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Abstract—Abstraction refinement techniques in probabilistic
model checking are prominent approaches to the verification
of very large or infinite-state probabilistic concurrent systems.
At the core of the refinement step lies the implicit or explicit
analysis of a counterexample. This paper proposes an abstrac-
tion refinement approach for the probabilistic computation
tree logic (PCTL), which is based on incrementally computing
a sequence of may- and must-quotient automata. These are
induced by depth-bounded bisimulation equivalences of in-
creasing depth. The approach is both sound and complete, since
the equivalences converge to the genuine PCTL equivalence.
Experimental results with a prototype implementation show
the effectiveness of the approach.

I. INTRODUCTION

The model checking of large or infinite-state systems

has been revolutionized by the invention of counterexample

guided abstraction-refinement (CEGAR) [8]. This approach,

originally tailored to software model checking, automatically

abstracts and refines a given system model, until either

the property of interest is found to be satisfied, or a valid

counterexample is found, demonstrating that the property is

not satisfied (or the checker runs out of memory, or the user

runs out of patience). During this process, which starts off

from a very coarse abstract model, it often happens that the

property is evaluated to false on the abstract system, while it

is indeed true on the original system. In this case the CEGAR

machinery will provide an abstract counterexample, which is

not valid in the original model, and therefore is used to refine

the abstract model. The CEGAR approach has inspired a

large body of work in related fields. It has also found its way

into the area of model checking of probabilistic concurrent

systems.

Probabilistic automata (PAs) are a very natural model

of concurrent probabilistic systems [31]. Extending both

labeled transition systems and Markov chains, they are

convenient to use to model systems with nondeterminism

and randomization. PAs are akin to Markov decision pro-

cesses (MDP) and form the backbone model of successful

model checkers such as PRISM [26] enabling the analysis

of randomized concurrent systems. Despite the remarkable

versatility of this approach, its power is limited by the state

space explosion problem, and several abstraction-refinement

approaches have been proposed to alleviate that problem [9],

[10], [19], [7], [25], [34], [11], [28].

The first abstraction refinement techniques have been

proposed [9] for MDPs, and implemented in the tool RAP-

TURE. Based on a chosen partition of the state space, an

abstract MDP is constructed. Heuristics for getting a better

refinement have been further studied in [10]. Probabilis-

tic counterexample-guided abstraction-refinement [19] is a

natural extension of CEGAR to the PA setting. It aims at

identifying the maximal probability of reaching a set of

goal states in the PA. For this, an abstract quotient PA

is constructed based on an initially coarse partition of the

state space. The reachability probability is computed then

on the abstraction. This provides a safe upper bound on the

probability in the original model. If the bound is not good

enough, a counterexample can be derived, usually expressed

as a set of paths, which are then used to refine the abstrac-

tion. Extensions of the abstraction with two players games

provide both upper and lower bounds for maximal/minimal

probabilities [34], [25], [7].

The probabilistic CEGAR approach has been success-

fully applied to several examples [19], [34], [25] to study

reachability properties, and an extension to general PCTL

properties has been developed [7]. That approach however

involves expensive simulation checking and counterexample

generation. The algorithm for computing simulation runs

in time O(m2n) [36] where n and m are the number of

states and transitions of the MDP. Moreover in [7, Theorem

3.11] it was shown that the problem of finding the smallest

counterexample is NP-hard, and it is also unlikely to be

efficiently approximable.

This paper proposes a radically different approach to

abstraction-refinement of probabilistic concurrent systems.

The approach is compatible with and applicable to the full

logic PCTL, and it works without counterexamples. Instead,

the refinement is based on a sequence of incrementally

computed bisimulations. We call the technique Probabilistic

Incremental Bisimulation Abstraction Refinement (PIBAR).

