
Summer School on Model Checking, Beijing, October 2010

2

Course overview

•  3 sessions (Mon/Tue/Thur): 6 × 50 minute lectures

−  1: Markov decision processes (MDPs)
−  2: Probabilistic LTL model checking
−  3: Compositional probabilistic verification
−  4: Abstraction, refinement and probabilistic software
−  5: Probabilistic timed automata (PTAs)
−  6: Software with time and probabilities

•  For additional background material
−  and an accompanying list of references
−  see: http://www.prismmodelchecker.org/lectures/

Software with
time and probabilities

Part 6

4

Overview (Part 6)

•  Model checking for PTAs
−  recap, summary
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Verifying software with time and probabilities
−  probabilistic timed programs (PTPs)
−  verifying PTPS with abstraction + refinement

•  Looking ahead: Quantitative verification of SystemC

5

Recap: Probabilistic timed automata

•  Probabilistic timed automata (PTAs)
−  models probabilistic, nondeterministic and timed behaviour
−  Markov decision processes + real-valued clocks
−  (or: timed automata + discrete probabilistic choice)

•  Like timed automata
−  all clocks increase at same rate
−  clocks can be reset (to zero)

•  PTA model checking
−  the semantics of a PTA

 is an infinite-state MDP
−  probabilistic (timed) reachability is defined as for MDPs
−  but computation is more complex...

init
x=0

0.9

retry

done
true

lost
x≤5

fail
true

time  
out

y>4
send

x≥3

x:=0

y≤4 0.1

6

Recap: Zones

•  Zones (clock constraints) over clocks X, denoted Zones(X):

−  where x, y ∈ X and c, d ∈ ℕ
−  zone defines a set of clock valuations, i.e. a subset of ℝX
−  used for both syntax of PTAs/properties and algorithms

•  Can be efficiently represented/manipulated
−  using difference bound matrices (DBMs)

•  Operations:
−  intersection, union, difference, resets, projections
−  (some preserve convexity, some do not)

 ζ ::= x ≤ d | c ≤ x | x+c ≤ y+d | ¬ζ | ζ ∨ ζ

7

PTA model checking - Summary

•  Several different approaches developed
−  basic idea: reduce to the analysis of a finite-state model
−  in most cases, this is a Markov decision process (MDP)

•  Region graph construction [KNSS02]
−  shows decidability, but gives exponential complexity

•  Digital clocks approach [KNPS06]
−  (slightly) restricted classes of PTAs
−  works well in practice, still some scalability limitations

•  Zone-based approaches:
−  (preferred approach for non-probabilistic timed automata)
−  forwards reachability [KNSS02]
−  backwards reachability [KNSW07]
−  game-based abstraction refinement [KNP09c]

8

Zone-based approaches

•  An alternative is to use zones to construct an MDP
−  similar to classical timed automata techniques

•  Conventional symbolic model checking relies on computing
−  post(S’): states reached from a state in S’ in a single step
−  pre(S’): states that can reach S’ in a single step

•  Extend these operators to include time passage
−  dpost[e](S’): states that can be reached from a state in S’ by

traversing the edge e
−  tpost(S’): states that can be reached from a state in S’ by

letting time elapse
−  pre[e](S’): states that can reach S’ by traversing the edge e
−  tpre(S’): states that can reach S’ by letting time elapse

9

Zone-based approaches

•  Symbolic states (l, ζ) where
−  l ∈ Loc (location)
−  ζ is a zone over PTA clocks and formula clocks
−  generally fewer zones than regions

•  tpost(l,ζ) = (l, ↗ζ∧inv(l))
−  ↗ζ can be reached from ζ by letting time pass
−  ↗ζ∧inv(l) must satisfy the invariant of the location l

•  tpre(l,ζ) = (l, ↙ζ∧inv(l))
−  ↙ ζ can reach ζ by letting time pass
−  ↙ ζ∧ inv(l) must satisfy the invariant of the location l

10

Zone-based approaches

•  For an edge e= (l,g,a,p,l’,Y) where
−  l is the source
−  g is the guard
−  a is the action
−  l’ is the target
−  Y is the clock reset

