

Quantitative verification techniques for probabilistic software

Marta Kwiatkowska

Oxford University Computing Laboratory

Summer School on Model Checking, Beijing, October 2010

Course overview

- 3 sessions (Mon/Tue/Thur): 6×50 minute lectures
 - 1: Markov decision processes (MDPs)
 - 2: Probabilistic LTL model checking
 - 3: Compositional probabilistic verification
 - 4: Abstraction, refinement and probabilistic software
 - 5: Probabilistic timed automata (PTAs)
 - 6: Software with time and probabilities
- For additional background material
 - and an accompanying list of references
 - see: http://www.prismmodelchecker.org/lectures/

Part 6

Software with time and probabilities

Overview (Part 6)

- Model checking for PTAs
 - recap, summary
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Verifying software with time and probabilities
 - probabilistic timed programs (PTPs)
 - verifying PTPS with abstraction + refinement
- Looking ahead: Quantitative verification of SystemC

Recap: Probabilistic timed automata

- Probabilistic timed automata (PTAs)
 - models probabilistic, nondeterministic and timed behaviour
 - Markov decision processes + real-valued clocks
 - (or: timed automata + discrete probabilistic choice)
- Like timed automata
 - all clocks increase at same rate
 - clocks can be reset (to zero)
- PTA model checking
 - the semantics of a PTA
 is an infinite-state MDP

 $\begin{array}{c|c} & \text{init} & x \geq 3 & \text{lost} \\ x = 0 & y \leq 4 & 0.1 \\ & \text{send} & 0.1 \\ & \text{time} & 0.9 \\ & \text{fail} & \text{true} \\ \end{array}$

retry

x := 0

- probabilistic (timed) reachability is defined as for MDPs
- but computation is more complex...

Recap: Zones

Zones (clock constraints) over clocks X, denoted Zones(X):

$$\zeta ::= \mathbf{x} \leq d \ | \ c \leq \mathbf{x} \ | \ \mathbf{x} + c \leq \mathbf{y} + d \ | \ \neg \zeta \ | \ \zeta \vee \zeta$$

- where x, y \in X and c, d \in N
- zone defines a set of clock valuations, i.e. a subset of \mathbb{R}^{X}
- used for both syntax of PTAs/properties and algorithms
- Can be efficiently represented/manipulated
 - using difference bound matrices (DBMs)
- Operations:
 - intersection, union, difference, resets, projections
 - (some preserve convexity, some do not)

PTA model checking – Summary

- Several different approaches developed
 - basic idea: reduce to the analysis of a finite-state model
 - in most cases, this is a Markov decision process (MDP)
- Region graph construction [KNSS02]
 - shows decidability, but gives exponential complexity
- Digital clocks approach [KNPS06]
 - (slightly) restricted classes of PTAs
 - works well in practice, still some scalability limitations
- Zone-based approaches:
 - (preferred approach for non-probabilistic timed automata)
 - forwards reachability [KNSS02]
 - backwards reachability [KNSW07]
 - game-based abstraction refinement [KNP09c]

Zone-based approaches

- An alternative is to use zones to construct an MDP
 - similar to classical timed automata techniques
- Conventional symbolic model checking relies on computing
 - post(S'): states reached from a state in S' in a single step
 - pre(S'): states that can reach S' in a single step
- Extend these operators to include time passage
 - dpost[e](S'): states that can be reached from a state in S' by traversing the edge e
 - tpost(S'): states that can be reached from a state in S' by letting time elapse
 - pre[e](S'): states that can reach S' by traversing the edge e
 - tpre(S'): states that can reach S' by letting time elapse

Zone-based approaches

- Symbolic states (I, ζ) where
 - $I \in Loc (location)$
 - $-\zeta$ is a zone over PTA clocks and formula clocks
 - generally fewer zones than regions
- tpost(I,ζ) = ($I, \angle \zeta \land inv(I)$)

