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Course overview

3 sessions (Mon/Tue/Thur): 6 X 50 minute lectures

— 1: Markov decision processes (MDPs)

— 2: Probabilistic LTL model checking

— 3: Compositional probabilistic verification

— 4: Abstraction, refinement and probabilistic software
— 5: Probabilistic timed automata (PTAs)

— 6: Software with time and probabilities

For additional background material
— and an accompanying list of references
— see: http://www.prismmodelchecker.org/lectures/




Part 5

Probabilistic timed automata




Recap: MDPs

- Markov decision processes (MDPs)
— mix probability and nondeterminism

— in a state, there is a nondeterministic choice between multiple
probability distributions over successor states

{tails}

- Adversaries
— resolve nondeterministic choices based on history so far
— properties quantify over all possible adversaries
— e.g. P_y [¢®err] - maximum probability of an error is < 0.1



Real-world protocol examples

- Systems with probability, nondeterminism and real-time

— e.g. communication protocols, randomised security protocols

Randomised back-off schemes
— Ethernet, WiFi (802.11), Zigbee (802.15.4)
Random choice of waiting time
— Bluetooth device discovery phase
— Root contention in IEEE 1394 FireWire
Random choice over a set of possible addresses
— IPv4 dynamic configuration (link-local addressing)
Random choice of a destination
— Crowds anonymity, gossip-based routing



Overview (Part 5)

- Time, clocks and zones

- Probabilistic timed automata (PTAS)
— definition, examples, semantics, time divergence

- PTCTL: A temporal logic for for PTAs
— syntax, examples, semantics

- Model checking for PTAs
— the region graph
— digital clocks



Time, clocks and clock valuations

Dense time domain: non-negative reals R,
— from this point on, we will abbreviate R_,to R

Finite set of clocks x € X
— variables taking values from time domain R
— increase at the same rate as real time

- A clock valuation is a tuple v € RX. Some notation:
— v(x) : value of clock x in v
— v+t : time increment of t for v
(VDX = v(X)+t Vx € X
— v[Y:=0] : clock reset of clocks Y € Xinv
- V[Y:=0](x) = 0 if x € Y and v(x) otherwise



Zones (clock constraints)

- Zones (clock constraints) over clocks X, denoted Zones(X):

Cii=x=<d |c<x | x+c=<sy+d | -CT |CTVv T

— where x,ye Xandc,d € N
— used for both syntax of PTAs/properties and algorithms

- Can derive:
— logical connectives, e.g. C,AT, = —(—=C,Vv—C,)
— strict inequalities, through negation, e.g. x>5 = = (x<5)...

- Some useful classes of zones:
— closed: no strict inequalities (e.g. x>5)
— diagonal-free: no comparisons between clocks (e.g. x<y)
— convex: define a convex set, efficient to manipulate 8



Zones and clock valuations

- A clock valuation v satisfies a zone T, written v > T if
— T resolves to true after substituting each clock x with v(x)

- The semantics of a zone T € Zones(X) is the set of clock
valuations which satisfy it (i.e. a subset of RX)

— NB: multiple zones may have the same semantics
— e.g. X<2)A(Y=<T)A(X=<y+2) and (Xx<2)A(y=<T)A(x<y+3)

- We consider only canonical zones
— i.e. zones for which the constraints are as ‘tight’ as possible
— O(|X]3) algorithm to compute (unique) canonical zone [Dil89]

— allows us to use syntax for zones interchangeably with
semantic, set-theoretic operations



c-equivalence and c-closure

+ Clock valuations v and v’ are c-equivalent if for any x,yeX
— either v(x) = v'(x), or v(x) > cand v'(x) > c
— either v(x)-v(y) = v(x)-Vv’(y) or v(x)-v(y) > c and v (x)-Vv’(y) > ¢

- The c-closure of the zone T, denoted close(T,c), equals
— the greatest zone T'2 T such that, for any v’ € T,
there exists v € T and v and v’ are c-equivalent
— c—closure ignores all constraints which are greater than c
— for a given ¢, there are only a finite number of c-closed zones

10



Operations on zones - Set theoretic

- Intersection of two zones: C,NT,

Ci

/

C.

