
Bisimulation and Logic

Lecture 2

Colin Stirling

Laboratory for Foundations of Computer Science (LFCS)
School of Informatics
Edinburgh University

Summer School on Model Checking
Ziyu Hotel, Beijing
Oct 11–16 2010

Two independent origins of bisimulation

I Behavioural equivalence between concurrent processes (Park,
Hennessy + Milner)

I Model theory of modal logic (van Benthem)

Process Calculi

I Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming

I Introduced two types of transition
a

−→ and
a

=⇒ and rules for
their derivation

I Introduced two types of transition graph that abstracts from
derivation of transitions

Process Calculi

I Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming

I Introduced two types of transition
a

−→ and
a

=⇒ and rules for
their derivation

I Introduced two types of transition graph that abstracts from
derivation of transitions

I Lots of variants such as ACP, CSP, . . .

I Lots of extensions (time, probabilities, locations . . .)

Process equivalence: motivation

I “The sequence of actions a1 . . . an must be carried out
cyclically starting with a1” (the scheduler)

I This property cannot be expressed in temporal logic; is
expressible in mu-calculus)

Process equivalence: motivation

I “The sequence of actions a1 . . . an must be carried out
cyclically starting with a1” (the scheduler)

I This property cannot be expressed in temporal logic; is
expressible in mu-calculus)

I More natural way of specifying this:
When all actions but a1, . . . , an are restricted, the system
should “behave like” the process P , defined by

P
def
= a1.a2.an.P

Process equivalence: motivation

I “The sequence of actions a1 . . . an must be carried out
cyclically starting with a1” (the scheduler)

I This property cannot be expressed in temporal logic; is
expressible in mu-calculus)

I More natural way of specifying this:
When all actions but a1, . . . , an are restricted, the system
should “behave like” the process P , defined by

P
def
= a1.a2.an.P

I Generally: many systems are informally specified by “behave
like” statements.

Process equivalence: motivation

I “The sequence of actions a1 . . . an must be carried out
cyclically starting with a1” (the scheduler)

I This property cannot be expressed in temporal logic; is
expressible in mu-calculus)

I More natural way of specifying this:
When all actions but a1, . . . , an are restricted, the system
should “behave like” the process P , defined by

P
def
= a1.a2.an.P

I Generally: many systems are informally specified by “behave
like” statements.

Process equivalence: motivation

I “The sequence of actions a1 . . . an must be carried out
cyclically starting with a1” (the scheduler)

I This property cannot be expressed in temporal logic; is
expressible in mu-calculus)

I More natural way of specifying this:
When all actions but a1, . . . , an are restricted, the system
should “behave like” the process P , defined by

P
def
= a1.a2.an.P

I Generally: many systems are informally specified by “behave
like” statements.

I But how to formalise “behavioural equivalence”?

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties (such as expressible in modal or temporal
logic)

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties (such as expressible in modal or temporal
logic)

5. It should abstract from silent actions.

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties (such as expressible in modal or temporal
logic)

5. It should abstract from silent actions.

We deal first with conditions 1− 4

A first candidate: trace equivalence

I A trace of a process E is a sequence w of actions such that
E

w
−→ F for some process F .

A first candidate: trace equivalence

I A trace of a process E is a sequence w of actions such that
E

w
−→ F for some process F .

I E and F are trace-equivalent if they have the same traces.

A first candidate: trace equivalence

I A trace of a process E is a sequence w of actions such that
E

w
−→ F for some process F .

I E and F are trace-equivalent if they have the same traces.

I This notion satisfies 1 and 3, but not 2.

A first candidate: trace equivalence

I A trace of a process E is a sequence w of actions such that
E

w
−→ F for some process F .

I E and F are trace-equivalent if they have the same traces.

I This notion satisfies 1 and 3, but not 2.