•  dpost[e](l,ζ) = (l’, (ζ∧g)[Y:=0])
−  ζ∧g satisfy the guard of the edge
−  (ζ∧g)[Y:=0] reset the clocks Y

•  dpre[e](l’,ζ’) = (l, [Y:=0]ζ’ ∧ (g ∧ inv(l)))
−  [Y:=0]ζ’ the clocks Y were reset
−  [Y:=0]ζ’ ∧ (g ∧ inv(l)) satisfied guard and invariant of l

11

Forwards reachability

•  First step: forwards exploration of PTA
−  using dpost[e](l,ζ) and tpost(l,ζ)
−  to ensure termination, need to take c-closure of each zone

encountered (c is the largest constant in the PTA)
−  resulting state space is a set of zones SF

•  Second step: construct finite state MDP
−  (SF, (linit,0), Act, δF, LF)
−  LF(l,ζ) = L(l) for all (l,ζ) ∈ SF
−  ((l,ζ), a, µ) ∈ δF iff there exists a probabilistic edge  

(l,g,a,p) of PTA such that for any (l’, ζ’) ∈ Z:

summation over all the edges of (l,g,a,p) such that
applying post to (l,ζ) leads to the symbolic state (l’,ζ’)

12

Forwards reachability - Example

PTA: MDP:

0.5 0.5

l0, x=y=0

l1, x=0,y≥0 l2, x=y

l3, x=0,y=1

l1

x:=0

l2

l3

l0

true

x=0∧y=1 x=0∧y=0 y:=0

0.5 0.5

13

Forwards reachability - Limitations

•  Problem reduced to analysis of finite-state MDP, but…

•  Only obtain upper bounds on maximum probabilities
−  caused by when edges are combined

•  Suppose post[e1](l,ζ)=(l1,ζ1) and post[e2](l,ζ)=(l2, ζ2)
−  where e1 and e2 from the same probabilistic edge

•  By definition of post
−  there exists (l,vi) ∈ (l,ζ) such that a state in (li, ζi) can be

reached by traversing the edge ei and letting time pass
•  Problem

−  we combine these transitions but are (l,v1) and (l,v2) the same?
−  may not exist states in (l,ζ) for which both edges are enabled

14

Forwards reachability - Example

•  Maximum probability of reaching l3 is 0.5 in the PTA
−  for the left branch need to take the first transition when x=1
−  for the right branch need to take the first transition when x=0

•  However, maximum probability in the MDP is 1
−  can reach l3 via either branch from (l0,x=y)

PTA: MDP:

0.5 0.5

l0, x=y=0

l1, x=0,y≥0 l2, x=y

l3, x=0,y=1

l1

x:=0

l2

l3

l0

true

x=0∧y=1 x=0∧y=0 y:=0

0.5 0.5

15

Backwards reachability

•  An alternative zone-based method: backwards reachability
−  state-space exploration in opposite direction, from target to

initial states; uses pre rather than post operator
•  Basic ideas: (see [KNSW07] for details)

−  construct a finite-state MDP comprising symbolic states
−  need to keep track of branching structure and take

conjunctions of symbolic states if necessary
−  MDP yields maximum reachability probabilities for PTA
−  for min. probs, do graph-based analysis and convert to max.

•  Advantages:
−  gives (exact) minimum/maximum reachability probabilities
−  extends to full PTCTL model checking

•  Disadvantage:
−  operations to implement are expensive, limits applicability
−  (requires manipulation of non-convex zones)

16

Overview (Part 6)

•  Model checking for PTAs
−  recap, summary
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Verifying software with time and probabilities
−  probabilistic timed programs (PTPs)
−  verifying PTPS with abstraction + refinement

•  Looking ahead: Quantitative verification of SystemC

17

Recap: Abstraction-refinement loop

•  Quantitative abstraction-refinement loop for MDPs
−  based on abstractions of MDPs as stochastic games

[error<ε]

