
Bisimulation and Logic

Lecture 3

Colin Stirling

Laboratory for Foundations of Computer Science (LFCS)
School of Informatics
Edinburgh University

Summer School on Model Checking
Ziyu Hotel, Beijing
Oct 11–16 2010

Modal logic and bisimulation

I Behavioural equivalence between concurrent processes (Park,
Hennessy + Milner)

I Model theory of modal logic (van Benthem)

Modal characterisation of bisimulation and some model theory

Modal (Hennessy-Milner) logic: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]Φ | 〈a〉Φ

A formula can be

Modal (Hennessy-Milner) logic: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]Φ | 〈a〉Φ

A formula can be

I the constant true formula tt

I the constant false formula ff,

Modal (Hennessy-Milner) logic: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]Φ | 〈a〉Φ

A formula can be

I the constant true formula tt

I the constant false formula ff,

I a conjunction of formulas Φ1 ∧ Φ2

I a disjunction of formulas Φ1 ∨ Φ2,

Modal (Hennessy-Milner) logic: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]Φ | 〈a〉Φ

A formula can be

I the constant true formula tt

I the constant false formula ff,

I a conjunction of formulas Φ1 ∧ Φ2

I a disjunction of formulas Φ1 ∨ Φ2,

I a formula [a]Φ, read as “box a Φ”, or “for all a-derivatives Φ,”

Modal (Hennessy-Milner) logic: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]Φ | 〈a〉Φ

A formula can be

I the constant true formula tt

I the constant false formula ff,

I a conjunction of formulas Φ1 ∧ Φ2

I a disjunction of formulas Φ1 ∨ Φ2,

I a formula [a]Φ, read as “box a Φ”, or “for all a-derivatives Φ,”

I a formula 〈a〉Φ, read as “diamond a Φ”, or “for some
a-derivative Φ.”

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula Φ. Either E
satisfies Φ, denoted by E |= Φ, or it doesn’t, denoted by E 6|= Φ.

I E |= tt E 6|= ff

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula Φ. Either E
satisfies Φ, denoted by E |= Φ, or it doesn’t, denoted by E 6|= Φ.

I E |= tt E 6|= ff

I E |= Φ ∧Ψ iff E |= Φ and E |= Ψ

I E |= Φ ∨Ψ iff E |= Φ or E |= Ψ

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula Φ. Either E
satisfies Φ, denoted by E |= Φ, or it doesn’t, denoted by E 6|= Φ.

I E |= tt E 6|= ff

I E |= Φ ∧Ψ iff E |= Φ and E |= Ψ

I E |= Φ ∨Ψ iff E |= Φ or E |= Ψ

I E |= [a]Φ iff ∀F . if E
a

−→ F then F |= Φ

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula Φ. Either E
satisfies Φ, denoted by E |= Φ, or it doesn’t, denoted by E 6|= Φ.

I E |= tt E 6|= ff

I E |= Φ ∧Ψ iff E |= Φ and E |= Ψ

I E |= Φ ∨Ψ iff E |= Φ or E |= Ψ

I E |= [a]Φ iff ∀F . if E
a

−→ F then F |= Φ

I E |= 〈a〉Φ iff ∃F . E
a

−→ F and F |= Φ

Examples

I E |= 〈tick〉tt
E can do a tick

Examples

I E |= 〈tick〉tt
E can do a tick

I E |= 〈tick〉〈tock〉tt
E can do a tick and then a tock

Examples

I E |= 〈tick〉tt
E can do a tick

I E |= 〈tick〉〈tock〉tt
E can do a tick and then a tock

I E |= [tick]ff
E cannot do a tick

Examples

I E |= 〈tick〉tt
E can do a tick

I E |= 〈tick〉〈tock〉tt
E can do a tick and then a tock

I E |= [tick]ff
E cannot do a tick

I E |= 〈tick〉ff
This is equivalent to ff!

Examples

I E |= 〈tick〉tt
E can do a tick

I E |= 〈tick〉〈tock〉tt
E can do a tick and then a tock

I E |= [tick]ff
E cannot do a tick

I E |= 〈tick〉ff
This is equivalent to ff!

I E |= [tick]tt
This is equivalent to true!

Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

I Cl |= [tick](〈tick〉tt ∧ [tock]ff)

Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

I Cl |= [tick](〈tick〉tt ∧ [tock]ff)

I iff ∀F if Cl
tick
−→ F then F |= 〈tick〉tt ∧ [tock]ff

Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

I Cl |= [tick](〈tick〉tt ∧ [tock]ff)

I iff ∀F if Cl
tick
−→ F then F |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt ∧ [tock]ff

Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

I Cl |= [tick](〈tick〉tt ∧ [tock]ff)

I iff ∀F if Cl
tick
−→ F then F |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt and Cl |= [tock]ff

Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

I Cl |= [tick](〈tick〉tt ∧ [tock]ff)

I iff ∀F if Cl
tick
−→ F then F |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt and Cl |= [tock]ff

I iff ∃F . Cl
tick

−→ F and Cl |= [tock]ff

Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

I Cl |= [tick](〈tick〉tt ∧ [tock]ff)

I iff ∀F if Cl
tick
−→ F then F |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt and Cl |= [tock]ff

I iff ∃F . Cl
tick

−→ F and Cl |= [tock]ff

I iff Cl |= [tock]ff

Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

I Cl |= [tick](〈tick〉tt ∧ [tock]ff)

I iff ∀F if Cl
tick
−→ F then F |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt and Cl |= [tock]ff

I iff ∃F . Cl
tick

−→ F and Cl |= [tock]ff

I iff Cl |= [tock]ff

Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

I Cl |= [tick](〈tick〉tt ∧ [tock]ff)

I iff ∀F if Cl
tick
−→ F then F |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt and Cl |= [tock]ff

I iff ∃F . Cl
tick

−→ F and Cl |= [tock]ff

I iff Cl |= [tock]ff

I iff {E : Cl
tock

−→ E} = ∅

Checking satisfaction

Cl
def
= tick.Cl

Does Cl have the property: [tick](〈tick〉tt ∧ [tock]ff) ?

I Cl |= [tick](〈tick〉tt ∧ [tock]ff)

I iff ∀F if Cl
tick
−→ F then F |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt ∧ [tock]ff

I iff Cl |= 〈tick〉tt and Cl |= [tock]ff

I iff ∃F . Cl
tick

−→ F and Cl |= [tock]ff

I iff Cl |= [tock]ff

I iff {E : Cl
tock

−→ E} = ∅

I iff ∅ = ∅

Negation

Modal logic can be extended with a negation operator ¬ having
the semantics: E |= ¬Φ iff E 6|= Φ

Negation

Modal logic can be extended with a negation operator ¬ having
the semantics: E |= ¬Φ iff E 6|= Φ
Negation is redundant in the following sense: For every formula Φ
of HML there is a formula Φc such that for every process E

E |= Φc iff E 6|= Φ

Negation

Modal logic can be extended with a negation operator ¬ having
the semantics: E |= ¬Φ iff E 6|= Φ
Negation is redundant in the following sense: For every formula Φ
of HML there is a formula Φc such that for every process E

E |= Φc iff E 6|= Φ

Φc is inductively defined as follows:

tt
c = ff

ff
c = tt

(Φ1 ∧ Φ2)
c = Φc

1 ∨ Φc
2

(Φ1 ∨ Φ2)
c = Φc

1 ∧ Φc
2

([a]Φ)c = 〈a〉Φc

(〈a〉Φ)c = [a]Φc

Proposition: For every process F and HML-formula Φ:

F |= Φc iff F 6|= Φ .

Proposition: For every process F and HML-formula Φ:

F |= Φc iff F 6|= Φ .

Proof: By induction on the structure of Φ

Proposition: For every process F and HML-formula Φ:

F |= Φc iff F 6|= Φ .

Proof: By induction on the structure of Φ
Basis: Φ = tt and Φ = ff. Trivial.

Proposition: For every process F and HML-formula Φ:

F |= Φc iff F 6|= Φ .

Proof: By induction on the structure of Φ
Basis: Φ = tt and Φ = ff. Trivial.
Induction step:

Proposition: For every process F and HML-formula Φ:

F |= Φc iff F 6|= Φ .

Proof: By induction on the structure of Φ
Basis: Φ = tt and Φ = ff. Trivial.
Induction step:
Case Φ = Φ1 ∧ Φ2

F |= (Φ1 ∧ Φ2)
c

iff F |= Φc
1 ∨ Φc

2

iff F |= Φc
1 or F |= Φc

2 (by clause for ∨)
iff F 6|= Φ1 or F 6|= Φ2 (by i.h.)
iff F 6|= Φ1 ∧ Φ2 (by clause for ∧).

