UNIVERSITY OF

OXFORD

Quantitative verification techniques
for probabilistic software

Marta Kwiatkowska
Oxford University Computing Laboratory

Summer School on Model Checking, Beijing, October 2010

Course overview

3 sessions (Mon/Tue/Thur): 6 X 50 minute lectures

— 1: Markov decision processes (MDPs)

— 2: Probabilistic LTL model checking

— 3: Compositional probabilistic verification

— 4: Abstraction, refinement and probabilistic software
— 5: Probabilistic timed automata (PTAs)

— 6: Software with time and probabilities

For additional background material
— and an accompanying list of references
— see: http://www.prismmodelchecker.org/lectures/

Part 4

Abstraction, refinement
and probabilistic software

Overview (Part 4)

- Abstraction & refinement (CEGAR)

- Abstraction of MDPs using stochastic games
- Quantitative abstraction refinement

- Probabilistic software verification

Abstraction

- Very successful in (non-probabilistic) formal methods
— essential for verification of large/infinite-state systems
— hide details irrelevant to the property of interest
— vyields smaller/finite model which is easier/feasible to verify
— loss of precision: verification can return “don’t know”

- Construct abstract model of a concrete system
— e.g. based on a partition of the concrete state space
— an abstract state represents a set of concrete states

s
— 3
\ J
> v
()
—/

Abstraction refinement (CEGAR)

- Counterexample-guided abstraction refinement
— (non-probabilistic) model checking of reachability properties

initialise - abstract _
— Partition/ Abstraction
predicates (existential)

[yes]‘ refine rcnhzcile(l
Spurious? [false] True/false +
P ' counterexample
check
counter-
[no] example [true]

Return Return
false true

Abstraction refinement (CEGAR)

- Counterexample-guided abstraction refinement
—Mprobabilistic) model checking of reachability properties

initialise N abstract _ How to
— Partition/ Abstraction abstra_ct _
predicates (existential) probabilistic
models?
. model
[yes]‘ refine I check
)) What is a
Spurious? I counter-
check counterexample example?
counter-
[no] example [true]
Retukn

RN Q“rzzﬂr;t?ive

\

Overview (Part 4)

- Abstraction & refinement (CEGAR)

- Abstraction of MDPs using stochastic games
- Quantitative abstraction refinement

- Probabilistic software verification

Recap: MDPs

Markov decision processes (MDPs)
— mix probability and nondeterminism fheads}

- An adversary o for an MDP M

— resolves nondeterministic choices
based on history so far

— induces probability measure Pry, ;©
over (infinite) paths Pathy, ,°

Properties:
— key property: probabilistic reachability
— quantify over all possible adversaries
— Pry™n (OF) = inf, { Pry ;° (OF) }
— Prym> (OF) = supg{ Pry s (OF) }
— here, we will abbreviate these to p,°(F), p,""(F) and p,m2*(F)

Abstraction of MDPs

- Abstraction increases degree of nondeterminism
— i.e. minimum probabilities are lower and maximums higher

0 psmin psmax]

- But what form does the abstraction of an MDP take?
- 2 possibilities:

(i) an MDP [DJJLO1]
— probabilistic simulation relates concrete/abstract models
(ii) a stochastic two-player game [KNPO6]
— separates nondeterminism from abstraction and from MDP
— yields separate lower/upper bounds for min/max

0 D min D max 1
S s

Stochastic two-player games

Subclass of simple stochastic games [Shapley,Condon]
— two nondeterministic players (1 and 2) and probabilistic choice

Resolution of the nondeterminism in a game
— corresponds to a pair of strategies for players 1 and 2: (o,,0,)
— p,°"9%(F) probability of reaching F from a under (o,,0,)
— can compute, e.g. : sup_, inf_, p,o"7%(F)

— informally: “the maximum probability of reaching F that player 1
can guarantee no matter what player 2 does”

- Abstraction of an MDP as a stochastic two-player game:
— player 1 controls the nondeterminism of the abstraction
— player 2 controls the nondeterminism of the MDP

Game abstraction (by example)

. Player 1 vertices ([_]) are abstract states

- (Sets of) distributions are lifted to the abstract state space

- Player 2 vertices (}\) are states with same (sets of) choices

MDP (fragment) Stochastic game (fragment)

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

inf, o, P°%(F) < p™(F) < supg, inf, p,oo%(F)

inf_, sup_, p,°"%%(F) =< p™F) =< SUP,1 o p,o"92(F)

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

inf(ﬂ,cz pacﬂ,oZ(F) = @ = Schﬂ infGZ I:)aCﬂ’cyz(F)
infcl SUpO'Z pa(ﬂ’cz(F) - @ = Sup(ﬂ,oz I:)a(ﬂ’crz(F)

min/max reachability probabilities for original MDP

L)

