

Quantitative verification techniques for probabilistic software

Marta Kwiatkowska

Oxford University Computing Laboratory

Summer School on Model Checking, Beijing, October 2010

Course overview

- 3 sessions (Mon/Tue/Thur): 6×50 minute lectures
 - 1: Markov decision processes (MDPs)
 - 2: Probabilistic LTL model checking
 - 3: Compositional probabilistic verification
 - 4: Abstraction, refinement and probabilistic software
 - 5: Probabilistic timed automata (PTAs)
 - 6: Software with time and probabilities
- For additional background material
 - and an accompanying list of references
 - see: http://www.prismmodelchecker.org/lectures/

Part 3

Compositional probabilistic verification

Overview (Part 3)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking
- Probabilistic assume guarantee
 - semantics, model checking
 - assume-guarantee proof rules
 - quantitative approaches
 - implementation & experimental results
 - assumption generation with learning

Compositional verification

- Goal: scalability through modular verification
 - e.g. decide if $M_1 \mid\mid M_2 \models G$
 - by analysing M₁ and M₂ separately
- Assume-guarantee (AG) reasoning
 - use assumptions A about the context of a component M
 - $-\langle A \rangle M \langle G \rangle$ "whenever M is part of a system that satisfies A, then the system must also guarantee G"
 - example of asymmetric (non-circular) AG rule:

$$\langle \text{true} \rangle \, M_1 \, \langle A \rangle$$
 $\langle A \rangle \, M_2 \, \langle G \rangle$
 $\langle \text{true} \rangle \, M_1 \, || \, M_2 \, \langle G \rangle$

[Pasareanu/Giannakopoulou/et al.]

AG rules for probabilistic systems

 How to formulate AG rules for Markov decision processes?

$$\langle \text{true} \rangle \, M_1 \, \langle A \rangle$$
 $\langle A \rangle \, M_2 \, \langle G \rangle$
 $\langle \text{true} \rangle \, M_1 \, || \, M_2 \, \langle G \rangle$

- Questions:
 - What form do assumptions and guarantees take?
 - What does $\langle A \rangle$ M $\langle G \rangle$ mean? How to check it?
 - Any restriction on parallel composition $M_1 \parallel M_2$?
 - Can we do this in a "quantitative" way?
 - How do we generate suitable assumptions?

AG rules for probabilistic systems

 How to formulate AG rules for Markov decision processes?

$$\langle \text{true} \rangle \, M_1 \, \langle A \rangle$$
 $\langle A \rangle \, M_2 \, \langle G \rangle$
 $\langle \text{true} \rangle \, M_1 \, || \, M_2 \, \langle G \rangle$

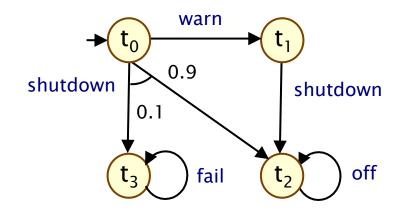
- Questions:
 - What form do assumptions and guarantees take?
 - probabilistic safety properties
 - What does (A) M (G) mean? How to check it?
 - reduction to multi-objective probabilistic model checking
 - Any restriction on parallel composition $M_1 \parallel M_2$?
 - no: arbitrary parallel composition
 - Can we do this in a "quantitative" way?
 - yes: generate lower/upper bounds on probabilities
 - How do we generate suitable assumptions?
 - learning techniques (L* algorithm)

Overview (Part 3)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking
- Probabilistic assume guarantee
 - semantics, model checking
 - assume-guarantee proof rules
 - quantitative approaches
 - implementation & experimental results
 - assumption generation with learning

Recap: Markov decision processes

- Markov decision processes (MDPs)
 - model probabilistic and nondeterministic behaviour
- An MDP is a tuple $M = (S, s_{init}, \alpha_M, \delta_M, L)$:
 - S is the state space
 - $-s_{init} \in S$ is the initial state
 - $-\alpha_{M}$ is the action alphabet
 - $-\delta_{M} \subseteq S \times (\alpha_{M} \cup T) \times Dist(S)$ is the transition probability relation
 - L:S → 2^{AP} labels states with atomic propositions



Notes:

- $-\alpha_{\rm M}$, $\delta_{\rm M}$ have subscripts to avoid confusion with other automata
- transitions can also be labelled with a "silent"
 ⊤ action
- we write $s^{-a} \rightarrow \mu$ as shorthand for $(s,a,\mu) \in \delta_M$
- MDPs, here, are identical to probabilistic automata [Segala]

Recap: Adversaries for MDPs

- Adversaries resolves the nondeterminism in MDPs
 - also called "schedulers", "strategies", "policies", ...
 - make a (possibly randomised) choice, based on history
- An adversary σ for an MDP M
 - induces probability measure $Pr_{M,s}^{\sigma}$ over (infinite) paths $Path_{M,s}^{\sigma}$
 - we will abbreviate $Pr_{M,S_{init}}^{\sigma}$ to Pr_{M}^{σ} (and $Path_{M,S_{init}}^{\sigma}$ to $Path_{M}^{\sigma}$)
- For adversary σ , we can compute the probability...
 - $-\dots$ of some measurable property ϕ of paths
 - here, we use either temporal logic (LTL) over state labels
 - e.g. ◊err "an error eventually occurs"
 - e.g. \Box (req $\rightarrow \Diamond$ ack) "req is always followed by ack"
 - or automata over action labels (see later)
 - e.g. deterministic finite automata (DFAs)

