
Summer School on Model Checking, Beijing, October 2010

2

Course overview

•  3 sessions (Mon/Tue/Thur): 6 × 50 minute lectures

−  1: Markov decision processes (MDPs)
−  2: Probabilistic LTL model checking
−  3: Compositional probabilistic verification
−  4: Abstraction, refinement and probabilistic software
−  5: Probabilistic timed automata (PTAs)
−  6: Software with time and probabilities

•  For additional background material
−  and an accompanying list of references
−  see: http://www.prismmodelchecker.org/lectures/

Probabilistic LTL model checking

Part 2

4

Overview (Part 2)

•  Linear temporal logic (LTL) for DTMCS/MDPs

•  Strongly connected components (DTMCs)

•  ω-automata (Büchi, Rabin)

•  LTL model checking for DTMCs

•  LTL model checking for MDPs

5

Limitations of PCTL

•  PCTL, although useful in practice, has limited expressivity
−  essentially: probability of reaching states in X, passing only

through states in Y (and within k time-steps)

•  One useful approach: extend models with costs/rewards
−  see last lecture

•  Another direction: Use more expressive logics. e.g.:
−  LTL [Pnu77] – (non-probabilistic) linear-time temporal logic
−  PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
−  both allow temporal (path) operators to be combined
−  (in PCTL, P~p […] always contains a single temporal operator)

6

LTL - Linear temporal logic

•  LTL syntax (path formulae only)
−  ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
−  where a ∈ AP is an atomic proposition
−  usual equivalences hold: F φ ≡ true U φ, G φ ≡ ¬(F ¬φ)

•  LTL semantics (for a path ω)
− ω ⊨ true always
− ω ⊨ a ⇔ a ∈ L(ω(0))
− ω ⊨ ψ1 ∧ ψ2 ⇔ ω ⊨ ψ1 and ω ⊨ ψ2

− ω ⊨ ¬ψ ⇔ ω ⊭ ψ
− ω ⊨ X ψ ⇔ ω[1…] ⊨ ψ
− ω ⊨ ψ1 U ψ2 ⇔ ∃k≥0 s.t. ω[k…] ⊨ ψ2 ∧∀i<k ω[i…] ⊨ ψ1

where ω(i) is ith state of ω, and ω[i…] is suffix starting at ω(i)

7

LTL examples

•  (F tmp_fail1) ∧ (F tmp_fail2)
−  “both servers suffer temporary failures at some point”

•  GF ready
−  “the server always eventually returns to a ready-state”

•  FG error
−  “an irrecoverable error occurs”

•  G (req → X ack)
−  “requests are always immediately acknowledged”

8

LTL for DTMCs and MDPs

•  Same idea as PCTL: probabilities of sets of path formulae
−  for a state s of a DTMC and an LTL formula ψ:
−  Prs(ψ) = Prs { ω ∈ Paths | ω ⊨ ψ }
−  all such path sets are measurable [Var85]
−  and for an MDP: we have Prs

min(ψ), Prs
max(ψ) over adversaries

•  A (probabilistic) LTL specification often comprises 
an LTL (path) formula and a probability bound
−  e.g. P≥1 [GF ready] – “with probability 1, the server always

eventually returns to a ready-state”
−  e.g. P≤0.01 [FG error] – “with probability at most 0.01, an

irrecoverable error occurs”

•  PCTL* subsumes both LTL and PCTL
−  e.g. P>0.5 [GF crit1] ∧ P>0.5 [GF crit2]

9

Overview (Part 2)

•  Linear temporal logic (LTL) for DTMCS/MDPs

•  Strongly connected components (DTMCs)

•  ω-automata (Büchi, Rabin)

•  LTL model checking for DTMCs

•  LTL model checking for MDPs

10

Strongly connected components

•  Long-run properties of DTMCs rely on an analysis of their
underlying graph structure (i.e. ignoring probabilities)

