
Summer School on Model Checking, Beijing, October 2010 



2 

Course overview 

•  3 sessions (Mon/Tue/Thur): 6 × 50 minute lectures 

−  1: Markov decision processes (MDPs) 
−  2: Probabilistic LTL model checking 
−  3: Compositional probabilistic verification 
−  4: Abstraction, refinement and probabilistic software 
−  5: Probabilistic timed automata (PTAs) 
−  6: Software with time and probabilities 

•  For additional background material 
−  and an accompanying list of references 
−  see: http://www.prismmodelchecker.org/lectures/ 



Software with 
time and probabilities 

Part 6 
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Overview (Part 6) 

•  Model checking for PTAs 
−  recap, summary 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Verifying software with time and probabilities 
−  probabilistic timed programs (PTPs) 
−  verifying PTPS with abstraction + refinement 

•  Looking ahead: Quantitative verification of SystemC 
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Recap: Probabilistic timed automata 

•  Probabilistic timed automata (PTAs) 
−  models probabilistic, nondeterministic and timed behaviour 
−  Markov decision processes + real-valued clocks 
−  (or: timed automata + discrete probabilistic choice) 

•  Like timed automata 
−  all clocks increase at same rate 
−  clocks can be reset (to zero) 

•  PTA model checking 
−  the semantics of a PTA 

 is an infinite-state MDP 
−  probabilistic (timed) reachability is defined as for MDPs 
−  but computation is more complex... 

init 
x=0 

0.9 

retry 

done 
true 

lost 
x≤5 

fail 
true 

time  
out 

y>4 
send 

x≥3 

x:=0 

y≤4 0.1 
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Recap: Zones 

•  Zones (clock constraints) over clocks X, denoted Zones(X): 

−  where x, y ∈ X and c, d ∈ ℕ 
−  zone defines a set of clock valuations, i.e. a subset of ℝX 
−  used for both syntax of PTAs/properties and algorithms 

•  Can be efficiently represented/manipulated 
−  using difference bound matrices (DBMs) 

•  Operations: 
−  intersection, union, difference, resets, projections 
−  (some preserve convexity, some do not) 

 ζ ::= x ≤ d  | c ≤ x  | x+c ≤ y+d  | ¬ζ  | ζ ∨ ζ  
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PTA model checking - Summary 

•  Several different approaches developed 
−  basic idea: reduce to the analysis of a finite-state model 
−  in most cases, this is a Markov decision process (MDP) 

•  Region graph construction [KNSS02] 
−  shows decidability, but gives exponential complexity 

•  Digital clocks approach [KNPS06] 
−  (slightly) restricted classes of PTAs 
−  works well in practice, still some scalability limitations 

•  Zone-based approaches: 
−  (preferred approach for non-probabilistic timed automata) 
−  forwards reachability [KNSS02] 
−  backwards reachability [KNSW07] 
−  game-based abstraction refinement [KNP09c] 
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Zone-based approaches 

•  An alternative is to use zones to construct an MDP 
−  similar to classical timed automata techniques 

•  Conventional symbolic model checking relies on computing 
−  post(S’): states reached from a state in S’ in a single step 
−  pre(S’): states that can reach S’ in a single step 

•  Extend these operators to include time passage 
−  dpost[e](S’): states that can be reached from a state in S’ by 

traversing the edge e 
−  tpost(S’): states that can be reached from a state in S’ by 

letting time elapse 
−  pre[e](S’): states that can reach S’ by traversing the edge e 
−  tpre(S’): states that can reach S’ by letting time elapse 
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Zone-based approaches 

•  Symbolic states (l, ζ) where  
−  l ∈ Loc (location) 
−  ζ is a zone over PTA clocks and formula clocks 
−  generally fewer zones than regions 

•  tpost(l,ζ) = (l, ↗ζ∧inv(l) ) 
−  ↗ζ can be reached from ζ by letting time pass 
−  ↗ζ∧inv(l) must satisfy the invariant of the location l 

•  tpre(l,ζ) = (l, ↙ζ∧inv(l) )  
−  ↙ ζ can reach ζ by letting time pass 
−  ↙ ζ∧ inv(l) must satisfy the invariant of the location l 
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Zone-based approaches 

•  For an edge e= (l,g,a,p,l’,Y) where 
−  l is the source 
−  g is the guard 
−  a is the action 
−  l’ is the target  
−  Y is the clock reset 

