

# Quantitative verification techniques for probabilistic software

Marta Kwiatkowska

Oxford University Computing Laboratory

Summer School on Model Checking, Beijing, October 2010

#### Course overview

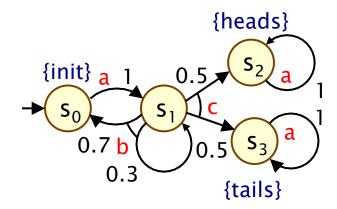
- 3 sessions (Mon/Tue/Thur):  $6 \times 50$  minute lectures
  - 1: Markov decision processes (MDPs)
  - 2: Probabilistic LTL model checking
  - 3: Compositional probabilistic verification
  - 4: Abstraction, refinement and probabilistic software
  - 5: Probabilistic timed automata (PTAs)
  - 6: Software with time and probabilities
- For additional background material
  - and an accompanying list of references
  - see: <a href="http://www.prismmodelchecker.org/lectures/">http://www.prismmodelchecker.org/lectures/</a>

# Part 5

Probabilistic timed automata

#### Recap: MDPs

- Markov decision processes (MDPs)
  - mix probability and nondeterminism
  - in a state, there is a nondeterministic choice between multiple probability distributions over successor states



- Adversaries
  - resolve nondeterministic choices based on history so far
  - properties quantify over all possible adversaries
  - e.g.  $P_{<0.1}[\lozenge err]$  maximum probability of an error is < 0.1

#### Real-world protocol examples

- Systems with probability, nondeterminism and real-time
  - e.g. communication protocols, randomised security protocols
- Randomised back-off schemes
  - Ethernet, WiFi (802.11), Zigbee (802.15.4)
- Random choice of waiting time
  - Bluetooth device discovery phase
  - Root contention in IEEE 1394 FireWire
- Random choice over a set of possible addresses
  - IPv4 dynamic configuration (link-local addressing)
- · Random choice of a destination
  - Crowds anonymity, gossip-based routing

#### Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
  - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
  - syntax, examples, semantics
- Model checking for PTAs
  - the region graph
  - digital clocks

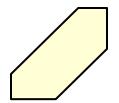
#### Time, clocks and clock valuations

- Dense time domain: non-negative reals  $\mathbb{R}_{\geq 0}$ 
  - from this point on, we will abbreviate  $\mathbb{R}_{>0}$  to  $\mathbb{R}$
- Finite set of clocks  $x \in X$ 
  - variables taking values from time domain  $\mathbb R$
  - increase at the same rate as real time
- A clock valuation is a tuple  $v \in \mathbb{R}^{x}$ . Some notation:
  - v(x): value of clock x in v
  - -v+t: time increment of t for v
    - $\cdot (v+t)(x) = v(x)+t \quad \forall x \in X$
  - -v[Y:=0]: clock reset of clocks  $Y \subseteq X$  in v
    - $\cdot v[Y:=0](x) = 0 \text{ if } x \in Y \text{ and } v(x) \text{ otherwise}$

#### Zones (clock constraints)

Zones (clock constraints) over clocks X, denoted Zones(X):

$$\zeta ::= {\color{red} x} \leq d \hspace{0.2cm} |\hspace{0.2cm} c \leq {\color{red} x} \hspace{0.2cm} |\hspace{0.2cm} {\color{gray} x} + c \leq {\color{gray} y} + d \hspace{0.2cm} |\hspace{0.2cm} \neg \zeta \hspace{0.2cm} |\hspace{0.2cm} \zeta \vee \zeta$$



- where  $x, y \in X$  and  $c, d \in \mathbb{N}$
- used for both syntax of PTAs/properties and algorithms
- Can derive:
  - logical connectives, e.g.  $\zeta_1 \wedge \zeta_2 \equiv \neg (\neg \zeta_1 \vee \neg \zeta_2)$
  - strict inequalities, through negation, e.g.  $x>5 \equiv \neg(x \le 5)...$
- Some useful classes of zones:
  - closed: no strict inequalities (e.g. x>5)
  - diagonal-free: no comparisons between clocks (e.g. x≤y)
  - convex: define a convex set, efficient to manipulate

#### Zones and clock valuations

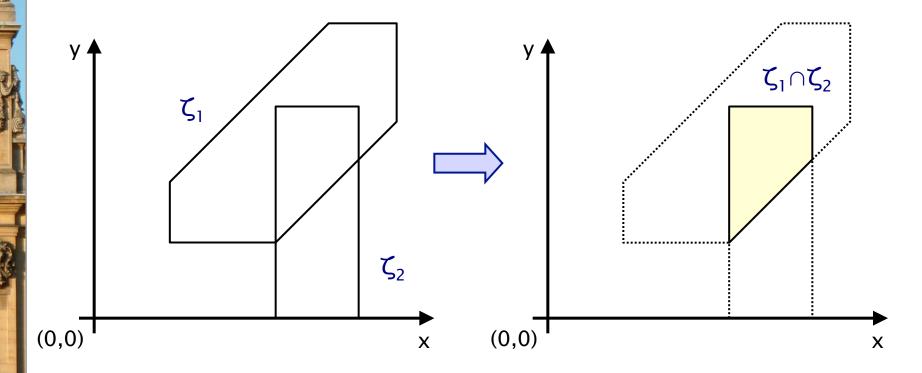
- A clock valuation v satisfies a zone  $\zeta$ , written  $v \triangleright \zeta$  if
  - $-\zeta$  resolves to true after substituting each clock x with v(x)
- The semantics of a zone  $\zeta \in Zones(X)$  is the set of clock valuations which satisfy it (i.e. a subset of  $\mathbb{R}^X$ )
  - NB: multiple zones may have the same semantics
  - e.g.  $(x \le 2) \land (y \le 1) \land (x \le y+2)$  and  $(x \le 2) \land (y \le 1) \land (x \le y+3)$
- We consider only canonical zones
  - i.e. zones for which the constraints are as 'tight' as possible
  - $O(|X|^3)$  algorithm to compute (unique) canonical zone [Dil89]
  - allows us to use syntax for zones interchangeably with semantic, set-theoretic operations

