
Bisimulation and Logic

Lecture 6

Colin Stirling

Laboratory for Foundations of Computer Science (LFCS)
School of Informatics
Edinburgh University

Summer School on Model Checking
Ziyu Hotel, Beijing
Oct 11–16 2010



Methods for verifying finite and infinite state systems

I Notable Success in Computer Science

I model checking + equivalence checking



Methods for verifying finite and infinite state systems

I Notable Success in Computer Science

I model checking + equivalence checking

I System = finite/infinite state transition graph



Methods for verifying finite and infinite state systems

I Notable Success in Computer Science

I model checking + equivalence checking

I System = finite/infinite state transition graph

I Model checking: does state s |= Φ ?

I apply automata/game theoretic techniques to solve it: mostly
computing monadic fixed points, reachability sets by
traversing graph (possibly repeatedly)



Methods for verifying finite and infinite state systems

I Notable Success in Computer Science

I model checking + equivalence checking

I System = finite/infinite state transition graph

I Model checking: does state s |= Φ ?

I apply automata/game theoretic techniques to solve it: mostly
computing monadic fixed points, reachability sets by
traversing graph (possibly repeatedly)

I Equivalence checking: is state s equivalent to t ?

I Mostly computing dyadic fixed points e.g. bisimulations to
solve it. May need algebraic/combinatorial properties of
reachability sets/generators of graph



Active research goal: transfer these techniques to

finite/infinite state systems with binding

1. Deciding observational equivalence for fragments of idealized
Algol (w.r.t. finite value sets)
[Ghica, McCusker 2000; Ong 2002, . . .]



Active research goal: transfer these techniques to

finite/infinite state systems with binding

1. Deciding observational equivalence for fragments of idealized
Algol (w.r.t. finite value sets)
[Ghica, McCusker 2000; Ong 2002, . . .]

2. Model checking higher-order trees
[Knapik, Niwinski, Urzyczyn 2002; Caucal 2002; Ong 2006;
Hague Murawski, Ong, Serre 2008; Kobayashi, Ong 2009;
Broadbent, Ong 2010]



Active research goal: transfer these techniques to

finite/infinite state systems with binding

1. Deciding observational equivalence for fragments of idealized
Algol (w.r.t. finite value sets)
[Ghica, McCusker 2000; Ong 2002, . . .]

2. Model checking higher-order trees
[Knapik, Niwinski, Urzyczyn 2002; Caucal 2002; Ong 2006;
Hague Murawski, Ong, Serre 2008; Kobayashi, Ong 2009;
Broadbent, Ong 2010]

3.
...

...
...

4. Application of tree automata to higher-order matching
[Comon + Jurski 1997, Stirling 2005-9]



Higher Order Schemes

Base type 0: finite/infinite trees with nodes labelled by elements of
{f1, . . . , fk}. Each fi has an arity ≥ 0.
Scheme is a finite family

Fi x
i
1 . . . x

i
ni

def
= ti 1 ≤ i ≤ m

each Fi is typed and distinct



Higher Order Schemes

Base type 0: finite/infinite trees with nodes labelled by elements of
{f1, . . . , fk}. Each fi has an arity ≥ 0.
Scheme is a finite family

Fi x
i
1 . . . x

i
ni

def
= ti 1 ≤ i ≤ m

each Fi is typed and distinct
each ti : 0 built from the typed variables, x i1, . . . , x

i
ni
, the fjs and

the Fi ’s using application.
Also start (closed) expression S : 0 (Avoiding λ-terms)



Higher Order Schemes

Base type 0: finite/infinite trees with nodes labelled by elements of
{f1, . . . , fk}. Each fi has an arity ≥ 0.
Scheme is a finite family

Fi x
i
1 . . . x

i
ni

def
= ti 1 ≤ i ≤ m

each Fi is typed and distinct
each ti : 0 built from the typed variables, x i1, . . . , x

i
ni
, the fjs and

the Fi ’s using application.
Also start (closed) expression S : 0 (Avoiding λ-terms)

Interpretation of a scheme: tree generated by S



Example: first-order

Fx1x2
def
= f (Fx1h(x2))x2 with start Fbb



Example: first-order

Fx1x2
def
= f (Fx1h(x2))x2 with start Fbb

Fbb → f

zz
zz
zz
zz

==
==

==
==

Fbh(b) b



Example: first-order

Fx1x2
def
= f (Fx1h(x2))x2 with start Fbb

Fbb → f

zz
zz
zz
zz

==
==

==
==

Fbh(b) b

Fbb → f

��
��
��
�

>>
>>

>>
>

f

��
��
��
�

>>
>>

>>
> b

f

xx
xx
xx
xx
x

==
==

==
==

h

Fb(hhhb)

zz
zz
zz
zz
zz

BB
BB

BB
BB

BB
h b

.

.

.

.

.

.

.

.

.



Example: second-order

Fx1x2x3
def
= f (F (Gx1)(Hx2)x3) x1(x2x3)

Gy1y2
def
= g(y1(y2))

Hz1z2
def
= h(z1(z2))

Fgha Start



Example: second-order

Fx1x2x3
def
= f (F (Gx1)(Hx2)x3) x1(x2x3)

Gy1y2
def
= g(y1(y2))

Hz1z2
def
= h(z1(z2))

Fgha Start

Fgha → f

vv
vv
vv
vv
vv

EE
EE

EE
EE

E

f

yy
yy
yy
yy
y

HH
HH

HH
HH

HH
gha

f

pp
pp
pp
pp
pp
pp

DD
DD

DD
DD

D gghha

F (((Gg)g)g)(((Hh)h)h)a

qq
qq
qq
qq
qq
qq
q

KK
KK

KK
KK

KK
KK

K
ggghhha

.

