
1

Bisimulation and Logic

Colin Stirling

School of Informatics

Edinburgh University

cps@staffmail.ed.ac.uk

1.1 Introduction

Bisimulation is a rich concept which appears in various areas of theoretical
computer science as this book testifies1. Besides its origin by Park [Pa81] as a
small refinement of the behavioural equivalence originally defined by Hennessy
and Milner between basic concurrent processes [HM80, HM85], it was indepen-
dently, and earlier, defined and developed in the context of the model theory
of modal logic (under the names of p-relations and zigzag relations) by Van
Benthem [vB84] to give an exact account of which subfamily of first-order logic
is definable in modal logic. Interestingly, to make their definition of process
equivalence more palatable, Hennessy and Milner introduced a modal logic to
characterize it.

A labelled transition system (LTS) is a triple (Pr ,Act ,−→), where Pr is a non-
empty set of states or processes, Act is a set of labels and −→⊆ ℘(Pr×Act×Pr)
is the transition relation. As usual, we write P a−→ Q when (P, a,Q) ∈ −→. A
transition P

a−→ Q indicates that P can perform action a and become Q. In
logical presentations, there is often extra structure in a transition system, a
labelling of states with atomic propositions (or colours): let Prop be a set of

1 This is a draft chapter for a book on bisimulation (to be edited by Jan Rutten and Davide Sangiorgi).

1

2 1 Bisimulation and Logic

P3 Q2

b
++
Q3

P1
a // P2

b
77

c ''

Q1

a
77

a ''
P2 Q4

c

33 Q5

R1

a
~~||

||
||

|| a

 B
BB

BB
BB

B S1

a

��

a

 A
AA

AA
AA

R2
b // R3

crr

c
hh S2

b // S3

crr

c

ttiiiiiiiiiiiiiiiiiiiiiii

S4
b

// S5

c

jjUUUUUUUUUUUUUUUUUUUUUUU

c

mm

Fig. 1.1. Examples of bisimilar and non-bisimilar processes

propositions with elements p, q. Formally, this extra component is a valuation, a
function V : Prop → ℘(Pr) that maps each p ∈ Prop to a set V (p) ⊆ Pr (those
states coloured p). An LTS with a valuation is often called a Kripke model2.

We recall the important definition of bisimulation and bisimilarity.

Definition 1.1.1 A binary relation R on states of an LTS is a bisimulation if
whenever P1 R P2 and a ∈ A,

(1) for all P ′1 with P1
a−→ P ′1, there is P ′2 such that P2

a−→ P ′2 and P ′1 R P ′2;
(2) for all P ′2 with P2

a−→ P ′2, there is P ′1 such that P1
a−→ P ′1 and P ′1 R P ′2.

P1 is bisimilar to P2, P1 ∼ P2, if there is a bisimulation R with P1 R P2. 2

In the case of an enriched LTS with valuation V there is an extra clause in the
definition of a bisimulation that it preserves colours.

(0) for all p ∈ Prop, P1 ∈ V (p) iff P2 ∈ V (p).

Definition 1.1.1 assumes that a bisimulation relation is between states of a single
LTS. Occasionally, we also allow bisimulations between states of different LTSs
(a minor relaxation because the disjoint union of two LTSs is an LTS).
2 Traditionally, a Kripke model has unlabelled transitions of the form P −→ Q representing that state
Q is accessible to P .

1.2 Modal logic and bisimilarity 3

Example 1.1.2 In Figure 1.1, R1 ∼ S1 because the following relation R is a
bisimulation {(R1, S1), (R2, S2), (R2, S4), (R3, S3), (R3, S5)}. For instance, take
the pair (R3, S3) ∈ R; we need to show it obeys the hereditary conditions of
Definition 1.1.1. R3

c−→ R1 and R3
c−→ R2; however, S3

c−→ S1 and (R1, S1) ∈ R;
also, S3

c−→ S4 and (R2, S4) ∈ R. If this transition system were enriched with
V (p) = {R2, S4} then R1 and S1 would no longer be bisimilar. Furthermore,
P1 6∼ Q1 because P2 can engage in both b and c transitions whereas Q2 and Q4

cannot. 2

In the remainder of this chapter, we shall describe key relationships between
logics and bisimulation. In Section 1.2, we examine Henessy-Milner’s modal
characterisation of bisimilarity. In Section 1.3 we prove van Benthem’s expres-
siveness result that modal logic corresponds to the fragment of first-order logic
that is bisimulation invariant. These results are then extended in Sections 1.4
and 1.5 to modal mu-calculus, that is, modal logic with fixed-points, and to the
bisimulation invariant fragment of monadic second-order logic.

1.2 Modal logic and bisimilarity

Let M be the following modal logic where a ranges over Act .

φ ::= tt | ¬φ | φ1 ∨ φ2 | 〈a〉φ

A formula is either the “true” formula tt, the negation of a formula, ¬φ, a
disjunction of two formulas, φ1 ∨ φ2, or a modal formula, 〈a〉φ, “diamond a

φ”. M is often called Hennessy-Milner logic as it was introduced by Hennessy
and Milner to clarify process equivalence [HM80, HM85]. Unlike a standard
presentation of modal logic at that time, such as [Ch80], it is multi-modal,
involving families of modal operators, one for each element of Act , and it avoids
atomic propositions. The inductive stipulation below defines when a state P ∈
Pr of a LTS L has a modal property φ, written P |=L φ; however we drop the
index L.

P |= tt
P |= ¬φ iff P 6|= φ

P |= φ1 ∨ φ2 iff P |= φ1 or P |= φ2

P |= 〈a〉φ iff P ′ |= φ for some P ′ with P a−→ P ′

The critical clause here is the interpretation of 〈a〉 as “after some a-transition”;
for instance, Q1 |= 〈a〉〈b〉tt, where Q1 is in Figure 1.1, because Q1

a−→ Q2 and
Q2 |= 〈b〉tt. In the context of full propositional modal logic over an enriched
LTS with a valuation V one adds propositions p ∈ Prop, with semantic clause

4 1 Bisimulation and Logic

P |= p iff P ∈ V (p).

Other connectives are introduced as follows: “false”, ff = ¬tt, conjunction,
φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2), implication, φ1 → φ2 = ¬φ1 ∨ φ2 and the dual modal
operator “box a”, [a]φ = ¬〈a〉¬φ. Derived semantic clauses for these defined
connectives are as follows.

P 6|= ff
P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2

P |= φ1 → φ2 iff if P |= φ1 then P |= φ2

P |= [a]φ iff P ′ |= φ for every P ′ with P a−→ P ′

So, [a] means “after every a-transition”; for example P1 |= [a]〈b〉tt whereas
Q1 6|= [a]〈b〉tt, where these are in Figure 1.1, because Q1

a−→ Q4 and Q4 6|= 〈b〉tt.

Exercise 1.2.1 Show the following using the inductive definition of the satis-
faction relation |= where the processes are depicted in Figure 1.1.

(1) S2 |= [a](〈b〉tt ∧ 〈c〉tt)
(2) S1 6|= [a](〈b〉tt ∧ 〈c〉tt)
(3) S2 |= [b][c](〈a〉tt ∨ 〈c〉tt)
(4) S1 |= [b][c](〈a〉tt ∨ 〈c〉tt) 2

A natural notion of equivalence between states of an LTS is induced by the
modal logic (with or without atomic propositions).

Definition 1.2.2 P and P ′ have the same modal properties, written P ≡M P ′,
if {φ ∈M | P |= φ} = {φ ∈M | P ′ |= φ}. 2

Bisimilar states have the same modal properties.