The approach is rooted in the fact that probabilistic

bisimulation equivalence [30] is strictly finer than the equiv-

alence induced by PCTL. Our approach turns this disturbing

difference into an algorithmic idea. We harvest a recent

characterization of PCTL equivalence as the limit of a

sequence of step indexed bisimulation relations [32], and

combine this theoretical insight with an effective com-



putational procedure. With some inspiration from modal

transition systems [27], we use probabilistic may- and must-

quotient automata to represent the behavior of an abstract

system. Intuitively, we work with a sequence of may- and

must-quotient automata induced by the sequence of step in-

dexed bisimulation relations, which guarantees convergence

to PCTL equivalence. But since the computation of the step

indexed relations is in general NP-complete, so for each step

indexed relation, we define a sequence of relations, some of

which can be computed in polynomial time, and moreover

they converge to the step indexed relation eventually. Still,

the may- and must-abstractions we use are guaranteed to

provide upper- and lower-bounds for maximal and minimal

probabilities respectively. In case that this interval is too

large, the abstraction is refined by recomputing it for a finer

bisimulation. In the recomputation, we reuse intermediate

results from the previous iterations. In this way, the PIBAR

approach, just like the probabilistic CEGAR approaches

automatically abstracts and refines a given PA model, until

either the property of interest is found to be satisfied, or the

property is found to be not satisfied, (or the checker runs out

of memory, or the user runs out of patience). But it does so

without resorting to any kind of counterexample analysis.

The approach is complete in the sense that for finite-state

systems it terminates after a finite number of refinement

steps. PIBAR is not restricted to reachability properties.

As we will demonstrate, it instead works for the safety

fragment [4], [7] of PCTL (where negation only appears at

atomic propositions and probabilities appear lower bounded

only), and can be twisted to work with full PCTL by

delaying the check until refinement has terminated.

Experimental results carried out with a prototypical im-

plementation of the PIBAR approach demonstrate its effec-

tiveness. We compare with PRISM [26] on a selection of

case studies and report promising results. For several case

studies, we obtain a sufficiently good bisimulation abstrac-

tion efficiently such that we can perform model checking on

the may- and must quotient automata.
Contributions: Our contributions in this paper are as

follows:

1) We propose a novel framework of probabilistic bisim-

ulation guided abstraction, avoiding the need to ana-

lyze counterexamples.

2) Our algorithm works for the entirety of PCTL and is

both sound and complete. This means it will always

terminate and return the correct answer, in an ideal

setting with unlimited memory and time.

3) We report on a prototypical implementation of PIBAR,

and demonstrate that the approach can accelerate prob-

abilistic model checking in many cases.

Organization of the paper: Section II recalls some no-

tations used in the body of the paper. In section III we recall

the definition of strong i-depth bisimulation. We propose

may quotient and must quotient of a probabilistic system

w.r.t. an equivalence relation in Section IV. We describe in

detail how PIBAR works in Section V. The experimental

results are discussed in Section VI. Section VIII concludes

the paper.

II. PRELIMINARIES

We first introduce some notations which we will use

throughout this paper.

For a set S, a distribution is a function µ : S → [0, 1]
satisfying |µ| :=

∑

s∈S µ(s) = 1. We denote by Dist(S)
the set of distributions over S. We shall use s, r, t, . . . and

µ, ν . . . to range over S and Dist(S), respectively. The

support of µ is defined by supp(µ) := {s ∈ S | µ(s) > 0}.

A distribution µ is called Dirac if |supp(µ)| = 1, and we

let Ds denote the Dirac distribution with Ds(s) = 1. For a

distribution µ we also write it as {µ(s) : s | s ∈ supp(µ)}.

Given an equivalence relation R, let [s]R denote the

equivalence class C ∈ S/R such that s ∈ C, and [µ]R
is the distribution such that [µ]R(C) =

∑

s∈C µ(s) for each

C ∈ S/R.

Below we define the downward closure of a subset of

states.

Definition 1 For a relation R over S and C ⊆ S, define

R↓(C) = {s′ | s′ R s ∧ s ∈ C}. We say C is R downward

closed iff C = R↓(C).

We use R↓(s) as the shorthand of R↓({s}), and R↓ =
{R↓(C) | C ⊆ S} to denote the set of all R downward

closed sets.