.

.

.

.

.



Model checking problem

Given S, does its tree have a decidable monadic 2nd-order theory?



Model checking problem

Given S, does its tree have a decidable monadic 2nd-order theory?
Solved +vely for a subset of schemes (safe schemes)
[Knapik + Niwinski + Urzyczyn 2002]
Proof uses geometry of interaction on infinite λ-terms +
higher-order pushdown automata



Model checking problem

Given S, does its tree have a decidable monadic 2nd-order theory?
Solved +vely for a subset of schemes (safe schemes)
[Knapik + Niwinski + Urzyczyn 2002]
Proof uses geometry of interaction on infinite λ-terms +
higher-order pushdown automata
Extended to all schemes
[Ong 2006, Hague + Murawski + Ong +Serre, 2008]
Proof uses game semantics on infinite lambda terms. Later paper
also uses extended higher-order automata



Fx1x2x3
def
= f (F (Gx1)(Hx2)x3) x1(x2x3)

Gy1y2
def
= g(y1(y2))

Hz1z2
def
= h(z1(z2))

Fgha Start

Follow Ong’s transformation into normal form



Fx1x2x3
def
= f (F (Gx1)(Hx2)x3) x1(x2x3)

Gy1y2
def
= g(y1(y2))

Hz1z2
def
= h(z1(z2))

Fgha Start

Follow Ong’s transformation into normal form
@

nn
nn
nn
nn
nn
nn
nn

~~
~~
~~
~~

@@
@@

@@
@@

PP
PP

PP
PP

PP
PP

PP

F λx λy λ

g h a

λ λ

x y

F = λx1x2x3.f (@ . . .)λ.x1(λ.x2.(λ.x3))
Infinite λ-term (can be folded into a finite tree with backedges)



infinite λ-tree
@

mm
mm
mmm

mm
mm
mm
m

BB
BB

BB
BB

PP
PP

PP
PP

PP
PP

PP
P

λx1x2x3 λx λy λ

f

yy
yy
yy
yy
y

EE
EE

EE
EE

E g h a

@

??

BB
BB

BB
BB

BB
λ λ λ

.

.

.

.

.

.

.

.

. x y



infinite λ-tree
@

mm
mm
mmm

mm
mm
mm
m

BB
BB

BB
BB

PP
PP

PP
PP

PP
PP

PP
P

λx1x2x3 λx λy λ

f

yy
yy
yy
yy
y

EE
EE

EE
EE

E g h a

@

??

BB
BB

BB
BB

BB
λ λ λ

.

.

.

.

.

.

.

.

. x y

using game semantics,
extract the following
infinite tree

f

}}
}}
}}
}}

. . . g

h

a



infinite λ-tree
@

mm
mm
mmm

mm
mm
mm
m

BB
BB

BB
BB

PP
PP

PP
PP

PP
PP

PP
P

λx1x2x3 λx λy λ

f

yy
yy
yy
yy
y

EE
EE

EE
EE

E g h a

@

??

BB
BB

BB
BB

BB
λ λ λ

.

.

.

.

.

.

.

.

. x y

using game semantics,
extract the following
infinite tree

f

}}
}}
}}
}}

. . . g

h

a

transform parity tree
automaton on above tree
into one on the infinite
λ-tree



Equivalence problem (from 1970s)

Given two schemes S1, S2 do they generate same tree ?
S1 ∼ S2 bisimulation equivalence



Equivalence problem (from 1970s)

Given two schemes S1, S2 do they generate same tree ?
S1 ∼ S2 bisimulation equivalence
For order 1, S1 ∼ S2 ≡ DPDA equivalence problem
[Courcelle 1978]
Do two configurations of a deterministic pushdown automaton
generate the same language ?



Equivalence problem (from 1970s)

Given two schemes S1, S2 do they generate same tree ?
S1 ∼ S2 bisimulation equivalence
For order 1, S1 ∼ S2 ≡ DPDA equivalence problem
[Courcelle 1978]
Do two configurations of a deterministic pushdown automaton
generate the same language ?
Solved positively [Sénizergues 2001]
(Simpler proofs [Stirling 2001, 2002])



Equivalence problem (from 1970s)

Given two schemes S1, S2 do they generate same tree ?
S1 ∼ S2 bisimulation equivalence
For order 1, S1 ∼ S2 ≡ DPDA equivalence problem
[Courcelle 1978]
Do two configurations of a deterministic pushdown automaton
generate the same language ?
Solved positively [Sénizergues 2001]
(Simpler proofs [Stirling 2001, 2002])
Order > 1 ?



Equivalence problem (from 1970s)

Given two schemes S1, S2 do they generate same tree ?
S1 ∼ S2 bisimulation equivalence
For order 1, S1 ∼ S2 ≡ DPDA equivalence problem
[Courcelle 1978]
Do two configurations of a deterministic pushdown automaton
generate the same language ?
Solved positively [Sénizergues 2001]
(Simpler proofs [Stirling 2001, 2002])
Order > 1 ?
Open + Hard
(Decidable for a small subset of 2nd-order case [Stirling 2006])



Equivalence problem (from 1970s)

Given two schemes S1, S2 do they generate same tree ?
S1 ∼ S2 bisimulation equivalence
For order 1, S1 ∼ S2 ≡ DPDA equivalence problem
[Courcelle 1978]
Do two configurations of a deterministic pushdown automaton
generate the same language ?
Solved positively [Sénizergues 2001]
(Simpler proofs [Stirling 2001, 2002])
Order > 1 ?
Open + Hard
(Decidable for a small subset of 2nd-order case [Stirling 2006])
INFINITELY MANY OPEN PROBLEMS