 - Z \ inv(I) must satisfy the invariant of the location I
- tpre(I,ζ) = ($I, \angle \zeta \land inv(I)$)
 - $\checkmark \zeta$ can reach ζ by letting time pass
 - $\checkmark \zeta \land inv(I)$ must satisfy the invariant of the location I

Zone-based approaches

- For an edge e= (I,g,a,p,I',Y) where
 - I is the source
 - g is the guard
 - a is the action
 - I' is the target
 - Y is the clock reset
- dpost[e](I, ζ) = (I', ($\zeta \land g$)[Y:=0])
 - $-\zeta \wedge g$ satisfy the guard of the edge
 - (ζ∧g)[Y:=0] reset the clocks Y
- dpre[e](l', ζ ') = (l, [Y:=0] ζ ' \wedge (g \wedge inv(l)))
 - $[Y:=0]\zeta'$ the clocks Y were reset
 - -[Y:=0]ζ' \wedge (g \wedge inv(l)) satisfied guard and invariant of l

Forwards reachability

- First step: forwards exploration of PTA
 - using **dpost**[e](I, ζ) and **tpost**(I, ζ)
 - to ensure termination, need to take c-closure of each zone encountered (c is the largest constant in the PTA)
 - resulting state space is a set of zones S_F
- Second step: construct finite state MDP
 - $(S_F, (I_{init}, \underline{0}), Act, \delta_F, L_F)$
 - $-L_F(I,\zeta) = L(I)$ for all $(I,\zeta) \in S_F$
 - $((I,\zeta), a, \mu) \in \delta_F$ iff there exists a probabilistic edge (I,g,a,p) of PTA such that for any $(I',\zeta') \in Z$:

$$\mu(I',\zeta') = \sum \{ |p(I',X)| (I,g,\sigma,p,I',X) \in edges(p) \land post[e](I,\zeta) = (I',\zeta') | \}$$

summation over all the edges of (I,g,a,p) such that applying **post** to (I,ζ) leads to the symbolic state (I',ζ')

Forwards reachability - Example

MDP:

Forwards reachability - Limitations

- Problem reduced to analysis of finite-state MDP, but...
- Only obtain upper bounds on maximum probabilities
 - caused by when edges are combined
- Suppose $post[e_1](I,\zeta)=(I_1,\zeta_1)$ and $post[e_2](I,\zeta)=(I_2,\zeta_2)$
 - where e₁ and e₂ from the same probabilistic edge
- By definition of post
 - there exists $(I,v_i) \in (I,\zeta)$ such that a state in (I_i,ζ_i) can be reached by traversing the edge e_i and letting time pass
- Problem
 - we combine these transitions but are (l,v_1) and (l,v_2) the same?
 - may not exist states in (I,ζ) for which both edges are enabled

Forwards reachability - Example

- Maximum probability of reaching l_3 is 0.5 in the PTA
 - for the left branch need to take the first transition when x=1
 - for the right branch need to take the first transition when x=0
- However, maximum probability in the MDP is 1
 - can reach I_3 via either branch from $(I_0, x=y)$

Backwards reachability

- An alternative zone-based method: backwards reachability
 - state-space exploration in opposite direction, from target to initial states; uses pre rather than post operator
- Basic ideas: (see [KNSW07] for details)
 - construct a finite-state MDP comprising symbolic states
 - need to keep track of branching structure and take conjunctions of symbolic states if necessary
 - MDP yields maximum reachability probabilities for PTA
 - for min. probs, do graph-based analysis and convert to max.
- Advantages:
 - gives (exact) minimum/maximum reachability probabilities
 - extends to full PTCTL model checking
- Disadvantage:
 - operations to implement are expensive, limits applicability
 - (requires manipulation of non-convex zones)

Overview (Part 6)

- Model checking for PTAs
 - recap, summary
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Verifying software with time and probabilities
 - probabilistic timed programs (PTPs)
 - verifying PTPS with abstraction + refinement
- Looking ahead: Quantitative verification of SystemC