•  Strongly connected set of states T
−  for any pair of states s and s’ in T, there is a path from s to s’,  

passing only through states in T

•  Strongly connected component (SCC)
−  a maximally strongly connected set of states 

(i.e. no superset of it is also strongly connected)

•  Bottom strongly connected component (BSCC)
−  an SCC T from which no state outside T is reachable from T

11

Example - (B)SCCs

s0

0.25
1

s1 s2

s3 s4 s5

1

1 1

0.25

0.5

0.5

0.5

BSCC

BSCC BSCC

SCC

12

Fundamental property of DTMCs

•  Fundamental property of (finite) DTMCs…

•  With probability 1,  
a BSCC will be reached  
and all of its states 
visited infinitely often

•  Formally:
−  Prs { ω ∈ Paths | ∃ i≥0, ∃ BSCC T such that 

 ∀ j≥i ω(i) ∈ T and  
 ∀ s’∈T ω(k) = s' for infinitely many k } = 1

s0

0.25
1

s1 s2

s3 s4 s5

1

11

0.25

0.5

0.5

0.5

13

LTL model checking for DTMCs

•  LTL model checking for DTMCs relies on:
−  computing the probability Prs(ψ) for LTL formula ψ
−  reduces to probability of reaching a set of “accepting” BSCCs
−  2 simple cases: GF a and FG a…

•  Prs(GF a) = Prs(F TGFa)
−  where TGFa = union of all BSCCs 

containing some state satisfying a

•  Prs(FG a) = Prs(F TFGa)
−  where TFGa = union of all BSCCs 

containing only a-states

•  To extend this idea to arbitrary  
LTL formula, we use ω-automata…

s0

0.25 1

s1 s2

s3 s4 s5

1

1 1

0.25

0.5

0.5

0.5

Example:
Prs0(GF a)
= Prs0(F TGFa)
= Prs0(F {s3,s2,s5})
= 2/3 + 1/6 = 5/6

{a}

{a}

14

Overview (Part 2)

•  Linear temporal logic (LTL) for DTMCS/MDPs

•  Strongly connected components (DTMCs)

•  ω-automata (Büchi, Rabin)

•  LTL model checking for DTMCs

•  LTL model checking for MDPs

15

Reminder – Finite automata

•  A regular language over alphabet α
−  is a set of finite words L ⊆ α* such that either:
−  L = L(E) for some regular expression E
−  L = L(A) for some nondeterministic finite automaton (NFA) A
−  L = L(A) for some deterministic finite automaton (DFA) A

•  Example:  

•  NFAs and DFAs have the same expressive power
−  we can always determinise an NFA to an equivalent DFA
−  (with a possibly exponential blow-up in size)

q0

c

q1 q2

d

d
d

c

NFA A: Regexp: (c+d)*d(c+d)

16

Büchi automata

•  ω-automata represent sets of infinite words L ⊆ αω
−  e.g. Büchi automata, Rabin automata, Streett, Muller, …

•  A nondeterministic Büchi automaton (NBA) is…
−  a tuple A = (Q, Qinit, α, δ, F) where:
−  Q is a finite set of states
−  Qinit ⊆ Q is a set of initial states
−  α is an alphabet
−  δ : Q × α → 2Q is a transition function
−  F ⊆ Q is a set of “accept” states

•  NBA acceptance condition
−  language L(A) for A contains w ∈ αω if there is a

corresponding run in A that passes through states in F
infinitely often

q0 q1

d

c
c

d

Example:
words w ∈ {c,d}ω

with infinitely many c

17

ω-regular properties

•  Consider a model, i.e. an LTS/DTMC/MDP/…
−  for example: DTMC D = (S, sinit, P, Lab)
−  where labelling Lab uses atomic propositions from set AP

•  We can capture properties of these using ω-automata
−  let ω ∈ PathD,s be some infinite path in D
−  trace(ω) ∈ (2AP)ω denotes the projection of state labels of ω
−  i.e. trace(s0s1s2s3…) = Lab(s0)Lab(s1)Lab(s2)Lab(s3)…
−  can specify a set of paths of D with an ω-automata over 2AP