Theorem 1.2.3 If P ∼ P ′ then P ≡M P ′.

Proof By structural induction on φ ∈ M we show for any P , P ′ if P ∼ P ′

then P |= φ iff P ′ |= φ. The base case is when φ is tt which is clear (as is
the case p ∈ Prop when considering an enriched LTS). For the inductive step,
there are three cases when φ = ¬φ1, φ = φ1 ∨ φ2 and φ = 〈a〉φ1, assuming
the property holds for φ1 and for φ2. We just consider the last of these three
and leave the other two as an exercise for the reader. Assume P |= 〈a〉φ1. So,
P

a−→ P1 and P1 |= φ1 for some P1. However, P ∼ P ′ and so P ′ a−→ P ′1 for some
P ′1 such that P1 ∼ P ′1. By the induction hypothesis, if Q ∼ Q′ then Q |= φ1 iff

1.2 Modal logic and bisimilarity 5

Q′ |= φ1. Therefore, P ′1 |= φ1 because P1 |= φ1 and so P ′ |= 〈a〉φ1, as required.
A symmetric argument applies if P ′ |= 〈a〉φ. 2

The converse is true in the circumstance that the LTS is image-finite: that
is, when the set {P ′ | P a−→ P ′} is finite for each P ∈ Pr and a ∈ Act .

Theorem 1.2.4 If the LTS is image-finite and P ≡M P ′ then P ∼ P ′.

Proof By showing that the binary relation ≡M is a bisimulation. Assume
P ≡M P ′. If the LTS is enriched then, clearly, P |= p iff P ′ |= p for any
p ∈ Prop. Assume P

a−→ P1. We need to show that P ′ a−→ P ′i such that
P1 ≡M P ′i . Since P |= 〈a〉tt also P ′ |= 〈a〉tt and, so, the set {P ′i | P ′

a−→ P ′i}
is non-empty. As the LTS is image-finite, this set is finite, say {P ′1, . . . , P ′n}.
If P1 6≡M P ′i for each i : 1 ≤ i ≤ n then there are formulas φ1, . . . , φn of M
where P1 6|= φi and P ′i |= φi and so P1 6|= φ′ and P ′i |= φ′ for each i when
φ′ = φ1 ∨ . . . ∨ φn. But this contradicts P ≡M P ′ as P 6|= [a]φ′ and P ′ |= [a]φ′.
So, for some P ′i , 1 ≤ i ≤ n, P1 ≡M P ′i . The proof for the case P ′ a−→ P ′1 is
symmetric. 2

Theorems 1.2.3 and 1.2.4 together are known as the Hennessy-Milner Theorem,
the modal characterisation of bisimilarity. Modal formulas can, therefore, be
witnesses for inequivalent (image-finite) processes; an example is that 〈a〉[b]ff
distinguishes Q1 and P1 of Figure 1.1.

Exercise 1.2.5 Sets of formulas ofM can be stratified according to their modal
depth. The modal depth of φ ∈ M , md(φ), is defined inductively: md(tt) = 0;
md(¬φ) = md(φ); md(φ1∨φ2) = max{md(φ1),md(φ2)}; md(〈a〉φ) = md(φ)+1.
Let ≡nM mean having the same modal properties with modal depth at most n
and recall the stratified bisimilar relations ∼n. What Hennessy and Milner
showed is P ∼n P ′ iff P ≡nM P ′.

(1) Prove by induction on n, P ∼n P ′ iff P ≡nM P ′.
(2) Therefore, show that the restriction to image-finite LTSs in Theorem 1.2.4

is essential.
(3) Assume an LTS where Act is finite and which need not be image-finite.

Show that for each P ∈ Pr and for each n ≥ 0, there is a formula φ

of modal depth n such that P ′ |= φ iff P ′ ∼n P . (Hint: if Act is finite
then for each n ≥ 0 there are only finitely many inequivalent formulas of
model depth n.) 2

Exercise 1.2.6 Let M∞ be modal logic M with arbitrary countable disjunction
(and, therefore, conjunction because of negation). If Φ is a countable set of

6 1 Bisimulation and Logic

formulas then
∨

Φ is a formula whose semantics is: P |=
∨

Φ iff P |= φ for some
φ ∈ Φ. Prove that if Pr is a countable set then P ∼ Q iff P ≡M∞ Q. 2

Next, we identify when a process has the Hennessy-Milner property [BRV01].

Definition 1.2.7 P ∈ Pr has the Hennessy-Milner property iff if P ′ ≡M P

then P ′ ∼ P . 2

Exercise 1.2.8 Pr is modally saturated if for each a ∈ Act , P ∈ Pr and Φ ⊆M

if for each finite set Φ′ ⊆ Φ there is a Q ∈ {Q | P a−→ Q} and Q |= φ for all
φ ∈ Φ′ then there is a Q ∈ {Q | P a−→ Q} such that Q |= φ for all φ ∈ Φ. Show
that if Pr is modally saturated then each P ∈ Pr has the Hennessy-Milner
property. (See, for instance, [BRV01] for the notion of modal saturation and
how to build LTSs with this feature using ultrafilter extensions.) 2

A formula φ is characteristic for process P (with respect to bisimilarity) pro-
vided that P |= φ and if P ′ |= φ then P ′ ∼ P . An LTS is acyclic if its
transition graph does not contain cycles; that is, if P ∈ Pr and P

a−→ P ′ and
P ′

a1−−→ P1
a2−−→ . . .

an−−→ Pn for n ≥ 0 then P 6= Pn.

Proposition 1.2.9 Assume an acyclic LTS (Pr ,Act ,−→) where Pr , Act and
Prop are finite. If P ∈ Pr then there is a formula φ ∈ M that is characteristic
for P .

Proof Assume an acyclic LTS with finite sets Pr , Act and Prop. For each P ∈
Pr we define a propositional formula PROP(P) and for each a ∈ Act a modal
formula MOD(a, P). Then FORM(P) = PROP(P)∧

∧
{MOD(a, P) | a ∈ Act}

is the characteristic formula for P .

PROP(P) =
∧
{p ∈ Prop | P |= p} ∧

∧
{¬p ∈ Prop | P 6|= p}

MOD(a, P) =
∧
{〈a〉FORM(P ′) | P a−→ P ′} ∧ [a]

∨
{FORM(P ′) | P a−→ P ′}

where as usual
∧
∅ = tt and

∨
∅ = ff. We need to show that PROP(P) is

indeed well-defined and a modal formula; and that it is characteristic for P .
The first depends on the fact that the LTS is acyclic and that the sets Pr , Act
and Prop are finite; why? The proof that FORM(P) is characteristic for P is
also left as an exercise for the reader. 2

Example 1.2.10 The LTS in Figure 1.2 is acyclic with Pr = {P1, . . . , P4},

1.3 Bisimulation invariance 7

P2

P1

a

>>}}}}}}}}

a
 A

AA
AA

AA
A

P3
b

// P4

Fig. 1.2. The transition graph for Example 1.2.10

Act = {a, b} and Prop = ∅. Now,

FORM(P2) = FORM(P4) = [a]ff ∧ [b]ff
FORM(P3) = 〈a〉FORM(P4) ∧ [a]FORM(P4) ∧ [b[ff
FORM(P1) = 〈a〉FORM(P2) ∧ 〈a〉FORM(P3)∧

[a](FORM(P2) ∨ FORM(P3)) ∧ [b]ff

Here, we construct the formulas starting from the nodes P2 and P4 that have
no outgoing transitions; then we construct the formula for P3; and then finally
for P1. 2

Exercise 1.2.11 Give an example of a finite-state P such that no formula of
M is characteristic for P . 2

Exercise 1.2.12 Recall that trace equivalence equates two states P and Q if
they can perform the same finite sequences of transitions.