Recap: Abstraction-refinement loop

- Quantitative abstraction–refinement loop for MDPs
 - based on abstractions of MDPs as stochastic games

- Refinements yield strictly finer partition
- Guaranteed to converge for finite models
- Guaranteed to converge for infinite models with finite bisimulation

Abstraction refinement for PTAs

Model checking for PTAs using abstraction refinement

Abstraction refinement for PTAs

- Computes reachability probabilities in PTAs
 - minimum or maximum, exact values ("error" ϵ =0)
 - also time-bounded reachability, with extra clock
- Integrated in PRISM (development release)
 - PRISM modelling language extended with clocks
 - implemented using DBMs
- In practice, performs very well
 - faster than digital clocks or backwards on large example set
 - (sometimes by several orders of magnitude)
 - handles larger PTAs than the digital clocks approach
- And: use of abstraction allows exension to other models...

Overview (Part 6)

- Model checking for PTAs
 - recap, summary
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Verifying software with time and probabilities
 - probabilistic timed programs (PTPs)
 - verifying PTPS with abstraction + refinement
- Looking ahead: Quantitative verification of SystemC

Probabilistic timed programs

- Probabilistic timed programs (PTPs)
 - probability, nondeterminism and real-time and data
 - probabilistic timed automata + discrete-valued variables
- Time assume a finite set X of real-valued clocks
 - Zones(X) is the set of zones ζ over X
 - i.e. $\zeta := x \le d \mid c \le x \mid x+c \le y+d \mid \neg \zeta \mid \zeta \lor \zeta$
 - where x, $y \in X$ and c, $d \in \mathbb{N}$
- Data assume a finite set D of data variables
 - Val(D) is the set of all valuations of D
 - Pred(D) is the set of predicates over D
 - Up(D) is the set of all update functions over D
 - i.e. set of all functions up : Val(D) → Val(D)

Probabilistic timed programs

- A PTP is a tuple (L, I_{init}, D, u_{init}, X, Act, inv, enab, prob)
 - -L = locations, D = data variables, X = clocks, Act = actions
 - $-l_{init} \in L$ is initial location and $u_{init} \in Val(D)$ is initial valuation
 - inv : L \rightarrow Zones(X) is the invariant condition
 - · clocks X must satisfy inv(l) whilst in location l
 - enab : L×Act → Pred(D) × Zones(X) is the enabling condition
 - guard for action a in location I split into enab_D(I,a) and enab_X(I,a)
 - can only take action a in I if enab_D(I,a) \land enab_X(I,a)
 - prob : L×Act → Dist(Up(D) × 2^x × L)
 is the probabilistic transition function
 - if take action a in I, then with probability prob(I,a)(up,Y,I'):
 - · update D according to up, reset clocks in $Y\subseteq X$, move to location I'

Example – PTP

Simple communication protocol

- aims to send a message over an unreliable channel
- tries to send up to 5 times
- or until time-out of 4 secs
- delay between tries: 3–5 secs

In the PTP:

- $-L = \{init, lost, done, fail\}$
- $-D = \{c\}$ (c counts number of tries)
- $-X = \{x, y\}$ (x for delay, y for timeout)
- Act = {send, retry, giveup, timeout}
- Property of interest: maximum probability of reaching "fail"
 - actual max. probability is 0.1 (time-out after after 1 send)

Abstraction of PTPs

- Formal semantics of a PTP is an infinite-state MDP
 - − over state space L×Val(D)× \mathbb{R}^{X}
 - data domain Val(D) may be large/infinite; so need abstraction
 - time domain \mathbb{R} is dense; so need abstraction
- In general, can use an abstract domain $((A, \sqcup, \sqcap, \sqsubseteq), \alpha, \gamma)$
 - lattice of abstract states, abstraction/concretisation functions
 - here, we use predicate abstraction for data and zones for time
 - − i.e. abstract states are $(I,b,\zeta) \in L \times \{F,T\}^n \times Zones(X)$
 - assuming a set of data predicates $\Phi = {\Phi_1, ..., \Phi_n}$
 - (see [KNP10b] for details of other cases)
- We use (finite-state) stochastic games to abstract PTPs
 - i.e. state space is $L\times\{F,T\}^n\times Zones(X)$

