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Modal logic and bisimulation

» Behavioural equivalence between concurrent processes (Park,
Hennessy + Milner)

» Model theory of modal logic (van Benthem)

Modal characterisation of bisimulation and some model theory
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A formula can be

v

the constant true formula tt

v

the constant false formula ff,

» a conjunction of formulas ®; A &,

v

a disjunction of formulas ®; V ®,,

v

a formula [a]®, read as “"box a ®", or “for all a-derivatives ®,”

v

a formula (a)®, read as “diamond a ®", or “for some
a-derivative 9."
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Examples

v

E = (tick)tt

E can do a tick

E = (tick)(tock)tt

E can do a tick and then a tock
E |= [ticK|ff

E cannot do a tick

E |= (tick)ff

This is equivalent to ff!

E = [tick]tt

This is equivalent to true!

v

v

v

v
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Negation

Modal logic can be extended with a negation operator — having
the semantics: £ = ¢ iff E £ &

Negation is redundant in the following sense: For every formula ¢
of HML there is a formula € such that for every process E

El=o° iff Epo

&< is inductively defined as follows:

tt¢ = ff

ff¢ = +tt
((Dl A\ ¢2)C = (Di V (Dg
(<D1 vV <D2)C = CDE A CDE

([a]®)e = (a)®c
((a)®)c = [a]®c
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Proposition:

For every process F and HML-formula &:

FlEoCiff FI£o.

Proof: By induction on the structure of ®
Basis: ® = tt and ® = ££. Trivial.

Induction step:

Case ® = 1 A Oy

iff
iff
ift
iff

F ': (¢1 AN ¢2)C

F = o5V o

FE® or FE®S (by clause for V)
Fitd or F o, (by i.h.)
F oA, (by clause for A).



Case & = [a]P;.

iff
iff
iff
iff

F = ([a]®1)°

F = (a)®f
3G.F 25 G and G |=
3G.F 25 G and G (£ o

F b’é [a]d>1

(by i.h.)
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» Let £ =) F if E and F satisfy exactly the same formulas of
modal logic.

» Theorem: If E ~ F then E =y F.

» Proof: By induction on modal formulas ®.
For any G and H, if G ~ H, then G |= @ iff H = ®.

» Basis: ® =tt or ® = ff. Clear.

» Step: We consider only the case ® = [a]W. By symmetry, it
suffices to show that G |= [a]V implies H = [a]V.
Assume G = [a]V. For any G’ such that G -2+ G’, it follows
that G' = V.
Let H —2s H'. Since G ~ H, there is a G’ such that
G -5 G’ and G’ ~ H'. By the induction hypothesis H' |= W,
and therefore H = .
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» E is image-finite if all processes reachable from it are
immediately image-finite.
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» Theorem: If E, F image-finite and E =\ F, then E ~ F.
» Proof: the following relation is a bisimulation.
{(E,F) : E=y F and E, F are image-finite}
» Assume G =y H and G -2 G’
Need to show H —25 H; and G’ =\ H;
» Because G = (a)tt and G =\ H, H = (a)tt
So {H' : H-2 H'} = {Hy,..., H,} is non-empty and finite
by image-finiteness.
» If G/ #\ H; for each i : 1 < i < n, there are formulas
®y,...,9, such that G’ = ®; and H; [~ o;.
(Here we use the fact that M is closed under complement.)
> Let V=03 AL AD,.
G | (a)V but H [~ (a)V because each H; fails to have
property W. Contradicts G =\ H.

» Case H -+ H' is symmetric.
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Modal characterisation of bisimulation

Given by the previous two results:
» Theorem: If E ~ F then E =y F
» Theorem: If E, F image-finite and E =y F, then E ~ F

» Alternative perspective: properties

> Let [[¢]| = {E|E = ¢}

(May restrict to particular transition system)

» First theorem equivalent to properties expressed by modal
formulas are bisimulation invariant: if E € ||¢|| and E ~ F
then F € ||¢]]
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Bisimulation invariance

(@ @ >

a a
Q| @
a
P4
» Many kinds of properties not bisimulation invariant
> Pr~ @1

» But P; unlike Q;
» has 3 a-transitions
> is finite-state
> has a sequence of transitions that is eventually cyclic
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First order logic (FOL)

¢ n=xEy | x=y | ¢ | 1V | Ix.¢

» x,y € Var (variables); E, is binary transition relation for each
action a

» formulas are interpreted over transition systems
» Valuation o : Var — Pr (Pr are the processes)

» 0{P1/x1,...,Pn/xn} is the valuation that is the same as o
except that its value for x; is P;, 1 < i < n (where each x; is
distinct).



Semantics

Inductively define when FOL formula ¢ is true on an LTS with
respect to a valuation o as o = ¢

o = xEyy iff
cEXx=y iff
o= ¢ iff
o=@V o iff
o= Ix.¢ iff

o(x) = a(y)

a(x) = a(y)

g

g ': qbl or o ': ¢2

o{P/x} & ¢ for some P € Pr

The universal quantifier, Vx.¢p = =3—¢
o | Vx.¢ iff o{P/x} = ¢ for all P € Pr.
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Example

‘Qli a |Q2| a |Q3| a |Q4|a ..............

» Assume o(x1) = Py and o(x2) = Q1
» 0 = Ix.dy.dz.(xiEax AxiEsy AxiEaz Ax # y Ax # z Ny # z)
> 0 =VyVz.(xEy AN yEsz — z # x2)
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Translating modal logic into FOL

The FOL translation of modal formula ¢ relative to variable x is
T (¢) which is defined inductively

T.(tt) = X=X

T.(£f£) = —(x=x)

Tu(p1 AN d2) = Tu(¢1) A Tx(92)
Tu(91V d2) = Tu(¢1)V Tx(92)
T«([a]9) = Vy.(xEay) V Ty(¢)
Tx({(a)¢) = FyxEay A Ty(9)

Theorem P = ¢ iff o{P/x} = Tx(¢)

Theorem Any first-order formula T,(¢) is bisimulation invariant
A FOL formula ¢(x) is equivalent to modal ¢/ € M provided that
for any LTS and for any state P, o{P/x} = ¢ iff P = ¢’
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Van Benthem's theorem

Theorem A FOL formula ¢(x) is equivalent to a modal formula iff
¢(x) is bisimulation invariant.

Proof If ¢(x) is equivalent to a modal formula ¢ then
{P|o{P/x} E ¢} = ||¢|| which is bisimulation invariant

For the converse property, assume that ¢(x) is bisimulation
invariant.

Let & = {To(¥) | € M and {6(x)} E Tu(¥)}

We show that ® = ¢(x) and, therefore, by the compactness
theorem, ¢(x) is equivalent to a modal formula ¢ such that

T (¥') € .

Assume o{P/x} = 1 for all p € ®. We show o{P/x} = ¢. We
choose a P with the Hennessy-Milner property (that is, if P’ =), P
then P' ~ P)



Proof Continued

Let W = {T«(¥)|P E ¥}

First, ® C WV,

Next, W U {¢} is satisfiable

Therefore, for some Q, 0{Q/x} |= v for all ¢» € ¥ and
o{Q/x} E ¢

However, @ ~ P and because ¢ is bisimulation invariant,
o{P/x} = ¢ as required.



Alternative Proof

Uses w-unravelling;

Given a LTS there is a way of unfolding P € Pr and all its
reachable processes into a tree rooted at P which is called
unravelling.

Theorem If P ~ Q. then the w-unravellings of P and Q are
isomorphic



