $\omega(k) =$  s' for infinitely many k } = 1

# LTL model checking for DTMCs

- LTL model checking for DTMCs relies on:
  - computing the probability  $\text{Pr}_{\text{s}}(\psi)$  for LTL formula  $\psi$
  - reduces to probability of reaching a set of "accepting" BSCCs
  - 2 simple cases: GF a and FG a...
- $Pr_s(GF a) = Pr_s(F T_{GFa})$ 
  - where  $T_{GFa}$  = union of all BSCCs containing some state satisfying a
- $Pr_s(FG a) = Pr_s(F T_{FGa})$ 
  - where  $T_{FGa}$  = union of all BSCCs containing only a-states
- To extend this idea to arbitrary LTL formula, we use ω-automata...



# Overview (Part 2)

- Linear temporal logic (LTL) for DTMCS/MDPs
- Strongly connected components (DTMCs)
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

#### Reminder - Finite automata

- A regular language over alphabet  $\alpha$ 
  - is a set of finite words  $L \subseteq \alpha^*$  such that either:
  - L = L(E) for some regular expression E
  - L = L(A) for some nondeterministic finite automaton (NFA) A
  - L = L(A) for some deterministic finite automaton (DFA) A



- NFAs and DFAs have the same expressive power
  - we can always determinise an NFA to an equivalent DFA
  - (with a possibly exponential blow-up in size)

# Büchi automata

- $\omega$ -automata represent sets of infinite words  $L \subseteq \alpha^{\omega}$ 
  - e.g. Büchi automata, Rabin automata, Streett, Muller, ...
- A nondeterministic Büchi automaton (NBA) is...
  - a tuple  $A = (Q, Q_{init}, \alpha, \delta, F)$  where:
  - **Q** is a finite set of states
  - $\mathbf{Q}_{init} \subseteq \mathbf{Q}$  is a set of initial states
  - $\alpha$  is an alphabet
  - $\delta$  : Q  $\times$   $\alpha$   $\rightarrow$   $2^{Q}$  is a transition function
  - $\mathbf{F} \subseteq \mathbf{Q}$  is a set of "accept" states





#### NBA acceptance condition

- language L(A) for A contains  $w \in \alpha^{\omega}$  if there is a corresponding run in A that passes through states in F infinitely often

#### ω-regular properties

- Consider a model, i.e. an LTS/DTMC/MDP/...
  - for example: DTMC  $D = (S, s_{init}, P, Lab)$
  - where labelling Lab uses atomic propositions from set AP
- We can capture properties of these using  $\omega\text{-}automata$ 
  - let  $\omega \in Path_{D,s}$  be some infinite path in D
  - trace( $\omega$ )  $\in$  (2<sup>AP</sup>) $^{\omega}$  denotes the projection of state labels of  $\omega$
  - i.e. trace( $s_0s_1s_2s_3...$ ) = Lab( $s_0$ )Lab( $s_1$ )Lab( $s_2$ )Lab( $s_3$ )...
  - can specify a set of paths of D with an  $\omega\text{-}automata$  over  $2^{AP}$
- Let Pr<sub>D,s</sub>(A) denote the probability...
  - from state s in a discrete-time Markov chain D
  - of satisfying the property specified by automaton A
  - $\text{ i.e. } Pr_{D,s}(A) = Pr_{D,s} \left\{ \ \omega \in Path_{D,s} \ | \ trace(\omega) \in L(A) \ \right\}$

# Example

- Nondeterministic Büchi automaton
  - for LTL formula FG a, i.e. "eventually always a"
  - for a DTMC with atomic propositions  $AP = \{a, b\}$



We abbreviate this to just:



# Büchi automata + LTL

- Nondeterministic Büchi automata (NBAs)
  - define the set of  $\omega$ -regular languages
- $\cdot \omega$ -regular languages are more expressive than LTL
  - can convert any LTL formula  $\psi$  over atomic propositions AP
  - into an equivalent NBA  $A_{\psi}$  over  $2^{AP}$
  - i.e.  $\omega \vDash \psi \Leftrightarrow trace(\omega) \in L(A_\psi)$  for any path  $\omega$
  - for LTL-to-NBA translation, see e.g. [VW94], [DGV99], [BK08]
  - worst-case: exponential blow-up from  $|\psi|$  to  $|A_{\psi}|$
- But deterministic Büchi automata (DBAs) are less expressive
  - e.g. there is no DBA for the LTL formula  $\rm FG~a$
  - for probabilistic model checking, need deterministic automata
  - so we use deterministic Rabin automata (DRAs)