(1) Show that Proposition 1.2.9 also holds for trace equivalence. That is,
assume an acyclic LTS where Pr and Act are finite and Prop is empty.
Prove that if P ∈ Pr then there is formula φ ∈ M that is characteristic
for P with respect to trace equivalence.

(2) Construct the characteristic formula for P1 and Q1 of Figure 1.1.

1.3 Bisimulation invariance

An alternative semantics of modal logic emphasises properties. Relative to a
LTS and valuation V , let ‖φ‖ = {P | P |= φ}: we can think of ‖φ‖ as the
property expressed by φ on the LTS. In the case of the LTS in Figure 1.2,
‖〈a〉tt ∨ 〈b〉tt‖ = {P1, P3}.

Exercise 1.3.1 Define ‖φ‖ on a LTS directly by induction on φ (without ap-
pealing to the satisfaction relation |=). 2

8 1 Bisimulation and Logic

P2
a

��

Q1
a //

a

��

Q2
a // Q3

a //

a

��

Q4
a //

P1

a

>>~~~~~~~~

a
 @

@@
@@

@@
@

a // P3 Q′
1 Q′

3

P4

Fig. 1.3. More transition graphs

Another way of understanding Theorem 1.2.3 is that properties of states of
an LTS expressed by modal formulas are bisimulation invariant : if P ∈ ‖φ‖
and P ∼ P ′ then P ′ ∈ ‖φ‖. There are many kinds of properties that are
not bisimulation invariant. Examples include counting of successor transitions,
“has 3 a-transitions”, or invocations of finiteness such as “is finite-state” or
behavioural cyclicity, “has a sequence of transitions that is eventually cyclic”:
each of these properties distinguishes P1 and Q1 in Figure 1.3 even though
P1 ∼ Q1. The definition of invariance is neither restricted to monadic properties
nor to a particular logic within which properties of LTSs are expressed.

Definition 1.3.2 Assume Prn is (Pr × . . .× Pr) n-times, n ≥ 1.

(1) An nary property, n ≥ 1, of a LTS is a set Γ ⊆ Prn.
(2) Property Γ ⊆ Prn is bisimulation invariant if whenever (P1, . . . , Pn) ∈ Γ

and Pi ∼ P ′i for each i : 1 ≤ i ≤ n, then also (P ′1, . . . , P
′
n) ∈ Γ. 2

Exercise 1.3.3

(1) Prove that the property {(P,Q) | P,Q are trace equivalent} is bisimula-
tion invariant. More generally, show that if ≡ is a behavioural equivalence
between processes such that P ∼ Q implies P ≡ Q, then ≡ is bisimulation
invariant.

(2) A property Γ ⊆ Prn is safe for bisimulation if whenever (P1, . . . , Pn) ∈ Γ
and P1 ∼ P ′1 then (P ′1, . . . , P

′
n) ∈ Γ for some P ′2, . . . , P

′
n (a notion due

to van Benthem [vB98]). Show that the general transition relations w−→,
w ∈ Act*, are safe for bisimulation.

(3) Show that if Γ is bisimulation invariant then it is safe for bisimulation.
2

Another logic within which to express properties of a LTS is first-order logic,
FOL. It has a countable family of variables Var typically represented as x, y, z

1.3 Bisimulation invariance 9

and a binary relation Ea for each a ∈ Act (and a monadic predicate p for each
p ∈ Prop when the LTS is enriched). Formulas of FOL have the following form.

φ ::= p(x) | xEay | x = y | ¬φ | φ1 ∨ φ2 | ∃x.φ

To interpret formulas with free variables we need a valuation σ : Var → Pr
that associates a state with each variable. Also, we use a standard “updating”
notation: σ{P1/x1, . . . , Pn/xn} is the valuation that is the same as σ except
that its value for xi is Pi, 1 ≤ i ≤ n (where each xi is distinct). We inductively
define when FOL formula φ is true on an LTS L with respect to a valuation σ

as σ |=L φ, where again we drop the index L.

σ |= p(x) iff σ(x) ∈ V (p)
σ |= xEay iff σ(x) a−→ σ(y)
σ |= x = y iff σ(x) = σ(y)
σ |= ¬φ iff σ 6|= φ

σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

σ |= ∃x.φ iff σ{P/x} |= φ for some P ∈ Pr

The universal quantifier, the dual of ∃x, is introduced as ∀x.φ = ¬∃¬φ. Its
derived semantic clause is: σ |= ∀x.φ iff σ{P/x} |= φ for all P ∈ Pr .

Example 1.3.4 Assume σ(x1) = P1 and σ(x2) = Q1 of Figure 1.3. Then the
following pair hold.

(1) σ |= ∃x.∃y.∃z. (x1Eax ∧ x1Eay ∧ x1Eaz ∧ x 6= y ∧ x 6= z ∧ y 6= z)
(2) σ |= ∀y.∀z. (x2Eay ∧ yEaz → z 6= x2) 2

There is a recognized translation of modal formulas into first-order formulas,
for instance, see [BRV01].

Definition 1.3.5 The FOL translation of modal formula φ relative to variable
x is Tx(φ) which is defined inductively.

Tx(p) = p(x)
Tx(tt) = x = x

Tx(¬φ) = ¬Tx(φ)
Tx(φ1 ∨ φ2) = Tx(φ1) ∨ Tx(φ2)
Tx(〈a〉φ) = ∃y.xEay ∧ Ty(φ)

2

Exercise 1.3.6

(1) For each of the following formulas φ, present its FOL translation Tx(φ).

10 1 Bisimulation and Logic

(a) [a]〈b〉tt
(b) 〈a〉p→ [a]〈a〉p
(c) [a]([a]p→ p) → [a]p

(2) FOL2 is first-order logic when Var is restricted to two variables {x, y}
which can be reused in formulas. Show that modal formulas can be
translated into FOL2. 2

The translation of modal formulas into FOL, Definition 1.3.5, is clearly correct
as it imitates the semantics.

Proposition 1.3.7 P |= φ iff σ{P/x} |= Tx(φ)

Proof By structural induction on φ ∈ M . For the base cases, first P |= p iff
P ∈ V (p) iff σ{P/x} |= p(x) iff σ{P/x} |= Tx(p). Similarly, for the other base
case, P |= tt iff σ{P/x} |= x = x iff σ{P/x} |= Tx(tt). For the inductive step
we only examine the interesting case when φ = 〈a〉φ1. P |= φ iff P ′ |= φ1 for
some P ′ where P a−→ P ′ iff σ{P ′/z} |= Tz(φ1) for some P ′ where P a−→ P ′, by the
induction hypothesis, iff σ{P/x} |= ∃z.xEaz ∧ Tz(φ1) iff σ{P/x} |= Tx(φ). 2

A FOL formula with free variables is bisimulation invariant if the property it
expresses is bisimulation invariant.

Definition 1.3.8 Formula φ ∈ FOL whose free variables belong to {x1, . . . , xn}
is bisimulation invariant if {(P1, . . . , Pn) | σ{P1/x1, . . . , Pn/xn} |= φ} is bisim-
ulation invariant. 2

Corollary 1.3.9 Any first-order formula Tx(φ) is bisimulation invariant. 2

Not all first-order formulas are bisimulation invariant. The two formulas
in Example 1.3.4 are cases; the first says that ‘x1 has at least three different
a-transitions”. Van Benthem introduced the notion of bisimulation (as a p-
relation and a zig-zag relation) to identify which formulas φ(x) ∈ FOL with one
free variable are equivalent to modal formulas [vB96].