•  Let PrD,s(A) denote the probability…
−  from state s in a discrete-time Markov chain D
−  of satisfying the property specified by automaton A
−  i.e. PrD,s(A) = PrD,s { ω ∈ PathD,s | trace(ω) ∈ L(A) }

18

Example

•  Nondeterministic Büchi automaton
−  for LTL formula FG a, i.e. “eventually always a”
−  for a DTMC with atomic propositions AP = {a,b}

•  We abbreviate this to just:

q0 q1
¬a a

a true

q2

true

q0 q1
∅, {b} {a}, {a,b}

{a}, {a,b} ∅, {a},  
{b}, {a,b}

q2

∅, {a},  
{b}, {a,b}

19

Büchi automata + LTL

•  Nondeterministic Büchi automata (NBAs)
−  define the set of ω-regular languages

•  ω-regular languages are more expressive than LTL
−  can convert any LTL formula ψ over atomic propositions AP
−  into an equivalent NBA Aψ over 2AP

−  i.e. ω ⊨ ψ ⇔ trace(ω) ∈ L(Aψ) for any path ω
−  for LTL-to-NBA translation, see e.g. [VW94], [DGV99], [BK08]
−  worst-case: exponential blow-up from |ψ| to |Aψ|

•  But deterministic Büchi automata (DBAs) are less expressive
−  e.g. there is no DBA for the LTL formula FG a
−  for probabilistic model checking, need deterministic automata
−  so we use deterministic Rabin automata (DRAs)

20

Deterministic Rabin automata

•  A deterministic Rabin automaton is a tuple (Q,qinit,α,δ,Acc):
−  Q is a finite set of states, qinit ∈ Q is an initial state
−  α is an alphabet, δ : Q × α → Q is a transition function
−  Acc = { (Li, Ki) }i=1..k ⊆ 2Q × 2Q is an acceptance condition

•  A run of a word on a DRA is accepting iff:
−  for some pair (Li, Ki), the states in Li are visited finitely often

and (some of) the states in Ki are visited infinitely often 

−  or in LTL:

•  Example: DRA for FG a
−  acceptance condition is 

Acc = { ({q0},{q1}) }

q0

¬a

a
a

¬a

q1

21

Overview (Part 2)

•  Linear temporal logic (LTL) for DTMCS/MDPs

•  Strongly connected components (DTMCs)

•  ω-automata (Büchi, Rabin)

•  LTL model checking for DTMCs

•  LTL model checking for MDPs

22

LTL model checking for DTMCs

•  LTL model checking for DTMC D and LTL formula ψ

•  1. Construct DRA Aψ for ψ

•  2. Construct product D ⊗ A of DTMC D and DRA Aψ

•  3. Compute PrD,s(ψ) from DTMC D ⊗ A

•  Running example:
−  compute probability of 

satisfying LTL formula  
ψ = G¬b ∧ GF a on:

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}

23

Example - DRA

•  DRA Aψ for ψ = G¬b ∧ GF a is shown below
−  acceptance condition is Acc = { ({},{q1}) }
−  (i.e. this is actually a deterministic Büchi automaton)

q0 q1
¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b
q2

true

b b

If G¬b violated  
(because we see a b),

end up stuck here

Need to visit here
infinitely often
to satisfy GF a

24

Product DTMC for a DRA

•  We construct the product DTMC
−  for DTMC D and DRA A, denoted D ⊗ A
−  D ⊗ A can be seen as an unfolding of D with states (s,q),  

where q records state of automata A for path fragment so far
−  since A is deterministic, D ⊗ A is a also a DTMC
−  each path in D has a corresponding (unique) path in D ⊗ A
−  the probabilities of paths in D are preserved in D ⊗ A