Case Φ = [a]Φ1.

F |= ([a]Φ1)
c

iff F |= 〈a〉Φc
1

iff ∃G .F
a

−→ G and G |= Φc
1

iff ∃G .F
a

−→ G and G 6|= Φ1 (by i.h.)
iff F 6|= [a]Φ1

Bisimilarity and Hennessy-Milner Logic I

I Let E ≡M F if E and F satisfy exactly the same formulas of
modal logic.

Bisimilarity and Hennessy-Milner Logic I

I Let E ≡M F if E and F satisfy exactly the same formulas of
modal logic.

I Theorem: If E ∼ F then E ≡M F .

Bisimilarity and Hennessy-Milner Logic I

I Let E ≡M F if E and F satisfy exactly the same formulas of
modal logic.

I Theorem: If E ∼ F then E ≡M F .

I Proof: By induction on modal formulas Φ.
For any G and H, if G ∼ H, then G |= Φ iff H |= Φ.

Bisimilarity and Hennessy-Milner Logic I

I Let E ≡M F if E and F satisfy exactly the same formulas of
modal logic.

I Theorem: If E ∼ F then E ≡M F .

I Proof: By induction on modal formulas Φ.
For any G and H, if G ∼ H, then G |= Φ iff H |= Φ.

I Basis: Φ = tt or Φ = ff. Clear.

Bisimilarity and Hennessy-Milner Logic I

I Let E ≡M F if E and F satisfy exactly the same formulas of
modal logic.

I Theorem: If E ∼ F then E ≡M F .

I Proof: By induction on modal formulas Φ.
For any G and H, if G ∼ H, then G |= Φ iff H |= Φ.

I Basis: Φ = tt or Φ = ff. Clear.

I Step: We consider only the case Φ = [a]Ψ. By symmetry, it
suffices to show that G |= [a]Ψ implies H |= [a]Ψ.
Assume G |= [a]Ψ. For any G ′ such that G

a
−→ G ′, it follows

that G ′ |= Ψ.
Let H

a
−→ H ′. Since G ∼ H, there is a G ′ such that

G
a

−→ G ′ and G ′ ∼ H ′. By the induction hypothesis H ′ |= Ψ,
and therefore H |= Φ.

Bisimilarity and Hennessy-Milner Logic II

I E is immediately image-finite if, for each a ∈ A, the set
{F : E

a
−→ F} is finite.

Bisimilarity and Hennessy-Milner Logic II

I E is immediately image-finite if, for each a ∈ A, the set
{F : E

a
−→ F} is finite.

I E is image-finite if all processes reachable from it are
immediately image-finite.

Bisimilarity and Hennessy-Milner Logic III

I Theorem: If E , F image-finite and E ≡M F , then E ∼ F .

Bisimilarity and Hennessy-Milner Logic III

I Theorem: If E , F image-finite and E ≡M F , then E ∼ F .

I Proof: the following relation is a bisimulation.
{(E ,F) : E ≡M F and E ,F are image-finite}

Bisimilarity and Hennessy-Milner Logic III

I Theorem: If E , F image-finite and E ≡M F , then E ∼ F .

I Proof: the following relation is a bisimulation.
{(E ,F) : E ≡M F and E ,F are image-finite}

I Assume G ≡M H and G
a

−→ G ′

Need to show H
a

−→ Hi and G ′ ≡M Hi

I Because G |= 〈a〉tt and G ≡M H, H |= 〈a〉tt
So {H ′ : H

a
−→ H ′} = {H1, . . . ,Hn} is non-empty and finite

by image-finiteness.

Bisimilarity and Hennessy-Milner Logic III

I Theorem: If E , F image-finite and E ≡M F , then E ∼ F .

I Proof: the following relation is a bisimulation.
{(E ,F) : E ≡M F and E ,F are image-finite}

I Assume G ≡M H and G
a

−→ G ′

Need to show H
a

−→ Hi and G ′ ≡M Hi

I Because G |= 〈a〉tt and G ≡M H, H |= 〈a〉tt
So {H ′ : H

a
−→ H ′} = {H1, . . . ,Hn} is non-empty and finite

by image-finiteness.