I Counterexample. Cl, Cl′ trace equivalent

Cl
def
= tick.Cl

Cl′
def
= tick.Cl′ + tick.0

A second candidate: completed trace equivalence

I A completed trace of E is a sequence w of actions such that
E

w
−→ F for some process F that cannot execute any action

A second candidate: completed trace equivalence

I A completed trace of E is a sequence w of actions such that
E

w
−→ F for some process F that cannot execute any action

I E and F are completed trace equivalent if they have the same
traces and the same completed traces

A second candidate: completed trace equivalence

I A completed trace of E is a sequence w of actions such that
E

w
−→ F for some process F that cannot execute any action

I E and F are completed trace equivalent if they have the same
traces and the same completed traces

I This notion satisfies 1 and 2, but not 3.

Ven1
def
= 1p.1p.(tea.Ven1 + coffee.Ven1)

Ven2
def
= 1p.(1p.tea.Ven2 + 1p.coffee.Ven2)

Use
def
= 1p.1p.tea.ok.0

A second candidate: completed trace equivalence

I A completed trace of E is a sequence w of actions such that
E

w
−→ F for some process F that cannot execute any action

I E and F are completed trace equivalent if they have the same
traces and the same completed traces

I This notion satisfies 1 and 2, but not 3.

Ven1
def
= 1p.1p.(tea.Ven1 + coffee.Ven1)

Ven2
def
= 1p.(1p.tea.Ven2 + 1p.coffee.Ven2)

Use
def
= 1p.1p.tea.ok.0

I Ven1 and Ven2 are completed-trace equivalent, but
(Ven1 | Use)\K and (Ven2 | Use)\K , where
K = {1p, tea, coffee}, are not.

A third candidate: bisimulation equivalence

I A binary relation B between processes is a bisimulation
provided that, whenever (E ,F) ∈ B and a ∈ A,

A third candidate: bisimulation equivalence

I A binary relation B between processes is a bisimulation
provided that, whenever (E ,F) ∈ B and a ∈ A,

I if E
a

−→ E ′ then F
a

−→ F ′ for some F ′ such that (E ′,F ′) ∈ B

and

A third candidate: bisimulation equivalence

I A binary relation B between processes is a bisimulation
provided that, whenever (E ,F) ∈ B and a ∈ A,

I if E
a

−→ E ′ then F
a

−→ F ′ for some F ′ such that (E ′,F ′) ∈ B

and

I if F
a

−→ F ′ then E
a

−→ E ′ for some E ′ such that (E ′,F ′) ∈ B

A third candidate: bisimulation equivalence

I A binary relation B between processes is a bisimulation
provided that, whenever (E ,F) ∈ B and a ∈ A,

I if E
a

−→ E ′ then F
a

−→ F ′ for some F ′ such that (E ′,F ′) ∈ B

and

I if F
a

−→ F ′ then E
a

−→ E ′ for some E ′ such that (E ′,F ′) ∈ B

I E and F are bisimulation equivalent (or bisimilar) if there is a
bisimulation relation B such that (E ,F) ∈ B .

A third candidate: bisimulation equivalence

I A binary relation B between processes is a bisimulation
provided that, whenever (E ,F) ∈ B and a ∈ A,

I if E
a

−→ E ′ then F
a

−→ F ′ for some F ′ such that (E ′,F ′) ∈ B

and

I if F
a

−→ F ′ then E
a

−→ E ′ for some E ′ such that (E ′,F ′) ∈ B

I E and F are bisimulation equivalent (or bisimilar) if there is a
bisimulation relation B such that (E ,F) ∈ B .

I We write E ∼ F if E and F are bisimilar

Examples

I Cl
def
= tick.Cl Cl2

def
= tick.tick.Cl2

Examples

I Cl
def
= tick.Cl Cl2

def
= tick.tick.Cl2

I B2 = {(Cl, Cl2), (Cl, tick.Cl2)} is a bisimulation.

Examples

I Cl
def
= tick.Cl Cl2

def
= tick.tick.Cl2

I B2 = {(Cl, Cl2), (Cl, tick.Cl2)} is a bisimulation.