#### c-equivalence and c-closure

- Clock valuations v and v' are c-equivalent if for any  $x,y \in X$ 
  - either v(x) = v'(x), or v(x) > c and v'(x) > c
  - either v(x)-v(y) = v'(x)-v'(y) or v(x)-v(y) > c and v'(x)-v'(y) > c
- The c-closure of the zone  $\zeta$ , denoted close( $\zeta$ ,c), equals
  - the greatest zone  $\zeta' \supseteq \zeta$  such that, for any  $v' \in \zeta'$ , there exists  $v \in \zeta$  and v and v' are c-equivalent
  - c-closure ignores all constraints which are greater than c
  - for a given c, there are only a finite number of c-closed zones

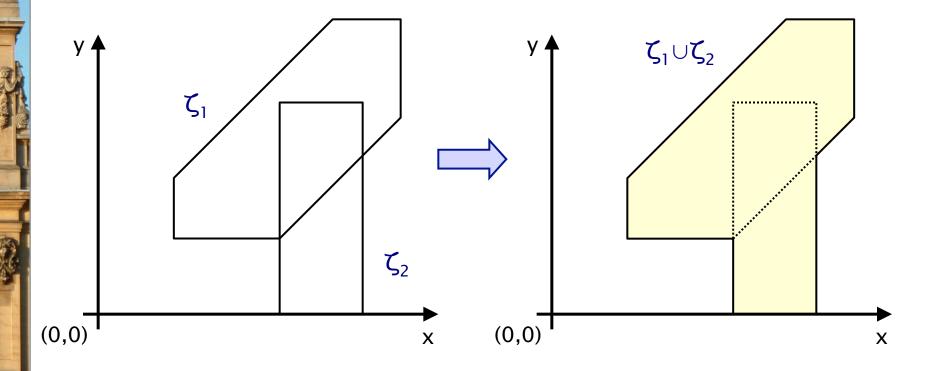
## Operations on zones – Set theoretic

• Intersection of two zones:  $\zeta_1 \cap \zeta_2$ 



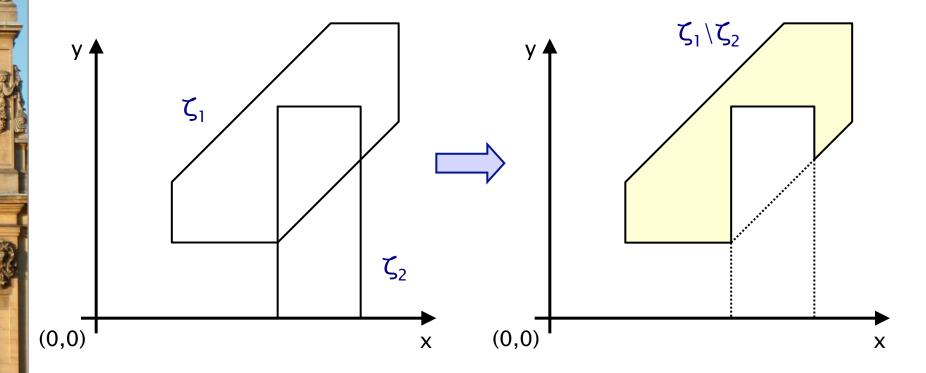
## Operations on zones – Set theoretic

• Union of two zones:  $\zeta_1 \cup \zeta_2$ 



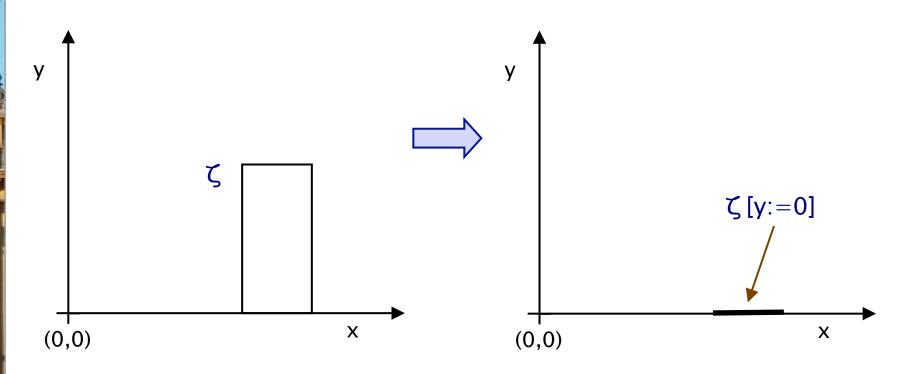
## Operations on zones – Set theoretic

• Difference of two zones:  $\zeta_1 \setminus \zeta_2$ 



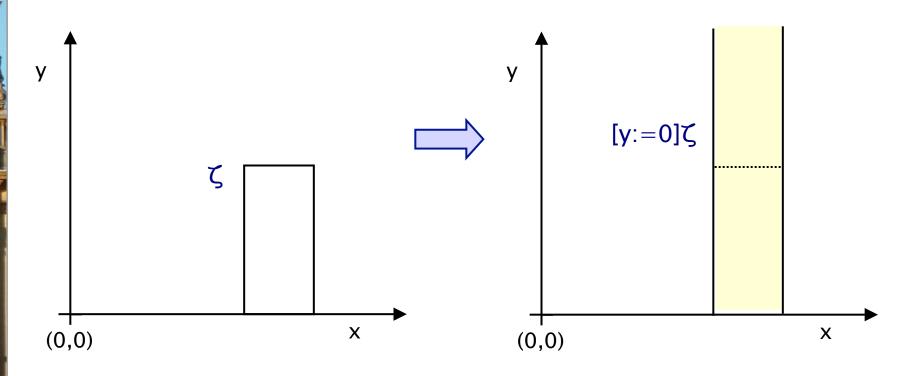
