Bisimulation and Logic
Lecture 3

Colin Stirling

Laboratory for Foundations of Computer Science (LFCS)
School of Informatics
Edinburgh University

Modal logic and bisimulation

» Behavioural equivalence between concurrent processes (Park,
Hennessy + Milner)

» Model theory of modal logic (van Benthem)

Modal characterisation of bisimulation and some model theory

Modal (Hennessy-Milner) logic: syntax

¢:::tt|ff|¢1/\¢2|¢1\/¢2\[a]¢|(a>¢

A formula can be

Modal (Hennessy-Milner) logic: syntax

$ =ttt | ff | (ORI O | d, Vv Py ‘ [a]CD | (a>¢
A formula can be

» the constant true formula tt

» the constant false formula £,

Modal (Hennessy-Milner) logic: syntax

O =tt|ff [P APy | PV Dy [a]P | (a)P
A formula can be
» the constant true formula tt
» the constant false formula £,
» a conjunction of formulas ®; A &,

» a disjunction of formulas ®; V ®,,

Modal (Hennessy-Milner) logic: syntax

¢:::tt|ff|¢1/\¢2|¢1\/¢2|[a]¢|(a>¢

A formula can be

v

the constant true formula tt

v

the constant false formula ff,

» a conjunction of formulas ®; A &,

v

a disjunction of formulas ®; V ®,,

v

a formula [a]®, read as “"box a ®", or “for all a-derivatives ®,”

Modal (Hennessy-Milner) logic: syntax

¢:::tt|ff|¢1/\¢2|¢1\/¢2\[a]¢|(a>¢

A formula can be

v

the constant true formula tt

v

the constant false formula ff,

» a conjunction of formulas ®; A &,

v

a disjunction of formulas ®; V ®,,

v

a formula [a]®, read as “"box a ®", or “for all a-derivatives ®,”

v

a formula (a)®, read as “diamond a ®", or “for some
a-derivative 9."

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E
satisfies ®, denoted by E = ®, or it doesn't, denoted by E [~ ®.

» EE=tt E W~ ff

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E
satisfies ®, denoted by E = ®, or it doesn't, denoted by E [~ ®.

» EE=tt E W~ ff
» EEOANVIffERE®and EE WV
» EEOVVIffEE®or EREV

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E
satisfies ®, denoted by E = ®, or it doesn't, denoted by E [~ ®.
» EE=tt E W~ ff
» EEOAVIffEE®and EEV
» EEOVVIffEE®or EEV
» E|=[a]® iff YF. if E 25 F then F = ®

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E
satisfies ®, denoted by E = ®, or it doesn't, denoted by E [~ ®.
» EE=tt E W~ ff
» EEOAVIffEE®and EEV
» EEOVVIffEE®or EEV
» E|=[a]® iff YF. if E 25 F then F = ®
» E=(a)®iff3F. E-25 Fand F= o

Examples

» E = (tick)tt
E can do a tick

Examples

» E = (tick)tt
E can do a tick
» E = (tick)(tock)tt
E can do a tick and then a tock

Examples

» E = (tick)tt

E can do a tick
» E = (tick)(tock)tt

E can do a tick and then a tock
» E |= [tick]ff

E cannot do a tick

Examples

v

E = (tick)tt

E can do a tick

E = (tick)(tock)tt

E can do a tick and then a tock
E |= [ticK|ff

E cannot do a tick

E |= (tick)ff

This is equivalent to ff!

v

v

v

Examples

v

E = (tick)tt

E can do a tick

E = (tick)(tock)tt

E can do a tick and then a tock
E |= [ticK|ff

E cannot do a tick

E |= (tick)ff

This is equivalent to ff!

E = [tick]tt

This is equivalent to true!

v

v

v

v

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) ?

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) ?
» Cl = [tick]((tick)tt A [tock]ff)

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) ?
» Cl = [tick]((tick)tt A [tock]ff)

tick

» iff VF if C1 — F then F |= (tick)tt A [tock|ff

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) ?
» Cl = [tick]((tick)tt A [tock]ff)
tick

» iff VF if C1 — F then F |= (tick)tt A [tock|ff
» iff C1 = (tick)tt A [tock|ff

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) ?
» Cl = [tick]((tick)tt A [tock]ff)
> iff VF if CL 25 F then F = (tick)tt A [tock|ff
» iff C1 = (tick)tt A [tock|ff

