Bisimulation and Logic Lecture 3

Colin Stirling

Laboratory for Foundations of Computer Science (LFCS) School of Informatics Edinburgh University

Summer School on Model Checking Ziyu Hotel, Beijing Oct 11–16 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Modal logic and bisimulation

 Behavioural equivalence between concurrent processes (Park, Hennessy + Milner)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Model theory of modal logic (van Benthem)

Modal characterisation of bisimulation and some model theory

$$\Phi ::= \texttt{tt} \mid \texttt{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$$

A formula can be

$$\Phi ::= \texttt{tt} \mid \texttt{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$$

A formula can be

- the constant true formula tt
- the constant false formula ff,

$$\Phi ::= \texttt{tt} \mid \texttt{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A formula can be

- the constant true formula tt
- the constant false formula ff,
- a conjunction of formulas $\Phi_1 \wedge \Phi_2$
- a disjunction of formulas $\Phi_1 \lor \Phi_2$,

 $\Phi ::= \texttt{tt} \mid \texttt{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$

A formula can be

- the constant true formula tt
- the constant false formula ff,
- a conjunction of formulas $\Phi_1 \wedge \Phi_2$
- a disjunction of formulas $\Phi_1 \lor \Phi_2$,
- a formula [a]Φ, read as "box a Φ", or "for all a-derivatives Φ,"

 $\Phi ::= \texttt{tt} \mid \texttt{ff} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$

A formula can be

- the constant true formula tt
- the constant false formula ff,
- a conjunction of formulas $\Phi_1 \wedge \Phi_2$
- a disjunction of formulas $\Phi_1 \lor \Phi_2$,
- a formula [a]Φ, read as "box a Φ", or "for all a-derivatives Φ,"

► a formula ⟨a⟩Φ, read as "diamond a Φ", or "for some a-derivative Φ."

We define when a process *E* satisfies a formula Φ . Either *E* satisfies Φ , denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

► $E \models tt$ $E \not\models ff$

We define when a process *E* satisfies a formula Φ . Either *E* satisfies Φ , denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

•
$$E \models \texttt{tt}$$
 $E \not\models \texttt{ff}$

•
$$E \models \Phi \land \Psi$$
 iff $E \models \Phi$ and $E \models \Psi$

•
$$E \models \Phi \lor \Psi$$
 iff $E \models \Phi$ or $E \models \Psi$

We define when a process *E* satisfies a formula Φ . Either *E* satisfies Φ , denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

•
$$E \models \texttt{tt}$$
 $E \not\models \texttt{ff}$

- $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$
- $E \models [a] \Phi$ iff $\forall F$. if $E \stackrel{a}{\longrightarrow} F$ then $F \models \Phi$

We define when a process *E* satisfies a formula Φ . Either *E* satisfies Φ , denoted by $E \models \Phi$, or it doesn't, denoted by $E \not\models \Phi$.

•
$$E \models \texttt{tt}$$
 $E \not\models \texttt{ff}$

- $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$
- $E \models [a] \Phi$ iff $\forall F$. if $E \xrightarrow{a} F$ then $F \models \Phi$
- $E \models \langle a \rangle \Phi$ iff $\exists F. E \xrightarrow{a} F$ and $F \models \Phi$

• $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- E = (tick)(tock)tt
 E can do a tick and then a tock

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- ► E ⊨ ⟨tick⟩⟨tock⟩tt E can do a tick and then a tock

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

- ► E ⊨ [tick]ff
 - E cannot do a tick

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- ► E ⊨ ⟨tick⟩⟨tock⟩tt E can do a tick and then a tock

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- ► E ⊨ [tick]ff
 - E cannot do a tick
- ► E ⊨ ⟨tick⟩ff This is equivalent to ff!

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- E = (tick)(tock)tt
 E can do a tick and then a tock
- E = [tick]ff
 E cannot do a tick
- E \= \(tick\)ff
 This is equivalent to ff!
- E = [tick]tt This is equivalent to true!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 $\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Does Cl have the property: $[tick](\langle tick \rangle tt \land [tock]ff)$?

• $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$

 $\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- iff $\forall F$ if $\texttt{Cl} \xrightarrow{\texttt{tick}} F$ then $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$

 $\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

Does Cl have the property: $[tick](\langle tick \rangle tt \land [tock]ff)$?