I a.(b.0+ c.0) a.b.0+ a.c.0

Examples

I Cl
def
= tick.Cl Cl2

def
= tick.tick.Cl2

I B2 = {(Cl, Cl2), (Cl, tick.Cl2)} is a bisimulation.

I a.(b.0+ c.0) a.b.0+ a.c.0

I Not bisimilar

Game interpretation

Board: Transition systems of E and F .
Material: Two (identical) pebbles initially on the states E and F .
Players: R (refuter) and V (verifier),

R and V take turns, R moves first.
R-move: Choose any of the two pebbles

Move pebble across any transition
V -move: Choose the other pebble

choose a transition having the same label
move pebble across it

R wins if: V cannot reply to his last move.
V wins if: R cannot move or

the game goes on forever.
(i.e., a draw counts as a win for V).

Theorem: R can force a win iff E and F are not bisimilar.
V can force a win iff E and F are bisimilar.

Bisimilarity is an equivalence relation

I Theorem : E ∼ E

Bisimilarity is an equivalence relation

I Theorem : E ∼ E

I Theorem: if E ∼ F then F ∼ E .

Bisimilarity is an equivalence relation

I Theorem : E ∼ E

I Theorem: if E ∼ F then F ∼ E .

I Theorem : if E ∼ F and F ∼ G , then E ∼ G .

Bisimilarity is an equivalence relation

I Theorem : E ∼ E

I Theorem: if E ∼ F then F ∼ E .

I Theorem : if E ∼ F and F ∼ G , then E ∼ G .
Proof: Since E ∼ F , (E ,F) ∈ B1 for some bisimulation B1.
Since F ∼ G , (F ,G) ∈ B2 for some bisimulation B2. So
(E ,G) ∈ B1 ◦ B2. We show that B1 ◦ B2 is a bisimulation.

Bisimilarity is an equivalence relation

I Theorem : E ∼ E

I Theorem: if E ∼ F then F ∼ E .

I Theorem : if E ∼ F and F ∼ G , then E ∼ G .
Proof: Since E ∼ F , (E ,F) ∈ B1 for some bisimulation B1.
Since F ∼ G , (F ,G) ∈ B2 for some bisimulation B2. So
(E ,G) ∈ B1 ◦ B2. We show that B1 ◦ B2 is a bisimulation.
Let (H1,H2) ∈ B1 ◦ B2 and H1

a
−→ H ′

1. We find H ′

2 such that

H2
a

−→ H ′

2 and (H ′

1,H
′

2) ∈ B1 ◦ B2. Since (H1,H2) ∈ B1 ◦ B2,
there is H such that (H1,H) ∈ B1 and (H,H2) ∈ B2. Since
B1 is bisimulation, there is H ′ such that H

a
−→ H ′ and

(H ′

1,H
′) ∈ B1. Since B2 is bisimulation, there is H ′

2 such that

H2
a

−→ H ′

2 and (H ′,H ′

2) ∈ B2. Since (H ′

1,H
′) ∈ B1 and

(H ′,H ′

2) ∈ B2, we have (H ′

1,H
′

2) ∈ B1 ◦ B2.

Bisimilarity is a congruence

Proposition: If E ∼ F , then for any process G , for any set of
actions K , for any action a and for any renaming function f ,

1. a.E ∼ a.F

Bisimilarity is a congruence

Proposition: If E ∼ F , then for any process G , for any set of
actions K , for any action a and for any renaming function f ,

1. a.E ∼ a.F

2. E + G ∼ F + G

Bisimilarity is a congruence

Proposition: If E ∼ F , then for any process G , for any set of
actions K , for any action a and for any renaming function f ,

1. a.E ∼ a.F

2. E + G ∼ F + G

3. E | G ∼ F | G

Bisimilarity is a congruence

Proposition: If E ∼ F , then for any process G , for any set of
actions K , for any action a and for any renaming function f ,

1. a.E ∼ a.F

2. E + G ∼ F + G

3. E | G ∼ F | G

4. E [f] ∼ F [f]

Bisimilarity is a congruence

Proposition: If E ∼ F , then for any process G , for any set of
actions K , for any action a and for any renaming function f ,

1. a.E ∼ a.F

2. E + G ∼ F + G

3. E | G ∼ F | G

4. E [f] ∼ F [f]

5. E\K ∼ F\K

Proof of case 3: if E ∼ F then E | G ∼ F | G

We show B = {(E | G ,F | G) : E ∼ F} is a bisimulation.