# Operations on zones - Clock resets

- $\zeta[Y:=0] = \{ v[Y:=0] \mid v \triangleright \zeta \}$ 
  - clock valuations obtained from ζ by resetting the clocks in Y



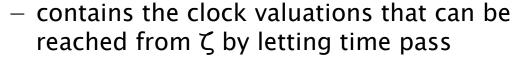
#### Operations on zones - Clock resets

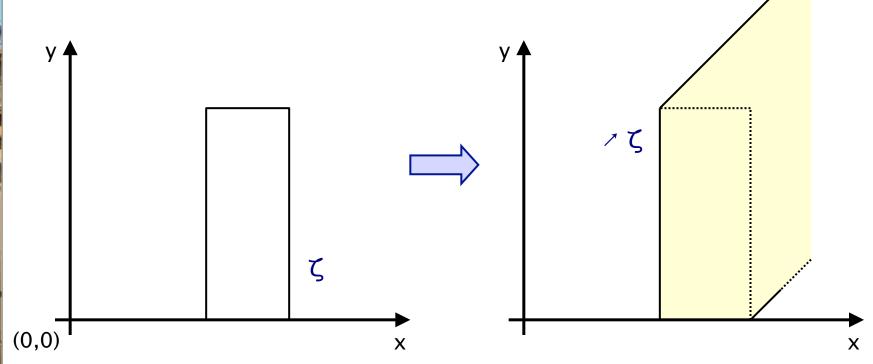
- $[Y:=0]\zeta = \{ v \mid v[Y:=0] \triangleright \zeta \}$ 
  - clock valuations which are in  $\zeta$  if the clocks in Y are reset



#### Operations on zones: Projections

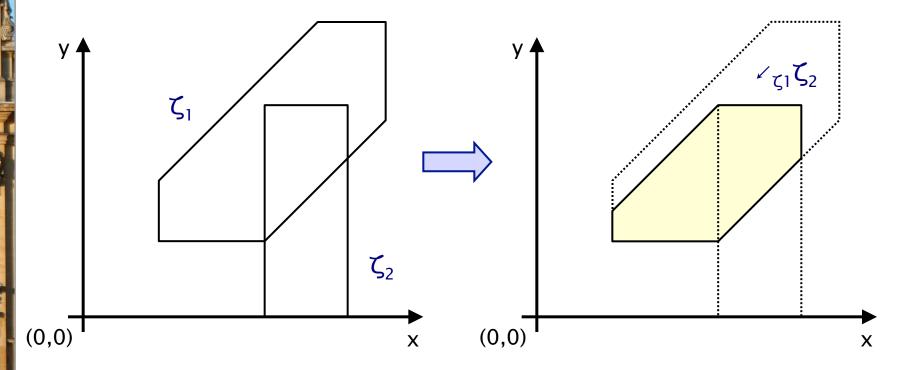
- Forwards diagonal projection
- $\wedge \zeta = \{ v \mid \exists t \geq 0 : (v-t) \triangleright \zeta \}$





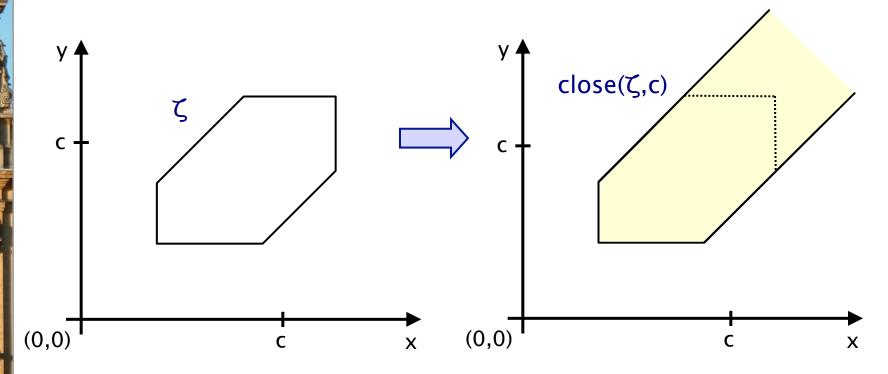
#### Operations on zones: Projections

- Backwards diagonal projection
- $\bullet \quad \angle_{\zeta'} \zeta = \{ \ v \ | \ \exists t \geq 0 \ . \ ( \ (v+t) \rhd \zeta \ \wedge \ \forall \, t' < t \ . \ ( \ (v+t') \rhd \zeta' \ ) \ ) \ \}$ 
  - contains the clock valuations that, by letting time pass, reach a clock valuation in  $\zeta$  and remain in  $\zeta$ ' until  $\zeta$  is reached