Initial  
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New 
partition

Return
bounds

Abstraction •  Refinements yield
strictly finer partition

•  Guaranteed to  
converge for finite
models 

•  Guaranteed to
converge for infinite
models with finite
bisimulation

18

Abstraction refinement for PTAs

•  Model checking for PTAs using abstraction refinement

[error<ε]

Initial  
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New 
partition

Return
bounds

Abstraction
Initial

abstraction
from

forwards
reachability

Splitting of
zones (DBMs)

Guaranteed
convergence
for any ε≥0

Stochastic
game

abstraction
computed
and stored
using zones

(DBMs)

19

Abstraction refinement for PTAs

•  Computes reachability probabilities in PTAs
−  minimum or maximum, exact values (“error” ε=0)
−  also time-bounded reachability, with extra clock

•  Integrated in PRISM (development release)
−  PRISM modelling language extended with clocks
−  implemented using DBMs

•  In practice, performs very well
−  faster than digital clocks or backwards on large example set
−  (sometimes by several orders of magnitude)
−  handles larger PTAs than the digital clocks approach

•  And: use of abstraction allows exension to other models…

20

Overview (Part 6)

•  Model checking for PTAs
−  recap, summary
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Verifying software with time and probabilities
−  probabilistic timed programs (PTPs)
−  verifying PTPS with abstraction + refinement

•  Looking ahead: Quantitative verification of SystemC

Probabilistic timed programs

•  Probabilistic timed programs (PTPs)
−  probability, nondeterminism and real-time and data
−  probabilistic timed automata + discrete-valued variables

•  Time – assume a finite set X of real-valued clocks
−  Zones(X) is the set of zones ζ over X
−  i.e. ζ ::= x ≤ d | c ≤ x | x+c ≤ y+d | ¬ζ | ζ ∨ ζ
−  where x, y ∈ X and c, d ∈ ℕ

•  Data – assume a finite set D of data variables
−  Val(D) is the set of all valuations of D
−  Pred(D) is the set of predicates over D
−  Up(D) is the set of all update functions over D
−  i.e. set of all functions up : Val(D)→Val(D)

Probabilistic timed programs

•  A PTP is a tuple (L, linit, D, uinit, X, Act, inv, enab, prob)
−  L = locations, D = data variables, X = clocks, Act = actions
−  linit ∈ L is initial location and uinit ∈ Val(D) is initial valuation

−  inv : L → Zones(X) is the invariant condition
•  clocks X must satisfy inv(l) whilst in location l

−  enab : L×Act → Pred(D) × Zones(X) is the enabling condition
•  guard for action a in location l split into enabD(l,a) and enabX(l,a)
•  can only take action a in l if enabD(l,a) ∧ enabX(l,a)

−  prob : L×Act → Dist(Up(D) × 2X × L)  
is the probabilistic transition function

•  if take action a in l, then with probability prob(l,a)(up,Y,l’):
•  update D according to up, reset clocks in Y⊆X, move to location l’

Example - PTP

•  Simple communication protocol
−  aims to send a message  

over an unreliable channel
−  tries to send up to 5 times
−  or until time-out of 4 secs
−  delay between tries: 3-5 secs

•  In the PTP:
−  L = {init, lost, done, fail}
−  D = {c} (c counts number of tries)
−  X = {x, y} (x for delay, y for timeout)
−  Act = {send, retry, giveup, timeout}

•  Property of interest: maximum probability of reaching “fail”
−  actual max. probability is 0.1 (time-out after after 1 send)

init
x=0

0.9

retry

done
true

lost
x≤5

c++

fail
true

give- 
up

time  
out

y>4 c>5
send

x≥3

x:=0

c≤5∧y≤4
0.1

c:=0

Abstraction of PTPs

•  Formal semantics of a PTP is an infinite-state MDP
−  over state space L×Val(D)×ℝX

−  data domain Val(D) may be large/infinite; so need abstraction
−  time domain ℝ is dense; so need abstraction

•  In general, can use an abstract domain ((A,⊔,⊓,⊑), α, γ)
−  lattice of abstract states, abstraction/concretisation functions
−  here, we use predicate abstraction for data and zones for time
−  i.e. abstract states are (l,b,ζ) ∈ L×{F,T}n×Zones(X)
−  assuming a set of data predicates Φ = {Φ1,…, Φn}
−  (see [KNP10b] for details of other cases)