Recap: Model checking for MDPs

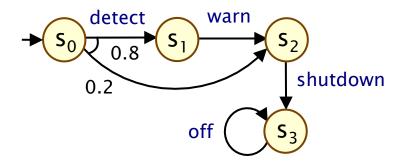
- Property specifications: quantify over all adversaries
 - e.g. $M \models P_{\geq p}[φ] \Leftrightarrow Pr_M^{\sigma}(φ) \geq p$ for all adversaries $σ ∈ Adv_M$
 - corresponds to best-/worst-case behaviour analysis
 - requires computation of $Pr_{M}^{min}(\phi) = \inf_{\sigma} \{ Pr_{M,s}^{\sigma}(\phi) \}$ or $Pr_{M}^{max}(\phi) = \sup_{\sigma} \{ Pr_{M,s}^{\sigma}(\phi) \}$
 - or in a more quantitative fashion:
 - just ask e.g. $P_{min=?}(\phi)$ or $P_{max=?}(\phi)$
- Model checking: efficient algorithms exist
 - for reachability, graph-based analysis + linear programming
 - in practice, for scalability, often approximate (value iteration)
 - for LTL, first do reachability an automaton-MDP product
 - implemented in tools like PRISM, Liquor, RAPTURE

Parallel composition for MDPs

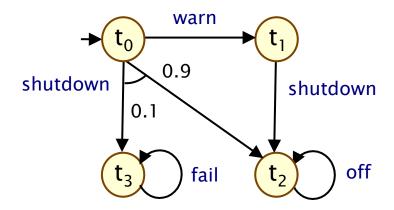
- The parallel composition of M_1 and M_2 is denoted $M_1 \parallel M_2$
 - CSP style: synchronise over all common (non-τ) actions
 - when synchronising, transition probabilities are multiplied
- Formally, if $M_i = (S_i, s_{init,i}, \alpha_{M_i}, \delta_{M_i}, L_i)$ for i=1,2, then:
- $M_1||M_2 = (S_1 \times S_2, (s_{init,1}, s_{init,2}), \alpha_{M_1} \cup \alpha_{M_2}, \delta_{M_1||M_2}, L_{12})$ where:
 - $L_{12}(s_1,s_2) = L_1(s_1) \cup L_2(s_2)$
 - $-\delta_{M_1||M_2}$ is defined such that $(s_1,s_2)^{-a} \rightarrow \mu_1 \times \mu_2$ iff one of:
 - $s_1^{-a} \rightarrow \mu_1$, $s_2^{-a} \rightarrow \mu_2$ and $a \in \alpha_{M_1} \cap \alpha_{M_2}$ (synchronous)
 - $s_1^{-a} \rightarrow \mu_1$, $\mu_2 = \eta_{s_2}$ and $a \in (\alpha_{M_1} \setminus \alpha_{M_2}) \cup \{\tau\}$ (asynchronous)
 - $s_2^{-a} \rightarrow \mu_2$, $\mu_1 = \eta_{s_1}$ and $a \in (\alpha_{M_2} \setminus \alpha_{M_1}) \cup \{\tau\}$ (asynchronous)
 - where $\mu_1 \times \mu_2$ denotes the product of distributions μ_1 , μ_2
 - and $\eta_s \in Dist(S)$ is the Dirac (point) distribution on $s \in S$

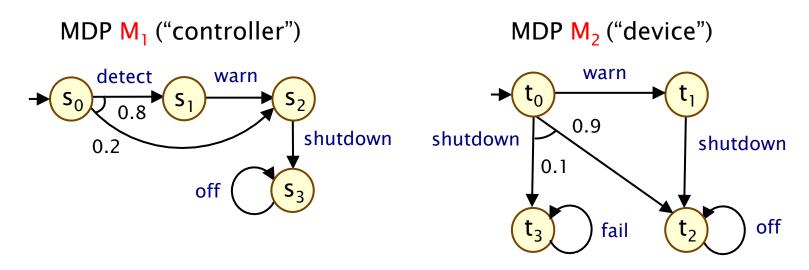
- Two components, each a Markov decision process:
 - M₁: controller which shuts down devices (after warning first)
 - $-M_2$: device to be shut down (may fail if no warning sent)

MDP M₁ ("controller")

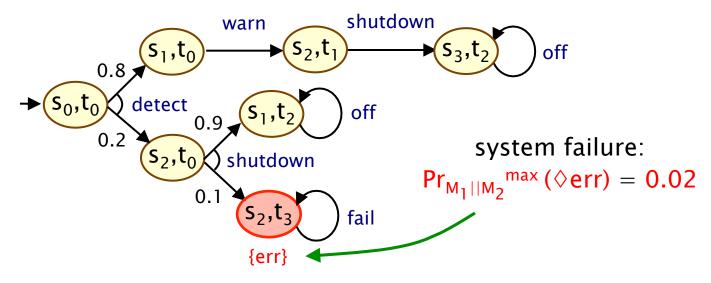


MDP M₂ ("device")