Definition 1.3.10 A FOL formula φ(x) is equivalent to modal φ′ ∈M provided
that for any LTS and for any state P , σ{P/x} |= φ iff P |= φ′. 2

Van Benthem proved Proposition 1.3.12, a FOL formula φ(x) is equivalent to
a modal formula iff it is bisimulation invariant. The proof utilises some model
theory. Some notation first: if Φ is a set of first-order formulas then Φ |= ψ

provided that for any LTS and valuation σ, if for all φ ∈ Φ, σ |= φ then σ |= ψ.
The compactness theorem for first-order logic states that if Φ |= ψ then there

1.3 Bisimulation invariance 11

is a finite set Φ′ ⊆ Φ such that Φ′ |= ψ. Next we state a further property of
first-order logic that will also be used.

Fact 1.3.11 If Φ is a set of first-order formulas all of whose free variables belong
to {x1, . . . , xn} and σ{P1/x1, . . . , Pn/xn} |= φ for all φ ∈ Φ, then there is a LTS
and processes P ′1, . . . , P

′
n ∈ Pr such that σ{P ′1/x1, . . . , P

′
n/xn} |= φ for all φ ∈ Φ

and each P ′i has the Hennessy-Milner property (Definition 1.2.7). 2

Proposition 1.3.12 A FOL formula φ(x) is equivalent to a modal formula iff
φ(x) is bisimulation invariant.

Proof If φ(x) is equivalent to a modal formula φ′ then {P | σ{P/x} |= φ}
= ‖φ′‖ which is bisimulation invariant. For the converse property, assume that
φ(x) is bisimulation invariant. Consider the following family Φ = {Tx(ψ) | ψ ∈
M and {φ(x)} |= Tx(ψ)}. We prove Φ |= φ(x) and, therefore, by the compact-
ness theorem, φ(x) is equivalent to a modal formula ψ′ such that Tx(ψ′) ∈ Φ.
Assume σ{P/x} |= ψ for all ψ ∈ Φ. We need to show that σ{P/x} |= φ. We
choose a P with the Hennessy-Milner property by Fact 1.3.11. Let Ψ = {Tx(ψ) |
P |= ψ}. First, Φ ⊆ Ψ. Next we show that Ψ ∪ {φ} is satisfiable. For suppose
otherwise, Ψ |= ¬φ and so by the compactness theorem there is a finite subset
Ψ′ = {Tx(ψ1), . . . , Tx(ψk)} ⊆ Ψ such that Ψ′ |= ¬φ. But then φ |= Tx(ψ′) where
ψ′ is the modal formula ¬ψ1∨. . .∨¬ψk and so Tx(ψ′) ∈ Φ which contradicts that
Φ ⊆ Ψ. Therefore, for some Q, σ{Q/x} |= ψ for all ψ ∈ Ψ and σ{Q/x} |= φ.
However, Q ∼ P and because φ is bisimulation invariant, σ{P/x} |= φ as re-
quired. 2

Exercise 1.3.13 Prove that a FOL formula φ(x1, . . . , xn) is bisimulation invari-
ant iff it is equivalent to a boolean combination of formulas of the following form
Tx1(ψ11), . . . , Tx1(ψ1k1), . . . , Txn(ψn1), . . . , Txn(ψnkn) for some k1, . . . , kn ≥ 0.

2

An alternative proof of Proposition 1.3.12 appeals to tree (or forest) models.
A LTS is a forest if it is acyclic and the “target” of each transition is unique;
if P a−→ Q and R

b−→ Q then P = R and a = b. The transition graph that is
rooted at Q1 in Figure 1.3 is a tree (a forest with a single tree).

Given a LTS there is a way of unfolding P ∈ Pr and all its reachable processes
into a tree rooted at P which is called unravelling.

Definition 1.3.14 Assume a LTS L = (Pr ,Act ,−→) with P0 ∈ Pr . The k-
unravelling of P0, for k ≥ 0, is the following LTS, Lk = (Prk ,Act ,−→k) where

12 1 Bisimulation and Logic

π′
1 π′

3

π1
a //

a

��

a

OO

π2
a // π3

a //

a

��

a

OO

π4
a //

π′′
1 π′′

3

Fig. 1.4. Unravelled LTS

(1) Prk = {P0a1k1P1 . . . anknPn | n ≥ 0, 0 ≤ ki ≤ k, P0
a1−−→ P1 . . .

an−−→ Pn};
(2) if P a−→ P ′ and P is the final state in π ∈ Prk then π

a−→k πak
′P ′ for

each 0 ≤ k′ ≤ k;
(3) if V is the valuation for L then Vk is the valuation for Lk where Vk(p) =

{π ∈ Prk | P is final in π and P ∈ V (p)}.

The ω-unravelling of P0, the LTS Lω, permits all indices k ≥ 0: so, Prω includes
all sequences P0a1k1P1 . . . anknPn such that P0

a1−−→ P1 . . .
an−−→ Pn and each

ki ≥ 0. 2

Example 1.3.15 The 0-unravelling of P1 of Figure 1.3 is presented in Figure 1.4
where π1 = P1, π2(i+1) = π2i+1a0P1, π2i+1 = π2ia0P1 π

′
2i+1 = π2i+1a0P3 and

π′′2i+1 = π2i+1a0P4. The reader is invited to describe the 2-unravelleing and the
ω-unravelling of P1. 2

Proposition 1.3.16 For any LTS and k : 0 ≤ k ≤ ω, if P ∈ Pr and π ∈ Prk
and the final state in π is P , then P ∼ π.

Proof Clearly, the binary relation R ⊆ Pr×Prk containing all pairs (P, π)
when the final state of π is P is a bisimulation because first, P ∈ V (p) iff
π ∈ Vk(p) and second, P a−→ P ′ iff π

a−→k πak
′P ′ for k′ ≤ k. 2

Exercise 1.3.17 Let R1 and S1 be the processes depicted in Figure 1.1.

(1) Define the 0-unravellings of R1 and S1.
(2) Define the ω-unravelling of R1 and S1 and show that they are isomorphic.
(3) Assume L is a LTS containing P and Q and P ∼ Q. Show that the

ω-unravellings of P and Q are isomorphic.
(4) Reprove Proposition 1.3.12 using ω-unravelled LTSs. 2

1.4 Modal mu-calculus 13

1.4 Modal mu-calculus

Modal logic M of Section 1.2 is not very expressive. For instance, temporal prop-
erties of states of a LTS, such as liveness, “this desirable property will eventually
hold”, and safety, “this defective property never holds”, are not expressible in
M. (Prove this; hint, use Exercise 1.2.5.) Such properties have been found to
be very useful when analysing the behaviour of concurrent systems. Modal mu-
calculus, µM , modal logic with fixpoints, introduced by Kozen [Ko83], has the
required extra expressive power.

The setting for µM is the complete lattice generated by the powerset con-
struction ℘(Pr) where the ordering is ⊆, join is union and meet is intersection,
∅ is the bottom element and Pr is the top element.

Exercise 1.4.1 Consider a LTS and recall the definitions of monotone and
continuous function f on the powerset ℘(Pr): f is monotone provided that if
S ⊆ S′ then f(S) ⊆ f(S′); f is continuous just in case if S1, . . . , Sn, . . . is an
increasing sequence of subsets of Pr , (that is, if i ≤ j then Si ⊆ Sj ⊆ Pr), then
f(

⋃
i Si) =

⋃
i f(Si).