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- iff $\forall F$ if $\texttt{Cl} \xrightarrow{\texttt{tick}} F$ then $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$

• iff $Cl \models \langle tick \rangle tt \land [tock]ff$

 $\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- iff $\forall F$ if $\texttt{Cl} \xrightarrow{\texttt{tick}} F$ then $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt}$ and $Cl \models [\texttt{tock}]\texttt{ff}$

 $\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- iff $\forall F$ if Cl $\stackrel{\texttt{tick}}{\longrightarrow} F$ then $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt}$ and $Cl \models [\texttt{tock}]\texttt{ff}$
- iff $\exists F$. Cl $\stackrel{\texttt{tick}}{\longrightarrow} F$ and Cl $\models [\texttt{tock}]\texttt{ff}$

 $\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- iff $\forall F$ if $\texttt{Cl} \stackrel{\texttt{tick}}{\longrightarrow} F$ then $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt}$ and $Cl \models [\texttt{tock}]\texttt{ff}$
- ▶ iff $\exists F$. Cl $\stackrel{\texttt{tick}}{\longrightarrow} F$ and Cl $\models [\texttt{tock}]\texttt{ff}$
- ▶ iff Cl ⊨ [tock]ff

 $\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- iff $\forall F$ if $\texttt{Cl} \stackrel{\texttt{tick}}{\longrightarrow} F$ then $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt}$ and $Cl \models [\texttt{tock}]\texttt{ff}$
- ▶ iff $\exists F$. Cl $\stackrel{\texttt{tick}}{\longrightarrow} F$ and Cl $\models [\texttt{tock}]\texttt{ff}$
- ▶ iff Cl ⊨ [tock]ff

 $\texttt{Cl} \stackrel{\mathrm{def}}{=} \texttt{tick}.\texttt{Cl}$

Does Cl have the property: [tick]((tick)tt \land [tock]ff)?

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- iff $\forall F$ if $\texttt{Cl} \stackrel{\texttt{tick}}{\longrightarrow} F$ then $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt}$ and $Cl \models [\texttt{tock}]\texttt{ff}$
- ▶ iff $\exists F$. Cl $\xrightarrow{\texttt{tick}} F$ and Cl $\models [\texttt{tock}]\texttt{ff}$
- ▶ iff Cl ⊨ [tock]ff
- iff $\{E : \operatorname{Cl} \stackrel{\operatorname{tock}}{\longrightarrow} E\} = \emptyset$

 $\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick}.\mathtt{Cl}$

- $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- iff $\forall F$ if $\texttt{Cl} \stackrel{\texttt{tick}}{\longrightarrow} F$ then $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}]\texttt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle \texttt{tick} \rangle \texttt{tt}$ and $Cl \models [\texttt{tock}]\texttt{ff}$
- ▶ iff $\exists F$. Cl $\stackrel{\texttt{tick}}{\longrightarrow} F$ and Cl $\models [\texttt{tock}]\texttt{ff}$
- ▶ iff Cl ⊨ [tock]ff
- iff $\{E : \operatorname{Cl} \xrightarrow{\operatorname{tock}} E\} = \emptyset$
- iff $\emptyset = \emptyset$

Negation

Modal logic can be extended with a negation operator \neg having the semantics: $E \models \neg \Phi$ iff $E \not\models \Phi$

Negation

Modal logic can be extended with a negation operator \neg having the semantics: $E \models \neg \Phi$ iff $E \not\models \Phi$ Negation is redundant in the following sense: For every formula Φ of HML there is a formula Φ^c such that for every process E

 $E \models \Phi^c$ iff $E \not\models \Phi$

Negation

Modal logic can be extended with a negation operator \neg having the semantics: $E \models \neg \Phi$ iff $E \not\models \Phi$ Negation is redundant in the following sense: For every formula Φ of HML there is a formula Φ^c such that for every process E

 $E \models \Phi^c$ iff $E \not\models \Phi$

 Φ^c is inductively defined as follows:

$$\begin{array}{rcl} \mathtt{t}\mathtt{t}^c &=& \mathtt{f}\mathtt{f}\\ \mathtt{f}\mathtt{f}^c &=& \mathtt{t}\mathtt{t}\\ (\Phi_1 \wedge \Phi_2)^c &=& \Phi_1^c \vee \Phi_2^c\\ (\Phi_1 \vee \Phi_2)^c &=& \Phi_1^c \wedge \Phi_2^c\\ ([a]\Phi)^c &=& \langle a \rangle \Phi^c\\ (\langle a \rangle \Phi)^c &=& [a]\Phi^c \end{array}$$

 $F \models \Phi^c$ iff $F \not\models \Phi$.

