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A binary relation B between processes is a bisimulation
provided that, whenever (E, F) € B and a € A,

if E 25 E’ then F -2 F’ for some F’ such that (E',F') ¢ B
and
if F 25 F’ then E -2+ E’ for some E’ such that (E',F') € B

E and F are bisimulation equivalent (or bisimilar) if there is a
bisimulation relation B such that (E, F) € B.

We write E ~ F if E and F are bisimilar



Temporal operators as fixed points

Here — represents any action

» E(PUV) =V Vv (DA (—)E(PTUV))

> APUW) =W v (A (—)tt A [—]JA(S U W)
Syntactically: property X such that

L X=VV(PA(—)X)

2. X=VV(PA(=)tt A[—]X)



Temporal Operators as Fixed points

Semantically: set of states or processes S = f(S) where f is
> AWV (@A ()N |
» AWV (DA (=)t A[=]X) |

If S=1f(S) then S is a fixed point of f.

In both cases f is [monotonic: S C S’ — f(S) C f(S)

f is essentially modal (using (=) and [—])



Bisimilarity as a fixed point

~ is a binary relation on processes, ~C § x §
Semantically a fixed point solution of equation:

R = f(R)

where R C S x S and f is the (monotonic) function

AR’ AxyNae A
if x == x’ then 3y’.y - y’ and x'R’y’ and
if y = y/ then 3x'.x — x" and X'R'y’



Summary: fixed points

S is a prefixed point of f, if f(S) C S
S is a |postfixed point, of f, if S C f(S)
Proposition If f is monotonic (w.r.t C) then f

» has a least fixed point, [\{S : f(S) C S}
> has a [greatest] fixed point, U{S : S C f(S)}



Fixed points

Assume g is monotonic

least fixed point ug N{S : g(S) € S}
greatest fixed point vg = [J{S : S Cg(S)}

Bisimilarity is a greatest fixed point

~= U{R : R is a bisimulation}



Approximants |

Let v'g for i > 0 be defined as follows where S’ is the full starting
set ’g = S’ and v tlg = g(V'g).

» Vitlg Cuvigforalli

» Moreover, vg C v'g for all i

vg 2 vg 2
U U
vg vg

» If vig =1vit1g, then vgis vig



Approximants |l

» If S’ is not a finite set, then use ordinals
0,1,...,w,w+1l ..., wtwwt+w+1,...
» w is the initial limit ordinal

a+1

» g =5 and v¥*tlg = g(v¥g) and if X is a limit ordinal

g = ﬂ{uag o< A}



Approximants |l

Vog 2 2 ng 2 Vw-i-lg 2
U U U
vg . vg vg

The fixed point vg appears somewhere in the sequence, at the first
point when v%g = v°t1g



Approximants |V

> 1°g =0 and g = g(u"g) and
pe = U{pg :a <)}
» There is the following possibly increasing sequence of sets.

jg jg jg
U U U
g € ... C pg C ptlg C

» The first time u“g = u**gis ug
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The bisimilarity problem

v

Given: two processes E and F

v

Decide: is E ~ F ? i.e., are E and F (strongly) bisimilar ?
Assume both E and F are finite state

v

v

Restrict relations to subsets of S x S, where S is processes in
transition systems for E and F

v

Outline of the algorithm:

» Compute ~ C S x S.
» Check if (E,F) e~
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Bisimilarity up to n

» Recall that ~ is the largest bisimulation or the union of all
bisimulations, and that it is a bisimulation itself.

» For each n > 0, the relation ~, between pairs of processes is
inductively defined as follows:

» E ~g F forall E and F.
> E ~,11 F if and only if for every action a,

» if E -5 E’ then F —Z5 F’ for some F’ such that E/ ~, F/,
and

» if F 25 F’ then E 25 E’ for some E’ such that E/ ~, F'.

E ~n+1 F

Ja Ja
E ~, F



Key result

Proposition For all n > 0,
1. ~n 2”1
2. ~p QNn—l—lv and

3. If ~p=rpp1, then ~p=n
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Scheme for the computation of ~

» Compute ~q, ~1,~2,... until ~=rigT.
» Output ~;.
» Correctness: Part (3) of the Proposition.

» Termination: Assume the procedure does not terminate.
Then, by part (2) of the Proposition, we have an infinite chain

~NODONYLONYD L

This contradicts the finiteness of S.
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Partition refinement algorithms

» Idea: think of ~ not as a set of pairs, but as a set of
equivalence classes.