» iff C1 |= (tick)tt and C1 = [tock]|ff

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) ?
» Cl = [tick]((tick)tt A [tock]ff)

> iff VF if CL 25 F then F = (tick)tt A [tock|ff
» iff C1 = (tick)tt A [tock|ff
» iff C1 |= (tick)tt and C1 = [tock]|ff

tick

> iff IF. €1 2% F and C1 |= [tock|£f

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) ?
» Cl = [tick]((tick)tt A [tock]ff)
> iff VF if CL 25 F then F = (tick)tt A [tock|ff
» iff C1 = (tick)tt A [tock|ff
» iff C1 |= (tick)tt and C1 = [tock]|ff
tick

> iff IF. C1 %% F and C1 k= [tock]£f
» iff C1 = [tock]ff

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) ?
» Cl = [tick]((tick)tt A [tock]ff)
> iff VF if CL 25 F then F = (tick)tt A [tock|ff
» iff C1 = (tick)tt A [tock|ff
» iff C1 |= (tick)tt and C1 = [tock]|ff
tick

> iff IF. C1 %% F and C1 k= [tock]£f
» iff C1 = [tock]ff

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) ?
» Cl = [tick]((tick)tt A [tock]ff)

tick

» iff VF if C1 — F then F |= (tick)tt A [tock|ff
» iff C1 = (tick)tt A [tock|ff
» iff C1 |= (tick)tt and C1 = [tock]|ff

tick

> iff IF. C1 %% F and C1 k= [tock]£f
» iff C1 = [tock]ff

tock

» iff {E:CL—=E} =10

Checking satisfaction

c1 ¥ tick.c1

Does C1 have the property: [tick|((tick)tt A [tock]ff) ?
» Cl = [tick]((tick)tt A [tock]ff)

tick

» iff VF if C1 — F then F |= (tick)tt A [tock|ff
» iff C1 = (tick)tt A [tock|ff
» iff C1 |= (tick)tt and C1 = [tock]|ff

tick

> iff IF. C1 %% F and C1 k= [tock]£f
» iff C1 = [tock]ff

tock

» iff {E:CL—=E} =10
» iff) =10

Negation

Modal logic can be extended with a negation operator — having
the semantics: £ = ¢ iff E £ &

Negation

Modal logic can be extended with a negation operator — having

the semantics: £ = ¢ iff E £ &
Negation is redundant in the following sense: For every formula ¢
of HML there is a formula € such that for every process E

El=o° iff Epo

Negation

Modal logic can be extended with a negation operator — having
the semantics: £ = ¢ iff E £ &

Negation is redundant in the following sense: For every formula ¢
of HML there is a formula € such that for every process E

El=o° iff Epo

&< is inductively defined as follows:

tt¢ = ff

ff¢ = +tt
((Dl A\ ¢2)C = (Di V (Dg
(<D1 vV <D2)C = CDE A CDE

([a]®)e = (a)®c
((a)®)c = [a]®c

Proposition: For every process F and HML-formula ®:

FlEoCiff FI£o.

Proposition: For every process F and HML-formula ®:

FlEoCiff FI£o.

Proof: By induction on the structure of ®

Proposition: For every process F and HML-formula ®:

FlEoCiff FI£o.

Proof: By induction on the structure of ®
Basis: ® = tt and ® = ££. Trivial.

Proposition: For every process F and HML-formula ®:

FlEoCiff FI£o.

Proof: By induction on the structure of ®
Basis: ® = tt and ® = ££. Trivial.
Induction step:

Proposition:

For every process F and HML-formula &:

FlEoCiff FI£o.

Proof: By induction on the structure of ®
Basis: ® = tt and ® = ££. Trivial.

Induction step:

Case ® = 1 A Oy

iff
iff
ift
iff

F ': (¢1 AN ¢2)C

F = o5V o

FE® or FE®S (by clause for V)
Fitd or F o, (by i.h.)
F oA, (by clause for A).

Case & = [a]P;.

iff
iff
iff
iff

F = ([a]®1)°

F = (a)®f
3G.F 25 G and G |=
3G.F 25 G and G (£ o

F b’é [a]d>1

(by i.h.)

Bisimilarity and Hennessy-Milner Logic |

» Let £ =) F if E and F satisfy exactly the same formulas of
modal logic.

Bisimilarity and Hennessy-Milner Logic |

» Let £ =) F if E and F satisfy exactly the same formulas of
modal logic.

» Theorem: If E ~ F then E =y F.