<□ > < @ > < E > < E > E - のQ @

 $F \models \Phi^c$ iff $F \not\models \Phi$.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Proof: By induction on the structure of Φ

 $F \models \Phi^c$ iff $F \not\models \Phi$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Proof: By induction on the structure of Φ Basis: $\Phi = tt$ and $\Phi = ff$. Trivial.

 $F \models \Phi^c$ iff $F \not\models \Phi$.

Proof: By induction on the structure of Φ Basis: $\Phi = tt$ and $\Phi = ff$. Trivial. Induction step:

 $F \models \Phi^c$ iff $F \not\models \Phi$.

Proof: By induction on the structure of Φ Basis: $\Phi = tt$ and $\Phi = ff$. Trivial. Induction step: Case $\Phi = \Phi_1 \wedge \Phi_2$

$$\begin{array}{l} F \models (\Phi_1 \land \Phi_2)^c \\ \text{iff} \quad F \models \Phi_1^c \lor \Phi_2^c \\ \text{iff} \quad F \models \Phi_1^c \text{ or } F \models \Phi_2^c \quad (\text{by clause for } \lor) \\ \text{iff} \quad F \not\models \Phi_1 \text{ or } F \not\models \Phi_2 \quad (\text{by i.h.}) \\ \text{iff} \quad F \not\models \Phi_1 \land \Phi_2 \quad (\text{by clause for } \land). \end{array}$$

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

Case $\Phi = [a]\Phi_1$.

$$\begin{array}{ll} F \models ([a]\Phi_1)^c \\ \text{iff} & F \models \langle a \rangle \Phi_1^c \\ \text{iff} & \exists G. F \xrightarrow{a} G \text{ and } G \models \Phi_1^c \\ \text{iff} & \exists G. F \xrightarrow{a} G \text{ and } G \not\models \Phi_1 \quad \text{(by i.h.)} \\ \text{iff} & F \not\models [a]\Phi_1 \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Bisimilarity and Hennessy-Milner Logic I

• Let $E \equiv_M F$ if E and F satisfy exactly the same formulas of modal logic.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• Let $E \equiv_M F$ if E and F satisfy exactly the same formulas of modal logic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• Theorem: If $E \sim F$ then $E \equiv_M F$.

• Let $E \equiv_M F$ if E and F satisfy exactly the same formulas of modal logic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Theorem: If $E \sim F$ then $E \equiv_M F$.
- Proof: By induction on modal formulas Φ. For any G and H, if G ~ H, then G ⊨ Φ iff H ⊨ Φ.

Let E ≡_M F if E and F satisfy exactly the same formulas of modal logic.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Theorem: If $E \sim F$ then $E \equiv_M F$.
- Proof: By induction on modal formulas Φ. For any G and H, if G ~ H, then G ⊨ Φ iff H ⊨ Φ.
- Basis: $\Phi = tt$ or $\Phi = ff$. Clear.

- Let E ≡_M F if E and F satisfy exactly the same formulas of modal logic.
- Theorem: If $E \sim F$ then $E \equiv_M F$.
- Proof: By induction on modal formulas Φ. For any G and H, if G ~ H, then G ⊨ Φ iff H ⊨ Φ.
- Basis: $\Phi = tt$ or $\Phi = ff$. Clear.
- Step: We consider only the case Φ = [a]Ψ. By symmetry, it suffices to show that G ⊨ [a]Ψ implies H ⊨ [a]Ψ. Assume G ⊨ [a]Ψ. For any G' such that G → G', it follows that G' ⊨ Ψ. Let H → H'. Since G ~ H, there is a G' such that G → G' and G' ~ H'. By the induction hypothesis H' ⊨ Ψ, and therefore H ⊨ Φ.

• *E* is immediately image-finite if, for each $a \in A$, the set $\{F : E \xrightarrow{a} F\}$ is finite.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- ► *E* is immediately image-finite if, for each $a \in A$, the set $\{F : E \xrightarrow{a} F\}$ is finite.
- E is image-finite if all processes reachable from it are immediately image-finite.