•  dpost[e](l,ζ) = (l’, (ζ∧g)[Y:=0] ) 
−  ζ∧g satisfy the guard of the edge 
−  (ζ∧g)[Y:=0] reset the clocks Y  

•  dpre[e](l’,ζ’) = (l,  [Y:=0]ζ’ ∧ (g ∧ inv(l)) ) 
−  [Y:=0]ζ’ the clocks Y were reset 
−  [Y:=0]ζ’ ∧ (g ∧ inv(l)) satisfied guard and invariant of l 
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Forwards reachability 

•  First step: forwards exploration of PTA 
−  using dpost[e](l,ζ) and tpost(l,ζ) 
−  to ensure termination, need to take c-closure of each zone 

encountered (c is the largest constant in the PTA) 
−  resulting state space is a set of zones SF 

•  Second step: construct finite state MDP 
−  (SF, (linit,0), Act, δF, LF) 
−  LF(l,ζ) = L(l) for all (l,ζ) ∈ SF 
−  ((l,ζ), a, µ) ∈ δF iff there exists a probabilistic edge  

(l,g,a,p) of PTA such that for any (l’, ζ’) ∈ Z: 

summation over all the edges of (l,g,a,p) such that 
applying post to (l,ζ) leads to the symbolic state (l’,ζ’) 
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Forwards reachability - Example 

PTA: MDP: 

0.5 0.5 

l0, x=y=0 

l1, x=0,y≥0 l2, x=y 

l3, x=0,y=1 

l1 

x:=0 

l2 

l3 

l0 

true 

x=0∧y=1 x=0∧y=0 y:=0 

0.5 0.5 
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Forwards reachability - Limitations 

•  Problem reduced to analysis of finite-state MDP, but… 

•  Only obtain upper bounds on maximum probabilities 
−  caused by when edges are combined 

•  Suppose post[e1](l,ζ)=(l1,ζ1) and post[e2](l,ζ)=(l2, ζ2) 
−  where e1 and e2 from the same probabilistic edge 

•  By definition of post 
−  there exists (l,vi) ∈ (l,ζ) such that a state in (li, ζi) can be 

reached by traversing the edge ei and letting time pass 
•  Problem 

−  we combine these transitions but are (l,v1) and (l,v2) the same? 
−  may not exist states in (l,ζ) for which both edges are enabled 
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Forwards reachability - Example 

•  Maximum probability of reaching l3 is 0.5 in the PTA 
−  for the left branch need to take the first transition when x=1 
−  for the right branch need to take the first transition when x=0 

•  However, maximum probability in the MDP is 1 
−  can reach l3 via either branch from (l0,x=y) 

PTA: MDP: 

0.5 0.5 

l0, x=y=0 

l1, x=0,y≥0 l2, x=y 

l3, x=0,y=1 

l1 

x:=0 

l2 

l3 

l0 

true 

x=0∧y=1 x=0∧y=0 y:=0 

0.5 0.5 
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Backwards reachability 

•  An alternative zone-based method: backwards reachability 
−  state-space exploration in opposite direction, from target to 

initial states; uses pre rather than post operator 
•  Basic ideas: (see [KNSW07] for details) 

−  construct a finite-state MDP comprising symbolic states 
−  need to keep track of branching structure and take 

conjunctions of symbolic states if necessary 
−  MDP yields maximum reachability probabilities for PTA 
−  for min. probs, do graph-based analysis and convert to max. 

•  Advantages: 
−  gives (exact) minimum/maximum reachability probabilities 
−  extends to full PTCTL model checking 

•  Disadvantage: 
−  operations to implement are expensive, limits applicability 
−  (requires manipulation of non-convex zones) 
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Overview (Part 6) 

•  Model checking for PTAs 
−  recap, summary 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Verifying software with time and probabilities 
−  probabilistic timed programs (PTPs) 
−  verifying PTPS with abstraction + refinement 

•  Looking ahead: Quantitative verification of SystemC 
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Recap: Abstraction-refinement loop 

•  Quantitative abstraction-refinement loop for MDPs 
−  based on abstractions of MDPs as stochastic games 

[error<ε] 

Initial  
partition 

Bounds and 
strategies 

[error≥ε] 

model 
check 

abstract 

refine 

New 
partition 

Return 
bounds 

Abstraction •  Refinements yield 
strictly finer partition 

•  Guaranteed to  
converge for finite 
models 

•  Guaranteed to 
converge for infinite 
models with finite 
bisimulation 
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Abstraction refinement for PTAs 