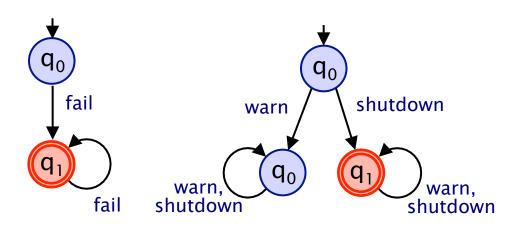


Parallel composition: $M_1 \parallel M_2$



Safety properties

- Safety property: language of infinite words (over actions)
 - characterised by a set of "bad prefixes" (or "finite violations")
 - i.e. finite words of which any extension violates the property
- Regular safety property
 - bad prefixes are represented by a regular language
 - property A stored as deterministic finite automaton (DFA) Aerr



time q_0 end time, end q_1 time, end

"a fail action never occurs"

"warn occurs before shutdown" "at most 2 time steps pass before termination"

Probabilistic safety properties

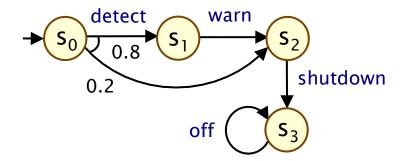
- A probabilistic safety property $P_{\geq p}$ [A] comprises
 - a regular safety property A + a rational probability bound p
 - "the probability of satisfying A must be at least p"
 - $-M \models P_{>p}[A] \Leftrightarrow Pr_M^{\sigma}(A) \ge p \text{ for all } \sigma \in Adv_M \Leftrightarrow Pr_M^{\min}(A) \ge p$

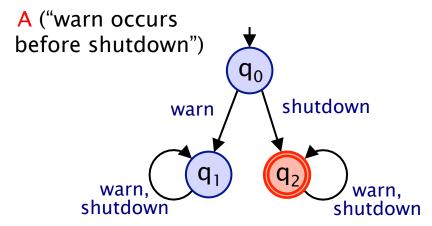
Examples:

- "warn occurs before shutdown with probability at least 0.8"
- "the probability of a failure occurring is at most 0.02"
- "probability of terminating within k time-steps is at least 0.75"
- Model checking: $Pr_{M}^{min}(A) = 1 Pr_{M \otimes A_{err}}^{max}(\lozenge err_{A})$
 - where err_A denotes "accept" states for DFA A
 - i.e. construct (synchronous) MDP-DFA product M⊗A_{err}
 - then compute reachability probabilities on product MDP

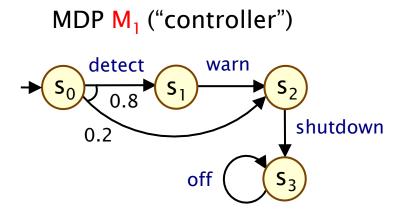
• Does probabilistic safety property $P_{\geq 0.8}$ [A] hold in M_1 ?

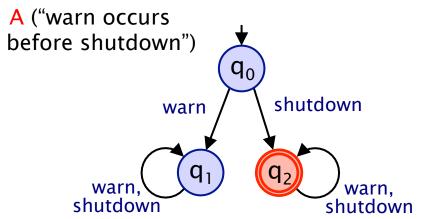
MDP M₁ ("controller")



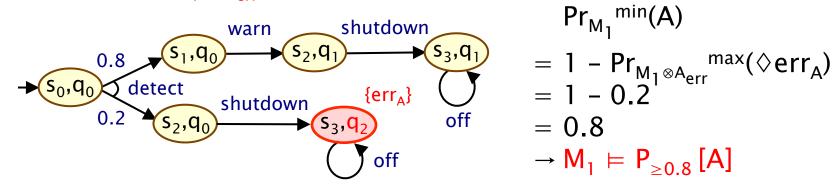


• Does probabilistic safety property $P_{\geq 0.8}$ [A] hold in M_1 ?





Product MDP M₁⊗A_{err}



Multi-objective MDP model checking

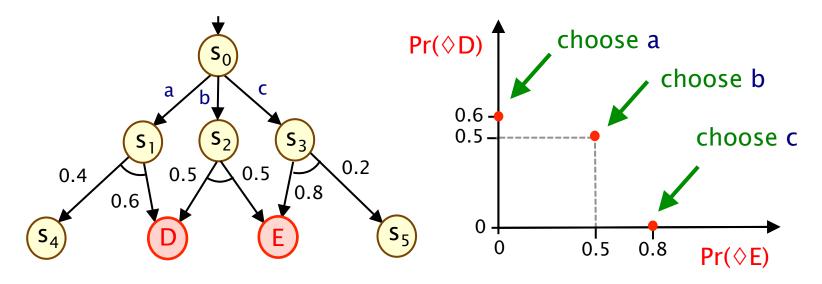
- Consider multiple (linear-time) objectives for an MDP M
 - LTL formulae $\Phi_1, ..., \Phi_k$ and probability bounds $\sim_1 p_1, ..., \sim_k p_k$
 - question: does there exist an adversary $\sigma \in Adv_M$ such that:

$$Pr_{M}^{\sigma}(\varphi_{1}) \sim_{1} p_{1} \wedge ... \wedge Pr_{M}^{\sigma}(\varphi_{k}) \sim_{k} p_{k}$$