• Theorem: If E, F image-finite and $E \equiv_{M} F$, then $E \sim F$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

▶ Theorem: If *E*, *F* image-finite and $E \equiv_M F$, then $E \sim F$.

▶ Proof: the following relation is a bisimulation. $\{(E, F) : E \equiv_M F \text{ and } E, F \text{ are image-finite}\}$

- ▶ Theorem: If *E*, *F* image-finite and $E \equiv_M F$, then $E \sim F$.
- ▶ Proof: the following relation is a bisimulation. $\{(E, F) : E \equiv_M F \text{ and } E, F \text{ are image-finite}\}$
- ► Assume $G \equiv_{\mathrm{M}} H$ and $G \xrightarrow{a} G'$ Need to show $H \xrightarrow{a} H_i$ and $G' \equiv_{\mathrm{M}} H_i$
- ▶ Because $G \models \langle a \rangle$ tt and $G \equiv_{\mathrm{M}} H$, $H \models \langle a \rangle$ tt So $\{H' : H \xrightarrow{a} H'\} = \{H_1, \dots, H_n\}$ is non-empty and finite by image-finiteness.

- ▶ Theorem: If *E*, *F* image-finite and $E \equiv_M F$, then $E \sim F$.
- ▶ Proof: the following relation is a bisimulation. $\{(E, F) : E \equiv_M F \text{ and } E, F \text{ are image-finite}\}$
- ► Assume $G \equiv_{\mathrm{M}} H$ and $G \xrightarrow{a} G'$ Need to show $H \xrightarrow{a} H_i$ and $G' \equiv_{\mathrm{M}} H_i$
- Because $G \models \langle a \rangle$ tt and $G \equiv_{\mathrm{M}} H$, $H \models \langle a \rangle$ tt So $\{H' : H \xrightarrow{a} H'\} = \{H_1, \dots, H_n\}$ is non-empty and finite by image-finiteness.
- If G' ≠_M H_i for each i : 1 ≤ i ≤ n, there are formulas Φ₁,...,Φ_n such that G' ⊨ Φ_i and H_i ⊭ Φ_i.
 (Here we use the fact that M is closed under complement.)

- ▶ Theorem: If *E*, *F* image-finite and $E \equiv_M F$, then $E \sim F$.
- ▶ Proof: the following relation is a bisimulation. $\{(E, F) : E \equiv_M F \text{ and } E, F \text{ are image-finite}\}$
- ► Assume $G \equiv_{\mathrm{M}} H$ and $G \xrightarrow{a} G'$ Need to show $H \xrightarrow{a} H_i$ and $G' \equiv_{\mathrm{M}} H_i$
- Because $G \models \langle a \rangle$ tt and $G \equiv_{\mathrm{M}} H$, $H \models \langle a \rangle$ tt So $\{H' : H \xrightarrow{a} H'\} = \{H_1, \dots, H_n\}$ is non-empty and finite by image-finiteness.
- If G' ≢_M H_i for each i : 1 ≤ i ≤ n, there are formulas Φ₁,...,Φ_n such that G' ⊨ Φ_i and H_i ⊭ Φ_i. (Here we use the fact that M is closed under complement.)

• Let
$$\Psi = \Phi_1 \land \ldots \land \Phi_n$$
.
 $G \models \langle a \rangle \Psi$ but $H \not\models \langle a \rangle \Psi$ because each H_i fails to have
property Ψ . Contradicts $G \equiv_{\text{HM}} H$.

- ▶ Theorem: If *E*, *F* image-finite and $E \equiv_M F$, then $E \sim F$.
- ▶ Proof: the following relation is a bisimulation. $\{(E, F) : E \equiv_M F \text{ and } E, F \text{ are image-finite}\}$
- ► Assume $G \equiv_{\mathrm{M}} H$ and $G \xrightarrow{a} G'$ Need to show $H \xrightarrow{a} H_i$ and $G' \equiv_{\mathrm{M}} H_i$
- Because $G \models \langle a \rangle$ tt and $G \equiv_{\mathrm{M}} H$, $H \models \langle a \rangle$ tt So $\{H' : H \xrightarrow{a} H'\} = \{H_1, \dots, H_n\}$ is non-empty and finite by image-finiteness.
- If G' ≢_M H_i for each i : 1 ≤ i ≤ n, there are formulas Φ₁,...,Φ_n such that G' ⊨ Φ_i and H_i ⊭ Φ_i. (Here we use the fact that M is closed under complement.)