•  Model checking for PTAs using abstraction refinement 

[error<ε] 

Initial  
partition 

Bounds and 
strategies 

[error≥ε] 

model 
check 

abstract 

refine 

New 
partition 

Return 
bounds 

Abstraction 
Initial 

abstraction 
from 

forwards 
reachability 

Splitting of 
zones (DBMs) 

Guaranteed 
convergence 
for any ε≥0 

Stochastic 
game 

abstraction 
computed 
and stored 
using zones 

(DBMs) 
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Abstraction refinement for PTAs 

•  Computes reachability probabilities in PTAs 
−  minimum or maximum, exact values (“error” ε=0) 
−  also time-bounded reachability, with extra clock 

•  Integrated in PRISM (development release) 
−  PRISM modelling language extended with clocks 
−  implemented using DBMs 

•  In practice, performs very well 
−  faster than digital clocks or backwards on large example set 
−  (sometimes by several orders of magnitude) 
−  handles larger PTAs than the digital clocks approach 

•  And: use of abstraction allows exension to other models… 
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Overview (Part 6) 

•  Model checking for PTAs 
−  recap, summary 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Verifying software with time and probabilities 
−  probabilistic timed programs (PTPs) 
−  verifying PTPS with abstraction + refinement 

•  Looking ahead: Quantitative verification of SystemC 



Probabilistic timed programs 

•  Probabilistic timed programs (PTPs) 
−  probability, nondeterminism and real-time and data 
−  probabilistic timed automata + discrete-valued variables 

•  Time – assume a finite set X of real-valued clocks 
−  Zones(X) is the set of zones ζ over X 
−  i.e. ζ ::= x ≤ d  | c ≤ x  | x+c ≤ y+d  | ¬ζ  | ζ ∨ ζ 
−  where x, y ∈ X and c, d ∈ ℕ  

•  Data – assume a finite set D of data variables 
−  Val(D) is the set of all valuations of D 
−  Pred(D) is the set of predicates over D 
−  Up(D) is the set of all update functions over D 
−  i.e. set of all functions up : Val(D)→Val(D) 



Probabilistic timed programs 

•  A PTP is a tuple (L, linit, D, uinit, X, Act, inv, enab, prob) 
−  L = locations, D = data variables, X = clocks, Act = actions 
−  linit ∈ L is initial location and uinit ∈ Val(D) is initial valuation 

−  inv : L → Zones(X) is the invariant condition 
•  clocks X must satisfy inv(l) whilst in location l 

−  enab : L×Act → Pred(D) × Zones(X) is the enabling condition 
•  guard for action a in location l split into enabD(l,a) and enabX(l,a) 
•  can only take action a in l if enabD(l,a) ∧ enabX(l,a) 

−  prob : L×Act → Dist(Up(D) × 2X × L)  
is the probabilistic transition function 

•  if take action a in l, then with probability prob(l,a)(up,Y,l’): 
•  update D according to up, reset clocks in Y⊆X, move to location l’ 



Example - PTP 

•  Simple communication protocol 
−  aims to send a message  

over an unreliable channel 
−  tries to send up to 5 times 
−  or until time-out of 4 secs 
−  delay between tries: 3-5 secs 

•  In  the PTP: 
−  L = {init, lost, done, fail} 
−  D = {c} (c counts number of tries) 
−  X = {x, y} (x for delay, y for timeout) 
−  Act = {send, retry, giveup, timeout} 

•  Property of interest: maximum probability of reaching “fail” 
−  actual max. probability is 0.1 (time-out after after 1 send) 

init 
x=0 

0.9 

retry 

done 
true 

lost 
x≤5 

c++ 

fail 
true 

give- 
up 

time  
out 

y>4 c>5 
send 

x≥3 

x:=0 

c≤5∧y≤4 
0.1 

c:=0 



Abstraction of PTPs 

•  Formal semantics of a PTP is an infinite-state MDP 
−  over state space L×Val(D)×ℝX 

−  data domain Val(D) may be large/infinite; so need abstraction 
−  time domain ℝ is dense; so need abstraction 

•  In general, can use an abstract domain ((A,⊔,⊓,⊑), α, γ) 
−  lattice of abstract states, abstraction/concretisation functions 
−  here, we use predicate abstraction for data and zones for time 
−  i.e. abstract states are (l,b,ζ) ∈ L×{F,T}n×Zones(X) 
−  assuming a set of data predicates Φ = {Φ1,…, Φn} 
−  (see [KNP10b] for details of other cases) 