0 D min p_max]
s s

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

i nf(ﬂ ,02 pam ’GZ(F) =

Cnf,, sup,, .7 (=

optimal probabilities for player 1, player 2 in game

0 D min p_max]
s s

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

@,02 |f’am@S p.,""(F) < sup,, inf_, p,o"%(F)

min/max reachability probabilities, treating game as MDP
(i.e. assuming that players 1 and 2 cooperate)

0 D min P max 1
S s

Example — Abstraction

palb,max (F) =0.8
p,"*(F) = 1 € [0.8,1]
paub,max (F) =1

1 1
0.8\ >
U T ______ U T ______
v v

where p_'®max(F) denotes inf_,sup_, p,°'°% (F)
and where p,">mx(F) denotes supg, ., P, (F)

Experimental results

Israeli & Jalfon’s Self Stabilisation

— protocol for obtaining a stable state in a token ring

— minimum probability of reaching a stable state by time T

-;-uppe}bound
- actual value
0.15[{ -.-. Jower bound

Min. prob. stabilised by time T
o

80 90 100 110 120
T (time units)

concrete states: 1,048,575

abstract states: 627

Experimental results

IPv4 Zeroconf

— protocol for obtaining an IP address for a new host
— maximum probability the new host not configured by T

5 0.15 - .
£ - == upper bound
- -1 - actual value
Q : ST lower bound
€ 015, | ‘
§ : : concrete states: 838,905
o ! :
C ! I
o 0.057 ; : abstract states: 881
O ; !
S I i :
) S e
8 10 12 14

T (seconds)

Overview (Part 4)

- Abstraction & refinement (CEGAR)

.+ Abstraction of MDPs using stochastic games

- Quantitative abstraction refinement

- Probabilistic software verification

Abstraction refinement

Consider (max) difference between lower/upper bounds
— gives a quantitative measure of the abstraction’s precision

+—>

0

p,™"(F)

p,"*(F) 1

If the difference (“error”) is too great, refine the abstraction
— a finer partition yields a more precise abstraction
— lower/upper bounds can tell us where to refine (which states)

— (memoryless) strategies can tell us how to refine

Example - Refinement

p,m*(F) =1 € [0.8,1] p.">(F) =1 € [1,1]

“error” = 0.2 “error” = 0

Abstraction-refinement loop

Quantitative abstraction-refinement loop for MDPs

. abstract
p;r;lt?t?clnn Abstraction
model
check
New [error=¢] Bounds and
partition strategies
refine
1 [error<e]
Return

bounds

Abstraction-refinement loop

Quantitative abstraction-refinement loop for MDPs

Initial abstract Abstraction . Rgfine_ments yiglld
pariition strictly finer partition
model
check - Guaranteed to
converge for finite
New lerror=€] Bounds and models
partition strategies

refine

- Guaranteed to
1 lerror<e]l converge for infinite
models with finite
Return bisimulation
bounds

Abstraction-refinement loop

Implementations of quantitative abstraction refinement...

- Verification of probabilistic timed automata [KNP0O9c]
— zone-based abstraction/refinement using DBMs

— implemented in (development release of) PRISM

— outperforms existing PTA verification techniques

- Verification of probabilistic software [KKNP09]

— predicate abstraction/refinement using SAT solvers

— implemented in tool gprover: components of PRISM, SATABS
— analysed real network utilities (ping, tftp) - approx 1KLOC

- Verification of concurrent PRISM models [wz10]

— implemented in tool PASS; infinite-state PRISM models

Overview (Part 4)

- Abstraction & refinement (CEGAR)

.+ Abstraction of MDPs using stochastic games

- Quantitative abstraction refinement

- Probabilistic software verification

Probabilistic software

Consider sequential ANSI C programs

— support functions, pointers, arrays, but not dynamic memory
allocation, unbounded recursion, floating point op.s

- Add function bool coin(double p) for probabilistic choice
— for modelling e.g. failures, randomisation

- Add function int ndet(int n) for nondeterministic choice

— for modelling e.g. user input, unspecified function calls

Focus on software where failure is unavoidable
— e.g. network protocols/utilities, esp. wireless
Quantitative properties based on probabilistic reachability

— e.g. maximum probabilistic of unsuccessful data transmission
— e.g. minimum expected number of packets sent

Example - sample target program

bool fail = false; Program:

intc = 0; * Loop that tries to send c messages

int main() * ¢ is obtained from num_to_send()

{ (returns 0/1/2 nondeterministically)
/l nondeterministic

Cc = num_to_send();
while (! fail && ¢ > 0) * Any failure causes loop to terminate

{

« send_msg() fails with probability 0.1

/[probabilistic
fail = send_msg();
C--;

Property:

« “what is the minimum/maximum
probability of the program
terminating with fail being true?”