—

XV

y A

-------------------

(0,0)
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Operations on zones - Set theoretic

- Union of two zones: C,UT,

Ci

="

C.

XV
XV

(0,0)
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Operations on zones - Set theoretic

- Difference of two zones: C,\T,

Ci

="

C.

XV
XV

(0,0)
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Operations on zones - Clock resets

- TlY:=0] = { v[Y:=0] | v>T}
— clock valuations obtained from T by resetting the clocks in'Y

A A

—

Cly:=0]

(0,0) X (0,0) X
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Operations on zones - Clock resets

« [Y:=0]CT ={v|Vv][Y:=0] >T}
— clock valuations which are in T if the clocks in Y are reset

—

A

ly:=0]C

(0,0)

15



Operations on zones: Projections

- Forwards diagonal projection
« /C={v]| 3t=0. (v-t)>T}

— contains the clock valuations that can be
reached from T by letting time pass

y A y A

—

16



Operations on zones: Projections

- Backwards diagonal projection
‘/C’C ={v ]| 3At=0.((v+t) T A VU<t. ((v+t)>T))}

— contains the clock valuations that, by letting time pass, reach
a clock valuation in T and remain in T until T is reached

-------------------

y A y A

Ci

=)

G

XV
XV

(0,0)
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Operations on zones: c-closure

» c—closure: close(T,c)
— ignores all constraints which are greater than ¢

y A

close(T,c)

\4
XV

c x (0,0 c
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Overview (Part 5)

- Time, clocks and zones

- Probabilistic timed automata (PTAS)
— definition, examples, semantics, time divergence

- PTCTL: A temporal logic for for PTAs
— syntax, examples, semantics

- Model checking for PTAs
— the region graph
— digital clocks
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Probabilistic timed automata (PTAS)

Probabilistic timed automata (PTAs)
— Markov decision processes (MDPs) + real-valued clocks
— or: timed automata + discrete probabilistic choice
— model probabilistic, nondeterministic and timed behaviour

- Syntax: A PTA is a tuple (Loc, |, Act, X, inv, prob, L)
— Loc is a finite set of locations
o Iinit
— Act is a finite set of actions
— X is a finite set of clocks

€ Loc is the initial location

— inv : Loc — Zones(X)
is the invariant condition

— prob € LocxZones(X)xDist(Locx2X)
is the probabilistic edge relation

1 - _ DAP i i
L : Loc — 2APis a labelling function 20




Probabilistic edge relation

Probabilistic edge relation
— prob € LocxZones(X)xActxDist(Locx2X)

Probabilistic edge (l,g,a,p) € prob
— | is the source location
— g is the guard
— a is the action

— p target distribution

Edge (I,g9,a,p,l’,Y)
— from probabilistic edge (I,g,a,p) where p(I’,Y)>0
— I’ is the target location
— Y is the set of clocks to be reset (to zero)

21



PTA - Example

- Models a simple probabilistic communication protocol

— starts in location di; after between 1 and 2 time units, the
protocol attempts to send the data:

. with probability 0.9 data is sent correctly, move to location sr

. with probability 0.1 data is lost, move to location si

— in location si, after 2 to 3 time units, attempts to resend
. correctly sent with probability 0.95 and lost with probability 0.05

----------------------------------------------------------------

. clock reset \
e trsssssrsssssrsssssEsssrEresEnRenEn - X::O

......................

retry
X>2

22



PTAs - Behaviour

- A state of a PTA is a pair (I,v) € LocxRX such that v > inv(l)

- A PTAs start in the initial location with all clocks set to zero
— let O denote the clock valuation where all clocks have value 0

For any state (l,v), there is nondeterministic choice between
making a discrete transition and letting time pass

— discrete transition (I,g,a,p) enabled if v > g and probability of
moving to location I’ and resetting the clocks Y equals p(l’,Y)

— time transition available only if invariant inv(l) is continuously
satisfied while time elapses