#### Deterministic Rabin automata

- A deterministic Rabin automaton is a tuple (Q,q<sub>init</sub>,α,δ,Acc):
  - **Q** is a finite set of states,  $q_{init} \in Q$  is an initial state
  - $\alpha$  is an alphabet,  $\delta : \mathbf{Q} \times \alpha \rightarrow \mathbf{Q}$  is a transition function
  - Acc = { (L<sub>i</sub>, K<sub>i</sub>) }<sub>i=1..k</sub>  $\subseteq$  2<sup>Q</sup>  $\times$  2<sup>Q</sup> is an acceptance condition
- A run of a word on a DRA is accepting iff:
  - for some pair  $(L_i, K_i)$ , the states in  $L_i$  are visited finitely often and (some of) the states in  $K_i$  are visited infinitely often

- or in LTL: 
$$\bigvee_{1 \le i \le k} (FG \neg L_i \land GFK_i)$$

- Example: DRA for FG a
  - acceptance condition is Acc = { ({q<sub>0</sub>},{q<sub>1</sub>}) }



# Overview (Part 2)

- Linear temporal logic (LTL) for DTMCS/MDPs
- Strongly connected components (DTMCs)
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

# LTL model checking for DTMCs

- + LTL model checking for DTMC D and LTL formula  $\psi$
- + 1. Construct DRA  $A_{\psi}$  for  $\psi$
- 2. Construct product  $D \otimes A$  of DTMC D and DRA  $A_{\psi}$
- 3. Compute  $Pr_{D,s}(\psi)$  from DTMC  $D \otimes A$
- Running example:
  - compute probability of satisfying LTL formula  $\psi = G \neg b \land GF a \text{ on:}$



### Example – DRA

- DRA  $A_{\psi}$  for  $\psi = G \neg b \land GF$  a is shown below
  - acceptance condition is  $Acc = \{ (\{\}, \{q_1\}) \}$
  - (i.e. this is actually a deterministic Büchi automaton)



# Product DTMC for a DRA

- We construct the product DTMC
  - for DTMC D and DRA A, denoted  $D \otimes A$
  - D & A can be seen as an unfolding of D with states (s,q), where q records state of automata A for path fragment so far
  - since A is deterministic,  $D \otimes A$  is a also a DTMC
  - each path in D has a corresponding (unique) path in D  $\otimes$  A
  - the probabilities of paths in D are preserved in D  $\otimes$  A
- Formally, for  $D = (S, S_{init}, P, L)$  and  $A = (Q, \alpha, \delta, q_{init}, \{(L_i, K_i)\}_{i=1..k})$ 
  - $D \otimes A$  is the DTMC (S×Q, (s<sub>init</sub>,q<sub>sinit</sub>), P', L') where:

$$- q_{s_{init}} = \delta(q_{init}, L(s_{init}))$$
  
- P'((s<sub>1</sub>, q<sub>1</sub>), (s<sub>2</sub>, q<sub>2</sub>)) = 
$$\begin{cases} P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases}$$

–  $I_i \in L'(s,q)$  if  $q \in L_i$  and  $k_i \in L'(s,q)$  if  $q \in K_i$ 

#### Example – Product DTMC



#### Product DTMC $D \otimes A_{\psi}$

 $s_0 q_0$   $s_0$  satisfies neither a or b so we stay in  $q_0$  in DRA  $A_{\psi}$  $s_0$  is initial state of DTMC D

#### Example – Product DTMC



26

#### Example – Product DTMC



# Product DTMC for a DRA

For DTMC D and DRA A

$$\mathsf{Pr}_{\mathsf{D},\mathsf{s}}(\mathsf{A}) = \mathsf{Pr}_{\mathsf{D}\otimes\mathsf{A},(\mathsf{s},\mathsf{q}_{\mathsf{S}})}(\vee_{1\leq i\leq k} (\mathsf{FG} \ \neg\mathsf{I}_i \land \mathsf{GF} \ \mathsf{k}_i))$$