•  Formally, for D = (S,sinit,P,L) and A = (Q,α,δ,qinit,{(Li,Ki)}i=1..k)
−  D ⊗ A is the DTMC (S×Q, (sinit,qsinit), P’, L’) where:
−  qsinit = δ(qinit,L(sinit))
− 

−  li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki

25

Example – Product DTMC

Product DTMC D ⊗ Aψ

s0q0

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}
DTMC D

q0 q1
¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b
q2

true

b b

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s0 is initial  
state of DTMC D

s0 satisfies neither a or b
so we stay in q0 in DRA Aψ

26

Example – Product DTMC

s1q2

Product DTMC D ⊗ Aψ

0.1

0.3
0.6

s0q0

s3q1

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}
DTMC D

q0 q1
¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b
q2

true

b b

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s1 satisfies b so
we move to q2 in Aψ

s3 satisfies a but not b  
so we move to q1 in Aψ

27

Example – Product DTMC

Product DTMC D ⊗ Aψ

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}
DTMC D

q0 q1
¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b
q2

true

b b

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s2q2 s1q2

s3q2

0.1

0.3
0.6 0.2 0.3

0.5

1
0.9

0.1

1

1
s4q2

s0q0

{k1}
s5q2 s3q1

1

1
s4q0

2 copies of s3/s4, one after  
seeing a b and one no b’s

label states
satisfying

acceptance pair
(L1,K1)

28

Product DTMC for a DRA

•  For DTMC D and DRA A

−  where qs = δ(qinit,L(s))
•  Hence:

−  where TAcc is the union of all accepting BSCCs in D⊗A
−  an accepting BSCC T of D⊗A is such that, for some 1≤i≤k,  

no states in T satisfy li and some state in T satisfies ki

•  Reduces to computing BSCCs and reachability probabilities

PrD,s
 (A) = PrD⊗A,(s,qs)(F TAcc)

PrD,s(A) = PrD⊗A,(s,qs)(∨1≤i≤k (FG ¬li ∧ GF ki))

29

Example: LTL for DTMCs

•  Compute PrD,s0(G¬b ∧ GF a) for DTMC D:

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}
DTMC D

q0 q1
¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b
q2

true

b b

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

30

Example: LTL for DTMCs

s2q2 s1q2

s3q2

Product DTMC D ⊗ Aψ

0.1

0.3
0.6 0.2 0.3

0.5

1
0.9

0.1

1

1
s4q2

s0q0

{k1}
s5q2 s3q1

1

1
s4q0

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}
DTMC D

q0 q1
¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b
q2

true

b b

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

31

Example: LTL for DTMCs

s2q2 s1q2

s3q2

Product DTMC D ⊗ Aψ

0.1

0.3
0.6 0.2 0.3

0.5

1
0.9

0.1

1

1
s4q2

s0q0

{k1}
s5q2 s3q1

1

1
s4q0

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}
DTMC D

q0 q1
¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b
q2

true

b b

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

 PrD,s0(ψ) = PrD⊗Aψ,(s0,q0)(F T1) = 3/4

T1 T2

T3

32

Complexity of LTL model checking

•  Complexity of model checking LTL formula ψ on DTMC D
−  is doubly exponential in |ψ| and polynomial in |D|
−  (for the algorithm presented in these lectures)

•  Double exponential blow-up comes from use of DRAs
−  size of NBA can be exponential in |ψ|
−  and DRA can be exponentially bigger than NBA
−  in practice, this does not occur and ψ is small anyway

•  Polynomial-time operations required on product model
−  BSCC computation – linear in (product) model size
−  probabilistic reachability – cubic in (product) model size

•  In total: O(poly(|D|,|Aψ|))

•  Complexity can be reduced to single exponential in |ψ|
−  see e.g. [CY88,CY95]

33

PCTL* model checking

•  PCTL* syntax:
−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ]

−  ψ ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
•  Example:

−  P>p [GF (send → P>0 [F ack])]