Proof of case 3: if E ∼ F then E | G ∼ F | G

We show B = {(E | G ,F | G) : E ∼ F} is a bisimulation.
Assume that ((E | G), (F | G)) ∈ B and E | G

a
−→ E ′ | G ′

Proof of case 3: if E ∼ F then E | G ∼ F | G

We show B = {(E | G ,F | G) : E ∼ F} is a bisimulation.
Assume that ((E | G), (F | G)) ∈ B and E | G

a
−→ E ′ | G ′

I E
a

−→ E ′ and G = G ′. Because E ∼ F , we know that
F

a
−→ F ′ and E ′ ∼ F ′ for some F ′. Therefore

F | G
a

−→ F ′ | G , and so ((E ′ | G), (F ′ | G)) ∈ B .

Proof of case 3: if E ∼ F then E | G ∼ F | G

We show B = {(E | G ,F | G) : E ∼ F} is a bisimulation.
Assume that ((E | G), (F | G)) ∈ B and E | G

a
−→ E ′ | G ′

I E
a

−→ E ′ and G = G ′. Because E ∼ F , we know that
F

a
−→ F ′ and E ′ ∼ F ′ for some F ′. Therefore

F | G
a

−→ F ′ | G , and so ((E ′ | G), (F ′ | G)) ∈ B .

I G
a

−→ G ′ and E ′ = E . So F | G
a

−→ F | G ′, and by definition
((E | G ′), (F | G ′)) ∈ B .

Proof of case 3: if E ∼ F then E | G ∼ F | G

We show B = {(E | G ,F | G) : E ∼ F} is a bisimulation.
Assume that ((E | G), (F | G)) ∈ B and E | G

a
−→ E ′ | G ′

I E
a

−→ E ′ and G = G ′. Because E ∼ F , we know that
F

a
−→ F ′ and E ′ ∼ F ′ for some F ′. Therefore

F | G
a

−→ F ′ | G , and so ((E ′ | G), (F ′ | G)) ∈ B .

I G
a

−→ G ′ and E ′ = E . So F | G
a

−→ F | G ′, and by definition
((E | G ′), (F | G ′)) ∈ B .

I a = τ and E
b

−→ E ′ and G
b

−→ G ′. F
b

−→ F ′ for some F ′

such that E ′ ∼ F ′, so F | G
τ

−→ F ′ | G ′, and therefore
((E ′ | G ′), (F ′ | G ′)) ∈ B .

Proof of case 3: if E ∼ F then E | G ∼ F | G

We show B = {(E | G ,F | G) : E ∼ F} is a bisimulation.
Assume that ((E | G), (F | G)) ∈ B and E | G

a
−→ E ′ | G ′

I E
a

−→ E ′ and G = G ′. Because E ∼ F , we know that
F

a
−→ F ′ and E ′ ∼ F ′ for some F ′. Therefore

F | G
a

−→ F ′ | G , and so ((E ′ | G), (F ′ | G)) ∈ B .

I G
a

−→ G ′ and E ′ = E . So F | G
a

−→ F | G ′, and by definition
((E | G ′), (F | G ′)) ∈ B .

I a = τ and E
b

−→ E ′ and G
b

−→ G ′. F
b

−→ F ′ for some F ′

such that E ′ ∼ F ′, so F | G
τ

−→ F ′ | G ′, and therefore
((E ′ | G ′), (F ′ | G ′)) ∈ B .

Symmetrically for a transition F | G
a

−→ F ′ | G ′.