Given a relation R, let ≡R be the largest equivalence

relation contained in R. The following lemma from [18]

shows that each R downward closed set can be seen as a

union of equivalence classes of ≡R.

Lemma 1 (Lemma 5.1 [18]) Let R ⊆ S × S be a

relation, and let C ⊆ S be a R downward closed set, then

C is a union of equivalence classes of ≡R.

A. Probabilistic Automata

We recall the notion of probabilistic automata, as coined

by Segala [30].

Definition 2 A probabilistic automaton is a tuple P =
(S,→, s0,AP, L) where S is a countable set of states,

→ ⊆ S × Dist(S) is a transition relation, s0 ∈ S is

a the initial state, AP is a set of atomic propositions, and

L : S → 2AP is a labeling function.

In this paper we assume S is finite, and the PA is image-

finite, i.e. {µ | (s, µ) ∈→} is finite for each s ∈ S. A

transition (s, µ) ∈→ is denoted by s → µ. A path is a

finite or infinite sequence ω = s0s1s2 . . . of states. For each

i ≥ 0 there exists a distribution µ such that si → µ and

µ(si+1) > 0. We use lstate(ω) to denote the last state of ω



if ω is finite. The set Path contains all paths, and Path(s0)
only contains paths starting from s0. Similarly, Path∗ is the

set of all finite paths, and Path∗(s0) contains those starting

from s0. Also we use ω[i] to denote the (i+ 1)-th state for

i ≥ 0, ω|i to denote the fragment of ω ending at ω[i], and

ω|i to denote the fragment of ω starting from ω[i].
We introduce the definition of schedulers to resolve

nondeterminism. A scheduler is a function σ : Path∗ →
Dist(→) such that σ(ω)(s, µ) > 0 implies s = lstate(ω).
A scheduler σ is deterministic if it returns only Dirac

distributions, that is, the next step is chosen deterministically.

The cone of a finite path ω, denoted by Cω , is the set of

paths having ω as their prefix, i.e., Cω = {ω′ | ω ≤ ω′}
where ω′ ≤ ω iff ω′ is a prefix of ω. Fixing a starting state

s0 and a scheduler σ, the measure Probσ,s0 of a cone Cω ,

where ω = s0s1 . . . sk, is defined inductively as follows:

Probσ,s0(Cω) equals 1 if k = 0, and for k > 0,

Probσ,s0(Cω) = Probσ,s0(Cω|k−1)

·





∑

(sk−1,µ′)∈→

σ(ω|k−1)(sk−1, µ
′) · µ′(sk)





Let B be the smallest algebra that contains all the cones

and is closed under complement and countable unions. By

standard measure theory [16], [29], this algebra is a σ-

algebra and all its elements are the measurable sets of paths.

Moreover, Probσ,s0 can be extended to a unique measure

on B.

B. PCTL

We recall the syntax of PCTL [17] which is a probabilistic

extension of CTL. Over the set AP of atomic propositions,

PCTL is formed according to the following grammar:

φ ::= true | a | φ1 ∧ φ2 | ¬φ | P⊲⊳q(ψ)

ψ ::= Xφ | φ1 Uφ2 | φ1 U
≤n φ2

where a ∈ AP, ⊲⊳ ∈ {<,>,≤,≥}, q ∈ [0, 1]. We refer to φ
and ψ as PCTL state and path formulae, respectively.

The satisfaction relation s |= φ for state formulae is

defined in a standard manner for boolean formulae. For the

probabilistic operator, it is defined by

s |= P⊲⊳q(ψ) iff ∀σ.Probσ,s({ω ∈ Path(s) | ω |= ψ}) ⊲⊳ q.