Abstraction/refinement of PTPs

1. Build reachability graph for PTP

- all reachable abstract states and possible transitions between
- constructed through (classical) forwards reachability search
- as in, for example, UPPAAL, but not on-the-fly
- zone operations (DBMs) and SAT/SMT for symbolic post

2. Build stochastic game abstraction for PTP

- i.e. of underlying infinite-state MDP semantics
- constructed from reachability graph
- further zone operations and/or SAT/SMT solving needed
- yields lower/upper bound on reachability probabilities
- 3. Refine the abstraction (iteratively)
 - split zones, or generate new predicates

Example 1 – Abstraction

In this example:

abstract state satisfies $3 \le y \le 5$

- ◆ just abstract time, not data
- i.e. abstract states are of the form:
- $igoplus (I,d,\zeta) \in L \times Val(D) \times Zones(X)$

Example 1 – Abstraction

Results:

 $3 \le y \le 4$ or $4 < y \le 5$?

- max probability to reach fail?
- ◆ lower/upper bounds: [0.01,0.1]
- (in abstraction, can try to send either once or twice)

Example 1 – Refinement

Example 2 - Time and data

In this example:

- abstract time and data
- i.e. abstract states are of the form:
- $igoplus (I,b,\zeta) \in L \times \{F,T\}^n \times Zones(X)$
- ◆ single data predicate: {c=0}

Example 2 - Time and data

Results:

- imprecise, as in earlier example
- bounds on max. prob. of failure are [0.01,0.1]

Symbolic operations

- Need symbolic manipulation of abstract states
- For example, the post operator
 - to construct reachability graph
 - over abstract states $A = L \times \{F,T\}^n \times Zones(X)$
 - split into two parts, timed and discrete:
 - tpost[l] : A \rightarrow 2^A elapse of time in location l
 - dpost[e] : A \rightarrow 2^A discrete transition on edge e = (I, α ,up,Y,I')
- Also need (not discussed here) operations to:
 - construct player 1/2 choices in stochastic game
 - split abstract states during refinement

Symbolic operations: Post

- Time (clocks X)
 - use zone operations, implemented with DBMs
 - for zone ζ ∈ Zones(X):
 - $-\operatorname{tpost}_{X}[I](\zeta) = \operatorname{inv}(I) \wedge \angle \zeta$
 - $-\operatorname{dpost}_{X}[e](\zeta) = (\zeta \wedge \operatorname{enab}(I,\alpha))[Y:=0] \wedge \operatorname{inv}(I')$
- Data (variables D)
 - formulate as SAT/SMT problem, use solver to enumerate
 - − for predicate valuation $b \in \{F,T\}^n$:
 - dpost_D[e](b) contains all instances of b' $\in \{F,T\}^n$ such that
 - $\exists u, u' \in Val(D)$ satisfying: $up(u)=u' \land \Phi(u)=b \land \Phi(u')=b'$
- Combined time/data
 - − for an abstract state $(I,b,\zeta) \in L \times \{F,T\}^n \times Zones(X)$:
 - $tpost[I](I,b,\zeta) = \{ (I,b,tpost_X[I](\zeta)) \}$
 - dpost[e](l,b,ζ) = { (l',b',dpost_x[e](ζ)) | b' ∈ dpost_D[e](b) }