Showing bisimilarity
To establish E ∼ F

1. Present a candidate relation R with (E ,F) ∈ R

2. Prove that indeed it obeys the hereditary conditions

Showing bisimilarity
To establish E ∼ F

1. Present a candidate relation R with (E ,F) ∈ R

2. Prove that indeed it obeys the hereditary conditions

Example: (A|B)\c ∼ C1

A
def
= a.c.A

B
def
= c .b.B

C0
def
= b.C1 + a.C2

C1
def
= a.C3

C2
def
= b.C3

C3
def
= τ.C0

Showing bisimilarity
To establish E ∼ F

1. Present a candidate relation R with (E ,F) ∈ R

2. Prove that indeed it obeys the hereditary conditions

Example: (A|B)\c ∼ C1

A
def
= a.c.A

B
def
= c .b.B

C0
def
= b.C1 + a.C2

C1
def
= a.C3

C2
def
= b.C3

C3
def
= τ.C0

R below is a bisimulation

{((A|B)\c ,C1), ((c.A|B)\c ,C3)
((A|b.B)\c ,C0), ((c.A|b.B)\c ,C2)}

Another example: Cnt ∼ Ct′0

Cnt
def
= up.(Cnt | down.0)

Ct′
0

def
= up.Ct′

1

Ct′i+1
def
= up.Ct′i+2 + down.Ct′i i ≥ 0.

Another example: Cnt ∼ Ct′0

Cnt
def
= up.(Cnt | down.0)

Ct′
0

def
= up.Ct′

1

Ct′i+1
def
= up.Ct′i+2 + down.Ct′i i ≥ 0.

P0 = {Cnt | 0j : j ≥ 0}
Pi+1 = {E | 0j | down.0 | 0k : E ∈ Pi and j ≥ 0 and k ≥ 0}

where F | 00 = F and F | 0i+1 = F | 0i | 0 and brackets are
dropped between parallel components.

Another example: Cnt ∼ Ct′0

Cnt
def
= up.(Cnt | down.0)

Ct′
0

def
= up.Ct′

1

Ct′i+1
def
= up.Ct′i+2 + down.Ct′i i ≥ 0.

P0 = {Cnt | 0j : j ≥ 0}
Pi+1 = {E | 0j | down.0 | 0k : E ∈ Pi and j ≥ 0 and k ≥ 0}

where F | 00 = F and F | 0i+1 = F | 0i | 0 and brackets are
dropped between parallel components.

B = {(E , Ct′i) : i ≥ 0 and E ∈ Pi} is a bisimulation

Some Results

Id = {(E ,E)}
B−1 = {(E ,F) : (F ,E) ∈ B}
B1B2 = {(E ,G) : there is F . (E ,F) ∈ B1

and (F ,G) ∈ B2}

Proposition Assume Bi (i = 1, 2, . . .) is a bisimulation. Then the
following are bisimulations:

1. Id

2. B−1
i

3. B1B2

4.
⋃
{Bi : i ≥ 1}

Corollary ∼ is the largest bisimulation

More Properties I

Proposition

1. E + F ∼ F + E

2. E + (F + G) ∼ (E + F) + G

3. E + 0 ∼ E

4. E + E ∼ E

More Properties I

Proposition

1. E + F ∼ F + E

2. E + (F + G) ∼ (E + F) + G

3. E + 0 ∼ E

4. E + E ∼ E

Proposition

1. E |F ∼ F |E

2. E |(F |G) ∼ (E |F)|G

3. E |0 ∼ E

More Properties II

Proposition

1. (E + F)\K ∼ E\K + F\K

2. (a.E)\K ∼ 0 if a ∈ K ∪ K

3. (a.E)\K ∼ a.(E\K) if a 6∈ K ∪ K

Expansion law

I Assume xi ∼
∑

{aij .xij : 1 ≤ j ≤ ni} for i : 1 ≤ i ≤ m

Expansion law

I Assume xi ∼
∑

{aij .xij : 1 ≤ j ≤ ni} for i : 1 ≤ i ≤ m

I Then x1 | . . . | xm ∼ SUM1+ SUM2

Expansion law

I Assume xi ∼
∑

{aij .xij : 1 ≤ j ≤ ni} for i : 1 ≤ i ≤ m

I Then x1 | . . . | xm ∼ SUM1+ SUM2

I SUM1 is
∑

{aij .yij : 1 ≤ i ≤ m and 1 ≤ j ≤ ni}

Expansion law

I Assume xi ∼
∑

{aij .xij : 1 ≤ j ≤ ni} for i : 1 ≤ i ≤ m

I Then x1 | . . . | xm ∼ SUM1+ SUM2

I SUM1 is
∑

{aij .yij : 1 ≤ i ≤ m and 1 ≤ j ≤ ni}

I SUM2 is
∑

{τ.yklij : 1 ≤ k < i ≤ m and akl = aij}

Expansion law

I Assume xi ∼
∑

{aij .xij : 1 ≤ j ≤ ni} for i : 1 ≤ i ≤ m

I Then x1 | . . . | xm ∼ SUM1+ SUM2

I SUM1 is
∑

{aij .yij : 1 ≤ i ≤ m and 1 ≤ j ≤ ni}

I SUM2 is
∑

{τ.yklij : 1 ≤ k < i ≤ m and akl = aij}

I yij = x1 | . . . | xi−1 | xij | xi+1 | . . . | xm

Expansion law

I Assume xi ∼
∑

{aij .xij : 1 ≤ j ≤ ni} for i : 1 ≤ i ≤ m

I Then x1 | . . . | xm ∼ SUM1+ SUM2

I SUM1 is
∑

{aij .yij : 1 ≤ i ≤ m and 1 ≤ j ≤ ni}

I SUM2 is
∑

{τ.yklij : 1 ≤ k < i ≤ m and akl = aij}

I yij = x1 | . . . | xi−1 | xij | xi+1 | . . . | xm

I yklij = x1 | . . . | xk−1 | xkl | xk+1 | . . . | xij | xi+1 | . . . | xm

Expansion law

I Assume xi ∼
∑

{aij .xij : 1 ≤ j ≤ ni} for i : 1 ≤ i ≤ m

I Then x1 | . . . | xm ∼ SUM1+ SUM2

I SUM1 is
∑

{aij .yij : 1 ≤ i ≤ m and 1 ≤ j ≤ ni}

I SUM2 is
∑

{τ.yklij : 1 ≤ k < i ≤ m and akl = aij}

I yij = x1 | . . . | xi−1 | xij | xi+1 | . . . | xm

I yklij = x1 | . . . | xk−1 | xkl | xk+1 | . . . | xij | xi+1 | . . . | xm

I Example
x1 ∼ a.x11 + b.x12 + a.x13
x2 ∼ a.x21 + c .x22,

Expansion law

I Assume xi ∼
∑

{aij .xij : 1 ≤ j ≤ ni} for i : 1 ≤ i ≤ m

I Then x1 | . . . | xm ∼ SUM1+ SUM2

I SUM1 is
∑

{aij .yij : 1 ≤ i ≤ m and 1 ≤ j ≤ ni}

I SUM2 is
∑

{τ.yklij : 1 ≤ k < i ≤ m and akl = aij}

I yij = x1 | . . . | xi−1 | xij | xi+1 | . . . | xm

I yklij = x1 | . . . | xk−1 | xkl | xk+1 | . . . | xij | xi+1 | . . . | xm

I Example
x1 ∼ a.x11 + b.x12 + a.x13
x2 ∼ a.x21 + c .x22,

I

x1|x2 ∼ a.(x11|x2) + b.(x12|x2) + a.(x13|x2)+
a.(x1|x21)+
c .(x1|x22) + τ.(x11|x21) + τ.(x13|x21).