Example - simplified

bool fail = false;
intc = 0;
int main()
{
/Il nondeterministic Property:
c = ndet(3);
while (! fail && ¢ > 0) « “what is _the minimum/maximum
probability of the program
{ o terminating with fail being true?”
/[probabilistic
fail = coin(0.1);
C--;
}
}

Abstraction-refinement loop

Probabilistic Boolga_n . Abstraction
program probabilistic (game)
SAT program model
model ~based construction model
extraction abstraction checking
ANSI-C . lerror=e€] Bounds and
program Predicates strategies
refinement
1 [error<e]
Software verification Return
abstraction-refinement bounds

loop [KKNPO9]

Abstraction-refinement loop

Probabilistic Boole_a_n : Abstraction
program probabilistic (game)
SAT program model
model -based construction model
extraction abstraction checking
[error>=e€]
pAFI(;IS :’a(li’l Predicates Bgtligtdesgiaensd

refinement

- Model extraction: extension of goto-cc

— function inlining, constant/invariant Return
propagation, side-effect free expressions,
points—to analysis, etc.

Probabilistic program
— probabilistic control flow graph
— Markov decision process (MDP) semantics

Back to example

C code:

bool fail = false;
intc =0;
int main()
{
/l nondeterministic
c = ndet(3);
while (! fail && ¢ > 0)
{
/[probabilistic
fail = coin(0.1);
C--,

Probabilistic program:

Nondet.
Assignment assignment
Y
\
| c=ndet(3)
=c-1
yz [fail |
4 [!fail &&| \ (€0]
c>0]
fail=coin(0.1) 5

f

Prob. PC Conditional
assignment

Probabilistic program as MDP

Probabilistic program:

fail=coin(0.1) 3 5

L |

1 |

\ c=ndet(3) !

— _1 |
T2 i)

4 [Mfail &&| \ (€01
c>0] :

" ;

Property:
p,"" (PC=5Afail) = 0
p,m* (PC=5Afail) = 0.19

—&C Nondet. choice
—< Probabilistic choice

Abstraction-refinement loop

Probabilistic Boole_a_n . Abstraction
program probabilistic (game)
SAT program model
model -based construction model
extraction abstraction checking
[error>¢]
pAFI(;IS :’a(li’l Predicates B?tligtdesgiaensd

refinement

- Abstraction induced by a set of predicates
— SAT-based language-level abstraction Return
— ALLSAT for each edge of control-flow graph
— implemented in extension of SATABS
Boolean probabilistic program
— (predicate) abstraction of probabilistic program
— stochastic two player game semantics

example

Probabilistic program: Boolean probabilistic program:

(2 predicates: fail, c==0)

|
V 1
+ c=ndet(3) (c = Y
=c- =—0)=x%
c=c-1 2 [fall ” (C O) 1
4 [fail && 1(c>0)] 4 [!fail &&
c>0] 1(c==0)]
Y

fail=coin(0.1) 3 5

fail=0.1:t + 0.9:f

Key: *; Player 1 choice
%, Player 2 choice

Back to example

Concrete program (MDP):

Key:
(PC fail,c==0)

—& Player 1 choice
—eC Player 2 choice
%{ Probabilistic choice

Y

[5tf) 5t,t

5t1 |51‘::O |

p,"* (PC=5Afail) = 0.19

p,Pmax (PC=5 Afail) = 0.1
p,ubmax (PC=5 Afail) = 1

Abstraction-refinement loop

Probabilistic Boole_a_n : Abstraction
program probabilistic (game)
SAT program model
model -based construction model
extraction abstraction checking
ANSI-C : lerror=€] | g5unds and
program Predicates strategies
refinement
l [error<e]
PRISM (extension of)
— adapted for verification of stochastic games Return

— uses symbolic data structures (MTBDDs)
Bounds and strategy

— returned for a given probabilistic or expected reachability
property

Abstraction-refinement loop

Probabilistic Boole_a_n : Abstraction
program probabilistic (game)
SAT program model
model -based construction model
extraction abstraction checking
ANSI-C : lerror=€]l | gounds and
program Predicates strategies
refinement
l [error<e]
- Predicates obtained using
— weakest preconditions (WP) Return
bounds

— through strategy based-refinement

— includes predicate localisation,
reachability analysis, symbolic simulation,...

Experimental results

Successfully applied to several Linux network utilities:
— PING (tool for establishing network connectivity)
— TFTP (file-transfer protocol client)

Code characteristics
— 1 KLOC of non-trivial ANSI-C code
— Loss of packets modelled by probabilistic choice
— Linux kernel calls modelled by nondeterministic choice

Example properties
— “maximum probability of establishing a write request”

— “maximum expected amount of data that is sent before
timeout”

— “maximum expected number of echo requests required to
establish connectivity”

Summary (Part 4)

- Abstraction: essential for large/infinite-state systems
— this lecture: abstractions of MDPs as stochastic games
— separation of nondeterminism from MDP/abstraction
— vyields lower/upper bounds on min/max probabilities

Quantitative abstraction refinement

— fully automatic generation of abstractions

— iterative refinement based on quantitative measure of ‘error’
— works well in practice...

Quantitative software verification

— ANSI-C + probabilistic behaviour
— tool chain using state-of-the-art techniques and tools

Next: probabilistic timed automata