23



PTA - Example

PTA: Example (di,x=0)
execution:
r |
(di,x=1.1)
0. send 0.1
0.05 _
x:=0 (sr,x=0)  (si,x=0)

18.66 lz.y

(sr,x=8.66) (si,x=2.7)

0.95 0.05
retry

(sr,x=0)  (si,x=0)

24



PTAs - Formal semantics

- Formally, the semantics of a PTA P is an infinite-state MDP
MP — (SP, Sinit’ O(P’ 6P’ LP) Wlth

- States: Sp = { (l,v) € Loc X RX such that v > inv(l) }

- Initial state: s, = (I ..., 0) S :
. actions of MDP M; are the actions

: . of PTA P or real time delays

- 0p S Sp X op X Dist(Sp) such that (s, a, u) € op iff:
— (time transition) aeR, u(,v+t)=1 and v+t’>inv(l) for all t’<t
— (discrete transition) a€Act and there exists (I,g,a,p) € prob

such that vi>g and, for any (I’,v’) € Sp: u(l',v') = E p(',Y)

/ YCXavV[Y:=0]=V'

multiple resets may give
same clock valuation

- Labelling: Ly(I,v) = L(I)
25



Time divergence

- We restrict our attention to time divergent behaviour

— a common restriction imposed in real-time systems

— unrealisable behaviour (i.e. corresponding to time not
advancing beyond a time bound) is disregarded

— also called non-zeno behaviour

For a path w=sy(ay,Hy)s;(a;,M7)5,(a5,M5)... in the MDP M,
— D,(n) denotes the duration up to state s,
—i.e.Dy(n) =2{| a; | O<i<n A a; € R |}

- A path w is time divergent if, for any teR_,:
— there exists j € N such that D(j)>t

Example of non-divergent path:

26



Time divergence

- An adversary of M; is divergent if, for each state s € S;:
— the probability of divergent paths under A is 1
— i.e PrA{ w € Path”A(s) | w is divergent } =1

Motivation for probabilistic definition of divergence:
0.5

— in this PTA, any adversary has one non-divergent path:
. takes the loop in |, infinitely often, without 1 time unit passing
— but the probability of such behaviour is O

— a stronger notion of divergence would mean no divergent
adversaries exist for this PTA 27



Overview (Part 5)

- Time, clocks and zones

Probabilistic timed automata (PTAS)
— definition, examples, semantics, time divergence

PTCTL: A temporal logic for for PTAs
— syntax, examples, semantics

Model checking for PTAs

— the region graph
— digital clocks

28



PTCTL - Syntax

« PTCTL: Probabilistic timed computation tree logic
— derived from PCTL [BdA95] and TCTL [AD94]

é U ¢ is true with probability ~p

. Syntax: ..................................... /

—¢u=truefa|Tlz.¢|dAd| [P, [PdUD]

- where:
— where Z is a set of formula clocks, T € Zones(XuZ), z € Z,
— a is an atomic proposition, p € [0,1] and ~ € {<,>,<,>}

29



PTCTL - Examples

- z.P.y99 [ packet2unsent U packetldelivered A (z<5) ]

— “with probability greater than 0.99, the system delivers packet
1 within 5 time units and does not try to send packet 2 in the
meantime”

— “with probability at least 0.95, the system clock x does not
exceed 3 before 8 time units elapse”

« z.P_y,[ G (failure v (z<60)) ]
— “the system fails after the first 60 time units have elapsed with
probability at most 0.01”

30



PTCTL - Semantics

- Let (I,v) € S; and € € R% be a formula clock valuation

combined clock valuation of v and € : et oo :
satisfies T  after resetting z,
— (Lv),E = a
o (I,V),E = C S V,g > C

- (v),€ = z.¢ < (LW),E[z:=0] = ¢

— (v,e Ed; A, = (Iv),E = d; and (I,v),E = ,

— (L), E - < (ILv),E = ¢ is false

- (v, =P W] < Pra i wePathA(Lv) | w,EE Y} ~p
for all a saries AcAdvy,

the probability of a path satisfying W meets ~p :
: for all divergent adversaries 5