•  We use (finite-state) stochastic games to abstract PTPs
−  i.e. state space is L×{F,T}n×Zones(X)

Abstraction/refinement of PTPs

•  1. Build reachability graph for PTP
−  all reachable abstract states and possible transitions between
−  constructed through (classical) forwards reachability search
−  as in, for example, UPPAAL, but not on-the-fly
−  zone operations (DBMs) and SAT/SMT for symbolic post

•  2. Build stochastic game abstraction for PTP
−  i.e. of underlying infinite-state MDP semantics
−  constructed from reachability graph
−  further zone operations and/or SAT/SMT solving needed
−  yields lower/upper bound on reachability probabilities

•  3. Refine the abstraction (iteratively)
−  split zones, or generate new predicates

Example 1 - Abstraction

Reachability graph:

init, c=0,  
x=y=0 fail, c=1,  

x=0,4<y≤5

lost, c=2,  
x=0,3≤y≤4

done, c=1,  
x=0,3≤y≤4

init, c=2,  
x=0,6≤y≤9

0.9 fail, c=2,  
x=0,6≤y≤9

init, c=1,  
x=0,3≤y≤5

done, c=0,  
x=y=0

lost, c=1,  
x=y=0 send

retry
send

time- 
out

time- 
out

retry

PTP:

Actions send and time-out
are both enabled since

abstract state satisfies 3≤y≤5

In this example:
  just abstract time, not data
  i.e. abstract states are of the form:
  (l,d,ζ) ∈ L×Val(D)×Zones(X)

init
x=0

0.9

retry

done
true

lost
x≤5

c++

fail
true

give- 
up

time  
out

y>4 c>5
send

x≥3

x:=0

c≤5∧y≤4
0.1

c:=0

Example 1 - Abstraction

Stochastic game abstraction:

PTP:

init, c=0,  
x=y=0

0.1

0.9 fail, c=1,  
x=0,4<y≤5

lost, c=2,  
x=0,3≤y≤4

done, c=1,  
x=0,3≤y≤4

0.1

0.9

init, c=2,  
x=0,6≤y≤9

0.9 fail, c=2,  
x=0,6≤y≤9

init, c=1,  
x=0,3≤y≤5

done, c=0,  
x=y=0

lost, c=1,  
x=y=0

Player 1 choice
i.e. imprecision due to abstraction

3≤y≤4 or 4<y≤5?

Results:
  max probability to reach fail?
  lower/upper bounds: [0.01,0.1]
  (in abstraction, can try to send  
 either once or twice)

init
x=0

0.9

retry

done
true

lost
x≤5

c++

fail
true

give- 
up

time  
out

y>4 c>5
send

x≥3

x:=0

c≤5∧y≤4
0.1

c:=0

Example 1 - Refinement

fail, c=1,  
x=0,4<y≤5

lost, c=2,  
x=0,3≤y≤4

done, c=1,  
x=0,3≤y≤4

0.1

0.9

init, c=2,  
x=0,6≤y≤9

0.9 fail, c=2,  
x=0,6≤y≤9

init, c=1,  
x=0,3≤y≤4

init, c=1,  
x=0,4<y≤5

init, c=0,  
x=y=0

0.1

0.9 done, c=0,  
x=y=0

lost, c=1,  
x=y=0

init, c=0,  
x=y=0

0.1

0.9 fail, c=1,  
x=0,4<y≤5

lost, c=2,  
x=0,3≤y≤4

done, c=1,  
x=0,3≤y≤4

0.1

0.9

init, c=2,  
x=0,6≤y≤9

0.9 fail, c=2,  
x=0,6≤y≤9

init, c=1,  
x=0,3≤y≤5

done, c=0,  
x=y=0

lost, c=1,  
x=y=0

First abstraction:
(bounds [0.01,0.1])

Refined abstraction:
(bounds [0.1,0.1])

Refine here
(i.e. split state)

Player 1 choice removed

Player 2 choice
i.e. nondeterminism in original PTP

(how long to delay for in lost)