» Recall that ~ is an equivalence relation

» Proposition: ~ is the coarsest partition of S satisfying the
following property: For every element {E;,... Ex} C S of the
partition, and for every action a:

» either none of Eq,... Ex can do an a, or,

» all of Eq,...Ex can do an a, and there are processes F1, ..., Fx
such that E; -2 F; for every 1 < i < k, and moreover
{Fi,...Fx} isincluded in an element of the partition.

» Proof sketch: Show that the elements of a partition satisfy
this property if and only if they are the equivalence classes of
a bisimulation.
Show that the coarsest partition corresponds to ~.



Splitting
Given two elements Py, P, of a partition of S and an action a, the
result of splitting P; w.r.t P, and a are the sets

P, = {EcP|E -2 Fforsome FcP,}
Pl = P\P|



Splitting
Given two elements Py, P, of a partition of S and an action a, the
result of splitting P; w.r.t P, and a are the sets

P, = {EeP1|Ei>FforsomeFeP2}
P{ = Pi\P
Input: S

Output: equivalence classes of ~ on S
Initialize 1N := {S};

Iterate: Choose an action a and Py, P, € Tl
Split Py with respect to P, and 3;
M= (M\{P})U{P P}
until a fixpoint is reached;

return I1
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Each splitting can be performed in time
O(|S] +19]), where ¢ is set of transitions
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Complexity

v

There are at most |S| — 1 splittings.

v

Each splitting can be performed in time
O(|S] +19]), where ¢ is set of transitions

So the running time is O(|S| - (|S| + |4])
Best known algorithm: O(|d] - log(|S]))

(Compare deciding language equivalence; which is PSPACE
complete)

v

v

v



A Scheduler

Problem: assume n tasks when n > 1.
aj initiates the ith task and b; signals its completion
The scheduler plans the order of task initiation, ensuring

» actions aj ... a, carried out cyclically and tasks may terminate
in any order

» but a task can not be restarted until its previous operation has
finished.

(a;j and b; happen alternately for each i. )
More complex temporal properties. Not expressible in CTL* (“not
first order”but are “regular”).
Expressible using fixed points



Modal Logic+

Z ranges over propositional variables
¢22:Z|tt|ff ‘ ¢1/\¢2|¢1\/¢2 ‘ [a]CD\ (a>¢

» = refined to =y where V is a valuation that assigns a set of
states V(X) to each variable X
E =y X iff E e V(X)
> || ® || refined too: || ® |y ={E : E v ¢}
» V[S/X] is valuation V' like V except V/(X) = S.



Modal Logic+ Il

Proposition The function Ax.|| ® [|y[,,x) is monotonic for any
modal .

» If = explicitly in logic then above not true: =X: Ax. — x not
monotonic.
However, define when @ is positive in X: if X occurs within
an even number of negations in ®
Proposition If ® is positive in X then Ax.|[ ® |y x] is
monotonic.

> Property given by least fixed point of Ax.| ® [ly[./x] is
written puX.® .

» Property given by - fixed point of Ax.[| ® [ly[,/x] is

written -

Alternative basis for temporal logic: modal logic + fixed points



Modal p-calculus

Syntax
Gu=tt | ff | Z | D1 ADy | PV Dy | [a]P | (a)O |
vZ.® | pZ.®

» let o range over the set {p,v}.

» An occurrence of Z is free within ® if it is not within the
scope of an occurrence of 7. 0Z in 6Z.9 binds free
occurrences of Z in .

» Formulas may have multiple fixed points:
vZ. Y. ([b)Y AN [—]Z)

» oZ may bind more than one occurrence of Z:
vZ.(tick)Z A (tock)Z.



Semantics

E =y tt

E [~y £f

EkvZ iff EeV(Z)

EEvdAV iff ElEy®and El=y W
E):V(D\/\U iff E):V(DOI'E):V\U
Eley[a® iff VF.if E-2 F then F =y
Ely (a® iff 3F.E-2 Fand Fl=y o
E)ZvVZ.CD iff EEU{S : SQHCDHV[S/Z]}
Ebvpz o iff E€{S : [®lvs/z €S}

If £ is monotonic (w.r.t C) then ({S : f(S) C S} is least fixed
point and (J{S : S C f(S)} is greatest fixed point of f.



Semantics Il

A slightly different presentation of the clauses for the fixed points
dispenses with explicit use of sets || ® ||y.