- where 
$$q_s = \delta(q_{init}, L(s))$$

Hence:

$$Pr_{D,s}(A) = Pr_{D\otimes A,(s,q_s)}(F T_{Acc})$$

- where  $T_{Acc}$  is the union of all accepting BSCCs in  $D{\otimes}A$
- an accepting BSCC T of D $\otimes$ A is such that, for some  $1 \le i \le k$ , no states in T satisfy  $I_i$  and some state in T satisfies  $k_i$
- Reduces to computing BSCCs and reachability probabilities

# Example: LTL for DTMCs

• Compute  $Pr_{D,s_0}(G \neg b \land GF a)$  for DTMC D:



# Example: LTL for DTMCs

DTMC D







#### Product DTMC $D \otimes A_{\psi}$



### Example: LTL for DTMCs



DTMC D

DRA  $A_{\psi}$  for  $\psi = G \neg b \wedge GF$  a



Product DTMC  $D \otimes A_{u}$ 

 $Pr_{D,s_0}(\psi) = Pr_{D\otimes A_{\psi},(s_0,q_0)}(F T_1) = 3/4$ 



# Complexity of LTL model checking

- + Complexity of model checking LTL formula  $\psi$  on DTMC D
  - is doubly exponential in  $|\psi|$  and polynomial in  $|\mathsf{D}|$
  - (for the algorithm presented in these lectures)
- Double exponential blow-up comes from use of DRAs
  - size of NBA can be exponential in  $|\psi|$
  - and DRA can be exponentially bigger than NBA
  - in practice, this does not occur and  $\boldsymbol{\psi}$  is small anyway
- Polynomial-time operations required on product model
  - BSCC computation linear in (product) model size
  - probabilistic reachability cubic in (product) model size
- In total:  $O(poly(|D|, |A_{\psi}|))$
- Complexity can be reduced to single exponential in |ψ|
   see e.g. [CY88,CY95]

# PCTL\* model checking

- PCTL\* syntax:
  - $\varphi$  ::= true | a |  $\varphi \land \varphi$  |  $\neg \varphi$  |  $P_{\sim p}$  [  $\psi$  ]
  - $\psi ::= \varphi \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$
- Example:
  - $P_{>p} [GF (send → P_{>0} [Fack])]$

#### PCTL\* model checking algorithm

- bottom-up traversal of parse tree for formula (like PCTL)
- to model check  $P_{-p}$  [  $\psi$  ]:
  - $\cdot\,$  replace maximal state subformulae with atomic propositions
  - · (state subformulae already model checked recursively)
  - $\cdot \,$  modified formula  $\psi$  is now an LTL formula
  - $\cdot\,$  which can be model checked as for LTL

# Overview (Part 2)

- Linear temporal logic (LTL) for DTMCS/MDPs
- Strongly connected components (DTMCs)
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

# End components

- Consider an MDP M = (S, s<sub>init</sub>,  $\alpha_M$ ,  $\delta_M$ , L)
- A sub-MDP of M is a pair  $(T, \delta_T)$  where:
  - $T \subseteq S$  is a (non-empty) subset of M's states
  - $-\delta_T(s) \subseteq \delta(s)$  for each  $s \in T$
- which:
  - is closed under probabilistic branching, i.e.:
  - { s' |  $\mu(s') > 0$  for some (a, $\mu$ ) $\in \delta_T(s)$  }  $\subseteq T$
- An end component of M is a strongly connected sub-MDP



# End components

- For finite MDPs...
- For every end component, there is an adversary which, with probability 1, forces the MDP to remain in the end component and visit all its states infinitely often
- Under every adversary A, with probability 1 an end component will be reached and all of its states visited infinitely often



- (analogue of fundamental property of finite DTMCs)