Example 2 – Time and data

Stochastic game abstraction:

PTP:

Player 1 choice:
imprecision from both time/data

init, c=0,  
x=y=0

0.1

0.9
0.1

0.9

fail, c≠0,  
x=0,4<y≤5

lost, c=0,  
x=0,3≤y≤4

done, c≠0,  
x=0,3≤y≤4

0.1

0.9

init, c=0,  
x=0,6≤y≤9

init, c≠0,  
x=0,3≤y≤5

done, c=0,  
x=y=0

lost, c≠0,  
x=y=0

lost, c≠0,  
x=0,3≤y≤4

0.9

0.1 init, c≠0,  
x=0,6≤y≤9

0.9 fail, c=0,  
x=0,6≤y≤9

fail, c≠0,  
x=0,6≤y≤9

In this example:
  abstract time and data
  i.e. abstract states are of the form:
  (l,b,ζ) ∈ L×{F,T}n×Zones(X)
  single data predicate: {c=0}

init
x=0

0.9

retry

done
true

lost
x≤5

c++

fail
true

give- 
up

time  
out

y>4 c>5
send

x≥3

x:=0

c≤5∧y≤4
0.1

c:=0

Example 2 – Time and data

States where 4<y≤5,
only possibility is time-out

fail, c≠0,  
x=0,4<y≤5

lost, c=0,  
x=0,3≤y≤4

done, c≠0,  
x=0,3≤y≤4

init, c≠0,  
x=0,3≤y≤5

lost, c≠0,  
x=0,3≤y≤4

States where 3≤y≤4 and c≠-1,
incrementing c lead to c≠0

States where 3≤y≤4 and c=-1,
incrementing c lead to c=0

0.1

0.9
0.9

0.1

Results:
  imprecise, as in 
 earlier example
  bounds on max.  
 prob. of failure  
 are [0.01,0.1]

Symbolic operations

•  Need symbolic manipulation of abstract states

•  For example, the post operator
−  to construct reachability graph
−  over abstract states A = L×{F,T}n×Zones(X)
−  split into two parts, timed and discrete:
−  tpost[l] : A → 2A - elapse of time in location l
−  dpost[e] : A → 2A - discrete transition on edge e = (l,α,up,Y,l’)

•  Also need (not discussed here) operations to:
−  construct player 1/2 choices in stochastic game
−  split abstract states during refinement

Symbolic operations: Post

•  Time (clocks X)
−  use zone operations, implemented with DBMs
−  for zone ζ ∈ Zones(X):
−  tpostX[l](ζ) = inv(l) ∧ ↗ζ
−  dpostX[e](ζ) = (ζ ∧ enab(l,α))[Y:=0] ∧ inv(l’)

•  Data (variables D)
−  formulate as SAT/SMT problem, use solver to enumerate
−  for predicate valuation b ∈ {F,T}n:
−  dpostD[e](b) contains all instances of b’ ∈ {F,T}n such that
−  ∃u,u’∈Val(D) satisfying: up(u)=u’ ∧ Φ(u)=b ∧ Φ(u’)=b’

•  Combined time/data
−  for an abstract state (l,b,ζ) ∈ L×{F,T}n×Zones(X):
−  tpost[l](l,b,ζ) = { (l,b,tpostX[l](ζ)) }
−  dpost[e](l,b,ζ) = { (l’,b’,dpostX[e](ζ)) | b’ ∈ dpostD[e](b) }

Example: Post operator

•  Abstract state a = (l,b,ζ)
−  where l=init, b=(f), ζ=x=0∧3≤y≤5
−  and edge e = (init,send,c++,{},lost)

