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Bisimulation equivalence

I A binary relation B between processes is a bisimulation
provided that, whenever (E ,F ) ∈ B and a ∈ A,

I if E
a

−→ E ′ then F
a

−→ F ′ for some F ′ such that (E ′,F ′) ∈ B

and

I if F
a

−→ F ′ then E
a

−→ E ′ for some E ′ such that (E ′,F ′) ∈ B

I E and F are bisimulation equivalent (or bisimilar) if there is a
bisimulation relation B such that (E ,F ) ∈ B .

I We write E ∼ F if E and F are bisimilar



Temporal operators as fixed points

Here − represents any action

I E(ΦUΨ) ≡ Ψ ∨ (Φ ∧ 〈−〉E(ΦUΨ))

I A(ΦUΨ) ≡ Ψ ∨ (Φ ∧ 〈−〉tt ∧ [−]A(ΦUΨ))

Syntactically: property X such that

1. X ≡ Ψ ∨ (Φ ∧ 〈−〉X )

2. X ≡ Ψ ∨ (Φ ∧ 〈−〉tt ∧ [−]X )



Temporal Operators as Fixed points

Semantically: set of states or processes S = f (S) where f is

I λx .‖Ψ ∨ (Φ ∧ 〈−〉x) ‖

I λx .‖Ψ ∨ (Φ ∧ 〈−〉tt ∧ [−]x) ‖

If S = f (S) then S is a fixed point of f .

In both cases f is monotonic : S ⊆ S ′ → f (S) ⊆ f (S ′)
f is essentially modal (using 〈−〉 and [−])



Bisimilarity as a fixed point

∼ is a binary relation on processes, ∼⊆ S × S

Semantically a fixed point solution of equation:

R = f (R)

where R ⊆ S × S and f is the (monotonic) function

λR ′.λxy .∀a ∈ A

if x
a

−→ x ′ then ∃y ′.y
a

−→ y ′ and x ′R ′y ′ and

if y
a

−→ y ′ then ∃x ′.x
a

−→ x ′ and x ′R ′y ′



Summary: fixed points

S is a prefixed point of f , if f (S) ⊆ S

S is a postfixed point of f , if S ⊆ f (S)
Proposition If f is monotonic (w.r.t ⊆) then f

I has a least fixed point,
⋂
{S : f (S) ⊆ S}

I has a greatest fixed point,
⋃
{S : S ⊆ f (S)}



Fixed points

Assume g is monotonic

least fixed point µg =
⋂
{S : g(S) ⊆ S}

greatest fixed point νg =
⋃
{S : S ⊆ g(S)}

Bisimilarity is a greatest fixed point

∼=
⋃

{R : R is a bisimulation}



Approximants I

Let ν ig for i ≥ 0 be defined as follows where S ′ is the full starting
set ν0g = S ′ and ν i+1g = g(ν ig).

I ν i+1g ⊆ ν ig for all i

I Moreover, νg ⊆ ν ig for all i

ν0g ⊇ ν1g ⊇ . . . ⊇ ν ig ⊇ . . .
∪ ∪ ∪
νg νg . . . νg . . .

I If ν ig = ν i+1g , then νg is ν ig



Approximants II

I If S ′ is not a finite set, then use ordinals
0, 1, . . . , ω, ω + 1, . . . , ω + ω, ω + ω + 1, . . .

I ω is the initial limit ordinal

I ν0g = S ′ and να+1g = g(ναg) and if λ is a limit ordinal

νλg =
⋂

{ναg : α < λ}



Approximants III

ν0g ⊇ . . . ⊇ νωg ⊇ νω+1g ⊇ . . .
∪ ∪ ∪
νg . . . νg νg . . .

The fixed point νg appears somewhere in the sequence, at the first
point when ναg = να+1g



Approximants IV

I µ0g = ∅ and µα+1g = g(µαg) and
µλg =

⋃
{µαg : α < λ}

I There is the following possibly increasing sequence of sets.

µg . . . µg µg . . .
∪ ∪ ∪
µ0g ⊆ . . . ⊆ µωg ⊆ µω+1g ⊆ . . .

I The first time µαg = µα+1g is µg
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The bisimilarity problem

I Given: two processes E and F

I Decide: is E ∼ F ? i.e., are E and F (strongly) bisimilar ?

I Assume both E and F are finite state

I Restrict relations to subsets of S × S , where S is processes in
transition systems for E and F

I Outline of the algorithm:
I Compute ∼ ⊆ S × S .
I Check if (E ,F ) ∈∼.
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Bisimilarity up to n

I Recall that ∼ is the largest bisimulation or the union of all
bisimulations, and that it is a bisimulation itself.