Example: Post operator

- Abstract state a = (I,b,ζ)
 - where l=init, b=(f), ζ =x=0∧3≤y≤5
 - and edge e = (init,send,c++,{},lost)
- Time
 - tpost_x[init](ζ) = x=0∧3≤y≤5
 - $-\operatorname{dpost}_{x}[e](\zeta) = x = 0 \land 3 \le y \le 4$
- Data
 - $dpost_{D}[e](b) = \{(f),(t)\}$
- Combined (tpost, then dpost)
 - tpost[init](a) = $\{a'\}$ where $a' = (init,(f),x=0 \land 3 \le y \le 5)$
 - dpost[e](a') = { (lost,(f),x= $0 \land 3 \le y \le 4$), (lost,(t),x= $0 \land 3 \le y \le 4$) }

Overview (Part 6)

- Model checking for PTAs
 - recap, summary
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Verifying software with time and probabilities
 - probabilistic timed programs (PTPs)
 - verifying PTPS with abstraction + refinement
- Looking ahead: Quantitative verification of SystemC

A concrete challenge: SystemC

- SystemC: A system-level modelling language
 - increasingly prominent in the development of embedded systems, e.g. for System-on-Chip (SoC) designs
 - close enough to hardware level to support synthesis to RTL
 - but models complex designs at a higher level of abstraction
 - very efficient simulation at design phase
- Basic ingredients
 - C++-based, with low-level data-types for hardware
 - an object-oriented approach to design
 - and convenient high-level abstractions of concurrent communicating processes
- Analysis of SystemC designs
 - mostly simulation currently; growing interest in verification
 - identified as an important but challenging direction [Vardi'07]

Quantitative verification of SystemC

Challenges involved in quantitative verification of SystemC:

Software

 basic process behaviour is defined in terms of C++ code, using a rich array of data types

Concurrency

designs comprise multiple concurrent processes,
 communicating through message-passing primitives

Timing

 processes can be subjected to precisely timed delays, through interaction with the SystemC scheduler

Probability

- SystemC components may link to unpredictable devices
- due to communication failures (e.g. wireless/radio),
 or randomisation (e.g. ZigBee/Bluetooth)

Quantitative verification of SystemC

- Outline approach to quantitative SystemC verification...
- SystemC designs comprise multiple modules/threads
 - communicating through ports/channels
 - translate to parallel composition of PTPs
 - C++ control-flow graph maps to PTP locations/transitions
 - various SystemC model extractors exist to do this
- Concurrency/timing between SystemC threads
 - controlled by precisely defined (co-operative/non-preemptive)
 scheduler, incorporating thread-specified delays
 - existing translation from SystemC to UPPAAL [Herber et al.'08]
- Probabilistic behaviour randomisation or failures
 - randomisation: map rand() calls to PTP probabilistic choice
 - failures: replace e.g. network calls with probabilistic stubs
 - similar approach applied to probabilistic ANSI-C [VMCAI'09]

Summary (Part 6)

- Probabilistic timed automata (PTAs)
 - combine probability, nondeterminism, real-time
- PTA model checking
 - region graph: decidability results, exponential complexity
 - digital clocks: simple and effective, some scalability issues
 - forwards reachability: only upper bounds on max. prob.s
 - backwards reachability: exact results but often expensive
 - abstraction refinement using stochastic games: performs well
 - tool support: PRISM, mcpta, UPPAAL-Pro
- Probabilistic timed programs
 - probability + nondeterminism + real-time + data
 - amenable to verification with abstraction/refinement

Course summary

- Quantitative verification
 - probability (e.g. randomisation, failures)
 - nondeterminism (e.g. concurrency, underspecification)
 - real-time behaviour and constraints (e.g. delays, time-outs)
- Probabilistic models:
 - discrete-time Markov chains, Markov decision processes, probabilistic timed automata, probabilistic timed programs
- Probabilistic model checking:
 - temporal logics, e.g. PCTL, PTCTL
 - efficient techniques, tools exist
- Compositional probabilistic verification
 - MDP-based assume-guarantee framework
- Quantitative abstraction refinement
 - fully automatic construction/analysis of abstractions
 - essential for large, complex systems such as software

謝謝

Thanks for your attention

More info here: www.prismmodelchecker.org