•  We use (finite-state) stochastic games to abstract PTPs 
−  i.e. state space is L×{F,T}n×Zones(X) 



Abstraction/refinement of PTPs 

•  1. Build reachability graph for PTP 
−  all reachable abstract states and possible transitions between 
−  constructed through (classical) forwards reachability search 
−  as in, for example, UPPAAL, but not on-the-fly 
−  zone operations (DBMs) and SAT/SMT for symbolic post 

•  2. Build stochastic game abstraction for PTP 
−  i.e. of underlying infinite-state MDP semantics 
−  constructed from reachability graph 
−  further zone operations and/or SAT/SMT solving needed 
−  yields lower/upper bound  on reachability probabilities 

•  3. Refine the abstraction (iteratively) 
−  split zones, or generate new predicates 



Example 1 - Abstraction 

Reachability graph: 

init, c=0,  
x=y=0 fail, c=1,  

x=0,4<y≤5 

lost, c=2,  
x=0,3≤y≤4 

done, c=1,  
x=0,3≤y≤4 

init, c=2,  
x=0,6≤y≤9 

0.9 fail, c=2,  
x=0,6≤y≤9 

init, c=1,  
x=0,3≤y≤5 

done, c=0,  
x=y=0 

lost, c=1,  
x=y=0 send 

retry 
send 

time- 
out 

time- 
out 

retry 

PTP: 

Actions send and time-out 
are both enabled since 

abstract state satisfies 3≤y≤5 

In this example: 
  just abstract time, not data 
  i.e. abstract states are of the form: 
  (l,d,ζ) ∈ L×Val(D)×Zones(X) 

init 
x=0 

0.9 

retry 

done 
true 

lost 
x≤5 

c++ 

fail 
true 

give- 
up 

time  
out 

y>4 c>5 
send 

x≥3 

x:=0 

c≤5∧y≤4 
0.1 

c:=0 



Example 1 - Abstraction 

Stochastic game abstraction: 

PTP: 

init, c=0,  
x=y=0 

0.1 

0.9 fail, c=1,  
x=0,4<y≤5 

lost, c=2,  
x=0,3≤y≤4 

done, c=1,  
x=0,3≤y≤4 

0.1 

0.9 

init, c=2,  
x=0,6≤y≤9 

0.9 fail, c=2,  
x=0,6≤y≤9 

init, c=1,  
x=0,3≤y≤5 

done, c=0,  
x=y=0 

lost, c=1,  
x=y=0 

Player 1 choice 
i.e. imprecision due to abstraction 

3≤y≤4 or 4<y≤5? 

Results: 
  max probability to reach fail? 
  lower/upper bounds: [0.01,0.1] 
  (in abstraction, can try to send  
   either once or twice) 

init 
x=0 

0.9 

retry 

done 
true 

lost 
x≤5 

c++ 

fail 
true 

give- 
up 

time  
out 

y>4 c>5 
send 

x≥3 

x:=0 

c≤5∧y≤4 
0.1 

c:=0 



Example 1 - Refinement 

fail, c=1,  
x=0,4<y≤5 

lost, c=2,  
x=0,3≤y≤4 

done, c=1,  
x=0,3≤y≤4 

0.1 

0.9 

init, c=2,  
x=0,6≤y≤9 

0.9 fail, c=2,  
x=0,6≤y≤9 

init, c=1,  
x=0,3≤y≤4 

init, c=1,  
x=0,4<y≤5 

init, c=0,  
x=y=0 

0.1 

0.9 done, c=0,  
x=y=0 

lost, c=1,  
x=y=0 

init, c=0,  
x=y=0 

0.1 

0.9 fail, c=1,  
x=0,4<y≤5 

lost, c=2,  
x=0,3≤y≤4 

done, c=1,  
x=0,3≤y≤4 

0.1 

0.9 

init, c=2,  
x=0,6≤y≤9 

0.9 fail, c=2,  
x=0,6≤y≤9 

init, c=1,  
x=0,3≤y≤5 

done, c=0,  
x=y=0 

lost, c=1,  
x=y=0 

First abstraction: 
(bounds [0.01,0.1]) 

Refined abstraction: 
(bounds [0.1,0.1]) 

Refine here 
(i.e. split state) 