I For each n ≥ 0, the relation ∼n between pairs of processes is
inductively defined as follows:

I E ∼0 F for all E and F .

I E ∼n+1 F if and only if for every action a,

I if E
a

−→ E ′ then F
a

−→ F ′ for some F ′ such that E ′ ∼n F ′,
and

I if F
a

−→ F ′ then E
a

−→ E ′ for some E ′ such that E ′ ∼n F ′.

E ∼n+1 F

↓ a ↓ a

E ′ ∼n F ′



Key result

Proposition For all n ≥ 0,

1. ∼n ⊇∼,

2. ∼n ⊇∼n+1, and

3. If ∼n=∼n+1, then ∼n=∼.
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Scheme for the computation of ∼

I Compute ∼0,∼1,∼2, . . . until ∼i=∼i+1.

I Output ∼i .

I Correctness: Part (3) of the Proposition.

I Termination: Assume the procedure does not terminate.
Then, by part (2) of the Proposition, we have an infinite chain

∼0⊃∼1⊃∼2 . . .

This contradicts the finiteness of S .
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Partition refinement algorithms

I Idea: think of ∼ not as a set of pairs, but as a set of
equivalence classes.

I Recall that ∼ is an equivalence relation

I Proposition: ∼ is the coarsest partition of S satisfying the
following property: For every element {E1, . . . Ek} ⊆ S of the
partition, and for every action a:

I either none of E1, . . .Ek can do an a, or,
I all of E1, . . .Ek can do an a, and there are processes F1, . . . ,Fk

such that Ei
a

−→ Fi for every 1 ≤ i ≤ k , and moreover
{F1, . . .Fk} is included in an element of the partition.

I Proof sketch: Show that the elements of a partition satisfy
this property if and only if they are the equivalence classes of
a bisimulation.
Show that the coarsest partition corresponds to ∼.



Splitting
Given two elements P1,P2 of a partition of S and an action a, the
result of splitting P1 w.r.t P2 and a are the sets

P ′

1 = {E ∈ P1 | E
a

−→ F for some F ∈ P2 }

P ′′

1 = P1 \ P
′

1



Splitting
Given two elements P1,P2 of a partition of S and an action a, the
result of splitting P1 w.r.t P2 and a are the sets

P ′

1 = {E ∈ P1 | E
a

−→ F for some F ∈ P2 }

P ′′

1 = P1 \ P
′

1

Input: S
Output: equivalence classes of ∼ on S

Initialize Π := {S};

Iterate: Choose an action a and P1,P2 ∈ Π
Split P1 with respect to P2 and a;

Π = (Π \ {P1}) ∪ {P ′

1,P
′′

1 };
until a fixpoint is reached;

return Π
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Complexity

I There are at most |S | − 1 splittings.

I Each splitting can be performed in time
O(|S |+ |δ|), where δ is set of transitions

I So the running time is O(|S | · (|S |+ |δ|)

I Best known algorithm: O(|δ| · log(|S |))

I (Compare deciding language equivalence; which is PSPACE
complete)



A Scheduler

Problem: assume n tasks when n > 1.
ai initiates the ith task and bi signals its completion
The scheduler plans the order of task initiation, ensuring

I actions a1 . . . an carried out cyclically and tasks may terminate
in any order

I but a task can not be restarted until its previous operation has
finished.
(ai and bi happen alternately for each i . )

More complex temporal properties. Not expressible in CTL∗ (“not
first order”but are “regular”).
Expressible using fixed points



Modal Logic+

Z ranges over propositional variables
Φ ::= Z | tt | ff | Φ1 ∧Φ2 | Φ1 ∨ Φ2 | [a]Φ | 〈a〉Φ

I |= refined to |=V where V is a valuation that assigns a set of
states V(X ) to each variable X

E |=V X iff E ∈ V(X )

I ‖Φ ‖ refined too: ‖Φ ‖V = {E : E |=V Φ}

I V[S/X ] is valuation V′ like V except V′(X ) = S .



Modal Logic+ II

Proposition The function λx .‖Φ ‖V[x/X ] is monotonic for any
modal Φ.

I If ¬ explicitly in logic then above not true: ¬X : λx .− x not
monotonic.
However, define when Φ is positive in X : if X occurs within
an even number of negations in Φ
Proposition If Φ is positive in X then λx .‖Φ ‖V[x/X ] is
monotonic.