•  Time
−  tpostX[init](ζ) = x=0∧3≤y≤5
−  dpostX[e](ζ) = x=0∧3≤y≤4

•  Data
−  dpostD[e](b) = {(f),(t)}

•  Combined (tpost, then dpost)
−  tpost[init](a) = { a’ }

 where a’ = (init,(f),x=0∧3≤y≤5)
−  dpost[e](a’) =

 { (lost,(f),x=0∧3≤y≤4), (lost,(t),x=0∧3≤y≤4) }

init
x=0

0.9

retry

done
true

lost
x≤5

c++

fail
true

give- 
up

time  
out

y>4 c>5
send

x≥3

x:=0

c≤5∧y≤4
0.1

c:=0

fail, c≠0,  
x=0,4<y≤5

lost, c=0,  
x=0,3≤y≤4

done, c≠0,  
x=0,3≤y≤4

init, c≠0,  
x=0,3≤y≤5

lost, c≠0,  
x=0,3≤y≤4

send

send

time- 
out

Overview (Part 6)

•  Model checking for PTAs
−  recap, summary
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Verifying software with time and probabilities
−  probabilistic timed programs (PTPs)
−  verifying PTPS with abstraction + refinement

•  Looking ahead: Quantitative verification of SystemC

A concrete challenge: SystemC

•  SystemC: A system-level modelling language
−  increasingly prominent in the development of embedded

systems, e.g. for System-on-Chip (SoC) designs
−  close enough to hardware level to support synthesis to RTL
−  but models complex designs at a higher level of abstraction
−  very efficient simulation at design phase

•  Basic ingredients
−  C++-based, with low-level data-types for hardware
−  an object-oriented approach to design
−  and convenient high-level abstractions of concurrent

communicating processes
•  Analysis of SystemC designs

−  mostly simulation currently; growing interest in verification
−  identified as an important but challenging direction [Vardi’07]

Quantitative verification of SystemC

•  Challenges involved in quantitative verification of SystemC:

•  Software
−  basic process behaviour is defined in terms of C++ code,

using a rich array of data types
•  Concurrency

−  designs comprise multiple concurrent processes,
communicating through message-passing primitives

•  Timing
−  processes can be subjected to precisely timed delays, through

interaction with the SystemC scheduler
•  Probability

−  SystemC components may link to unpredictable devices
−  due to communication failures (e.g. wireless/radio),  

or randomisation (e.g. ZigBee/Bluetooth)

Quantitative verification of SystemC

•  Outline approach to quantitative SystemC verification…

•  SystemC designs comprise multiple modules/threads
−  communicating through ports/channels
−  translate to parallel composition of PTPs
−  C++ control-flow graph maps to PTP locations/transitions
−  various SystemC model extractors exist to do this

•  Concurrency/timing between SystemC threads
−  controlled by precisely defined (co-operative/non-preemptive)

scheduler, incorporating thread-specified delays
−  existing translation from SystemC to UPPAAL [Herber et al.’08]

•  Probabilistic behaviour - randomisation or failures
−  randomisation: map rand() calls to PTP probabilistic choice
−  failures: replace e.g. network calls with probabilistic stubs
−  similar approach applied to probabilistic ANSI-C [VMCAI’09]

Summary (Part 6)

•  Probabilistic timed automata (PTAs)
−  combine probability, nondeterminism, real-time

•  PTA model checking
−  region graph: decidability results, exponential complexity
−  digital clocks: simple and effective, some scalability issues
−  forwards reachability: only upper bounds on max. prob.s
−  backwards reachability: exact results but often expensive
−  abstraction refinement using stochastic games: performs well
−  tool support: PRISM, mcpta, UPPAAL-Pro

•  Probabilistic timed programs
−  probability + nondeterminism + real-time + data
−  amenable to verification with abstraction/refinement

Course summary

•  Quantitative verification
−  probability (e.g. randomisation, failures)
−  nondeterminism (e.g. concurrency, underspecification)
−  real-time behaviour and constraints (e.g. delays, time-outs)

•  Probabilistic models:
−  discrete-time Markov chains, Markov decision processes,

probabilistic timed automata, probabilistic timed programs
•  Probabilistic model checking:

−  temporal logics, e.g. PCTL, PTCTL
−  efficient techniques, tools exist

•  Compositional probabilistic verification
−  MDP-based assume-guarantee framework

•  Quantitative abstraction refinement
−  fully automatic construction/analysis of abstractions
−  essential for large, complex systems such as software

More info here:
www.prismmodelchecker.org

Thanks for your attention