#### Operations on zones: c-closure

- c-closure: close(ζ,c)
  - ignores all constraints which are greater than c

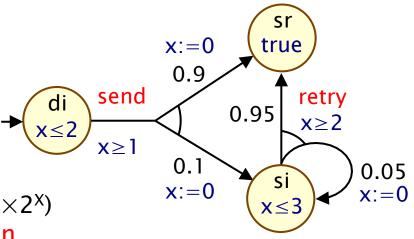


#### Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
  - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
  - syntax, examples, semantics
- Model checking for PTAs
  - the region graph
  - digital clocks

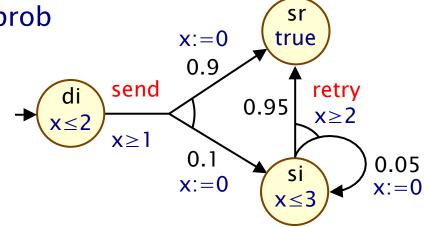
#### Probabilistic timed automata (PTAs)

- Probabilistic timed automata (PTAs)
  - Markov decision processes (MDPs) + real-valued clocks
  - or: timed automata + discrete probabilistic choice
  - model probabilistic, nondeterministic and timed behaviour
- Syntax: A PTA is a tuple (Loc, I<sub>init</sub>, Act, X, inv, prob, L)
  - Loc is a finite set of locations
  - I<sub>init</sub> ∈ Loc is the initial location
  - Act is a finite set of actions
  - X is a finite set of clocks
  - inv : Loc → Zones(X)is the invariant condition
  - prob ⊆ Loc×Zones(X)×Dist(Loc×2<sup>x</sup>)
     is the probabilistic edge relation
  - L : Loc →  $2^{AP}$  is a labelling function



#### Probabilistic edge relation

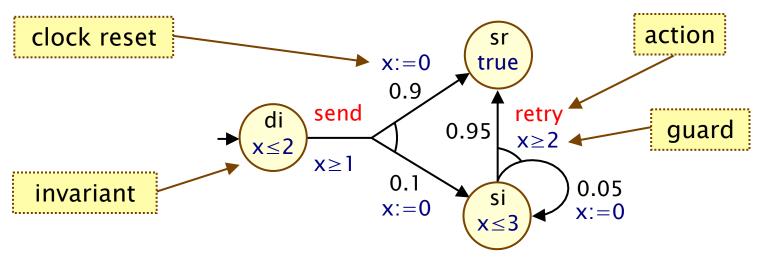
- Probabilistic edge relation
  - prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2<sup>X</sup>)
- Probabilistic edge (l,g,a,p) ∈ prob
  - I is the source location
  - g is the guard
  - a is the action
  - p target distribution



- Edge (l,g,a,p,l',Y)
  - from probabilistic edge (l,g,a,p) where p(l',Y)>0
  - l' is the target location
  - Y is the set of clocks to be reset (to zero)

#### PTA – Example

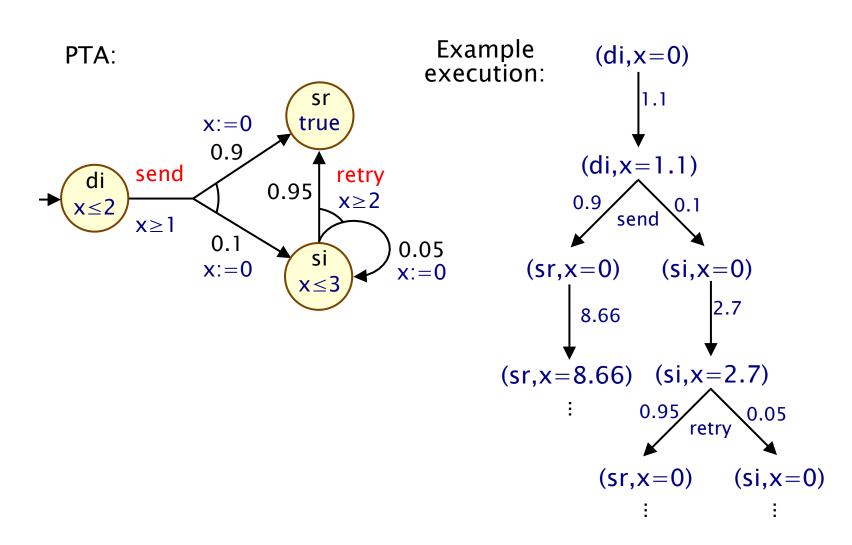
- Models a simple probabilistic communication protocol
  - starts in location di; after between 1 and 2 time units, the protocol attempts to send the data:
    - · with probability 0.9 data is sent correctly, move to location sr
    - · with probability 0.1 data is lost, move to location si
  - in location si, after 2 to 3 time units, attempts to resend
    - · correctly sent with probability 0.95 and lost with probability 0.05