I If G ′ 6≡M Hi for each i : 1 ≤ i ≤ n, there are formulas
Φ1, . . . ,Φn such that G ′ |= Φi and Hi 6|= Φi .
(Here we use the fact that M is closed under complement.)

Bisimilarity and Hennessy-Milner Logic III

I Theorem: If E , F image-finite and E ≡M F , then E ∼ F .

I Proof: the following relation is a bisimulation.
{(E ,F) : E ≡M F and E ,F are image-finite}

I Assume G ≡M H and G
a

−→ G ′

Need to show H
a

−→ Hi and G ′ ≡M Hi

I Because G |= 〈a〉tt and G ≡M H, H |= 〈a〉tt
So {H ′ : H

a
−→ H ′} = {H1, . . . ,Hn} is non-empty and finite

by image-finiteness.

I If G ′ 6≡M Hi for each i : 1 ≤ i ≤ n, there are formulas
Φ1, . . . ,Φn such that G ′ |= Φi and Hi 6|= Φi .
(Here we use the fact that M is closed under complement.)

I Let Ψ = Φ1 ∧ . . . ∧ Φn.
G |= 〈a〉Ψ but H 6|= 〈a〉Ψ because each Hi fails to have
property Ψ. Contradicts G ≡HM H.

Bisimilarity and Hennessy-Milner Logic III

I Theorem: If E , F image-finite and E ≡M F , then E ∼ F .

I Proof: the following relation is a bisimulation.
{(E ,F) : E ≡M F and E ,F are image-finite}

I Assume G ≡M H and G
a

−→ G ′

Need to show H
a

−→ Hi and G ′ ≡M Hi

I Because G |= 〈a〉tt and G ≡M H, H |= 〈a〉tt
So {H ′ : H

a
−→ H ′} = {H1, . . . ,Hn} is non-empty and finite

by image-finiteness.

I If G ′ 6≡M Hi for each i : 1 ≤ i ≤ n, there are formulas
Φ1, . . . ,Φn such that G ′ |= Φi and Hi 6|= Φi .
(Here we use the fact that M is closed under complement.)

I Let Ψ = Φ1 ∧ . . . ∧ Φn.
G |= 〈a〉Ψ but H 6|= 〈a〉Ψ because each Hi fails to have
property Ψ. Contradicts G ≡HM H.

I Case H
a

−→ H ′ is symmetric.

Modal characterisation of bisimulation

Given by the previous two results:

I Theorem: If E ∼ F then E ≡M F

Modal characterisation of bisimulation

Given by the previous two results:

I Theorem: If E ∼ F then E ≡M F

I Theorem: If E , F image-finite and E ≡M F , then E ∼ F

Modal characterisation of bisimulation

Given by the previous two results:

I Theorem: If E ∼ F then E ≡M F

I Theorem: If E , F image-finite and E ≡M F , then E ∼ F

I Alternative perspective: properties

I Let ‖φ‖ = {E |E |= φ}
(May restrict to particular transition system)

Modal characterisation of bisimulation

Given by the previous two results:

I Theorem: If E ∼ F then E ≡M F

I Theorem: If E , F image-finite and E ≡M F , then E ∼ F

I Alternative perspective: properties

I Let ‖φ‖ = {E |E |= φ}
(May restrict to particular transition system)

I First theorem equivalent to properties expressed by modal
formulas are bisimulation invariant: if E ∈ ‖φ‖ and E ∼ F