(1) Define the semantic functions ‖〈a〉‖ and ‖[a]‖ on ℘(Pr) such that for any
φ ∈M , ‖〈a〉‖‖φ‖ = ‖〈a〉φ‖ and ‖[a]‖‖φ‖ = ‖[a]φ‖.

(2) Show that these functions ‖〈a〉‖ and ‖[a]‖ are monotone.
(3) Prove that ‖〈a〉‖ is continuous iff the LTS is image-finite with respect to

the label a; that is, if for each P ∈ Pr , the set {P ′ | P a−→ P ′} is finite.
2

The new constructs of µM over and above those of M are

φ ::= X | . . . | µX.φ

where X ranges over a family of propositional variables. The semantics for a
formula φ of µM is the set ‖φ‖V ⊆ Pr where V is a valuation that not only maps
elements of Prop but also propositional variables to ℘(Pr). As usual we employ
updating notation: ‖φ‖V {S/X} uses valuation V ′ like V except that V ′(X) = S.

Exercise 1.4.2 Assume that φ is a formula of M when extended with propo-
sitional variables. Prove that if all free occurrences of X in φ are within the
scope of an even number of negations and V is a valuation then the function
f : ℘(Pr) → ℘(Pr) such that f(S) = ‖φ‖V {S/X} is monotone. Therefore, show
the following

(1) the least fixed point lfp(f) exists and is the intersection of all pre-fixed
points,

⋂
{S | f(S) ⊆ S};

14 1 Bisimulation and Logic

(2) the greatest fixed point gfp(f) exists and is the union of post-fixed points,⋃
{S | S ⊆ f(S)}. 2

In the case of µX.φ there is, therefore, the restriction that all free occurrences
of X in φ are within the scope of an even number of negations (to guarantee
monotonicity). This formula expresses the least fixed point lfp of the semantic
function induced by φ. Its dual, νX.φ, expresses the greatest fixed point gfp
and is a derived construct in µM : νX.φ = ¬µX¬φ{¬X/X}. Here are the
semantics for µM formulas.

‖p‖V = V (p)

‖Z‖V = V (Z)

‖¬φ‖V = Pr − ‖φ‖V
‖φ1 ∨ φ2‖V = ‖φ1‖V ∪ ‖φ2‖V
‖〈a〉φ‖V = {P ∈ Pr | for some Q.P a−→ Q and Q ∈ ‖φ‖V }

‖µZ.φ‖V =
⋂
{S ⊆ Pr | ‖φ‖V {S/Z} ⊆ S}

Exercise 1.4.3 Extend the first part of Exercise 1.4.2 by proving that if all free
occurrences of X in φ ∈ µM are within the scope of an even number of negations
and V is a valuation then the function f on ℘(Pr) such that f(S) = ‖φ‖V {S/X}
for S ⊆ Pr is monotone. 2

Derived semantic clauses for other connectives are below.

‖φ1 ∧ φ2‖V = ‖φ1‖V ∩ ‖φ2‖V
‖[a]φ‖V = {P ∈ Pr | for all Q. if P a−→ Q then Q ∈ ‖φ‖V }

‖νZ.φ‖V =
⋃
{S ⊆ Pr | S ⊆ ‖φ‖V {S/Z}}

P satisfies the µM formula φ relative to valuation V , P |=V φ, iff P ∈ ‖φ‖V ;
as usual we omit V wherever possible.

The standard theory of fixpoints tells us that if f is a monotone function on
a lattice, we can construct lfp(f) by applying f repeatedly on the least element
of the lattice to form an increasing chain, whose limit is the least fixed point.
Similarly, gfp(f) is constructed by applying f repeatedly on the largest element
to form a decreasing chain, whose limit is the greatest fixed point. The stages
of these iterations µαX.φ and ναX.φ can be be defined as M∞ formulas, see
Exercise 1.2.6, inductively as follows.

1.4 Modal mu-calculus 15

µ0X.φ = ff ν0X.φ = tt
µβ+1X.φ = φ{µβX.φ/X} νβ+1X.φ = φ{νβX.φ/X}
µλX.φ =

∨
β<λ µ

βX.φ νλX.φ =
∧
β<λ ν

βX.φ

So for a minimal fixpoint formula µX.φ, if P satisfies the fixpoint, it satisfies
some iterate, say the β + 1 th so that P |= µβ+1X.φ. Now if we unfold this
formula once, we get P |= φ{µβX.φ/X}. Therefore, the fact that P satisfies the
fixpoint depends, via φ, on the fact that other states in Pr satisfy the fixpoint at
smaller iterates than P does. So if one follows a chain of dependencies, the chain
terminates. Therefore, µ means ‘finite looping’, which, with a little refinement,
is sufficient to understand the logic µM . On the other hand, for a maximal
fixpoint νX.φ, there is no such decreasing chain: P |= νX.φ iff P |= νβX.φ for
every iterate β iff P |= φ{νβX.φ/X} for every iterate β iff P |= φ{νX.φ/X},
and so we may loop for ever.

Example 1.4.4 Assume P1 is the process in Figure 1.3, which can repeatedly
do an a transition. P1 fails to have the property µX. [a]X (which expresses
that there cannot be an infinite sequence of a transitions). Consider its iterates,
µ1X. [a]X = [a]ff, so P3 and P4 have this property; µ3X. [a]X is [a][a][a]ff
and µωX. [a]X is

∨
n≥0[a]

nff where [a]0ff = ff and [a]i+1ff = [a][a]iff.
Consequently, P1 |= νX. 〈a〉X. Iterates of this formula include νωX. 〈a〉X =∧
n≥0〈a〉ntt where 〈a〉i is 〈a〉 i-times. 2

Exercise 1.4.5 What properties are expressed by the following formulas?

(1) µX. p ∨ [a]X
(2) µX. q ∨ (p ∧ 〈a〉X)
(3) νX.¬p ∧ [a]X
(4) µX. νY . (p ∧ [a]X) ∨ (¬p ∧ [a]Y) 2

Definition 1.2.2 of ≡M , “having the same modal properties”, is extended to
µM ; so, P ≡µM P ′ means P and P ′ have the same µM properties, as expressed
by closed formulas of µM (that is, formulas without free variables). Bisimilar
states have the same µM properties.

Theorem 1.4.6 If P ∼ P ′ then P ≡µM P ′.

Proof The proof of this uses Exercise 1.2.6 that M∞ characterizes bisimilarity
and the observation above that closed formulas of µM can be translated into
M∞. 2

16 1 Bisimulation and Logic

Theorem 1.4.7 If the LTS is image-finite and P ≡µM P ′ then P ∼ P ′.

Proof Because µM contains M this follows directly from Theorem 1.2.4. 2

Is image-finiteness still necessary in Theorem 1.4.7? In Exercise 1.2.5 the
relationship between stratified bisimilarity, ∼n, and formulas of M with modal
depth n is explored. It is possible P 6∼ Q but P ∼n Q for all n ≥ 0 and so,
P ≡M Q. For instance, let P be

∑
i≥0 Pi and Q = P + R where Pj+1

a−→ Pj ,
P0 has no a transitions and R

a−→ R. Unlike P , Q has an infinite sequence of
a transitions: so, P 6≡µM Q (because P |= µX. [a]X). So, a more sophisticated
example is needed for the presence of image-finiteness.