#### PTAs - Behaviour

- A state of a PTA is a pair  $(I,v) \in Loc \times \mathbb{R}^X$  such that  $v \triangleright inv(I)$
- A PTAs start in the initial location with all clocks set to zero
  - let 0 denote the clock valuation where all clocks have value 0
- For any state (I,v), there is nondeterministic choice between making a discrete transition and letting time pass
  - discrete transition (l,g,a,p) enabled if v > g and probability of moving to location l' and resetting the clocks Y equals p(l',Y)
  - time transition available only if invariant inv(l) is continuously satisfied while time elapses

#### PTA – Example



#### PTAs – Formal semantics

- Formally, the semantics of a PTA P is an infinite-state MDP  $M_P = (S_P, \, s_{init}, \, \alpha_P, \, \delta_P, \, L_P)$  with:
- States:  $S_P = \{ (I,v) \in Loc \times \mathbb{R}^X \text{ such that } v \triangleright inv(I) \}$
- Initial state:  $s_{init} = (l_{init}, \underline{0})$ 
  - actions of MDP M<sub>P</sub> are the actions of PTA P or real time delays
- Actions:  $\alpha_P = Act \cup \mathbb{R}$
- $\delta_P \subseteq S_P \times \alpha_P \times Dist(S_P)$  such that  $(s, a, \mu) \in \delta_P$  iff:
  - (time transition) a∈ $\mathbb{R}$ ,  $\mu(l,v+t)=1$  and v+t'>inv(l) for all t'≤t
  - (discrete transition)  $a \in Act$  and there exists  $(l,g,a,p) \in prob$

such that 
$$v \triangleright g$$
 and, for any  $(I',v') \in S_p$ :  $\mu(I',v') = \sum_{\P' \subseteq X \land v[Y:=0]=v'} p(I',Y)$ 

• Labelling:  $L_P(I,v) = L(I)$ 

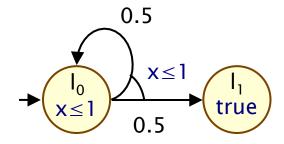
multiple resets may give same clock valuation

#### Time divergence

- We restrict our attention to time divergent behaviour
  - a common restriction imposed in real-time systems
  - unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded
  - also called non-zeno behaviour
- For a path  $\omega = s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2(a_2, \mu_2)...$  in the MDP  $M_P$ 
  - $-D_{\omega}(n)$  denotes the duration up to state  $s_n$
  - i.e.  $D_{\omega}$ (n) = Σ {| a<sub>i</sub> | 0≤i<n ∧ a<sub>i</sub> ∈ ℝ |}
- A path  $\omega$  is time divergent if, for any  $t \in \mathbb{R}_{\geq 0}$ :
  - there exists  $j \in \mathbb{N}$  such that  $D_{\omega}(j) > t$
- Example of non-divergent path:
  - $-s_0(1,\mu_0)s_0(0.5,\mu_0)s_0(0.25,\mu_0)s_0(0.125,\mu_0)s_0...$

#### Time divergence

- An adversary of  $M_p$  is divergent if, for each state  $s \in S_p$ :
  - the probability of divergent paths under A is 1
  - − i.e  $Pr^{A}_{s}$ { ω ∈  $Path^{A}(s) \mid ω$  is divergent } = 1
- Motivation for probabilistic definition of divergence:



- in this PTA, any adversary has one non-divergent path:
  - $\cdot$  takes the loop in  $I_0$  infinitely often, without 1 time unit passing
- but the probability of such behaviour is 0
- a stronger notion of divergence would mean no divergent adversaries exist for this PTA

#### Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
  - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
  - syntax, examples, semantics
- Model checking for PTAs
  - the region graph
  - digital clocks

#### PTCTL – Syntax

- PTCTL: Probabilistic timed computation tree logic
  - derived from PCTL [BdA95] and TCTL [AD94]
- Syntax:

ф U ф is true with probability ~p

 $- \varphi ::= true \mid a \mid \zeta \mid z. \varphi \mid \varphi \land \varphi \mid \neg \varphi \mid P_{\sim p} [ \varphi \cup \varphi ]$ 



"freeze quantifier"

- where:
  - − where Z is a set of formula clocks,  $\zeta \in Z$ ones(X∪Z),  $z \in Z$ ,
  - a is an atomic proposition,  $p \in [0,1]$  and  $\sim \in \{<,>,\leq,\geq\}$

#### PTCTL – Examples

- z.  $P_{>0.99}$  [packet2unsent Upacket1delivered  $\land$  (z<5)]
  - "with probability greater than 0.99, the system delivers packet 1 within 5 time units and does not try to send packet 2 in the meantime"
- z.  $P_{>0.95}[(x \le 3) \cup (z=8)]$ 
  - "with probability at least 0.95, the system clock x does not exceed 3 before 8 time units elapse"
- z.  $P_{<0.1}[G (failure \lor (z \le 60))]$ 
  - "the system fails after the first 60 time units have elapsed with probability at most 0.01"

