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» Notable Success in Computer Science

» model checking + equivalence checking

» System = finite/infinite state transition graph
» Model checking: does state s = ® 7

» apply automata/game theoretic techniques to solve it: mostly
computing monadic fixed points, reachability sets by
traversing graph (possibly repeatedly)

» Equivalence checking: is state s equivalent to t ?

» Mostly computing dyadic fixed points e.g. bisimulations to
solve it. May need algebraic/combinatorial properties of
reachability sets/generators of graph
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1. Deciding observational equivalence for fragments of idealized
Algol (w.r.t. finite value sets)
[Ghica, McCusker 2000; Ong 2002, .. .]

2. Model checking higher-order trees
[Knapik, Niwinski, Urzyczyn 2002; Caucal 2002; Ong 2006;
Hague Murawski, Ong, Serre 2008; Kobayashi, Ong 2009;
Broadbent, Ong 2010]

4. Application of tree automata to higher-order matching
[Comon + Jurski 1997, Stirling 2005-9]
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Base type O: finite/infinite trees with nodes labelled by elements of
{f,...,fx}. Each f; has an arity > 0.
Scheme is a finite family

F,-x{...x,’;l, =t 1<i<m

each F; is typed and distinct

each t; : O built from the typed variables, X{, . ,x,",,_, the fjs and
the F;'s using application.

Also start (closed) expression S : 0 (Avoiding A-terms)
Interpretation of a scheme: tree generated by S
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Fx1x0 def f(Fx1h(x2))x2 with start Fbb
Fbb — / f
Fbh(b) \ b
f
f / \ b
/ f / \\ h

Fb(hhhb) h b

2N

Fbb —




Example: second-order

d
FX1X2X3 =

Gy1ry»
H21 22 =
Fgha



Example: second-order

ef
FX1X2X3 d: f (F(GXl)(HXQ)X3) X1 (X2X3)
def
Gy = gi(y))
ef
H2122 d: h(Zl(Zz))
Fgha Start

Fgha —

O\
"
N\

-
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Model checking problem

Given S, does its tree have a decidable monadic 2nd-order theory?
Solved +vely for a subset of schemes (safe schemes)

[Knapik + Niwinski + Urzyczyn 2002]

Proof uses geometry of interaction on infinite A-terms +
higher-order pushdown automata

Extended to all schemes

[Ong 2006, Hague + Murawski + Ong +Serre, 2008]

Proof uses game semantics on infinite lambda terms. Later paper
also uses extended higher-order automata
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f (F(Gx1)(Hx2)x3) x1 (x2x3)

Fxixox3
ef
Gy1y» )
Hzi 2 L ha(2)
Fgha Start

Follow Ong's transformation into normal form

x y
F = )\X1X2X3.f(@ .. .))\.Xl()\.XQ.()\.X3))
Infinite \-term (can be folded into a finite treewith backedges)



infinite \-tree

AX1X0X3 )\x\y A
f g h a
Q A A A



using game semantics,
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/ ° \ infinite tree
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using game semantics,
extract the following

N,

infinite \-tree

AX1X0%3 Ax Ay A

g

a

transform parity tree
automaton on above tree
into one on the infinite
A-tree




Equivalence problem (from 1970s)

Given two schemes S;, S, do they generate same tree ?
S1 ~ S, bisimulation equivalence



Equivalence problem (from 1970s)

Given two schemes S;, S, do they generate same tree ?

S1 ~ S, bisimulation equivalence

For order 1, S; ~ S, = DPDA equivalence problem

[Courcelle 1978]

Do two configurations of a deterministic pushdown automaton
generate the same language 7



Equivalence problem (from 1970s)

Given two schemes S;, S, do they generate same tree ?

S1 ~ S, bisimulation equivalence

For order 1, S; ~ S, = DPDA equivalence problem

[Courcelle 1978]

Do two configurations of a deterministic pushdown automaton
generate the same language 7

Solved positively [Sénizergues 2001]

(Simpler proofs [Stirling 2001, 2002])



Equivalence problem (from 1970s)

Given two schemes S;, S, do they generate same tree ?

S1 ~ S, bisimulation equivalence

For order 1, S; ~ S, = DPDA equivalence problem

[Courcelle 1978]

Do two configurations of a deterministic pushdown automaton
generate the same language 7

Solved positively [Sénizergues 2001]

(Simpler proofs [Stirling 2001, 2002])

Order > 17



Equivalence problem (from 1970s)

Given two schemes S;, S, do they generate same tree ?

S1 ~ S, bisimulation equivalence

For order 1, S; ~ S, = DPDA equivalence problem

[Courcelle 1978]

Do two configurations of a deterministic pushdown automaton
generate the same language 7

Solved positively [Sénizergues 2001]

(Simpler proofs [Stirling 2001, 2002])

Order > 17

Open + Hard

(Decidable for a small subset of 2nd-order case [Stirling 2006])



Equivalence problem (from 1970s)

Given two schemes S;, S, do they generate same tree ?

S1 ~ S, bisimulation equivalence

For order 1, S; ~ S, = DPDA equivalence problem

[Courcelle 1978]

Do two configurations of a deterministic pushdown automaton
generate the same language 7

Solved positively [Sénizergues 2001]

(Simpler proofs [Stirling 2001, 2002])

Order > 17

Open + Hard

(Decidable for a small subset of 2nd-order case [Stirling 2006])
INFINITELY MANY OPEN PROBLEMS