Bisimilarity and Hennessy-Milner Logic |

» Let £ =) F if E and F satisfy exactly the same formulas of
modal logic.

» Theorem: If E ~ F then E =y F.

» Proof: By induction on modal formulas ®.
For any G and H, if G ~ H, then G |= @ iff H = ®.

Bisimilarity and Hennessy-Milner Logic |

» Let £ =) F if E and F satisfy exactly the same formulas of
modal logic.

» Theorem: If E ~ F then E =y F.

» Proof: By induction on modal formulas ®.
For any G and H, if G ~ H, then G |= @ iff H = ®.

» Basis: ® =tt or ® = ff. Clear.

Bisimilarity and Hennessy-Milner Logic |

» Let £ =) F if E and F satisfy exactly the same formulas of
modal logic.

» Theorem: If E ~ F then E =y F.

» Proof: By induction on modal formulas ®.
For any G and H, if G ~ H, then G |= @ iff H = ®.

» Basis: ® =tt or ® = ff. Clear.

» Step: We consider only the case ® = [a]W. By symmetry, it
suffices to show that G |= [a]V implies H = [a]V.
Assume G = [a]V. For any G’ such that G -2+ G’, it follows
that G' = V.
Let H —2s H'. Since G ~ H, there is a G’ such that
G -5 G’ and G’ ~ H'. By the induction hypothesis H' |= W,
and therefore H = .

Bisimilarity and Hennessy-Milner Logic Il

» E is immediately image-finite if, for each a € A, the set
{F : E 25 F} is finite.

Bisimilarity and Hennessy-Milner Logic Il

» E is immediately image-finite if, for each a € A, the set
{F : E 25 F} is finite.

» E is image-finite if all processes reachable from it are
immediately image-finite.

Bisimilarity and Hennessy-Milner Logic Ill

» Theorem: If E, F image-finite and E =\ F, then E ~ F.

Bisimilarity and Hennessy-Milner Logic Il

» Theorem: If E, F image-finite and E =\ F, then E ~ F.

» Proof: the following relation is a bisimulation.
{(E,F) : E=y F and E, F are image-finite}

Bisimilarity and Hennessy-Milner Logic Il

» Theorem: If E, F image-finite and E =\ F, then E ~ F.
» Proof: the following relation is a bisimulation.
{(E,F) : E=y F and E, F are image-finite}
» Assume G =y H and G -2 G’
Need to show H —25 H; and G’ =\ H;
» Because G = (a)tt and G =\ H, H |= (a)tt
So {H' : H-2 H'} = {Hy,..., H,} is non-empty and finite
by image-finiteness.

Bisimilarity and Hennessy-Milner Logic Il

» Theorem: If E, F image-finite and E =\ F, then E ~ F.
» Proof: the following relation is a bisimulation.
{(E,F) : E=y F and E, F are image-finite}
» Assume G =y H and G -2 G’
Need to show H —25 H; and G’ =\ H;
» Because G = (a)tt and G =\ H, H |= (a)tt
So {H' : H-2 H'} = {Hy,..., H,} is non-empty and finite
by image-finiteness.
» If G/ #\ H; for each i : 1 < i < n, there are formulas
®y,...,9, such that G’ = ®; and H; [~ o;.
(Here we use the fact that M is closed under complement.)

Bisimilarity and Hennessy-Milner Logic Il

» Theorem: If E, F image-finite and E =\ F, then E ~ F.
» Proof: the following relation is a bisimulation.
{(E,F) : E=y F and E, F are image-finite}
» Assume G =y H and G -2 G’
Need to show H —25 H; and G’ =\ H;
» Because G = (a)tt and G =\ H, H = (a)tt
So {H' : H-2 H'} = {Hy,..., H,} is non-empty and finite
by image-finiteness.
» If G/ #\ H; for each i : 1 < i < n, there are formulas
®y,...,9, such that G’ = ®; and H; [~ o;.
(Here we use the fact that M is closed under complement.)
> Let V=03 AL AD,.
G | (a)V but H [~ (a)V because each H; fails to have
property W. Contradicts G =\ H.

