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I Notable Success in Computer Science

I model checking + equivalence checking

I System = finite/infinite state transition graph

I Model checking: does state s |= Φ ?

I apply automata/game theoretic techniques to solve it: mostly
computing monadic fixed points, reachability sets by
traversing graph (possibly repeatedly)

I Equivalence checking: is state s equivalent to t ?

I Mostly computing dyadic fixed points e.g. bisimulations to
solve it. May need algebraic/combinatorial properties of
reachability sets/generators of graph
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3.
...

...
...

4. Application of tree automata to higher-order matching
[Comon + Jurski 1997, Stirling 2005-9]
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each ti : 0 built from the typed variables, x i1, . . . , x

i
ni
, the fjs and

the Fi ’s using application.
Also start (closed) expression S : 0 (Avoiding λ-terms)

Interpretation of a scheme: tree generated by S
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Model checking problem

Given S, does its tree have a decidable monadic 2nd-order theory?
Solved +vely for a subset of schemes (safe schemes)
[Knapik + Niwinski + Urzyczyn 2002]
Proof uses geometry of interaction on infinite λ-terms +
higher-order pushdown automata
Extended to all schemes
[Ong 2006, Hague + Murawski + Ong +Serre, 2008]
Proof uses game semantics on infinite lambda terms. Later paper
also uses extended higher-order automata
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automaton on above tree
into one on the infinite
λ-tree
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For order 1, S1 ∼ S2 ≡ DPDA equivalence problem
[Courcelle 1978]
Do two configurations of a deterministic pushdown automaton
generate the same language ?
Solved positively [Sénizergues 2001]
(Simpler proofs [Stirling 2001, 2002])
Order > 1 ?
Open + Hard
(Decidable for a small subset of 2nd-order case [Stirling 2006])
INFINITELY MANY OPEN PROBLEMS