- Motivating example:
 - $-\Pr_{M}^{\sigma}(\Box(queue_size<10)) > 0.99 \land \Pr_{M}^{\sigma}(\Diamond flat_battery) < 0.01$
- Multi-objective MDP model checking [EKVY07]
 - construct product of automata for M, $\Phi_1, ..., \Phi_k$
 - then solve linear programming (LP) problem
 - the resulting adversary or can obtained from LP solution
 - note:
 o may be randomised (unlike the single objective case)

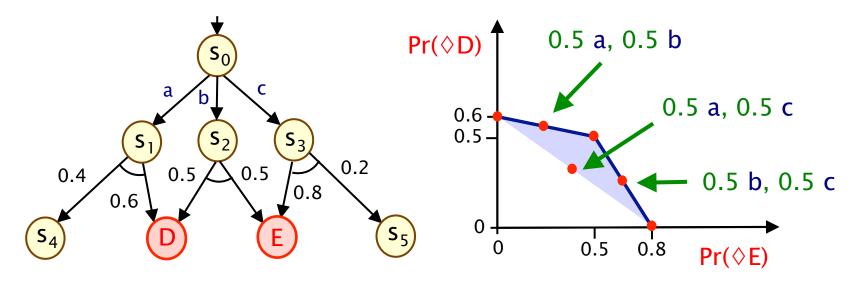
Multi-objective MDP model checking

- Consider the objectives ◇D and ◇E in the MDP below
 - i.e. the probability of reaching either state D or E
 - a (randomised) adversary resolves the choice between a/b/c
 - increasing the probability of reaching one target decreases the probability of reaching the other



Multi-objective MDP model checking

- Consider the objectives ◇D and ◇E in the MDP below
 - i.e. the probability of reaching either state D or E
 - a (randomised) adversary resolves the choice between a/b/c
 - increasing the probability of reaching one target decreases the probability of reaching the other



- Considering also randomised adversaries...
 - we obtain a Pareto curve, showing trade-off of optimal solutions

Overview (Part 3)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking
- Probabilistic assume guarantee
 - semantics, model checking
 - assume-guarantee proof rules
 - quantitative approaches
 - implementation & experimental results
 - assumption generation with learning

Probabilistic assume guarantee

- Assume-guarantee triples $\langle A \rangle_{\geq p_A} M \langle G \rangle_{\geq p_C}$ where:
 - M is a Markov decision process
 - $-P_{\geq p_A}[A]$ and $P_{\geq p_G}[G]$ are probabilistic safety properties
- Informally:
 - "whenever M is part of a system satisfying A with probability at least p_A , then the system is guaranteed to satisfy G with probability at least p_G "
- $\begin{array}{ccc} \bullet & \text{Formally:} & \langle A \rangle_{\geq p_A} \ M \ \langle G \rangle_{\geq p_G} \\ \Leftrightarrow & \\ \forall \sigma \in Adv_{M[\alpha_\Delta]} \ (\ Pr_{M[\alpha_\Delta]}{}^{\sigma} \ (A) \geq p_A \rightarrow Pr_{M[\alpha_\Delta]}{}^{\sigma} \ (G) \geq p_G \) \end{array}$
 - where $M[\alpha_A]$ is M with its alphabet extended to include α_A

Assume-guarantee model checking

- Checking whether $\langle A \rangle_{\geq p_{\Delta}} M \langle G \rangle_{\geq p_{C}}$ is true
 - reduces to multi-objective model checking
 - on the product MDP $M' = M[\alpha_A] \otimes A_{err} \otimes G_{err}$
- More precisely:
 - check no adv. of M satisfying $Pr_M^{\sigma}(A) \ge p_A$ but not $Pr_M^{\sigma}(G) \ge p_G$

$$\langle A \rangle_{\geq p_A} M \langle G \rangle_{\geq p_G}$$
 \Leftrightarrow

- $\neg \exists \sigma' \in \mathsf{Adv}_{\mathsf{M}'}$ ($\mathsf{Pr}_{\mathsf{M}}^{,\sigma'}(\lozenge \mathsf{err}_{\mathsf{A}}) \leq 1 \mathsf{p}_{\mathsf{A}} \land \mathsf{Pr}_{\mathsf{M}}^{,\sigma'}(\lozenge \mathsf{err}_{\mathsf{G}}) > 1 \mathsf{p}_{\mathsf{G}}$)
 - solve via LP problem, i.e. in time polynomial in $|M| \cdot |A_{err}| \cdot |G_{err}|$
- Note: $\langle \text{true} \rangle M \langle G \rangle_{\geq p_C}$ denotes the absence of an assumption
 - reduces to standard model checking (since a safety property)