Bisimilarity and Hennessy-Milner Logic Il

» Theorem: If E, F image-finite and E =\ F, then E ~ F.
» Proof: the following relation is a bisimulation.
{(E,F) : E=y F and E, F are image-finite}
» Assume G =y H and G -2 G’
Need to show H —25 H; and G’ =\ H;
» Because G = (a)tt and G =\ H, H = (a)tt
So {H' : H-2 H'} = {Hy,..., H,} is non-empty and finite
by image-finiteness.
» If G/ #\ H; for each i : 1 < i < n, there are formulas
®y,...,9, such that G’ = ®; and H; [~ o;.
(Here we use the fact that M is closed under complement.)
> Let V=03 AL AD,.
G | (a)V but H [~ (a)V because each H; fails to have
property W. Contradicts G =\ H.

» Case H -+ H' is symmetric.

Modal characterisation of bisimulation

Given by the previous two results:
» Theorem: If E ~ F then E =y F

Modal characterisation of bisimulation

Given by the previous two results:
» Theorem: If E ~ F then E =y F
» Theorem: If E, F image-finite and E =y F, then E ~ F

Modal characterisation of bisimulation

Given by the previous two results:
» Theorem: If E ~ F then E =y F
» Theorem: If E, F image-finite and E =y F, then E ~ F

» Alternative perspective: properties

> Let [[¢]| = {E|E = ¢}

(May restrict to particular transition system)

Modal characterisation of bisimulation

Given by the previous two results:
» Theorem: If E ~ F then E =y F
» Theorem: If E, F image-finite and E =y F, then E ~ F

» Alternative perspective: properties

> Let [[¢]| = {E|E = ¢}

(May restrict to particular transition system)

» First theorem equivalent to properties expressed by modal
formulas are bisimulation invariant: if E € ||¢|| and E ~ F
then F € ||¢]]

Bisimulation invariance

‘Qli a |Q2| a |Q3| a |Q4|a

P4

» Many kinds of properties not bisimulation invariant
> Pr~ @1

Bisimulation invariance

‘Qli a |Q2| a |Q3| a |Q4|a

a a
Q| @
a
P4
» Many kinds of properties not bisimulation invariant
> Pr~ @1

» But P; unlike @

» has 3 a-transitions

Bisimulation invariance

‘Qli a |Q2| a |Q3| a |Q4|a

a a
Q| @
a
P4
» Many kinds of properties not bisimulation invariant
> Pr~ @1

» But P; unlike @
» has 3 a-transitions
» is finite-state

Bisimulation invariance

(@ @ >

a a
Q| @
a
P4
» Many kinds of properties not bisimulation invariant
> Pr~ @1

» But P; unlike Q;
» has 3 a-transitions
> is finite-state
> has a sequence of transitions that is eventually cyclic

First order logic (FOL)

¢ i=xEy | x=y | 2¢ | 1V | Ixo

» x,y € Var (variables); E, is binary transition relation for each
action a

First order logic (FOL)

¢ i=xEy | x=y | 2¢ | 1V | Ixo

» x,y € Var (variables); E, is binary transition relation for each
action a

» formulas are interpreted over transition systems

First order logic (FOL)

¢ i=xEy | x=y | 2¢ | 1V | Ixo

» x,y € Var (variables); E, is binary transition relation for each
action a

» formulas are interpreted over transition systems

» Valuation o : Var — Pr (Pr are the processes)

First order logic (FOL)

¢ n=xEy | x=y | ¢ | 1V | Ix.¢

» x,y € Var (variables); E, is binary transition relation for each
action a

» formulas are interpreted over transition systems
» Valuation o : Var — Pr (Pr are the processes)

» 0{P1/x1,...,Pn/xn} is the valuation that is the same as o
except that its value for x; is P;, 1 < i < n (where each x; is
distinct).

Semantics

Inductively define when FOL formula ¢ is true on an LTS with
respect to a valuation o as o = ¢

o = xEyy iff
cEXx=y iff
o= ¢ iff
o=@V o iff
o= Ix.¢ iff

o(x) = a(y)

a(x) = a(y)

g

g ': qbl or o ': ¢2

o{P/x} & ¢ for some P € Pr

The universal quantifier, Vx.¢p = =3—¢
o | Vx.¢ iff o{P/x} = ¢ for all P € Pr.