31



PTCTL - Semantics of until

- Let w be a path in M, and € be a formula clock valuation
— w,& E Y satisfaction of Y by w, assuming € initially

- w, & E ¢, Ud,if and only if
there exists i € Nand t € D(i+1)-D,(i) such that
— w(i)+t,E+(D,>()+1) E P,
— Vt<t.w+t,E+(D,®)+t) = b, V P,
— V j<i.Vt<D,([j+1)-D,G) - w()+t',E+(D,()+t) = b, V P,

- Condition “¢, Vv ¢,” different from PCTL and CSL

— usually ¢, becomes true and ¢, is true until this point
— difference due to the density of the time domain

— to allow for open intervals use disjunction ¢, vV ¢,

— for example consider x<5 U x>5 and x<5 U x>5
32



Probabilistic reachability in PTAs

For simplicity, in some cases, we just consider probabilistic
reachability, rather than full PTCTL model checking

— i.e. min/max probability of reaching a set of target locations
— can also encode time-bounded reachability (with extra clock)

. Still captures a wide range of properties

— probabilistic reachability: “with probability at least 0.999, a
data packet is correctly delivered”

— probabilistic invariance: “with probability 0.875 or greater, the
system never aborts”

— probabilistic time-bounded reachability: “with probability 0.01
or less, a data packet is lost within 5 time units”

— bounded response: “with probability 0.99 or greater, a data
packet will always be delivered within 5 time units”

33
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PTA model checking - Summary

- Several different approaches developed
— basic idea: reduce to the analysis of a finite-state model
— in most cases, this is a Markov decision process (MDP)

- Region graph construction [KNSS02]

— shows decidability, but gives exponential complexity

- Digital clocks approach [KNPS06]

— (slightly) restricted classes of PTAs

— works well in practice, still some scalability limitations

- Zone-based approaches (next lecture)

— (preferred approach for non-probabilistic timed automata)
— forwards reachability [KNSS02]

— backwards reachability [KNSWO07]

— game-based abstraction refinement [KNPOO9c]

35



The region graph

Region graph construction for PTAs [KNSS02]
— adapts region graph construction for timed automata [ACD93]
— partitions PTA states into a finite set of regions
— based on notion of clock equivalence

— construction is also dependent on PTCTL formula

For a PTA P and PTCTL formula ¢
— construct a time-abstract, finite-state MDP R(¢)
— translate PTCTL formula ¢ to PCTL formula ¢’
— ¢ is preserved by region quivalence

— i.e. ¢ holds in a state of M; if and only if ¢’ holds in the
corresponding state of R(d)

— model check R(¢) using standard methods for MDPs

36



The region graph - Clock equivalence

Regions are sets of clock equivalent clock valuations

- Some notation:
— let c be largest constant appearing in PTA or PTCTL formula
— let [t| denotes the integral part of t
— t and t’ agree on their integral parts if and only if
(M) [t] = [t']

(2) t and t’ are both integers or neither is an integer

- The clock valuations v and v’ are clock equivalent (v = V’) if:
— for all clocks x € X, either:
- v(x) and v’(x) agree on their integral parts
. v(x)>c and v’'(x)>c
— for all clock pairs x,y € X, either:
- v(X) — v(x’) and v'(x) — V(xX’) agree on their integral parts
- v(X) —v(xX’)) >cand v(x) — vV(X') > ¢ 37



Region graph - Clock equivalence

- Example regions (for 2 clocks x and y)

------------------------------------------------------

A

--------------------------------------------------------------------------------

v

NN AR EE AR NN AN AN EEEEREEEAEEEEEEEEEREEEEEEEREEEEEE

------------------------------------------------------
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Region graph - Clock equivalence

Fundamental result: if v= Vv, thenv> T < Vv > C
— it follows that r > T is well defined for a region r

r’ is the successor region of r, written succ(r) = r’, if
— for each ver, there exists t>0 such that v+t € r’
and v+t’ € rur’ forall t'< t

y y

v

(0,0) X

39



The region graph

- The region graph MDP is My = (Sg, Siniey Xrs Or, Lg) Where...