I Property given by least fixed point of λx .‖Φ ‖V[x/X ] is

written µX .Φ .

I Property given by greatest fixed point of λx .‖Φ ‖V[x/X ] is

written νX .Φ .

Alternative basis for temporal logic: modal logic + fixed points



Modal µ-calculus

Syntax
Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]Φ | 〈a〉Φ |
νZ .Φ | µZ .Φ

I let σ range over the set {µ, ν}.

I An occurrence of Z is free within Φ if it is not within the
scope of an occurrence of σZ . σZ in σZ .Φ binds free
occurrences of Z in Φ.

I Formulas may have multiple fixed points:
νZ . µY . ([b]Y ∧ [−]Z )

I σZ may bind more than one occurrence of Z :
νZ . 〈tick〉Z ∧ 〈tock〉Z .



Semantics

E |=V tt

E 6|=V ff

E |=V Z iff E ∈ V(Z )
E |=V Φ ∧Ψ iff E |=V Φ and E |=V Ψ
E |=V Φ ∨Ψ iff E |=V Φ or E |=V Ψ

E |=V [a]Φ iff ∀F . if E
a

−→ F then F |=V Φ

E |=V 〈a〉Φ iff ∃F .E
a

−→ F and F |=V Φ
E |=V νZ .Φ iff E ∈

⋃
{S : S ⊆ ‖Φ ‖V[S/Z ]}

E |=V µZ .Φ iff E ∈
⋂

{S : ‖Φ ‖V[S/Z ] ⊆ S}

If f is monotonic (w.r.t ⊆) then
⋂
{S : f (S) ⊆ S} is least fixed

point and
⋃
{S : S ⊆ f (S)} is greatest fixed point of f .



Semantics II

A slightly different presentation of the clauses for the fixed points
dispenses with explicit use of sets ‖Φ ‖V.

E |=V νZ .Φ iff ∃S .E ∈ S and ∀F ∈ S .F |=V[S/Z ] Φ

E |=V µZ .Φ iff ∀S . if E 6∈ S then ∃F 6∈ S .F |=V[S/Z ] Φ

Looks second-order because of quantification over sets. Better:
11
2 -order

If Φ does not contain free variables omit index V: E |= Φ



Unfolding

I An unfolding of σZ .Φ is Φ{σZ .Φ/Z}
Unfolding of νZ . 〈−〉Z is 〈−〉(νZ . 〈−〉Z ).

I Proposition E |=V σZ .Φ iff E |=V Φ{σZ .Φ/Z}.



Expressiveness I

Modal µ-calculus contains LTL, CTL, CTL∗

It also contains Propositional Dynamic Logic (PDL). PDL is modal
logic when there is some structure on labels A: closed under
operations +, ; and ∗

E
w+v
−→ F iff E

w
−→ F or E

v
−→ F

E
w ;v
−→ F iff E

w
−→ E1

v
−→ F for some E1

E
w∗

−→ F iff E = F or E
w

−→ E1
w
−→ . . .

w
−→ En

w
−→ F for some

n ≥ 0 and E1, . . . ,En



Modal µ-calculus characterisation of bisimulation

E ≡ F if for all closed modal µ-calculus formulas Φ, E |= Φ iff
F |= Φ.

I Theorem: If E ∼ F then E ≡ F



Modal µ-calculus characterisation of bisimulation

E ≡ F if for all closed modal µ-calculus formulas Φ, E |= Φ iff
F |= Φ.

I Theorem: If E ∼ F then E ≡ F

I Theorem: If E , F image-finite and E ≡ F , then E ∼ F



Modal µ-calculus characterisation of bisimulation

E ≡ F if for all closed modal µ-calculus formulas Φ, E |= Φ iff
F |= Φ.

I Theorem: If E ∼ F then E ≡ F

I Theorem: If E , F image-finite and E ≡ F , then E ∼ F

I Alternative perspective: properties

I Let ‖φ‖ = {E |E |= φ}
(May restrict to particular transition system)



Modal µ-calculus characterisation of bisimulation

E ≡ F if for all closed modal µ-calculus formulas Φ, E |= Φ iff
F |= Φ.

I Theorem: If E ∼ F then E ≡ F

I Theorem: If E , F image-finite and E ≡ F , then E ∼ F

I Alternative perspective: properties

I Let ‖φ‖ = {E |E |= φ}
(May restrict to particular transition system)

I First theorem equivalent to properties expressed by modal
µ-calculus formulas are bisimulation invariant: if E ∈ ‖φ‖ and
E ∼ F then F ∈ ‖φ‖
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Extend Van Benthem’s theorem

I Theorem A FOL formula φ(x) is equivalent to a modal
formula iff φ(x) is bisimulation invariant.