then F ∈ ‖φ‖

Bisimulation invariance

P2
a

��

Q1
a //

a

��

Q2
a // Q3

a //

a

��

Q4
a //

P1

a

>>~~~~~~~~

a
 @

@@
@@

@@
@

a // P3 Q ′

1 Q ′

3

P4

I Many kinds of properties not bisimulation invariant

I P1 ∼ Q1

Bisimulation invariance

P2
a

��

Q1
a //

a

��

Q2
a // Q3

a //

a

��

Q4
a //

P1

a

>>~~~~~~~~

a
 @

@@
@@

@@
@

a // P3 Q ′

1 Q ′

3

P4

I Many kinds of properties not bisimulation invariant

I P1 ∼ Q1

I But P1 unlike Q1

I has 3 a-transitions

Bisimulation invariance

P2
a

��

Q1
a //

a

��

Q2
a // Q3

a //

a

��

Q4
a //

P1

a

>>~~~~~~~~

a
 @

@@
@@

@@
@

a // P3 Q ′

1 Q ′

3

P4

I Many kinds of properties not bisimulation invariant

I P1 ∼ Q1

I But P1 unlike Q1

I has 3 a-transitions
I is finite-state

Bisimulation invariance

P2
a

��

Q1
a //

a

��

Q2
a // Q3

a //

a

��

Q4
a //

P1

a

>>~~~~~~~~

a
 @

@@
@@

@@
@

a // P3 Q ′

1 Q ′

3

P4

I Many kinds of properties not bisimulation invariant

I P1 ∼ Q1

I But P1 unlike Q1

I has 3 a-transitions
I is finite-state
I has a sequence of transitions that is eventually cyclic

First order logic (FOL)

φ ::= xEay | x = y | ¬φ | φ1 ∨ φ2 | ∃x .φ

I x , y ∈ Var (variables); Ea is binary transition relation for each
action a

First order logic (FOL)

φ ::= xEay | x = y | ¬φ | φ1 ∨ φ2 | ∃x .φ

I x , y ∈ Var (variables); Ea is binary transition relation for each
action a

I formulas are interpreted over transition systems

First order logic (FOL)

φ ::= xEay | x = y | ¬φ | φ1 ∨ φ2 | ∃x .φ

I x , y ∈ Var (variables); Ea is binary transition relation for each
action a

I formulas are interpreted over transition systems

I Valuation σ : Var → Pr (Pr are the processes)

First order logic (FOL)

φ ::= xEay | x = y | ¬φ | φ1 ∨ φ2 | ∃x .φ

I x , y ∈ Var (variables); Ea is binary transition relation for each
action a

I formulas are interpreted over transition systems

I Valuation σ : Var → Pr (Pr are the processes)

I σ{P1/x1, . . . ,Pn/xn} is the valuation that is the same as σ
except that its value for xi is Pi , 1 ≤ i ≤ n (where each xi is
distinct).

Semantics

Inductively define when FOL formula φ is true on an LTS with
respect to a valuation σ as σ |= φ

σ |= xEay iff σ(x)
a

−→ σ(y)
σ |= x = y iff σ(x) = σ(y)
σ |= ¬φ iff σ 6|= φ
σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2
σ |= ∃x .φ iff σ{P/x} |= φ for some P ∈ Pr

The universal quantifier, ∀x .φ = ¬∃¬φ
σ |= ∀x .φ iff σ{P/x} |= φ for all P ∈ Pr .

Example

P2
a

��

Q1
a //

a

��

Q2
a // Q3

a //

a

��

Q4
a //

P1

a

>>~~~~~~~~

a
 @

@@
@@

@@
@

a // P3 Q ′

1 Q ′

3

P4

I Assume σ(x1) = P1 and σ(x2) = Q1

Example

P2
a

��

Q1
a //

a

��

Q2
a // Q3

a //

a

��

Q4
a //

P1

a

>>~~~~~~~~

a
 @

@@
@@

@@
@

a // P3 Q ′

1 Q ′

3

P4

I Assume σ(x1) = P1 and σ(x2) = Q1

I σ |= ∃x .∃y .∃z .(x1Eax∧x1Eay ∧x1Eaz∧x 6= y ∧x 6= z∧y 6= z)

Example

P2
a

��

Q1
a //

a

��

Q2
a // Q3

a //

a

��

Q4
a //

P1

a

>>~~~~~~~~

a
 @

@@
@@

@@
@

a // P3 Q ′

1 Q ′

3

P4

I Assume σ(x1) = P1 and σ(x2) = Q1

I σ |= ∃x .∃y .∃z .(x1Eax∧x1Eay ∧x1Eaz∧x 6= y ∧x 6= z∧y 6= z)

I σ |= ∀y .∀z .(x2Eay ∧ yEaz → z 6= x2)

Translating modal logic into FOL

The FOL translation of modal formula φ relative to variable x is
Tx(φ) which is defined inductively

Tx(tt) = x = x

Tx(ff) = ¬(x = x)
Tx(φ1 ∧ φ2) = Tx(φ1) ∧ Tx(φ2)
Tx(φ1 ∨ φ2) = Tx(φ1) ∨ Tx(φ2)
Tx([a]φ) = ∀y .¬(xEay) ∨ Ty (φ)
Tx(〈a〉φ) = ∃y .xEay ∧ Ty(φ)