— the set of states Sy comprises pairs (I,r) such that | is a
location and r is a region over X U Z

— the initial state s, is (I, 0)
— the set of actions o is {succ} U Act
. succ is a unique action denoting passage of time
— the probabilistic transition function & is defined as:
— ((I,n,succ,u) € dog(l,r) iff u(l,succ(n)=1
— ((l,r),a,m) € og(l,n iff 3 (I,9,a,p) € prob such that

r > g and, forany (I',r') € Sg. uw(l',r') = E pd",Y)
Y CXAar[Y:=0]=r'

— the labelling is given by: Lg(I,r) = L(I)

40



Region graph - Example

- PTCTL formula: z.P_, [ true U (sr<4) ]

(de=z=O%i££*%dLO<x=z<l)'ﬂEi*%de=z=1):ﬂg;>«m1<x=z<2)

OM]

(sr,x=0Az=1) (si,x=0Az=1)

41



Region graph construction

Region graph
— useful for establishing decidability of model checking
— or proving complexity results for model checking algorithms

But...

— the number of regions is exponential in the number of clocks
and the size of largest constant

— so model checking based on this is extremely expensive
— and so not implemented (even for timed automata)

Improved approaches based on:
— digital clocks

— zones (unions of regions)

42
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Digital clocks

- Simple idea: Clocks can only take integer (digital) values

— i.e. time domain is N as opposed to R
— based on notion of e-digitisation [HMP92]

- Only applies to arestricted class of PTAs; zones must be:

— closed - no strict inequalities (e.g. x>5)

Digital clocks semantics yields a finite-state MDP
— state space is a subset of Loc x NX, rather than Loc x RX
— clocks bounded by c,,.,, (max constant in PTA and formula)
— then use standard techniques for finite -state MDPs
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Example - Digital clocks

MDP: (di,x=z=0) — (di,x=z=1) — (di,x=z=2)

(digital
clocks) O.m1 0_9N]

(sr,x=0Az=1) (si,x=0Az=1) (sr,x=0Az=2)

v v v

(si,x=1Az=2)

(si,x=2Az=3) —>»

0.95 0.05

(sr,x=0Az=3) (si,x=0Az=3)
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Digital clocks

Digital clocks approach preserves:
— minimum/maximum reachability probabilities
— a subset of PTCTL properties
— (no nesting, only closed zones in formulae)
— only works for the initial state of the PTA
— (but can be extended to any state with integer clock values)

In practice:
— translation from PTA to MDP can often be done manually
— (by encoding the PTA directly into the PRISM language)
— automated translations exist: mcpta and PRISM
— many case studies, despite “closed” restriction

Problem: can lead to very large MDPs

— alleviated partially by efficient symbolic model checking
46



Digital clocks do not preserve

- Consider the PTCTL formula ¢=z.P_, [ true U (a A z<1)]
— a is an atomic proposition only true in location I,

- Digital semantics:

— no state satisfies & since for any state we have
ProbA(s,E[z:=0], true U (aAz<1)) = 1 for some adversary A
— hence P_, [ true U ¢ ] is trivially true in all states

47



Digital clocks do not preserve PTCTL

- Consider the PTCTL formula ¢=z.P_, [ true U (@ A z<1)]
— a is an atomic proposition only true in location I,
Dense time semantics:
— any state (l,,v) where v(x) € (1,2) satisfies ¢
more than one time unit must pass before we can reach I,
— hence P_, [ true U ¢ ] is not true in the initial state
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Summary (Part 5)

Probabilistic timed automata (PTAs)
— combine probability, nondeterminism, real-time
— well suited for e.g. for randomised communication protocols
— MDPs + clocks (or timed automata + discrete probability)

PTCTL: Temporal logic for properties of PTAs
— but many useful properties expressible with just reachability

PTA model checking

— region graph: decidability results, exponential complexity
— digital clocks: simple and effective, some scalability issues

Next: zone-based techniques, abstraction, software
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