An assume-guarantee rule

- The following asymmetric proof rule holds
 - (symmetric = uses a single assumption about one component)

$$\begin{array}{c} \langle true \rangle \; \mathsf{M}_1 \; \langle \mathsf{A} \rangle_{\geq p_{\mathsf{A}}} \\ \\ \underline{\langle \mathsf{A} \rangle_{\geq p_{\mathsf{A}}} \; \mathsf{M}_2 \; \langle \mathsf{G} \rangle_{\geq p_{\mathsf{G}}}} \\ \langle true \rangle \; \mathsf{M}_1 \; || \; \mathsf{M}_2 \; \langle \mathsf{G} \rangle_{\geq p_{\mathsf{G}}} \end{array} \tag{ASYM}$$

- So, verifying $M_1 \mid M_2 \models P_{\geq p_G}[G]$ requires:
 - premise 1: M_1 | $P_{\geq p_A}$ [A] (standard model checking)
 - premise 2: $\langle A \rangle_{\geq p_A} M_2 \langle G \rangle_{\geq p_G}$ (multi-objective model checking)
- Potentially much cheaper if |A| much smaller than |M₁|

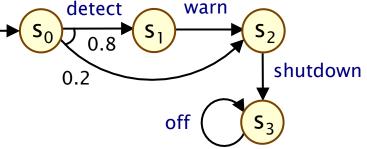
• Does probabilistic safety property $P_{\geq 0.98}$ [G] hold in $M_1 || M_2$?

MDP M₁ ("controller") G ("a fail action MDP M₂ ("device") never occurs") detect warn warn shutdown 0.2 0.9 shutdown shutdown fail 0.1 off off fail t_2

fail

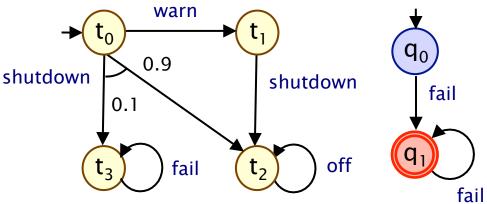
• Does probabilistic safety property $P_{\geq 0.98}$ [G] hold in $M_1 || M_2$?

MDP M₁ ("controller")



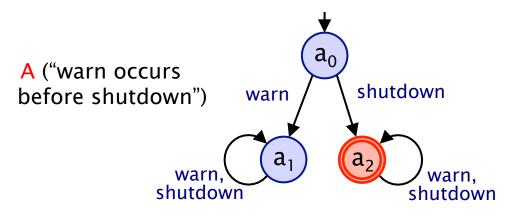
MDP M₂ ("device")

G ("a fail action never occurs")

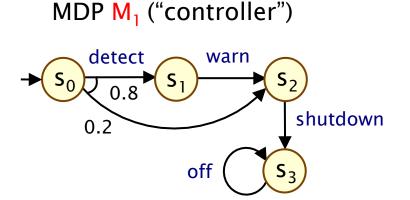


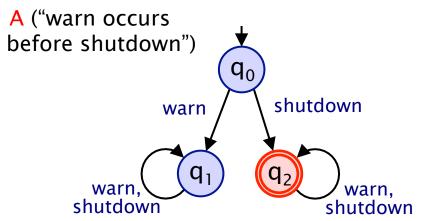
• Use AG with assumption $\langle A \rangle_{\geq 0.8}$ about M_1

$$\begin{array}{c} \langle true \rangle \; \mathsf{M}_1 \; \langle \mathsf{A} \rangle_{\geq 0.8} \\ \\ \underline{\langle \mathsf{A} \rangle_{\geq 0.8} \; \mathsf{M}_2 \; \langle \mathsf{G} \rangle_{\geq 0.98}} \\ \\ \langle true \rangle \; \mathsf{M}_1 \; || \; \mathsf{M}_2 \; \langle \mathsf{G} \rangle_{\geq 0.98} \end{array}$$

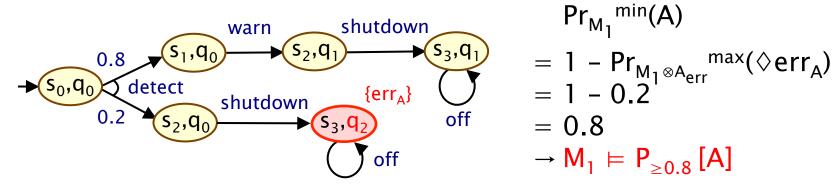


• Premise 1: Does $M_1 = P_{>0.8}$ [A] hold? (same as earlier ex.)