#### PTCTL - Semantics

• Let  $(I,v) \in S_P$  and  $E \in \mathbb{R}^Z$  be a formula clock valuation

combined clock valuation of v and  $\boldsymbol{\epsilon}$  satisfies  $\boldsymbol{\zeta}$ 

after resetting z, φ is satisfied

$$- (I,v), \mathcal{E} \vDash a \qquad \Leftrightarrow a \in L(I,v)$$

$$- (I,v), \mathcal{E} \vDash \zeta \qquad \Leftrightarrow v, \mathcal{E} \rhd \zeta$$

$$- (I,v), \mathcal{E} \vDash z. \varphi \qquad \Leftrightarrow (I,v), \mathcal{E}[z:=0] \vDash \varphi$$

$$- (I,v), \mathcal{E} \vDash \varphi_{1} \land \varphi_{2} \Leftrightarrow (I,v), \mathcal{E} \vDash \varphi_{1} \text{ and } (I,v), \mathcal{E} \vDash \varphi_{2}$$

$$- (I,v), \mathcal{E} \vDash \neg \varphi \qquad \Leftrightarrow (I,v), \mathcal{E} \vDash \varphi \text{ is false}$$

$$- (I,v), \mathcal{E} \vDash P_{\sim p}[\psi] \qquad \Leftrightarrow Pr^{A}_{(I,v)} \{ \omega \in Path^{A}(I,v) \mid \omega, \mathcal{E} \vDash \psi \} \sim p$$

for all adversaries A∈Adv<sub>MD</sub>

the probability of a path satisfying ψ meets ~p for all divergent adversaries

#### PTCTL - Semantics of until

- Let  $\omega$  be a path in  $M_P$  and  $\mathcal{E}$  be a formula clock valuation
  - ω, ε ⊨ ψ satisfaction of ψ by ω, assuming ε initially
- $\omega, \mathcal{E} \models \varphi_1 \cup \varphi_2$  if and only if there exists  $i \in \mathbb{N}$  and  $t \in D_{\omega}(i+1)-D_{\omega}(i)$  such that
  - $-\omega(i)+t, \mathcal{E}+(D_{\omega}(i)+t) \models \Phi_2$
  - $\forall$  t'≤t. ω(i)+t',ε+(D<sub>ω</sub>(i)+t')  $\models$   $\varphi$ <sub>1</sub>  $\lor$   $\varphi$ <sub>2</sub>
  - $\forall$  j < i .  $\forall$   $t' \le D_{\omega}(j+1) D_{\omega}(j)$  .  $\omega(j) + t', \mathcal{E} + (D_{\omega}(j) + t') \models \varphi_1 \lor \varphi_2$
- Condition " $\phi_1 \vee \phi_2$ " different from PCTL and CSL
  - usually  $\phi_2$  becomes true and  $\phi_1$  is true until this point
  - difference due to the density of the time domain
  - to allow for open intervals use disjunction  $\phi_1 \vee \phi_2$
  - for example consider  $x \le 5$  U x > 5 and x < 5 U  $x \ge 5$

## Probabilistic reachability in PTAs

- For simplicity, in some cases, we just consider probabilistic reachability, rather than full PTCTL model checking
  - i.e. min/max probability of reaching a set of target locations
  - can also encode time-bounded reachability (with extra clock)
- Still captures a wide range of properties
  - probabilistic reachability: "with probability at least 0.999, a data packet is correctly delivered"
  - probabilistic invariance: "with probability 0.875 or greater, the system never aborts"
  - probabilistic time-bounded reachability: "with probability 0.01 or less, a data packet is lost within 5 time units"
  - bounded response: "with probability 0.99 or greater, a data packet will always be delivered within 5 time units"

#### Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
  - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
  - syntax, examples, semantics
- Model checking for PTAs
  - the region graph
  - digital clocks

# PTA model checking – Summary

- Several different approaches developed
  - basic idea: reduce to the analysis of a finite-state model
  - in most cases, this is a Markov decision process (MDP)
- Region graph construction [KNSS02]
  - shows decidability, but gives exponential complexity
- Digital clocks approach [KNPS06]
  - (slightly) restricted classes of PTAs
  - works well in practice, still some scalability limitations
- Zone-based approaches (next lecture)
  - (preferred approach for non-probabilistic timed automata)
  - forwards reachability [KNSS02]
  - backwards reachability [KNSW07]
  - game-based abstraction refinement [KNP09c]