Weak (observable) bisimulations

I A binary relation B between processes is a weak (or
observable) bisimulation provided that, whenever (E ,F) ∈ B

and a ∈ O ∪ {ε},

Weak (observable) bisimulations

I A binary relation B between processes is a weak (or
observable) bisimulation provided that, whenever (E ,F) ∈ B

and a ∈ O ∪ {ε},

I if E
a

=⇒ E ′ then F
a

=⇒ F ′ for some F ′ such that (E ′,F ′) ∈ B

and

Weak (observable) bisimulations

I A binary relation B between processes is a weak (or
observable) bisimulation provided that, whenever (E ,F) ∈ B

and a ∈ O ∪ {ε},

I if E
a

=⇒ E ′ then F
a

=⇒ F ′ for some F ′ such that (E ′,F ′) ∈ B

and

I if F
a

=⇒ F ′ then E
a

=⇒ E ′ for some E ′ such that (E ′,F ′) ∈ B

Weak (observable) bisimulations

I A binary relation B between processes is a weak (or
observable) bisimulation provided that, whenever (E ,F) ∈ B

and a ∈ O ∪ {ε},

I if E
a

=⇒ E ′ then F
a

=⇒ F ′ for some F ′ such that (E ′,F ′) ∈ B

and

I if F
a

=⇒ F ′ then E
a

=⇒ E ′ for some E ′ such that (E ′,F ′) ∈ B

I Two processes E and F are weak bisimulation equivalent (or
weakly bisimilar) if there is a weak bisimulation relation B

such that (E ,F) ∈ B . We write E ≈ F if E and F are weakly
bisimilar

Properties of weak bisimilarity

I Weak bisimilarity is an equivalence relation

Properties of weak bisimilarity

I Weak bisimilarity is an equivalence relation

I Weak bisimilarity is a congruence with respect to all operators
of CCS with the exception of +

τ.a.0 ≈ a.0 but τ.a.0+ b.0 6≈ a.0+ b.0

Showing weak bisimilarity ≈

1. Present a candidate relation R with (E ,F) ∈ R

Showing weak bisimilarity ≈

1. Present a candidate relation R with (E ,F) ∈ R

2. Prove that indeed it obeys the hereditary conditions

Showing weak bisimilarity ≈

1. Present a candidate relation R with (E ,F) ∈ R

2. Prove that indeed it obeys the hereditary conditions

3. Example

A0
def
= a.A0 + b.A1 + τ.A1

A1
def
= a.A1 + τ.A2

A2
def
= b.A0

B1
def
= a.B1 + τ.B2

B2
def
= b.B1

Showing weak bisimilarity ≈

1. Present a candidate relation R with (E ,F) ∈ R

2. Prove that indeed it obeys the hereditary conditions

3. Example

A0
def
= a.A0 + b.A1 + τ.A1

A1
def
= a.A1 + τ.A2

A2
def
= b.A0

B1
def
= a.B1 + τ.B2

B2
def
= b.B1

4. A0 ≈ B1

{(A0,B1), (A1,B1), (A2,B2)}

is a weak bisimulation

Protocol that may lose messages

Sender
def
= in(x).sm(x).Send1(x)

Send1(x)
def
= ms.sm(x).Send1(x) + ok.Sender

Medium
def
= sm(y).Med1(y)

Med1(y)
def
= mr(y).Medium+ τ.ms.Medium

Receiver
def
= mr(x).out(x).ok.Receiver

Protocol ≡ (Sender | Medium | Receiver)\{sm, ms, mr, ok}

Cop
def
= in(x).out(x).Cop

Protocol ≈ Cop

Let B be the following relation

{(Protocol, Cop)}∪
{((Send1(m) | Medium | ok.Receiver)\J,

Cop) : m ∈ D}∪
{((sm(m).Send1(m) | Medium | Receiver)\J,

out(m).Cop) : m ∈ D}∪
{((Send1(m) | Med1(m) | Receiver)\J,

out(m).Cop) : m ∈ D}∪
{((Send1(m) | Medium | out(m).ok.Receiver)\J,

out(m).Cop) : m ∈ D}∪
{((Send1(m) | ms.Medium | Receiver)\J,

out(m).Cop) : m ∈ D}

B is a weak bisimulation