#### Long-run properties of MDPs

- Maximum probabilities
  - $Pr_s^{max}(GF a) = Pr_s^{max}(F T_{GFa})$ 
    - where  $T_{GFa}$  is the union of sets T for all end components  $(T, \delta_T)$  with  $T \cap Sat(a) \neq \emptyset$
  - $Pr_s^{max}(FG a) = Pr_s^{max}(F T_{FGa})$ 
    - · where  $T_{FGa}$  is the union of sets T for all end components  $(T,\delta_T)$  with  $T\subseteq Sat(a)$
- Minimum probabilities
  - need to compute from maximum probabilities...
  - $Pr_s^{min}(GF a) = 1 Pr_s^{max}(FG \neg a)$
  - $Pr_s^{min}(FG a) = 1 Pr_s^{max}(GF \neg a)$

# Example

- Model check:  $P_{<0.8}$  [ GF b ] for s<sub>0</sub>
- Compute Pr<sub>s0</sub><sup>max</sup>(GF b)
  - $Pr_{s_0}^{max}(GF b) = Pr_{s_0}^{max}(F T_{GFb})$
  - $T_{GFb}$  is the union of sets T for all end components with T  $\cap$  Sat(b)  $\neq \emptyset$
  - Sat(b) = { s<sub>4</sub>, s<sub>6</sub> }
  - $\ T_{GFb} = T_1 \cup T_2 \cup T_3 = \{ \ s_1, \ s_3 \ s_4, \ s_6 \ \}$
  - $Pr_{s_0}^{max}(F T_{GFb}) = 0.75$
  - $Pr_{s_0}^{max}(GF b) = 0.75$
- Result:  $s_0 \models P_{<0.8}$  [GF b]



#### Automata-based properties for MDPs

- For an MDP M and automaton A over alphabet 2<sup>AP</sup>
  - consider probability of "satisfying" language  $L(A) \subseteq (2^{AP})^\omega$
  - $\ Pr_{M,s}^{\phantom{M}\sigma}(A) = Pr_{M,s}^{\phantom{M}\sigma} \left\{ \ \omega \in Path_{M,s}^{\phantom{M}\sigma} \ | \ trace(\omega) \in L(A) \ \right\}$
  - $\ Pr_{M,s}^{max}(A) = \ sup_{\sigma \in Adv} \ Pr_{M,s}^{\sigma}(A)$
  - $\ \text{Pr}_{\text{M},\text{s}}^{\text{min}}(\text{A}) = \text{inf}_{\sigma \in \text{Adv}} \ \text{Pr}_{\text{M},\text{s}}^{\sigma}(\text{A})$
- Might need minimum or maximum probabilities
  - $-\text{ e.g. } s \vDash P_{\geq 0.99} \left[ \ \psi_{good} \ \right] \Leftrightarrow Pr_{M,s}^{min}(\psi_{good}) \geq 0.99$
  - $\text{ e.g. s} \vDash P_{\leq 0.05} \left[ \ \psi_{bad} \ \right] \Leftrightarrow Pr_{M,s}^{max}(\psi_{bad}) \leq 0.05$
- But,  $\psi$ -regular properties are closed under negation
  - as are the automata that represent them
  - so can always consider maximum probabilities...
  - $Pr_{M,s}^{max}(\psi_{bad})$  or 1  $Pr_{M,s}^{max}(\neg \psi_{good})$

# LTL model checking for MDPs

- Model check LTL specification  $P_{\sim p}$  [  $\psi$  ] against MDP M
- 1. Convert problem to one needing maximum probabilities
  - e.g. convert  $P_{>p}$  [  $\psi$  ] to  $P_{<1\text{-}p}$  [  $\neg\psi$  ]
- 2. Generate a DRA for  $\psi$  (or  $\neg \psi$ )
  - build nondeterministic Büchi automaton (NBA) for  $\psi$  [VW94]
  - convert the NBA to a DRA [Saf88]
- 3. Construct product MDP M⊗A
- + 4. Identify accepting end components (ECs) of  $M \otimes A$
- 5. Compute max. probability of reaching accepting ECs
  - from all states of the  $\mathsf{D}{\otimes}\mathsf{A}$
- 6. Compare probability for  $(s, q_s)$  against p for each s