#### The region graph

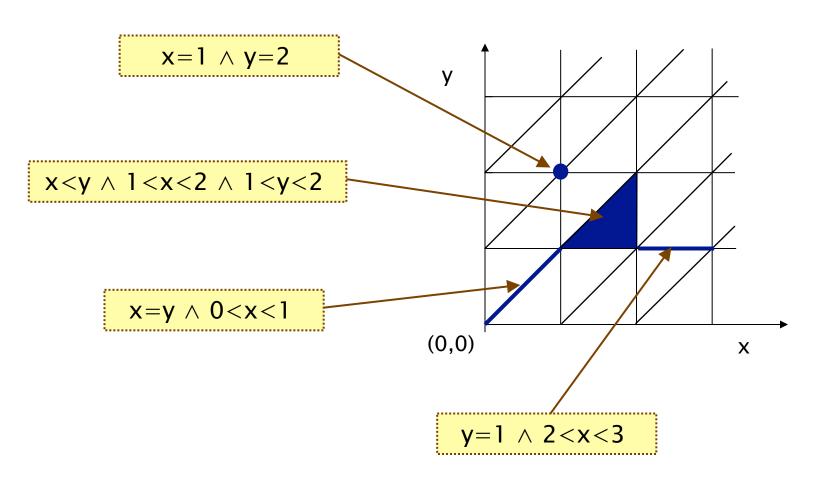
- Region graph construction for PTAs [KNSS02]
  - adapts region graph construction for timed automata [ACD93]
  - partitions PTA states into a finite set of regions
  - based on notion of clock equivalence
  - construction is also dependent on PTCTL formula
- For a PTA P and PTCTL formula φ
  - construct a time-abstract, finite-state MDP R(φ)
  - translate PTCTL formula φ to PCTL formula φ'
  - φ is preserved by region quivalence
  - i.e. φ holds in a state of  $M_p$  if and only if φ' holds in the corresponding state of R(φ)
  - model check R(φ) using standard methods for MDPs

### The region graph - Clock equivalence

- Regions are sets of clock equivalent clock valuations
- Some notation:
  - let c be largest constant appearing in PTA or PTCTL formula
  - let [t] denotes the integral part of t
  - t and t' agree on their integral parts if and only if
    - $(1) \lfloor t \rfloor = \lfloor t' \rfloor$
    - (2) t and t' are both integers or neither is an integer
- The clock valuations v and v' are clock equivalent ( $v \cong v'$ ) if:
  - for all clocks  $x \in X$ , either:
    - $\cdot$  v(x) and v'(x) agree on their integral parts
    - $\cdot$  v(x)>c and v'(x)>c
  - for all clock pairs  $x,y \in X$ , either:
    - $\cdot$  v(x) v(x') and v'(x) v'(x') agree on their integral parts
    - v(x) v(x') > c and v'(x) v'(x') > c

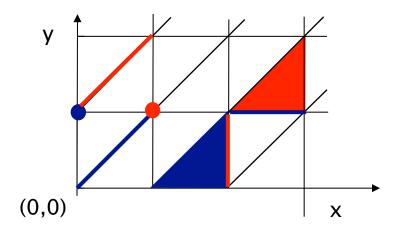
# Region graph - Clock equivalence

Example regions (for 2 clocks x and y)



### Region graph - Clock equivalence

- Fundamental result: if  $v \cong v'$ , then  $v \rhd \zeta \Leftrightarrow v' \rhd \zeta$ 
  - it follows that  $r \triangleright \zeta$  is well defined for a region r
- r' is the successor region of r, written succ(r) = r', if
  - for each  $v \in r$ , there exists t>0 such that  $v+t \in r'$  and  $v+t' \in r \cup r'$  for all t' < t



## The region graph

- The region graph MDP is  $M_R = (S_R, s_{init}, \alpha_R, \delta_R, L_R)$  where...
  - the set of states  $S_R$  comprises pairs (I,r) such that I is a location and r is a region over  $X \cup Z$
  - the initial state  $s_{init}$  is  $(l_{init}, \underline{0})$
  - − the set of actions  $\alpha_R$  is {succ} ∪ Act
    - · succ is a unique action denoting passage of time
  - the probabilistic transition function  $\delta_R$  is defined as:
  - $-((l,r),succ,\mu) \in \delta_R(l,r) \text{ iff } \mu(l,succ(r))=1$
  - $-((l,r),a,\mu)\in \delta_R(l,r)$  iff  $\exists$   $(l,g,a,p)\in prob$  such that

$$r \rhd g \text{ and, for any } (l',r') \in S_{R:} \quad \mu(l',r') = \sum_{Y \subseteq X \land r[Y:=0]=r'} p(l',Y)$$

- the labelling is given by:  $L_R(I,r) = L(I)$ 

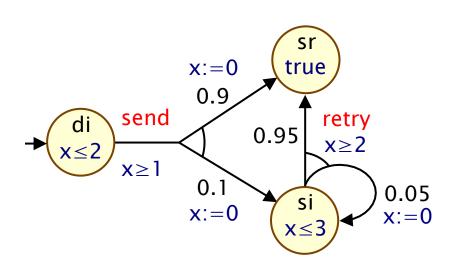
### Region graph – Example

PTCTL formula: z.P<sub>~p</sub> [ true U (sr<4) ]</li>

$$(di,x=z=0) \xrightarrow{succ} (di,0 < x=z < 1) \xrightarrow{succ} (di,x=z=1) \xrightarrow{succ} (di,1 < x=z < 2)$$

$$0.9 \qquad 0.1$$

$$(sr,x=0 \land z=1) \qquad (si,x=0 \land z=1)$$



### Region graph construction

#### Region graph

- useful for establishing decidability of model checking
- or proving complexity results for model checking algorithms

#### But...

- the number of regions is exponential in the number of clocks and the size of largest constant
- so model checking based on this is extremely expensive
- and so not implemented (even for timed automata)

### Improved approaches based on:

- digital clocks
- zones (unions of regions)