Example 1.4.8 The following example is from [BS07]. It uses a key property
of µM , “the finite model property”: if P |= φ then there is a finite LTS and
a P ′ within it with P ′ |= φ. Let φ1, φ2, . . . be an enumeration of all closed
µM formulas over the finite label set {a, b} that are true at some state of some
LTS. Let Pr i, with initial state Pi, be a finite LTS such that Pi |= φi, with all
Pr i disjoint. Let Pr0 be constructed by taking an initial state P0 and making
P0

a−→ Pi for all i > 0. Similarly, let Pr ′0 be constructed from initial state P ′0
with transitions P ′0

a−→ Pi for all i > 0 and P ′0
a−→ P ′0. Clearly, P ′0 6∼ P0 because

in Pr ′0 it is possible to defer indefinitely the choice of which Pr i to enter. On
the other hand, suppose that ψ is a closed µM formula, and w.l.o.g. assume the
topmost operator is a modality. If the modality is [b], ψ is true of both P0 and
P ′0; if it is 〈b〉, ψ is false of both; if ψ is 〈a〉ψ′, then ψ is false at both P0 and
P ′0 iff ψ′ is unsatisfiable, and true at both otherwise; if ψ is [a]ψ′, then ψ is true
at both P0 and P ′0 iff ψ′ is valid, and false at both otherwise. Consequently,
P0 ≡µM P ′0. 2

Definition 1.2.7 can be extended to µM formulas: P ∈ Pr has the extended
Hennessy-Milner property provided that if P ≡µM P ′ then P ′ ∼ P . Little is
known about this property except that, if P has the Hennessy-Milner property
then it also has the extended Hennessy-Milner property.

Exercise 1.4.9 In Exercise 1.2.8 a modally saturated LTS was defined. This
notion does not readily extend to µM formulas. A set of µM formulas is unsat-
isfiable if there is not a LTS and a process P belonging to it such that P satisfies
every formula in the set. Show that there is an unsatisfiable set Φ ⊆ µM such
that every finite subset Φ′ ⊆ Φ is satisfiable. Show that this is equivalent to
showing that µM fails the compactness theorem. 2

Another indication that µM is more expressive than M is that it contains

1.4 Modal mu-calculus 17

characteristic formulas with respect to bisimilarity for finite-state processes. So,
the restriction to acyclic LTSs in Proposition 1.2.9 can be relaxed.

Proposition 1.4.10 Assume (Pr ,Act ,−→) where Pr , Act and Prop are finite.
If P ∈ Pr then there is a formula φ ∈ µM that is characteristic for P .

Proof Let (Pr ,Act ,−→) be a LTS with finite sets Act , Prop and Pr . Assume
we want to define a characteristic formula for P ∈ Pr . Let P1, . . . , Pn be the
distinct elements of Pr with P = P1 and let X1, . . . , Xn be distinct propositional
variables. We define a “modal equation” Xi = φi(X1, . . . , Xn) for each i which
captures the behaviour of Pi.

X(i) = PROP(Pi) ∧
∧
{MOD′(a, P) | a ∈ Act} where

PROP(Pi) =
∧
{p ∈ Prop | P |= p} ∧

∧
{¬p ∈ Prop | P 6|= p}

MOD′(a, Pi) =
∧
{〈a〉Xj | Pi

a−→ Pj} ∧ [a]
∨
{Xj | Pi

a−→ Pj}

where as usual
∧
∅ = tt and

∨
∅ = ff. We now define the characteristic formula

for P1 as ψ1 where

ψn = νXn.φn(X1, . . . , Xn)
...

...
ψj = νXj .φj(X1, . . . , Xj , ψj+1, . . . , ψn)
...

...
ψ1 = νX1.φ1(X1, ψ2, . . . , ψn)

The proof that ψ1 is characteristic for P is left as an exercise for the reader. 2

Example 1.4.11 Let R1, R2 and R3 be the processes in Figure 1.1 and assume
Prop = ∅. The modal equations are as follows.

X1 = φ1(X1, X2, X3) = (〈a〉X2 ∧ 〈a〉X3) ∧ [a](X2 ∨X3) ∧ [b]ff ∧ [c]ff
X2 = φ2(X1, X2, X3) = [a]ff ∧ 〈b〉X3 ∧ [b]X3 ∧ [c]ff
X3 = φ3(X1, X2, X3) = [a]ff ∧ [b]ff ∧ 〈c〉X1 ∧ 〈c〉X2 ∧ [c](X1 ∨X2)

So, ψ3 is νX3.φ3(X1, X2, X3), and ψ2 is νX2.φ2(X1, X2, ψ3) and ψ1 is the fol-
lowing formula

νX1. (〈a〉ψ2 ∧ 〈a〉ψ3) ∧ [a](ψ2 ∨ ψ3) ∧ [b]ff ∧ [c]ff

The reader can check that S1 |= ψ1 where S1 is also in Figure 1.1. 2

Exercise 1.4.12 Provide a characteristic formula for P1 of Figure 1.3 and show
that Q1 in the same figure satisfies it. 2

18 1 Bisimulation and Logic

The proof of Proposition 1.4.10 shows that a characteristic formula for a
finite state process only uses greatest fixpoints. Furthermore, there is a more
succinct representation if simultaneous fixpoints are allowed1. One application
of characteristic formulas is the reduction of equivalence checking (whether two
given processes are equivalent) to model checking (whether a given process has
a given property). This is especially useful in the case when only one of the two
given processes is finite state, see [KJ06] for a survey of known results which
also covers weak bisimilarity and preorder checking.

A simple corollary of Theorem 1.4.6 is that µM has the tree model property.
If a µM formula has a model, it has a model that is a tree. Just 0-unravel, see
Definition 1.3.14, the original model, thereby preserving bisimulation. This can
be strengthened to the bounded branching degree tree model property (just cut
off all the branches that are not actually required by some diamond subformula;
this leaves at most (number of diamond subformulas) branches at each node).

Clearly we cannot translate µM into FOL because of the fixpoints. (See
Exercise 1.4.9.) However, it can be translated into monadic second-order logic.

1.5 Monadic second-order logic and bisimulation invariance

MSO, monadic second-order logic of LTSs, extends FOL in Section 1.3 by al-
lowing quantification over subsets of Pr . The new constructs over and above
those of FOL are

φ ::= X(x) | . . . | ∃X.φ

where X ranges over a family of monadic predicate variables, and ∃X.φ quan-
tifies over such predicates. To interpret formulas with free predicate and indi-
vidual variables we extend a valuation σ to include a mapping from predicate
variables to sets of states. We inductively define when MSO formula φ is true
on an LTS L with respect to a valuation σ as σ |=L φ, where again we drop the
index L. The new clauses are as follows.

σ |= X(x) iff σ(x) ∈ σ(X)
σ |= ∃X.φ iff σ{S/X} |= φ for some S ⊆ Pr

The universal monadic quantifier, the dual of ∃X, is ∀X.φ = ¬∃X¬φ. Its
derived semantic clause is: σ |= ∀X.φ iff σ{S/X} |= φ for all S ⊆ Pr .

Example 1.5.1 Given a LTS with Act = {a} the property that it is three

1 Instead of defining ψi iteratively in the proof of Proposition 1.4.10, they are defined at the same
time in a vectorial form.