Player 1 choice removed 

Player 2 choice 
i.e. nondeterminism in original PTP 

(how long to delay for in lost) 



Example 2 – Time and data 

Stochastic game abstraction: 

PTP: 

Player 1 choice: 
imprecision from both time/data 

init, c=0,  
x=y=0 

0.1 

0.9 
0.1 

0.9 

fail, c≠0,  
x=0,4<y≤5 

lost, c=0,  
x=0,3≤y≤4 

done, c≠0,  
x=0,3≤y≤4 

0.1 

0.9 

init, c=0,  
x=0,6≤y≤9 

init, c≠0,  
x=0,3≤y≤5 

done, c=0,  
x=y=0 

lost, c≠0,  
x=y=0 

lost, c≠0,  
x=0,3≤y≤4 

0.9 

0.1 init, c≠0,  
x=0,6≤y≤9 

0.9 fail, c=0,  
x=0,6≤y≤9 

fail, c≠0,  
x=0,6≤y≤9 

In this example: 
  abstract time and data 
  i.e. abstract states are of the form: 
  (l,b,ζ) ∈ L×{F,T}n×Zones(X) 
  single data predicate: {c=0} 

init 
x=0 

0.9 

retry 

done 
true 

lost 
x≤5 

c++ 

fail 
true 

give- 
up 

time  
out 

y>4 c>5 
send 

x≥3 

x:=0 

c≤5∧y≤4 
0.1 

c:=0 



Example 2 – Time and data 

States where 4<y≤5, 
only possibility is time-out 

fail, c≠0,  
x=0,4<y≤5 

lost, c=0,  
x=0,3≤y≤4 

done, c≠0,  
x=0,3≤y≤4 

init, c≠0,  
x=0,3≤y≤5 

lost, c≠0,  
x=0,3≤y≤4 

States where 3≤y≤4 and c≠-1, 
incrementing c lead to c≠0 

States where 3≤y≤4 and c=-1, 
incrementing c lead to c=0 

0.1 

0.9 
0.9 

0.1 

Results: 
  imprecise, as in 
   earlier example 
  bounds on max.  
   prob. of failure  
   are [0.01,0.1] 



Symbolic operations 

•  Need symbolic manipulation of abstract states 

•  For example, the post operator 
−  to construct reachability graph 
−  over abstract states A = L×{F,T}n×Zones(X) 
−  split into two parts, timed and discrete: 
−  tpost[l] : A → 2A - elapse of time in location l 
−  dpost[e] : A → 2A - discrete transition on edge e = (l,α,up,Y,l’) 

•  Also need (not discussed here) operations to: 
−  construct player 1/2 choices in stochastic game 
−  split abstract states during refinement 



Symbolic operations: Post 

•  Time (clocks X) 
−  use zone operations, implemented with DBMs 
−  for zone ζ ∈ Zones(X): 
−  tpostX[l](ζ) = inv(l) ∧ ↗ζ  
−  dpostX[e](ζ) = (ζ ∧ enab(l,α))[Y:=0] ∧ inv(l’) 

•  Data (variables D) 
−  formulate as SAT/SMT problem, use solver to enumerate  
−  for predicate valuation b ∈ {F,T}n: 
−  dpostD[e](b) contains all instances of b’ ∈ {F,T}n such that 
−  ∃u,u’∈Val(D) satisfying: up(u)=u’ ∧ Φ(u)=b ∧ Φ(u’)=b’ 

•  Combined time/data 
−  for an abstract state (l,b,ζ) ∈ L×{F,T}n×Zones(X): 
−  tpost[l](l,b,ζ) = { (l,b,tpostX[l](ζ)) } 
−  dpost[e](l,b,ζ) = { (l’,b’,dpostX[e](ζ)) | b’ ∈ dpostD[e](b) } 



Example: Post operator 

•  Abstract state a = (l,b,ζ) 
−  where l=init, b=(f), ζ=x=0∧3≤y≤5 
−  and edge e = (init,send,c++,{},lost) 