• Let
$$\Psi = \Phi_1 \land \ldots \land \Phi_n$$
.
 $G \models \langle a \rangle \Psi$ but $H \not\models \langle a \rangle \Psi$ because each H_i fails to have
property Ψ . Contradicts $G \equiv_{\text{HM}} H$.

• Case $H \xrightarrow{a} H'$ is symmetric.

Given by the previous two results:

• Theorem: If $E \sim F$ then $E \equiv_M F$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Given by the previous two results:

- Theorem: If $E \sim F$ then $E \equiv_M F$
- ▶ Theorem: If *E*, *F* image-finite and $E \equiv_M F$, then $E \sim F$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Given by the previous two results:

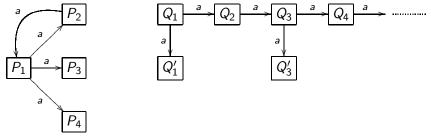
- Theorem: If $E \sim F$ then $E \equiv_M F$
- Theorem: If E, F image-finite and $E \equiv_{M} F$, then $E \sim F$

▲日▼▲□▼▲□▼▲□▼ □ ののの

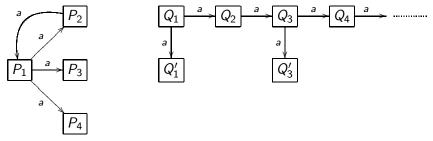
Alternative perspective: properties

Given by the previous two results:

- Theorem: If $E \sim F$ then $E \equiv_M F$
- Theorem: If E, F image-finite and $E \equiv_{M} F$, then $E \sim F$
- Alternative perspective: properties
- Let ||φ|| = {E | E ⊨ φ} (May restrict to particular transition system)
- First theorem equivalent to properties expressed by modal formulas are bisimulation invariant: if E ∈ ||φ|| and E ~ F then F ∈ ||φ||

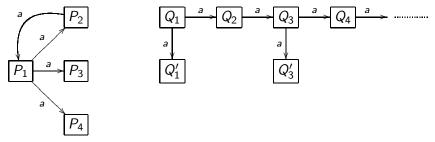


- Many kinds of properties not bisimulation invariant
- ► $P_1 \sim Q_1$



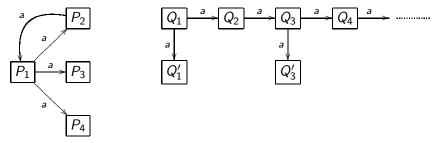
◆□> ◆□> ◆三> ◆三> ・三 のへで

- Many kinds of properties not bisimulation invariant
- $P_1 \sim Q_1$
- ▶ But P_1 unlike Q_1
 - has 3 a-transitions



▲日▼▲□▼▲□▼▲□▼ □ ののの

- Many kinds of properties not bisimulation invariant
- $P_1 \sim Q_1$
- But P₁ unlike Q₁
 - has 3 a-transitions
 - is finite-state



- Many kinds of properties not bisimulation invariant
- $P_1 \sim Q_1$
- But P_1 unlike Q_1
 - has 3 a-transitions
 - is finite-state
 - has a sequence of transitions that is eventually cyclic

▲日▼▲□▼▲□▼▲□▼ □ ののの

$$\phi ::= x E_a y \mid x = y \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \exists x.\phi$$

► x, y ∈ Var (variables); E_a is binary transition relation for each action a

$$\phi ::= x E_a y \mid x = y \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \exists x.\phi$$

► x, y ∈ Var (variables); E_a is binary transition relation for each action a

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

formulas are interpreted over transition systems

$$\phi ::= x E_a y \mid x = y \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \exists x.\phi$$

► x, y ∈ Var (variables); E_a is binary transition relation for each action a

- formulas are interpreted over transition systems
- Valuation $\sigma: Var \rightarrow Pr$ (*Pr* are the processes)

$$\phi ::= x E_a y \mid x = y \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \exists x.\phi$$

- ► x, y ∈ Var (variables); E_a is binary transition relation for each action a
- formulas are interpreted over transition systems
- Valuation $\sigma: Var \rightarrow Pr$ (*Pr* are the processes)
- $\sigma\{P_1/x_1, \ldots, P_n/x_n\}$ is the valuation that is the same as σ except that its value for x_i is P_i , $1 \le i \le n$ (where each x_i is distinct).