#### Product MDP for a DRA

- For an MDP M = (S,  $s_{init}$ ,  $\alpha_M$ ,  $\delta_M$ , L)
- and a (total) DRA A = (Q,  $q_{init}$ ,  $\alpha_A$ ,  $\delta_A$ , Acc)
  - where Acc = { (L<sub>i</sub>, K<sub>i</sub>) |  $1 \le i \le k$  }

#### • The product MDP $M \otimes A$ is:

 $\begin{array}{l} - \text{ the MDP (S \times Q, (s_{init}, q_{s_{init}}), \alpha_M, \delta_{\otimes}, L_{\otimes}) \text{ where:} \\ q_{s_{init}} = \delta(q_{init}, L(s_{init})) \\ \delta_{\otimes}(s,q) = \{ (a,\mu^q) \mid (a,\mu) \in \delta_M(s) \} \\ \mu^q(s',q') = \left\{ \begin{array}{l} \mu(s') \quad \text{if } q' = \delta_A(q,L(s)) \\ 0 \qquad \text{otherwise} \end{array} \right. \end{array}$ 

 $I_i \in L_{\otimes}(s,q)$  if  $q \in L_i$  and  $k_i \in L_{\otimes}(s,q)$  if  $q \in K_i$ (i.e. state sets of acceptance condition used as labels)

### Product MDP for a DRA

For MDP M and DRA A

$$\Pr_{\mathsf{M},\mathsf{s}}^{\mathsf{max}}(\mathsf{A}) = \Pr_{\mathsf{M}\otimes\mathsf{A},(\mathsf{s},\mathsf{q}_{\mathsf{s}})}^{\mathsf{max}}(\bigvee_{1\leq i\leq k} (\mathsf{FG} \neg \mathbf{I}_{i} \land \mathsf{GF} k_{i}))$$

- where 
$$q_s = \delta_A(q_{init}, L(s))$$

• Hence:

$$Pr_{M,s}^{max}(A) = Pr_{M \otimes A,(s,q_s)}^{max}(F T_{Acc})$$

- where  $T_{Acc}$  is the union of all sets T for accepting end components  $(T, \delta_T)$  in D $\otimes$ A
- an accepting end components is such that, for some  $1 \le i \le k$ :
  - · (s,q)  $\vDash \neg I_i$  for all (s,q)  $\in T$  and (s,q)  $\vDash k_i$  for some (s,q)  $\in T$
  - · i.e.  $T \cap (S \times L_i) = \emptyset$  and  $T \cap (S \times K_i) \neq \emptyset$

# Example: LTL for MDPs

- Model check  $P_{<0.8}$  [ G  $\neg b \land GF a$  ] for state s<sub>0</sub> in MDP M:
  - need to compute  $Pr_{M,s_0}^{max}(G \neg b \land GF a)$



### Example: LTL for MDPs

MDP M

DRA  $A_{\psi}$  for  $\psi = G \neg b \wedge GF$  a





Product MDP M  $\otimes$  A<sub>u</sub>





44

# LTL model checking for MDPs

#### + Complexity of model checking LTL formula $\psi$ on MDP M

- is doubly exponential in  $|\psi|$  and polynomial in |M|
- unlike DTMCs, this cannot be improved upon

#### PCTL\* model checking

- LTL model checking can be adapted to PCTL\*, as for DTMCs

#### Maximal end components

- can optimise LTL model checking using maximal end components (there may be exponentially many ECs)
- **Optimal adversaries for LTL formulae** 
  - e.g. memoryless adversary always exists for  $Pr_{M,s}^{max}(GF a)$ , but not for  $Pr_{M,s}^{max}(FG a)$

# Summary (Part 2)

- Linear temporal logic (LTL)
  - combines path operators; PCTL\* subsumes LTL and PCTL
- $\omega$ -automata: represent  $\omega$ -regular languages/properties
  - can translate any LTL formula into a Büchi automaton
  - for deterministic  $\omega$ -automata, we use Rabin automata
- Long-run properties of DTMCs
  - need bottom strongly connected components (BSCCs)
- LTL model checking for DTMCs
  - construct product of DTMC and Rabin automaton
  - identify accepting BSCCs, compute reachability probability
- LTL model checking for MDPs
  - MDP-DRA product, reachability of accepting end components
- Next: Compositional probabilistic verification