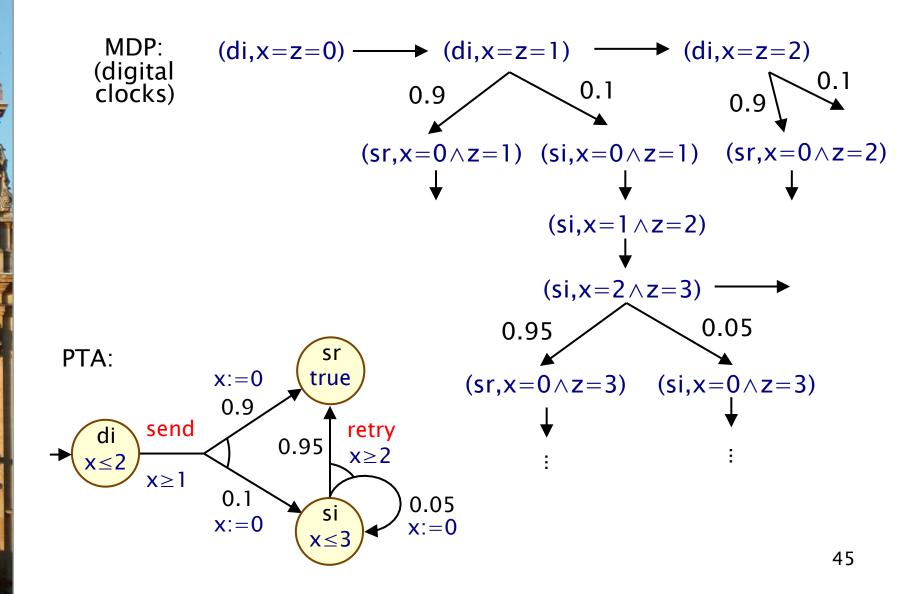
### Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
  - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
  - syntax, examples, semantics
- Model checking for PTAs
  - the region graph
  - digital clocks

### Digital clocks

- Simple idea: Clocks can only take integer (digital) values
  - i.e. time domain is  $\mathbb N$  as opposed to  $\mathbb R$
  - based on notion of  $\epsilon$ -digitisation [HMP92]
- Only applies to arestricted class of PTAs; zones must be:
  - closed no strict inequalities (e.g. x>5)
- Digital clocks semantics yields a finite-state MDP
  - state space is a subset of Loc  $\times \mathbb{N}^X$ , rather than Loc  $\times \mathbb{R}^X$
  - clocks bounded by  $c_{max}$  (max constant in PTA and formula)
  - then use standard techniques for finite -state MDPs

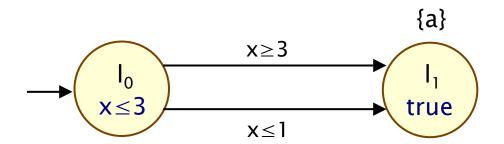
### Example – Digital clocks



### Digital clocks

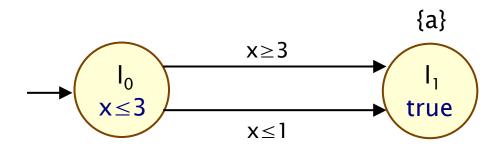
- Digital clocks approach preserves:
  - minimum/maximum reachability probabilities
  - a subset of PTCTL properties
  - (no nesting, only closed zones in formulae)
  - only works for the initial state of the PTA
  - (but can be extended to any state with integer clock values)
- In practice:
  - translation from PTA to MDP can often be done manually
  - (by encoding the PTA directly into the PRISM language)
  - automated translations exist: mcpta and PRISM
  - many case studies, despite "closed" restriction
- Problem: can lead to very large MDPs
  - alleviated partially by efficient symbolic model checking

### Digital clocks do not preserve PTCTL



- Consider the PTCTL formula  $\phi = z.P_{<1}$  [ true U (a  $\land$  z  $\leq$  1)]
  - a is an atomic proposition only true in location  $I_1$
- Digital semantics:
  - no state satisfies  $\phi$  since for any state we have Prob<sup>A</sup>(s,  $\mathcal{E}[z:=0]$ , true U (a∧z≤1)) = 1 for some adversary A
  - hence  $P_{<1}$  [ true U  $\phi$  ] is trivially true in all states

### Digital clocks do not preserve PTCTL



- Consider the PTCTL formula  $\phi = z.P_{<1}$  [ true U (a  $\land$  z  $\leq$  1)]
  - a is an atomic proposition only true in location  $I_1$
- Dense time semantics:
  - any state  $(I_0,v)$  where  $v(x) \in (1,2)$  satisfies  $\varphi$ more than one time unit must pass before we can reach  $I_1$
  - hence  $P_{<1}$  [ true U  $\phi$  ] is not true in the initial state

### Summary (Part 5)

- Probabilistic timed automata (PTAs)
  - combine probability, nondeterminism, real-time
  - well suited for e.g. for randomised communication protocols
  - MDPs + clocks (or timed automata + discrete probability)
- PTCTL: Temporal logic for properties of PTAs
  - but many useful properties expressible with just reachability
- PTA model checking
  - region graph: decidability results, exponential complexity
  - digital clocks: simple and effective, some scalability issues
- Next: zone-based techniques, abstraction, software