1.5 Monadic second-order logic and bisimulation invariance 19

colourable is expressible in MSO as follows

∃X.∃Y .∃Z.∀x.φ(x,X, Y, Z) ∧ ∀y.∀z.ψ(y, z,X, Y, Z)

where φ(x,X, Y, Z) expresses x has a unique colour X, Y or Z

(X(x) ∧ ¬Y (x) ∧ ¬Z(x)) ∨ (¬X(x) ∧ Y (x) ∧ ¬Z(x)) ∨ (¬X(x) ∧ ¬Y (x) ∧ Z(x))

and ψ(y, z,X, Y, Z) confirms that if there is an a transition from y to z then
they are not coloured the same

yEaz → ¬(X(y) ∧X(z)) ∧ ¬(Y (y) ∧ Y (z)) ∧ ¬(Z(y) ∧ Z(z))

2

There is a translation of µM formulas into MSO that extends Definition 1.3.5.

Definition 1.5.2 The MSO translation of µM formulas φ relative to variable
x is T+

x (φ) which is defined inductively.

T+
x (p) = p(x)
T+
x (X) = X(x)
T+
x (tt) = x = x

T+
x (¬φ) = ¬T+

x (φ)
T+
x (φ1 ∨ φ2) = T+

x (φ1) ∨ T+
x (φ2)

T+
x (〈a〉φ) = ∃y.xEay ∧ T+

y (φ)
T+
x (µX.φ) = ∀X. (∀y. (T+

y (φ) → X(y))) → X(x)

2

The translation of a least fixpoint formula uses quantification and implication
to capture that x belongs to every pre-fixed point.

Exercise 1.5.3 For each of the following formulas φ, present its MSO transla-
tion T+

x (φ).

(1) µX. p ∨ [a]X
(2) µX. q ∨ (p ∧ 〈a〉X)
(3) νX.¬p ∧ [a]X
(4) µX. νY . (p ∧ [a]X) ∨ (¬p ∧ [a]Y) 2

The translation of µM formulas into MSO, Definition 1.5.2, is correct.

Proposition 1.5.4 If for each variable Z, V (Z) = σ(Z) then P |=V φ iff
σ{P/x} |= T+

x (φ).

20 1 Bisimulation and Logic

Proof By structural induction on φ ∈ M . The proofs for the modal and
boolean cases follow Proposition 1.3.7. There are just the two new cases. P |=V

X iff P ∈ V (X) iff P ∈ σ(X) iff σ{P/x}(x) ∈ σ{P/x}(X) iff σ{P/x} |=
T+
x (X). P |=V µX.φ iff for all S, if ‖φ‖V {S/X} ⊆ S then P ∈ S iff for all S, if
∀y, y |=V {S/X} φ implies y ∈ S then P ∈ S iff for all S, if ∀y, σ{S/X} |= T+

y (φ)
by the induction hypothesis where σ obeys that for all Z, σ(Z) = V (Z) iff
σ{P/x} |= ∀X. (∀y. (T+

y (φ) → X(y))) → X(x) iff σ{P/x} |= T+
x (µX.φ). 2

A corollary of Theorem 1.4.6 is that if φ is a closed µM formula then the
MSO formula ψ(x) = T+

x (φ) with one free variable is bisimulation invariant.
As with FOL there are formulas of MSO which are not bisimulation invariant.
Therefore, it is natural to ask the question whether van Benthem’s theorem,
Proposition 1.3.12, can be extended to MSO formulas. The following result was
shown by Janin and Walukiewicz [JW96].

Proposition 1.5.5 A MSO formula φ(x) is equivalent to a closed µM formula
iff φ(x) is bisimulation invariant.

However, its proof utilises automata (and games) which we shall provide a
flavour of.

The aim is now to think of a different characterisation of logics on LTSs
using automata or games which operate locally on the LTS. A particular logical
formula of MSO or µM can only mention finitely many different elements of
Prop and finitely many different elements of Act ; therefore, we assume now that
these sets are finite in any given LTS. They will constitute finite alphabets for
automata; let Σ1 = Act and Σ2 = ℘Prop.

Let us begin with the notion of an automaton familiar from introductory
computer science courses.

Definition 1.5.6 An automaton A = (S,Σ, δ, s0, F) consists of a finite set of
states S, a finite alphabet Σ, a transition function δ, an initial state s0 ∈ S and
an acceptance condition F .

Traditionally, A does not operate on LTSs but on words, recognizing a language,
a subset of Σ*. Assuming A is nondeterministic, its transition function δ :
S×Σ → ℘S. Given a word w = a1 . . . an ∈ Σ*, a run of A on w is a sequence of
states s0 . . . sn that traverses w, so si+1 ∈ δ(si, ai+1) for each i : 0 ≤ i < n. The
run is accepting if the sequence s0 . . . sn obeys F : classically, F ⊆ S is the subset
of accepting states and s0 . . . sn is accepting if the last state sn ∈ F . There may
be many different runs of A on w, some accepting the others rejecting, or no
runs at all. The language recognized by A is the set of words for which there is
at least one accepting run.

1.5 Monadic second-order logic and bisimulation invariance 21

Example 1.5.7 Let A = ({s0, s1}, {a}, δ, s0, {s0}) with δ(s0, a) = {s1} and
δ(s1, a) = {s0}. The language accepted by A is the set {a2n | n ≥ 0} of even
length words. 2

A simple extension is recognition of infinite length words. A run of A on
w = a1 . . . ai . . . is an infinite sequence of states π = s0 . . . si . . . that travels over
w, so si+1 ∈ δ(si, ai+1), for all i ≥ 0; it is accepting if it obeys the condition
F . Let inf (π) ⊆ S contain exactly the states that occur infinitely often in π.
Classically, F ⊆ Q and π is accepting if inf (π) ∩ F 6= ∅ which is the Büchi
acceptance condition.

Büchi automata are an alternative notation for characterizing infinite paths
of a LTS. There are different choices according to the alphabet Σ. If Σ = Σ1

and π = P0
a1−→ P1

a2−→ . . . is an infinite sequence of transitions, then π |= A if
the automaton accepts the word a1a2 . . .; alternatively, Σ = Σ2 and π |= A if it
accepts Prop(P0)Prop(P1) . . . where Prop(P) is the subset of Prop that is true
at P .

Exercise 1.5.8 Let Prop = {p}, S = {s, t}, δ(s, {p}) = {t}, δ(s, ∅) = {s},
δ(t, {p}) = {t} and δ(t, ∅) = {t}, s0 = s and F = {t}. What property of an
infinite run of a LTS does this Büchi automaton express? 2

When each formula of a logic is equivalent to an automaton, satisfiability
checking reduces to the non-emptiness problem for those automata: whether an
automaton accepts some word (path or whatever). This may have algorithmic
benefits in reducing an apparently complex satisfiability question into simple
graph-theoretic procedures: a Büchi automaton, for instance, is non-empty if
there is a path s0 −→* s ∈ F and a cycle s −→* s (equivalent to an eventually cyclic
model). Indeed the introduction of Büchi and Rabin automata was for showing
decidability of monadic second-order theories by reducing them to automata,
see the tutorial text [GTW02] for details.

The idea of recognizing bounded branching trees extends the definition of A to
accept n-branching infinite trees. With a word automaton, a state s′ belonged
to δ(s, a); now it is tuples (s′1, . . . , s

′
n) that belong to δ(s, a). A tree automaton

traverses the tree, descending from a node to all n-child nodes, so the automaton
splits itself into n copies, and proceeds independently. A run of the automaton is
then an n-branching infinite tree labelled with states of the automaton. A run is
accepting if every path through this tree satisfies the acceptance condition F . In
the case of Rabin acceptance F = {(G1, R1), . . . , (Gk, Rk)} where each Gi, Ri ⊆
S and π obeys F if there is a j such that inf (π) ∩Gj 6= ∅ and inf (π) ∩Rj = ∅.
A variant definition is parity acceptance where F maps each state s of the
automaton to a priority F (s) ∈ N. We say that a path satisfies F if the least

22 1 Bisimulation and Logic

priority seen infinitely often is even. It is not hard to see that a parity condition
is a special case of a Rabin condition; it is also true, though somewhat trickier,
that a Rabin automaton can be translated to an equivalent parity automaton.
Such automata can recognize bounded branching unravellings of LTSs.