I Modal µ-calculus can express properties that are beyond first
order logic (such as reachability)



Monadic second order logic (MSO)

φ ::= xEay | x = y | X (x) | ¬φ | φ1 ∨ φ2 | ∃x .φ | ∃X .φ

I x , y ∈ Var (variables); Ea is binary transition relation for each
action a



Monadic second order logic (MSO)

φ ::= xEay | x = y | X (x) | ¬φ | φ1 ∨ φ2 | ∃x .φ | ∃X .φ

I x , y ∈ Var (variables); Ea is binary transition relation for each
action a

I X ranges over monadic predicate variables VAR; ∃X
quantifies over these variables



Monadic second order logic (MSO)

φ ::= xEay | x = y | X (x) | ¬φ | φ1 ∨ φ2 | ∃x .φ | ∃X .φ

I x , y ∈ Var (variables); Ea is binary transition relation for each
action a

I X ranges over monadic predicate variables VAR; ∃X
quantifies over these variables

I formulas are interpreted over transition systems

I Valuation σ : Var → S ∪ VAR → 2S (2S set of subsets of the
processes)



Monadic second order logic (MSO)

φ ::= xEay | x = y | X (x) | ¬φ | φ1 ∨ φ2 | ∃x .φ | ∃X .φ

I x , y ∈ Var (variables); Ea is binary transition relation for each
action a

I X ranges over monadic predicate variables VAR; ∃X
quantifies over these variables

I formulas are interpreted over transition systems

I Valuation σ : Var → S ∪ VAR → 2S (2S set of subsets of the
processes)

I σ{P1/x1, . . . ,Pn/xn,S1/X1, . . . ,Sm/Xm} is the valuation that
is the same as σ except that its value for xi is Pi , and for Xj is
Sj , 1 ≤ i ≤ n, 1 ≤ j ≤ m.



Semantics

Inductively define when MSO formula φ is true on an LTS with
respect to a valuation σ as σ |= φ

σ |= xEay iff σ(x)
a

−→ σ(y)
σ |= x = y iff σ(x) = σ(y)
σ |= X (x) iff σ(x) ∈ σ(X )
σ |= ¬φ iff σ 6|= φ
σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

σ |= ∃x .φ iff σ{P/x} |= φ for some P ∈ S

σ |= ∃X .φ iff σ{S ′/X} |= φ for some S ′ ⊆ S

∀X .φ = ¬∃X .¬φ



Translating modal µ-calculus logic into MSO

The MSO translation of modal formula φ relative to variable x is
Tx(φ) which is defined inductively

Tx(tt) = x = x

Tx(ff) = ¬(x = x)
Tx(φ1 ∧ φ2) = Tx(φ1) ∧ Tx(φ2)
Tx(φ1 ∨ φ2) = Tx(φ1) ∨ Tx(φ2)
Tx([a]φ) = ∀y .¬(xEay) ∨ Ty (φ)
Tx(〈a〉φ) = ∃y .xEay ∧ Ty (φ)
Tx(µX .φ) = ∀X .(∀y .(Ty(φ) → X (y)) → X (x)
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Translating modal µ-calculus logic into MSO

The MSO translation of modal formula φ relative to variable x is
Tx(φ) which is defined inductively

Tx(tt) = x = x

Tx(ff) = ¬(x = x)
Tx(φ1 ∧ φ2) = Tx(φ1) ∧ Tx(φ2)
Tx(φ1 ∨ φ2) = Tx(φ1) ∨ Tx(φ2)
Tx([a]φ) = ∀y .¬(xEay) ∨ Ty (φ)
Tx(〈a〉φ) = ∃y .xEay ∧ Ty (φ)
Tx(µX .φ) = ∀X .(∀y .(Ty(φ) → X (y)) → X (x)

Theorem P |= φ iff σ{P/x} |= Tx(φ)
Theorem Any closed MSO formula Tx(φ) is bisimulation invariant
A MSO formula φ(x) is equivalent to closed modal µ-calculus φ′

provided that for any LTS and for any state P , σ{P/x} |= φ iff
P |= φ′
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Janin and Walukiewicz’s theorem

I Theorem A MSO formula φ(x) is equivalent to a modal
µ-calculus formula iff φ(x) is bisimulation invariant.

I Proof Uses games and automata; see notes

I Introduce games next time in a model checking setting