Semantics

Inductively define when FOL formula ϕ is true on an LTS with respect to a valuation σ as $\sigma \models \phi$

$$\sigma \models xE_{a}y \quad \text{iff} \quad \sigma(x) \xrightarrow{a} \sigma(y)$$

$$\sigma \models x = y \quad \text{iff} \quad \sigma(x) = \sigma(y)$$

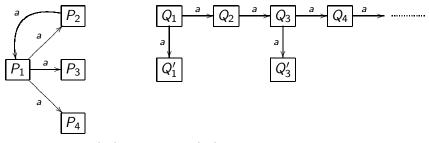
$$\sigma \models \neg \phi \quad \text{iff} \quad \sigma \not\models \phi$$

$$\sigma \models \phi_{1} \lor \phi_{2} \quad \text{iff} \quad \sigma \models \phi_{1} \text{ or } \sigma \models \phi_{2}$$

$$\sigma \models \exists x.\phi \quad \text{iff} \quad \sigma\{P/x\} \models \phi \text{ for some } P \in Pr$$

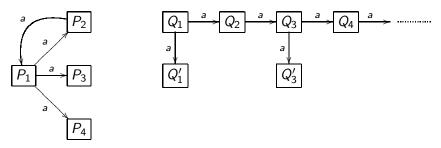
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

The universal quantifier, $\forall x.\phi = \neg \exists \neg \phi$ $\sigma \models \forall x.\phi \text{ iff } \sigma\{P/x\} \models \phi \text{ for all } P \in Pr.$ Example



• Assume $\sigma(x_1) = P_1$ and $\sigma(x_2) = Q_1$

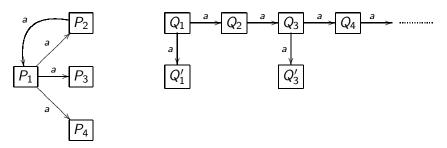
Example



- Assume $\sigma(x_1) = P_1$ and $\sigma(x_2) = Q_1$
- $\bullet \ \sigma \models \exists x. \exists y. \exists z. (x_1 E_a x \land x_1 E_a y \land x_1 E_a z \land x \neq y \land x \neq z \land y \neq z)$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Example



- Assume $\sigma(x_1) = P_1$ and $\sigma(x_2) = Q_1$
- $\sigma \models \exists x. \exists y. \exists z. (x_1 E_a x \land x_1 E_a y \land x_1 E_a z \land x \neq y \land x \neq z \land y \neq z)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• $\sigma \models \forall y. \forall z. (x_2 E_a y \land y E_a z \rightarrow z \neq x_2)$

Translating modal logic into FOL

The FOL translation of modal formula ϕ relative to variable x is $T_x(\phi)$ which is defined inductively

$$T_{x}(tt) = x = x$$

$$T_{x}(ff) = \neg(x = x)$$

$$T_{x}(\phi_{1} \land \phi_{2}) = T_{x}(\phi_{1}) \land T_{x}(\phi_{2})$$

$$T_{x}(\phi_{1} \lor \phi_{2}) = T_{x}(\phi_{1}) \lor T_{x}(\phi_{2})$$

$$T_{x}([a]\phi) = \forall y.\neg(xE_{a}y) \lor T_{y}(\phi)$$

$$T_{x}(\langle a \rangle \phi) = \exists y.xE_{a}y \land T_{y}(\phi)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Translating modal logic into FOL

The FOL translation of modal formula ϕ relative to variable x is $T_x(\phi)$ which is defined inductively

$$T_{x}(tt) = x = x$$

$$T_{x}(ff) = \neg(x = x)$$

$$T_{x}(\phi_{1} \land \phi_{2}) = T_{x}(\phi_{1}) \land T_{x}(\phi_{2})$$

$$T_{x}(\phi_{1} \lor \phi_{2}) = T_{x}(\phi_{1}) \lor T_{x}(\phi_{2})$$

$$T_{x}([a]\phi) = \forall y.\neg(xE_{a}y) \lor T_{y}(\phi)$$

$$T_{x}(\langle a \rangle \phi) = \exists y.xE_{a}y \land T_{y}(\phi)$$

Theorem $P \models \phi$ iff $\sigma\{P/x\} \models T_x(\phi)$ Theorem Any first-order formula $T_x(\phi)$ is bisimulation invariant