Exercise 1.5.9 Tree automata characterize rooted n-branching infinite tree
LTS models for µM formulas. Such a model L |= A if A accepts the behaviour
tree that replaces each state P ∈ Pr with Prop(P). Let Prop = {p}, S = {s, t},
δ(s, {p}) = {(s, s)}, δ(s, ∅) = {(t, t)}, δ(t, {p}) = {(s, s)} and δ(t, ∅) = {(t, t)}
and s0 = s. This automaton A has parity acceptance condition F (s) = 1 and
F (t) = 2. What µM formula is equivalent to A over infinite binary-tree models?
(Hint: what fixpoints are “coded” by states s and t?) 2

There is a slight mismatch between (the unravellings of) LTSs and bounded
branching trees because of the fixed branching degree and the explicit indexed
successors; for instance, see the unravelled LTS of Figure 1.4. What is wanted is
an automaton that can directly recognize a LTS and which preserves the virtue
of a simple local definition of a transition function. We shall define a variant of
alternating parity automata which is due to Walukiewicz (also see [KVW00]).

The range of a transition function of an automaton A will be a local formula.
For a word automaton, if δ(s, a) = {s1, . . . , sm} then it is the formula s1∨. . .∨sm.
For a n-branching tree automaton if δ(s, a) = {(s11, . . . , s1n), . . . , (sm1 , . . . , smn)}
then it is ((1, s11)∧ . . .∧ (n, s1n))∨ . . .∨ ((1, sm1)∧ . . .∧ (n, smn)): here the element
(i, s′) means create an ith-child with label s′. A word or tree is accepted if
there exists an accepting run for that word or tree; hence, the disjuncts. How-
ever, for a tree, every path through it must be accepting; hence the conjuncts.
In alternating word automata, the transition function is given as an arbitrary
boolean expression over states: for instance, δ(s, a) = s1 ∧ (s2 ∨ s3). In alter-
nating tree automata it is a boolean expression over directions and states: for
instance, ((1, s1) ∧ (1, s2)) ∨ (2, s3). Now the definition of a run becomes a tree
in which, successor transitions obey the boolean formula. In particular, even for
an alternating automaton on words, a run is a tree, and not just a word. The
acceptance criterion is as before, that every path of the run must be accepting.
An alternating automaton is just a two player game too where one player ∀ is
responsible for ∧ choices and the other player ∃ for ∨ choices.

The transition function for an automaton A that recognises LTSs has the form
δ : S × Σ2 → Φ(Σ1, S) where Φ(X,Y) is a set of formulas over X and Y . One
idea is that this formula could be a simple modal formula. For instance, if s is
the current automaton state at P ∈ Pr and δ(s,Prop(P)) = 〈a〉s1 ∧ [c]s2 and
P

a−→ P1, P
b−→ P2, P

c−→ Qi, for all i ≥ 0 then the automaton moves to P1

1.5 Monadic second-order logic and bisimulation invariance 23

with state s1 and to each Qi with state s2. As with tree automata, a run of A
on a LTS is a labelled tree of arbitrary degree. Such “modal” automata when
the acceptance condition for infinite branches is the parity condition have the
same expressive power as µM .

However, to prove Proposition 1.5.5 Janin and Walukiewiciz use FOL formu-
las. The idea for atomic predicates is to replace pairs (i, s) of a tree automaton
with elements of U = {(a, s) | a ∈ Σ1 and s ∈ S}. Now, for each s ∈ S and
W ⊆ Prop, δ(s,W) is a formula of the form

(*) ∃x1 . . .∃xk. (u1(x1) ∧ . . . ∧ uk(xk)) ∧ ∀x. (u1(x) ∨ . . . ∨ uk(x))

where each ui ∈ U . An example, is φ = ∃x1.∃x2. (a, s)(x1) ∧ (b, s′)(x2) ∧
∀x. (a, s)(x) ∨ (b, s′)(x). If t labels the state P of the LTS and W = Prop(P)
and δ(t,W) = φ and P

a−→ Pi, P
b−→ Qj , i, j > 0 then the automaton at the

next step would spawn a copy at each Pi with state s and each Qj with state s′.
Notice that such a formula is quite similar to the components

∧
MOD′(a, P) of

a characteristic formula described in Proposition 1.4.10. Every µM formula is
equivalent to such an automaton; the different kinds of fixpoint are catered for
in the parity acceptance condition.

Let dis(x1, . . . , xn) be the FOL formula
∧

1≤i<j≤n xi 6= xj . There is a very
similar characterization of MSO formulas over trees. where now each δ(s,W)
has the form

(**) ∃x1 . . .∃xk. (D ∧ u1(x1) ∧ . . . ∧ uk(xk)) ∧ ∀x.D′ → (u1(x) ∨ . . . ∨ uk(x))

where D = dis(x1, . . . , xk) and D′ = dis(x, x1, . . . , xk).
Now the result follows: if φ(x) is an MSO formula that is bisimulation in-

variant then it is true on any n-unravelled model and so (*) and (**) will be
equivalent for n ≥ k.

Bibliography

[vB84] J. van Benthem. Correspondence theory. In Handbook of Philosophical Logic, Vol.
II, ed. D. Gabbay and F. Guenthner, 167-248, Reidel, (1984).

[vB96] J. van Benthem. Exploring Logical Dynamics. CSLI Publications, (1996).
[vB98] J. van Benthem. Program constructions that are safe for bisimulation, Studia

Logica, 60 311–330 (1998).
[BRV01] P. Blackburn, M. de Rijke and Y. Venema. Modal Logic, Cambridge University

Press, (2001).
[BS07] J. Bradfield and C. Stirling, Modal mu-calculi. In Handbook of Modal Logic, ed.

P. Blackburn, J. van Benthem and F. Wolter, Elsevier, 721–756, (2007).
[Ch80] B. Chellas, Modal Logic: An Introduction. Cambridge University Press (1980).
[GTW02] E. Grädel, W. Thomas and T. Wilke (Eds.), Automata, Logics, and Infinite

Games, Lecture Notes in Computer Science 2500 (2002).
[HM80] M. Hennessy and R. Milner, On observing nondeterminism and concurrency,

Lecture Notes in Computer Science 85 295–309 (1980).
[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.

Journal of Association of Computer Machinery 32 137–162, 1985.
[JW96] D. Janin and I. Walukiewicz, On the expressive completeness of the propositional

mu-calculus with respect to monadic second order logic. Lecture Notes in Computer
Science 1119 263–277 (1996).

[Ko83] D. Kozen, Results on the propositional mu-calculus. Theoretical Computer Sci-
ence 27 333–354 (1983).

[KJ06] A. Kučera and P. Jančar, Equivalence-checking on infinite-state systems: tech-
niques and results. Theory and Practice of Logic Programming 6(3), 227–264 (2006).

[KVW00] O. Kupferman, M. Vardi and P. Wolper, An automata-theoretic approach
to branching-time model checking, Journal of Association of Computer Machinery
42(2) 312–360 (2000).

[Pa81] D. Park. Concurrency and automata on infinite sequences. Lecture Notes in Com-
puter Science 154 561–572 (1981).

24