Translating modal logic into FOL

The FOL translation of modal formula φ relative to variable x is
Tx(φ) which is defined inductively

Tx(tt) = x = x

Tx(ff) = ¬(x = x)
Tx(φ1 ∧ φ2) = Tx(φ1) ∧ Tx(φ2)
Tx(φ1 ∨ φ2) = Tx(φ1) ∨ Tx(φ2)
Tx([a]φ) = ∀y .¬(xEay) ∨ Ty (φ)
Tx(〈a〉φ) = ∃y .xEay ∧ Ty(φ)

Theorem P |= φ iff σ{P/x} |= Tx(φ)
Theorem Any first-order formula Tx(φ) is bisimulation invariant

Translating modal logic into FOL

The FOL translation of modal formula φ relative to variable x is
Tx(φ) which is defined inductively

Tx(tt) = x = x

Tx(ff) = ¬(x = x)
Tx(φ1 ∧ φ2) = Tx(φ1) ∧ Tx(φ2)
Tx(φ1 ∨ φ2) = Tx(φ1) ∨ Tx(φ2)
Tx([a]φ) = ∀y .¬(xEay) ∨ Ty (φ)
Tx(〈a〉φ) = ∃y .xEay ∧ Ty(φ)

Theorem P |= φ iff σ{P/x} |= Tx(φ)
Theorem Any first-order formula Tx(φ) is bisimulation invariant
A FOL formula φ(x) is equivalent to modal φ′ ∈ M provided that
for any LTS and for any state P , σ{P/x} |= φ iff P |= φ′

Van Benthem’s theorem

Theorem A FOL formula φ(x) is equivalent to a modal formula iff
φ(x) is bisimulation invariant.
Proof

Van Benthem’s theorem

Theorem A FOL formula φ(x) is equivalent to a modal formula iff
φ(x) is bisimulation invariant.
Proof If φ(x) is equivalent to a modal formula φ′ then
{P |σ{P/x} |= φ} = ‖φ′‖ which is bisimulation invariant

Van Benthem’s theorem

Theorem A FOL formula φ(x) is equivalent to a modal formula iff
φ(x) is bisimulation invariant.
Proof If φ(x) is equivalent to a modal formula φ′ then
{P |σ{P/x} |= φ} = ‖φ′‖ which is bisimulation invariant
For the converse property, assume that φ(x) is bisimulation
invariant.
Let Φ = {Tx(ψ) |ψ ∈ M and {φ(x)} |= Tx(ψ)}
We show that Φ |= φ(x) and, therefore, by the compactness
theorem, φ(x) is equivalent to a modal formula ψ′ such that
Tx(ψ

′) ∈ Φ.

Van Benthem’s theorem

Theorem A FOL formula φ(x) is equivalent to a modal formula iff
φ(x) is bisimulation invariant.
Proof If φ(x) is equivalent to a modal formula φ′ then
{P |σ{P/x} |= φ} = ‖φ′‖ which is bisimulation invariant
For the converse property, assume that φ(x) is bisimulation
invariant.
Let Φ = {Tx(ψ) |ψ ∈ M and {φ(x)} |= Tx(ψ)}
We show that Φ |= φ(x) and, therefore, by the compactness
theorem, φ(x) is equivalent to a modal formula ψ′ such that
Tx(ψ

′) ∈ Φ.
Assume σ{P/x} |= ψ for all ψ ∈ Φ. We show σ{P/x} |= φ. We
choose a P with the Hennessy-Milner property (that is, if P ′ ≡M P

then P ′ ∼ P)

Proof Continued

Let Ψ = {Tx(ψ) |P |= ψ}.
First, Φ ⊆ Ψ.
Next, Ψ ∪ {φ} is satisfiable
Therefore, for some Q, σ{Q/x} |= ψ for all ψ ∈ Ψ and
σ{Q/x} |= φ.
However, Q ∼ P and because φ is bisimulation invariant,
σ{P/x} |= φ as required.

Alternative Proof

Uses ω-unravelling;
Given a LTS there is a way of unfolding P ∈ Pr and all its
reachable processes into a tree rooted at P which is called
unravelling.
Theorem If P ∼ Q. then the ω-unravellings of P and Q are
isomorphic