•  Time 
−  tpostX[init](ζ) = x=0∧3≤y≤5 
−  dpostX[e](ζ) = x=0∧3≤y≤4 

•  Data 
−  dpostD[e](b) = {(f),(t)} 

•  Combined (tpost, then dpost) 
−  tpost[init](a) = { a’ } 

   where a’ = (init,(f),x=0∧3≤y≤5) 
−  dpost[e](a’) = 

   { (lost,(f),x=0∧3≤y≤4), (lost,(t),x=0∧3≤y≤4) } 

init 
x=0 

0.9 

retry 

done 
true 

lost 
x≤5 

c++ 

fail 
true 

give- 
up 

time  
out 

y>4 c>5 
send 

x≥3 

x:=0 

c≤5∧y≤4 
0.1 

c:=0 

fail, c≠0,  
x=0,4<y≤5 

lost, c=0,  
x=0,3≤y≤4 

done, c≠0,  
x=0,3≤y≤4 

init, c≠0,  
x=0,3≤y≤5 

lost, c≠0,  
x=0,3≤y≤4 

send 

send 

time- 
out 



Overview (Part 6) 

•  Model checking for PTAs 
−  recap, summary 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Verifying software with time and probabilities 
−  probabilistic timed programs (PTPs) 
−  verifying PTPS with abstraction + refinement 

•  Looking ahead: Quantitative verification of SystemC 



A concrete challenge: SystemC 

•  SystemC: A system-level modelling language 
−  increasingly prominent in the development of embedded 

systems, e.g. for System-on-Chip (SoC) designs 
−  close enough to hardware level to support synthesis to RTL 
−  but models complex designs at a higher level of abstraction 
−  very efficient simulation at design phase 

•  Basic ingredients 
−  C++-based, with low-level data-types for hardware 
−  an object-oriented approach to design 
−  and convenient high-level abstractions of concurrent 

communicating processes 
•  Analysis of SystemC designs 

−  mostly simulation currently; growing interest in verification 
−  identified as an important but challenging direction [Vardi’07] 



Quantitative verification of SystemC 

•  Challenges involved in quantitative verification of SystemC: 

•  Software 
−  basic process behaviour is defined in terms of C++ code, 

using a rich array of data types 
•  Concurrency 

−  designs comprise multiple concurrent processes, 
communicating through message-passing primitives 

•  Timing 
−  processes can be subjected to precisely timed delays, through 

interaction with the SystemC scheduler 
•  Probability 

−  SystemC components may link to unpredictable devices 
−  due to communication failures (e.g. wireless/radio),  

or randomisation (e.g. ZigBee/Bluetooth) 



Quantitative verification of SystemC 

•  Outline approach to quantitative SystemC verification… 

•  SystemC designs comprise multiple modules/threads 
−  communicating through ports/channels 
−  translate to parallel composition of PTPs 
−  C++ control-flow graph maps to PTP locations/transitions 
−  various SystemC model extractors exist to do this 

•  Concurrency/timing between SystemC threads 
−  controlled by precisely defined (co-operative/non-preemptive) 

scheduler, incorporating thread-specified delays 
−  existing translation from SystemC to UPPAAL [Herber et al.’08]  

•  Probabilistic behaviour - randomisation or failures 
−  randomisation: map rand() calls to PTP probabilistic choice 
−  failures: replace e.g. network calls with probabilistic stubs  
−  similar approach applied to probabilistic ANSI-C [VMCAI’09] 



Summary (Part 6) 

•  Probabilistic timed automata (PTAs) 
−  combine probability, nondeterminism, real-time 

•  PTA model checking 
−  region graph: decidability results, exponential complexity 
−  digital clocks: simple and effective, some scalability issues 
−  forwards reachability: only upper bounds on max. prob.s 
−  backwards reachability: exact results but often expensive 
−  abstraction refinement using stochastic games: performs well  
−  tool support: PRISM, mcpta, UPPAAL-Pro 

•  Probabilistic timed programs 
−  probability + nondeterminism + real-time + data 
−  amenable to verification with abstraction/refinement 



Course summary 

•  Quantitative verification 
−  probability (e.g. randomisation, failures) 
−  nondeterminism (e.g. concurrency, underspecification) 
−  real-time behaviour and constraints (e.g. delays, time-outs) 

•  Probabilistic models: 
−  discrete-time Markov chains, Markov decision processes, 

probabilistic timed automata, probabilistic timed programs 
•  Probabilistic model checking: 

−  temporal logics, e.g. PCTL, PTCTL 
−  efficient techniques, tools exist 

•  Compositional probabilistic verification 
−  MDP-based assume-guarantee framework 

•  Quantitative abstraction refinement 
−  fully automatic construction/analysis of abstractions 
−  essential for large, complex systems such as software 



More info here: 
www.prismmodelchecker.org 

Thanks for your attention 