•  PCTL* model checking algorithm
−  bottom-up traversal of parse tree for formula (like PCTL)
−  to model check P~p [ψ]:

•  replace maximal state subformulae with atomic propositions
•  (state subformulae already model checked recursively)
•  modified formula ψ is now an LTL formula
•  which can be model checked as for LTL

34

Overview (Part 2)

•  Linear temporal logic (LTL) for DTMCS/MDPs

•  Strongly connected components (DTMCs)

•  ω-automata (Büchi, Rabin)

•  LTL model checking for DTMCs

•  LTL model checking for MDPs

35

End components

•  Consider an MDP M = (S,sinit,αM,δM,L)

•  A sub-MDP of M is a pair (T,δT) where:
−  T ⊆ S is a (non-empty) subset of M’s states
−  δT(s) ⊆ δ(s) for each s ∈ T

•  which:
−  is closed under probabilistic branching, i.e.:
−  { s’ | µ(s’)>0 for some (a,µ)∈δT(s) } ⊆ T

•  An end component of M is a  
strongly connected sub-MDP

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1

36

End components

•  For finite MDPs…

•  For every end component, there  
is an adversary which,  
with probability 1, forces the MDP 
to remain in the end component 
and visit all its states infinitely often

•  Under every adversary A,  
with probability 1 an end component 
will be reached and all of its states 
visited infinitely often

−  (analogue of fundamental property of finite DTMCs)

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1

37

Long-run properties of MDPs

•  Maximum probabilities
−  Prs

max(GF a) = Prs
max(F TGFa)

•  where TGFa is the union of sets T for all end components 
(T,δT) with T ∩ Sat(a) ≠ ∅

−  Prs
max(FG a) = Prs

max(F TFGa)
•  where TFGa is the union of sets T for all end components 

(T,δT) with T ⊆ Sat(a)

•  Minimum probabilities
−  need to compute from maximum probabilities…
−  Prs

min(GF a) = 1- Prs
max(FG¬a)

−  Prs
min(FG a) = 1- Prs

max(GF¬a)

38

Example

•  Model check: P<0.8 [GF b] for s0

•  Compute Prs0
max(GF b)

−  Prs0
max(GF b) = Prs0

max(F TGFb)
−  TGFb is the union of sets T  

for all end components 
with T ∩ Sat(b) ≠ ∅

−  Sat(b) = { s4, s6 }
−  TGFb = T1∪T2∪T3 = { s1, s3 s4, s6 }
−  Prs0

max(F TGFb) = 0.75
−  Prs0

max(GF b) = 0.75

•  Result: s0 ⊨ P<0.8 [GF b]

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1
T1

T2

T3

T4

{b}

{b}

39

Automata-based properties for MDPs

•  For an MDP M and automaton A over alphabet 2AP
−  consider probability of “satisfying” language L(A) ⊆ (2AP)ω
−  PrM,s

σ(A) = PrM,s
σ { ω ∈ PathM,s

σ | trace(ω) ∈ L(A) }
−  PrM,s

max(A) = supσ∈Adv PrM,s
σ(A)

−  PrM,s
min(A) = infσ∈Adv PrM,s

σ(A)

•  Might need minimum or maximum probabilities
−  e.g. s ⊨ P≥0.99 [ψgood] ⇔ PrM,s

min(ψgood) ≥ 0.99
−  e.g. s ⊨ P≤0.05 [ψbad] ⇔ PrM,s

max(ψbad) ≤ 0.05
•  But, ψ-regular properties are closed under negation

−  as are the automata that represent them
−  so can always consider maximum probabilities…
−  PrM,s

max(ψbad) or 1 - PrM,s
max(¬ψgood)

40

LTL model checking for MDPs

•  Model check LTL specification P~p [ψ] against MDP M

•  1. Convert problem to one needing maximum probabilities
−  e.g. convert P>p [ψ] to P<1-p [¬ψ]