Example

‘Qli a |Q2| a |Q3| a |Q4|a

» Assume o(x1) = P1 and o(x2) = Q1

Example

‘Qli a |Q2| a |Q3| a |Q4|a

» Assume o(x1) = Py and o(x2) = Q1
» 0 = Ix.dy.dz.(xiEax AxiEsy AxiEaz Ax # y Ax # z Ny # z)

Example

‘Qli a |Q2| a |Q3| a |Q4|a

» Assume o(x1) = Py and o(x2) = Q1
» 0 = Ix.dy.dz.(xiEax AxiEsy AxiEaz Ax # y Ax # z Ny # z)
> 0 =VyVz.(xEy AN yEsz — z # x2)

Translating modal logic into FOL

The FOL translation of modal formula ¢ relative to variable x is
T (¢) which is defined inductively

T.(tt) = X=X

T(£f£) = —(x =x)
T(p1ANp2) = Tu(o1) A Ti(d2)
Tu(91V d2) = Tu(¢1)V Tx(92)
T«([a]®) = Vy.=(xEay)V T,(9)
T«((a)®) = dy.xEy A Ty(9)

Translating modal logic into FOL

The FOL translation of modal formula ¢ relative to variable x is
T (¢) which is defined inductively

T.(tt) = X=X

T.(£f£) = —(x=x)

T (o1 ANp2) = Ti(o1) A Ti(92)
Tu(91V d2) = Tu(¢1)V Tx(92)
T«([a]®) = Vy.=(xEay)V T,(9)
T«((a)®) = dy.xEy A Ty(9)

Theorem P = ¢ iff o{P/x} = Tx(¢)

Theorem Any first-order formula T,(¢) is bisimulation invariant

Translating modal logic into FOL

The FOL translation of modal formula ¢ relative to variable x is
T (¢) which is defined inductively

T.(tt) = X=X

T.(£f£) = —(x=x)

Tu(p1 AN d2) = Tu(¢1) A Tx(92)
Tu(91V d2) = Tu(¢1)V Tx(92)
T«([a]9) = Vy.(xEay) V Ty(¢)
Tx({(a)¢) = FyxEay A Ty(9)

Theorem P = ¢ iff o{P/x} = Tx(¢)

Theorem Any first-order formula T,(¢) is bisimulation invariant
A FOL formula ¢(x) is equivalent to modal ¢/ € M provided that
for any LTS and for any state P, o{P/x} = ¢ iff P = ¢’

Van Benthem's theorem

Theorem A FOL formula ¢(x) is equivalent to a modal formula iff
¢(x) is bisimulation invariant.
Proof

Van Benthem's theorem

Theorem A FOL formula ¢(x) is equivalent to a modal formula iff
¢(x) is bisimulation invariant.

Proof If ¢(x) is equivalent to a modal formula ¢ then
{P|o{P/x} E ¢} = ||¢|| which is bisimulation invariant

Van Benthem's theorem

Theorem A FOL formula ¢(x) is equivalent to a modal formula iff
¢(x) is bisimulation invariant.

Proof If ¢(x) is equivalent to a modal formula ¢ then
{P|o{P/x} E ¢} = ||¢|| which is bisimulation invariant

For the converse property, assume that ¢(x) is bisimulation
invariant.

Let & = {T(¥)|v € M and {¢(x)} E T«(¢)}

We show that ® = ¢(x) and, therefore, by the compactness
theorem, ¢(x) is equivalent to a modal formula ¢ such that

T (¥') € .

Van Benthem's theorem

Theorem A FOL formula ¢(x) is equivalent to a modal formula iff
¢(x) is bisimulation invariant.

Proof If ¢(x) is equivalent to a modal formula ¢ then
{P|o{P/x} E ¢} = ||¢|| which is bisimulation invariant

For the converse property, assume that ¢(x) is bisimulation
invariant.

Let & = {To(¥) | € M and {6(x)} E Tu(¥)}

We show that ® = ¢(x) and, therefore, by the compactness
theorem, ¢(x) is equivalent to a modal formula ¢ such that

T (¥') € .

Assume o{P/x} = 1 for all p € ®. We show o{P/x} = ¢. We
choose a P with the Hennessy-Milner property (that is, if P’ =), P
then P' ~ P)

Proof Continued

Let W = {T«(¥)|P E ¥}

First, ® C WV,

Next, W U {¢} is satisfiable

Therefore, for some Q, 0{Q/x} |= v for all ¢» € ¥ and
o{Q/x} E ¢

However, @ ~ P and because ¢ is bisimulation invariant,
o{P/x} = ¢ as required.

Alternative Proof

Uses w-unravelling;

Given a LTS there is a way of unfolding P € Pr and all its
reachable processes into a tree rooted at P which is called
unravelling.

Theorem If P ~ Q. then the w-unravellings of P and Q are
isomorphic