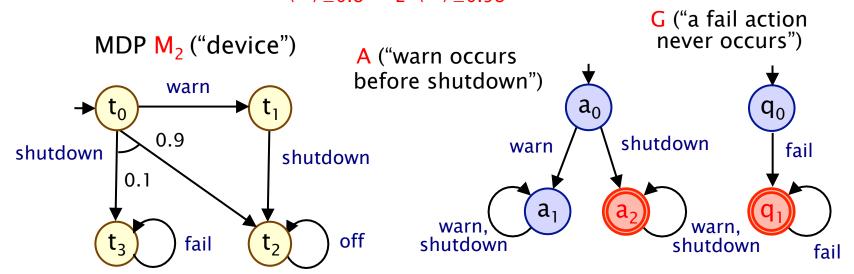


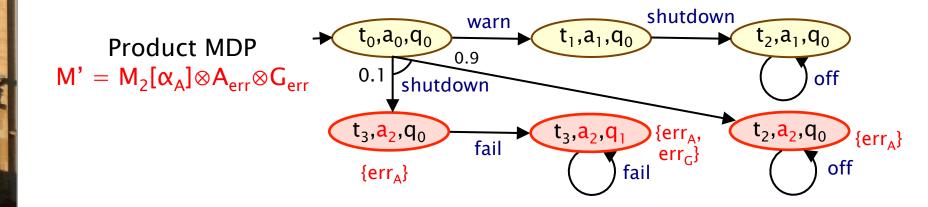


Product MDP M₁⊗A_{err}

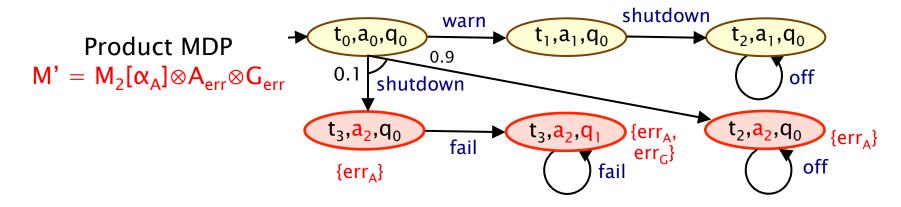


• Premise 2: Does $\langle A \rangle_{\geq 0.8} M_2 \langle G \rangle_{\geq 0.98}$ hold?





• Premise 2: Does $\langle A \rangle_{\geq 0.8}$ M₂ $\langle G \rangle_{\geq 0.98}$ hold?



- \exists an adversary of M_2 satisfying $Pr_M^{\sigma}(A) \ge 0.8$ but not $Pr_M^{\sigma}(G) \ge 0.98$?
- \exists an an adversary of M' with $Pr_{M'}^{\sigma'}(\Diamond err_{A}) \leq 0.2$ and $Pr_{M'}^{\sigma'}(\Diamond err_{G}) > 0.02$?
- To satisfy $\Pr_{M'}^{\sigma'}(\lozenge err_A) \le 0.2$, adversary σ' must choose shutdown in initial state with probability ≤ 0.2 , which means $\Pr_{M'}^{\sigma'}(\lozenge err_G) \le 0.02$
- So, there is no such adversary and $\langle A \rangle_{\geq 0.8}$ $M_2 \langle G \rangle_{\geq 0.98}$ does hold

Other assume-guarantee rules

Multiple assumptions:

$$\frac{\langle true \rangle \ M_{1} \ \langle A_{1}, ..., A_{k} \rangle_{\geq p_{1}, ..., p_{k}}}{\langle A_{1}, ..., A_{k} \rangle_{\geq p_{1}, ..., p_{k}} \ M_{2} \ \langle G \rangle_{\geq p_{G}}}{\langle true \rangle \ M_{1} \ || \ M_{2} \ \langle G \rangle_{\geq p_{G}}}$$

Circular rule:

$$\begin{split} & \left\langle true \right\rangle \, M_2 \, \left\langle A_1 \right\rangle_{\geq p_2} \\ & \left\langle A_2 \right\rangle_{\geq p_2} \, M_1 \, \left\langle A_1 \right\rangle_{\geq p_1} \\ & \left\langle A_1 \right\rangle_{\geq p_1} \, M_2 \, \left\langle G \right\rangle_{\geq p_G} \\ & \overline{\left\langle true \right\rangle \, M_1 \, \left| \right| \, M_2 \, \left\langle G \right\rangle_{\geq p_G}} \end{split}$$

Multiple components (chain):

$$\begin{array}{c} \langle true \rangle \; M_1 \; \langle A_1 \rangle_{\geq p_1} \\ \langle A_1 \rangle_{\geq p_1} \; M_2 \; \langle A_2 \rangle_{\geq p_2} \\ & \cdots \\ \langle A_n \rangle_{\geq p_n} \; M_n \; \langle G \rangle_{\geq p_G} \\ \hline \langle true \rangle \; M_1 \; || \; \dots \; || \; M_n \; \langle G \rangle_{> p_G} \end{array}$$

A quantitative approach

- For (non-compositional) probabilistic verification
 - prefer quantitative properties: $Pr_{M}^{min}(G)$, not $M \models P_{\geq p_{C}}[G]$
 - can we do this for compositional verification?
- Consider, for example, AG rule (ASym)
 - this proves $Pr_{M_1 \parallel M_2}^{min}(G) \ge p_G$ for certain values of p_G
 - i.e. gives lower bound for $Pr_{M_1||M_2}^{min}(G)$
- $\begin{array}{c} \langle true \rangle \; M_1 \; \langle A \rangle_{\geq p_A} \\ \\ \frac{\langle A \rangle_{\geq p_A} \; M_2 \; \langle G \rangle_{\geq p_G}}{\langle true \rangle \; M_1 \; || \; M_2 \; \langle G \rangle_{\geq p_G}} \end{array}$
- for a fixed assumption A, we can compute the maximal lower bound obtainable, through a simple adaption of the multiobjective model checking problem
- we can also compute upper bounds using generated adversaries as witnesses
- furthermore: can explore trade-offs in parameterised models by approximating Pareto curves