•  2. Generate a DRA for ψ (or ¬ψ)
−  build nondeterministic Büchi automaton (NBA) for ψ [VW94]
−  convert the NBA to a DRA [Saf88]

•  3. Construct product MDP M⊗A
•  4. Identify accepting end components (ECs) of M⊗A
•  5. Compute max. probability of reaching accepting ECs

−  from all states of the D⊗A
•  6. Compare probability for (s, qs) against p for each s

41

Product MDP for a DRA

•  For an MDP M = (S, sinit, αM, δM, L)
•  and a (total) DRA A = (Q, qinit, αA, δA, Acc)

−  where Acc = { (Li, Ki) | 1≤i≤k }

•  The product MDP M ⊗ A is:
−  the MDP (S×Q, (sinit,qsinit), αM, δ⊗, L⊗) where:
 qsinit = δ(qinit,L(sinit))
 δ⊗(s,q) = { (a,µq) | (a,µ) ∈ δM(s) }

 li ∈ L⊗(s,q) if q ∈ Li and ki ∈ L⊗(s,q) if q ∈ Ki
 (i.e. state sets of acceptance condition used as labels)  

€

µq(s',q') =
µ(s') if q'= δA(q,L(s))
0 otherwise

⎧
⎨
⎪

⎩ ⎪

42

Product MDP for a DRA

•  For MDP M and DRA A

−  where qs = δA(qinit,L(s))

•  Hence:

−  where TAcc is the union of all sets T for accepting end
components (T,δT) in D⊗A

−  an accepting end components is such that, for some 1≤i≤k:
•  (s,q) ⊨ ¬li for all (s,q) ∈ T and (s,q) ⊨ ki for some (s,q) ∈ T
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅

PrM,s
max(A) = PrM⊗A,(s,qs)

max(F TAcc)

PrM,s
max(A) = PrM⊗A,(s,qs)

max(∨1≤i≤k (FG ¬li ∧ GF ki))

43

Example: LTL for MDPs

•  Model check P<0.8 [G ¬b ∧ GF a] for state s0 in MDP M:
−  need to compute PrM,s0

max(G ¬b ∧ GF a)

MDP M

q0 q1
¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b
q2

true

b b

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s0

s2 s1 s3

0.3 0.7 {b}
{a}

44

Example: LTL for MDPs

Product MDP M ⊗ Aψ

MDP M

q0 q1
¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b
q2

true

b b

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

 PrM,s0
max(ψ) = PrM⊗Aψ,(s0,q0)

max(F T1) = 0.7

s0

s2 s1 s3

0.3 0.7 {b}
{a}

s0q2

s1q2 s3q2 s2q0 s3q1

0.3

0.7

s0q0

0.3 0.7

s2q2 {k1}

T1

45

LTL model checking for MDPs

•  Complexity of model checking LTL formula ψ on MDP M
−  is doubly exponential in |ψ| and polynomial in |M|
−  unlike DTMCs, this cannot be improved upon

•  PCTL* model checking
−  LTL model checking can be adapted to PCTL*, as for DTMCs

•  Maximal end components
−  can optimise LTL model checking using maximal end

components (there may be exponentially many ECs)

•  Optimal adversaries for LTL formulae
−  e.g. memoryless adversary always exists for PrM,s

max(GF a),  
but not for PrM,s

max(FG a)

46

Summary (Part 2)

•  Linear temporal logic (LTL)
−  combines path operators; PCTL* subsumes LTL and PCTL

•  ω-automata: represent ω-regular languages/properties
−  can translate any LTL formula into a Büchi automaton
−  for deterministic ω-automata, we use Rabin automata

•  Long-run properties of DTMCs
−  need bottom strongly connected components (BSCCs)

•  LTL model checking for DTMCs
−  construct product of DTMC and Rabin automaton
−  identify accepting BSCCs, compute reachability probability

•  LTL model checking for MDPs
−  MDP-DRA product, reachability of accepting end components

•  Next: Compositional probabilistic verification