Translating modal logic into FOL

The FOL translation of modal formula ϕ relative to variable x is $T_x(\phi)$ which is defined inductively

$$T_{x}(tt) = x = x$$

$$T_{x}(ff) = \neg(x = x)$$

$$T_{x}(\phi_{1} \land \phi_{2}) = T_{x}(\phi_{1}) \land T_{x}(\phi_{2})$$

$$T_{x}(\phi_{1} \lor \phi_{2}) = T_{x}(\phi_{1}) \lor T_{x}(\phi_{2})$$

$$T_{x}([a]\phi) = \forall y.\neg(xE_{a}y) \lor T_{y}(\phi)$$

$$T_{x}(\langle a \rangle \phi) = \exists y.xE_{a}y \land T_{y}(\phi)$$

Theorem $P \models \phi$ iff $\sigma\{P/x\} \models T_x(\phi)$ Theorem Any first-order formula $T_x(\phi)$ is bisimulation invariant A FOL formula $\phi(x)$ is equivalent to modal $\phi' \in M$ provided that for any LTS and for any state P, $\sigma\{P/x\} \models \phi$ iff $P \models \phi'$

Theorem A FOL formula $\phi(x)$ is equivalent to a modal formula iff $\phi(x)$ is bisimulation invariant. **Proof**

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem A FOL formula $\phi(x)$ is equivalent to a modal formula iff $\phi(x)$ is bisimulation invariant. Proof If $\phi(x)$ is equivalent to a modal formula ϕ' then $\{P \mid \sigma\{P/x\} \models \phi\} = \|\phi'\|$ which is bisimulation invariant

Theorem A FOL formula $\phi(x)$ is equivalent to a modal formula iff $\phi(x)$ is bisimulation invariant.

Proof If $\phi(x)$ is equivalent to a modal formula ϕ' then $\{P \mid \sigma\{P/x\} \models \phi\} = ||\phi'||$ which is bisimulation invariant For the converse property, assume that $\phi(x)$ is bisimulation invariant.

Let $\Phi = \{T_x(\psi) \mid \psi \in M \text{ and } \{\phi(x)\} \models T_x(\psi)\}$

We show that $\Phi \models \phi(x)$ and, therefore, by the compactness theorem, $\phi(x)$ is equivalent to a modal formula ψ' such that $T_x(\psi') \in \Phi$.

Theorem A FOL formula $\phi(x)$ is equivalent to a modal formula iff $\phi(x)$ is bisimulation invariant.

Proof If $\phi(x)$ is equivalent to a modal formula ϕ' then $\{P \mid \sigma\{P/x\} \models \phi\} = ||\phi'||$ which is bisimulation invariant For the converse property, assume that $\phi(x)$ is bisimulation invariant.

Let $\Phi = \{ T_x(\psi) | \psi \in M \text{ and } \{\phi(x)\} \models T_x(\psi) \}$

We show that $\Phi \models \phi(x)$ and, therefore, by the compactness theorem, $\phi(x)$ is equivalent to a modal formula ψ' such that $T_x(\psi') \in \Phi$.

Assume $\sigma\{P/x\} \models \psi$ for all $\psi \in \Phi$. We show $\sigma\{P/x\} \models \phi$. We choose a *P* with the Hennessy-Milner property (that is, if $P' \equiv_M P$ then $P' \sim P$)

Proof Continued

Let $\Psi = \{T_x(\psi) \mid P \models \psi\}$. First, $\Phi \subseteq \Psi$. Next, $\Psi \cup \{\phi\}$ is satisfiable Therefore, for some Q, $\sigma\{Q/x\} \models \psi$ for all $\psi \in \Psi$ and $\sigma\{Q/x\} \models \phi$. However, $Q \sim P$ and because ϕ is bisimulation invariant, $\sigma\{P/x\} \models \phi$ as required.

Alternative Proof

Uses ω -unravelling;

Given a LTS there is a way of unfolding $P \in Pr$ and all its reachable processes into a tree rooted at P which is called *unravelling*.

Theorem If $P \sim Q$. then the ω -unravellings of P and Q are isomorphic