Implementation + Case studies

- Prototype extension of PRISM model checker
 - already supports LTL for Markov decision processes
 - automata can be encoded in modelling language
 - added support for multi-objective LTL model checking, using LP solvers (ECLiPSe/COIN-OR CBC)
- Two large case studies
 - randomised consensus algorithm (Aspnes & Herlihy)
 - minimum probability consensus reached by round R
 - Zeroconf network protocol
 - maximum probability network configures incorrectly
 - minimum probability network configured by time T

Case study [parameters]		Non-compositional		Compositional	
		States	Time (s)	LP size	Time (s)
	3, 2	1,418,545	18,971	40,542	29.6
Randomised consensus	3, 20	39,827,233	time-out	40,542	125.3
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9
	4	313,541	103.9	20,927	21.9
ZeroConf [K]	6	811,290	275.2	40,258	54.8
[1]	8	1,892,952	592.2	66,436	107.6
	2, 10	65,567	46.3	62,188	89.0
ZeroConf time-bounded [K, T]	2, 14	106,177	63.1	101,313	170.8
	4, 10	976,247	88.2	74,484	170.8
	4, 14	2,288,771	128.3	166,203	430.6

Case study [parameters]		Non-compositional		Compositional	
		States	Time (s)	LP size	Time (s)
	3, 2	1,418,545	18,971	40,542	29.6
Randomised consensus	3, 20	39,827,233	time-out	40,542	125.3
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9
ZeroConf [K]	4	313,541	103.9	20,927	21.9
	6	811,290	275.2	40,258	54.8
	8	1,892,952	592.2	66,436	107.6
ZeroConf time-bounded [K, T]	2, 10	65,567	46.3	62,188	89.0
	2, 14	106,177	63.1	101,313	170.8
	4, 10	976,247	88.2	74,484	170.8
	4, 14	2,288,771	128.3	166,203	430.6

• Faster than conventional model checking in a number of cases

Case study [parameters]		Non-compositional		Compositional	
		States	Time (s)	LP size	Time (s)
Dandansia ad	3, 2	1,418,545	18,971	40,542	29.6
Randomised consensus	3, 20	39,827,233	time-out	40,542	125.3
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9
	4	313,541	103.9	20,927	21.9
ZeroConf [K]	6	811,290	275.2	40,258	54.8
[14]	8	1,892,952	592.2	66,436	107.6
ZeroConf time-bounded [K, T]	2, 10	65,567	46.3	62,188	89.0
	2, 14	106,177	63.1	101,313	170.8
	4, 10	976,247	88.2	74,484	170.8
	4, 14	2,288,771	128.3	166,203	430.6

• Verified instances where conventional model checking is infeasible

Case study [parameters]		Non-compositional		Compositional	
		States	Time (s)	LP size	Time (s)
5 1	3, 2	1,418,545	18,971	40,542	29.6
Randomised consensus	3, 20	39,827,233	time-out	40,542	125.3
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9
	4	313,541	103.9	20,927	21.9
ZeroConf [K]	6	811,290	275.2	40,258	54.8
	8	1,892,952	592.2	66,436	107.6
ZeroConf time-bounded [K, T]	2, 10	65,567	46.3	62,188	89.0
	2, 14	106,177	63.1	101,313	170.8
	4, 10	976,247	88.2	74,484	170.8
	4, 14	2,288,771	128.3	166,203	430.6

• LP problem generally much smaller than full state space (but still the limiting factor)

Overview (Part 3)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking
- Probabilistic assume guarantee
 - semantics, model checking
 - assume-guarantee proof rules
 - quantitative approaches
 - implementation & experimental results
 - assumption generation with learning

Generating assumptions

- We can verify $M_1 || M_2$ compositionally
 - but this relies on the existence of a suitable assumption $\langle A \rangle_{\geq p_A}$

```
\frac{\langle true \rangle \ M_1 \ \langle A \rangle_{\geq p_A}}{\langle A \rangle_{\geq p_A} \ M_2 \ \langle G \rangle_{\geq p_G}} \frac{\langle A \rangle_{\geq p_A} \ M_2 \ \langle G \rangle_{\geq p_G}}{\langle true \rangle \ M_1 \ || \ M_2 \ \langle G \rangle_{\geq p_G}}
```

- 1. Does such an assumption always exist?
- 2. When it does exist, can we generate it automatically?
- One possibility: use algorithmic learning techniques
 - inspired by non-probabilistic AG work of [Pasareanu et al.]
 - uses L* algorithm to learn finite automata for assumptions
 - successful implementations using Boolean functions [Chen/ Clarke/et al.] and BDD-based techniques [Alur et al.]
- We use a modified version of L*
 - to learn probabilistic assumptions for rule (ASym)