E)Zvl/Z(D iff HSEESaHdVFESF):V[S/Z](D

Looks second-order because of quantification over sets. Better:
1%—order

If ® does not contain free variables omit index V: E = ®



Unfolding

» An unfolding of 0Z.® is ®{cZ.®/Z}
Unfolding of vZ.(—)Z is (—)(vZ.(=)Z).
» Proposition £ = 0 Z.9 iff E =y ®{cZ.9/Z}.



Expressiveness |

Modal p-calculus contains LTL, CTL, CTL*

It also contains Propositional Dynamic Logic (PDL). PDL is modal
logic when there is some structure on labels A: closed under
operations +, ; and *

EYYWF if EYForE-SF
EXSF if E-Y%S E; -5 F for some E

EYsF if E=ForE-"SE .. “E " F for some
n>0and E,...,E,
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Modal p-calculus characterisation of bisimulation

E = F if for all closed modal p-calculus formulas @, E = & iff
FE=o.

» Theorem: If E~ F then E=F

» Theorem: If E, F image-finite and E = F, then E ~ F

» Alternative perspective: properties

> Let |9 ={E|E |= ¢}
(May restrict to particular transition system)

» First theorem equivalent to properties expressed by modal
p-calculus formulas are bisimulation invariant: if E € ||¢|| and
E ~ F then F € ||¢]]
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Extend Van Benthem's theorem

» Theorem A FOL formula ¢(x) is equivalent to a modal
formula iff ¢(x) is bisimulation invariant.

» Modal p-calculus can express properties that are beyond first
order logic (such as reachability)
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Monadic second order logic (MSO)

¢ i=xEy | x=y | X(x) | ¢ | 1V | Ix¢ | 3X.9

» x,y € Var (variables); E, is binary transition relation for each
action a

» X ranges over monadic predicate variables VAR; X
quantifies over these variables

» formulas are interpreted over transition systems
» Valuation o : Var — SU VAR — 2° (2° set of subsets of the
processes)

» o{P1/x1,...,Pn/Xn, S1/X1,...,Sm/Xm} is the valuation that
is the same as o except that its value for x; is P;, and for X; is
$;,1<i<n 1<;<m.



Semantics

Inductively define when MSO formula ¢ is true on an LTS with
respect to a valuation o as o |= ¢

o = xEyy
cEx=y
o = X(x)
o ¢
oE g1V éo
o= 3x.¢
o= 3X.9

VX.6 = -IX .=

iff
iff
iff
iff
iff
iff
iff

o(x) = a(y)

o(x) = a(y)

o(x) € o(X)

o ¢

g ): d)l or o ): ¢2

o{P/x} = ¢ for some P € S
a{S'/X} = ¢ for some ' C S



Translating modal p-calculus logic into MSO

The MSO translation of modal formula ¢ relative to variable x is
T«(¢) which is defined inductively

T« (tt) = X=X

T.(££) = —(x=x)

T (o1 ANd2) = Tu(o1) A Ti(2)

Tu(91V d2) = Tu(¢1)V Tx(d2)

T«([a]®) = Vy.=(xEsy) Vv Ty (9)

Tx({a)9) = dyxEy ATy (¢

T (pX.9) = YX(Vy.(Ty(9) = X(¥)) = X(x)
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Translating modal p-calculus logic into MSO

The MSOQO translation of modal formula ¢ relative to variable x is
T«(¢) which is defined inductively

T.(tt) = X=X

T (£f£) = —(x=x)

T (o1 ANp2) = Ti(o1) A Ti(92)

T(¢1Vd2) = Tu(d1)V Tx(d2)

T«([a]®) = Vy.=(xEsy)V T,(9)

Tx({a)9) = dyxEy ATy (¢

Tu(pX.9) = YX(Vy(Ty(9) = X(y)) = X(x)

Theorem P = ¢ iff o{P/x} E T«(®)

Theorem Any closed MSO formula T, (¢) is bisimulation invariant
A MSO formula ¢(x) is equivalent to closed modal u-calculus ¢’
provided that for any LTS and for any state P, o{P/x} = ¢ iff

PEY



Janin and Walukiewicz's theorem

» Theorem A MSO formula ¢(x) is equivalent to a modal
p-calculus formula iff ¢(x) is bisimulation invariant.
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Janin and Walukiewicz's theorem

» Theorem A MSO formula ¢(x) is equivalent to a modal
p-calculus formula iff ¢(x) is bisimulation invariant.

» Proof Uses games and automata; see notes

» Introduce games next time in a model checking setting