L* for assume-guarantee

- L* algorithm [Angluin] learns regular languages (as a DFA)
 - relies on existence of a "teacher" to guide the learning
 - answers two type of queries: "membership" and "conjecture"
 - membership: "is word w in the target language L?"
 - conjecture: "does automata A accept the target language L"?
 - if not, teacher must return counterexample w'
 - L* produces minimal DFA, runs in polynomial time
- Successfully applied to the of learning assumptions for AG
 - uses notion of "weakest assumption" about a component that suffices for compositional verification (always exists)
 - weakest assumption is the target regular language
 - model checker plays role of teacher, returns counterexamples
 - in practice, can usually stop early: either with a simpler (stronger) assumption or by refuting the property

Key steps of (modified) L*

- Key idea: learn probabilistic assumption $\langle A \rangle_{\geq p_{\Delta}}$
 - via non-probabilistic assumption A

Membership" query (for trace t):

- does t || $M_2 \models P_{\geq p_G}$ [G] hold?

$$\frac{\langle true \rangle \ M_1 \ \langle A \rangle_{\geq p_A}}{\langle A \rangle_{\geq p_A} \ M_2 \ \langle G \rangle_{\geq p_G}}$$

$$\frac{\langle A \rangle_{\geq p_A} \ M_2 \ \langle G \rangle_{\geq p_G}}{\langle true \rangle \ M_1 \ || \ M_2 \ \langle G \rangle_{\geq p_G}}$$

- "Conjecture" query (for assumption A)
 - 1. compute lowest value of p_A such that $\langle A \rangle_{\geq p_A} M_2 \langle G \rangle_{\geq p_C}$ holds
 - · if no such value, need to refine A
 - 2. check if $M_1 \models P_{\geq p_{\Delta}}$ [A] holds
 - · if yes, successfully verified $\langle G \rangle_{\geq p_G}$ for $M_1 \mid \mid M_2$ (with $\langle A \rangle_{\geq p_A}$)
 - 3. check if counterexample from 2 is real
 - · if yes, have refuted $\langle G \rangle_{\geq p_G}$ for $M_1 \mid \mid M_2$
 - · if no, need to refine A
 - (use probabilistic counterexamples [HK07] to "refine A")

Experimental results (learning)

Case study [parameters]		Component sizes		Compositional	
		$ M_2{\otimes}G_{err} $	$ M_1 $	A	Time (s)
Client-server	3	229	16	4	6.6
(N failures)	4	1,121	25	5	13.1
[N]	5	5,397	36	6	87.5
	2, 3, 20	391	3,217	5	24.2
Randomised consensus [N,R,K]	2, 4, 2	573	113,569	10	108.4
	3, 3, 2	8,843	4,065	14	681.7
	3, 3, 20	8,843	38,193	14	863.8
Sensor network [N]	1	42	72	2	3.5
	2	42	1,184	2	3.7
	3	42	10,662	2	4.6

Experimental results (learning)

Case study [parameters]		Component sizes		Compositional		
		$ M_2 \otimes G_{err} $	$ M_1 $	A		Time (s)
Client-server	3	229	16		4	6.6
(N failures)	4	1,121	25		5	13.1
[N]	5	5,397	36		6	87.5
	2, 3, 20	391	3,217		5	24.2
Randomised consensus [N,R,K]	2, 4, 2	573	113,569		10	108.4
	3, 3, 2	8,843	4,065		14	681.7
	3, 3, 20	8,843	38,193		14	863.8
Sensor network [N]	Ī	42	72		2	3.5
	2	42	1,184		2	3.7
	3	42	10,662		2	4.6

• Successfully learnt (small) assumptions in all cases

Experimental results (learning)

Case study [parameters]		Component sizes		Compositional	
		$ M_2{\otimes}G_{err} $	$ M_1 $	A	Time (s)
Client-server	3	229	16	4	6.6
(N failures)	4	1,121	25	5	13.1
[N]	5	5,397	36	6	87.5
	2, 3, 20	391	3,217	5	24.2
Randomised	2, 4, 2	573	113,569	10	108.4
consensus [N,R,K]	3, 3, 2	8,843	4,065	14	681.7
. , , .	3, 3, 20	8,843	38,193	14	863.8
Sensor network [N]	1	42	72	2	3.5
	2	42	1,184	2	3.7
	3	42	10,662	2	4.6

• In some cases, learning + compositional verification is faster (than non-compositional verification, using PRISM)

Summary (Part 3)

- Compositional verification, e.g. assume-guarantee
 - decompose verification problem based on system structure
- Compositional probabilistic verification based on:
 - Markov decision processes, with arbitrary parallel composition
 - assumptions/guarantees are probabilistic safety properties
 - reduction to multi-objective model checking
 - multiple proof rules; adapted to quantitative approach
 - automatic generation of assumptions: L* learning
- Can work well in practice
 - verified safety/performance on several large case studies
 - cases where infeasible using non-compositional verification
- For further detail, see [KNPQ10], [FKP10]
- Next: Abstraction, refinement and probabilistic software