The satisfaction relation ω |= ψ for path formulae is defined

as follows::

ω |= Xφ iff ω[1] |= φ

ω |= φ1 Uφ2 iff ∃j ≥ 0.ω[j] |= φ2

∧ ∀0 ≤ k < j.ω[k] |= φ1

ω |= φ1 U
≤n φ2 iff ∃0 ≤ j ≤ n.ω[j] |= φ2

∧ ∀0 ≤ k < j.ω[k] |= φ1

In this paper we are especially interested in the safety

fragment of PCTL i.e. safety PCTL, denoted as PCTLsafe ,

whose syntax is given as follows:

φ ::= true | a | ¬a | φ1 ∧ φ2 | P≥q(ψ) | P>q(ψ)

ψ ::= Xφ | φ1 Uφ2 | φ1 U
≤n φ2

In PCTLsafe , only ≥ (or >) is allowed in the probabilistic

operator, and negation only occurs at atomic propositions. In

the sequel let PCTLi denote the subset of PCTL in which

the path formula is restricted to: ψ ::= Xφ | φ1 U
≤j φ2

where j ≤ i, similarly for PCTL
i
safe . Moreover for a given

logic L, we write s ≡L r iff s |= φ implies r |= φ and

vice versa for any state formula φ of L. Similarly, we write

s �L r iff r |= φ implies s |= φ for any state formula φ
of L.

C. Bisimulation and Simulation

Weight functions [22] help us to define simulation and

bisimulation on PA.

Definition 3 Let R = S×S be a relation over S. A weight

function for µ and ν with respect to R is a function ∆ :
S × S 7→ [0, 1] such that:

1) ∆(s, r) > 0 implies that s R r,

2) µ(s) =
∑

r∈S ∆(s, r) for any s ∈ S,

3) ν(r) =
∑

s∈S ∆(s, r) for any r ∈ S.

We write µ ⊑R ν iff there exists a weight function for µ
and ν with respect to R.

Strong simulation and bisimulation for PAs is defined as

follows [30]. Since we are only interested in strong relations

throughout this paper, we take the liberty to drop the prefix

’strong’. All relations considered throughout the entirety of

this paper are strong relations.

Definition 4 A relation R ⊆ S×S is a simulation relation

iff sR r implies that L(s) = L(r) and for each s→ µ, there

exists r → ν such that µ ⊑R ν. If R is symmetric, then R is

a bisimulation relation. We write s - r (s ∼ r) whenever

there is a (bi)simulation relation R such that s R r.

In [30] it was shown that - and ∼ are sound (but not

complete) for PCTL and PCTLsafe respectively.

Lemma 2 ([30]) ∼ ( ≡PCTL, - ( �PCTLsafe
.

According to Lemma 2, bisimulation preserves PCTL

equivalence i.e. bisimilar states satisfy the same PCTL

formulae.



D. Sound and Complete Bisimulation for PCTL

The inclusion in Lemma 2 is strict. Below we recall a

variation of bisimulation which is sound and complete for

PCTL equivalence [32].

Let Probσ,s(C,C
′, n, ω) denote the probability from s to

states in C ′ via states in C possibly in at most n steps under

deterministic scheduler σ, where ω is used as a parameter of

σ to keep track of the path. Formally, Probσ,s(C,C
′, n, ω)

equals 1 if s ∈ C ′, and else if n > 0 ∧ (s ∈ C \ C ′), then

Probσ,s(C,C
′, n, ω)

=
∑

r∈supp(µ′)

µ′(r) · Probσ,r(C,C
′, n− 1, ωr) (1)

where σ(ω)(s, µ′) = 1, otherwise Probσ,s(C,C
′, n, ω) = 0.

We are now ready to introduce an indexed family of i-depth

(bi)simulations. We let s ∼0 r and s -0 r iff L(s) =
L(r).

Definition 5 A relation R ⊆ S×S is an i-depth simulation

with i ≥ 1 if s R r implies s -i−1 r and for any R
downward closed sets C,C ′ and scheduler σ, there exists a

scheduler σ′ such that

Probσ′,r(C,C
′, i, r) ≤ Probσ,s(C,C

′, i, s).

If R is symmetric, then R is an i-depth bisimulation. We

write s -i r (s ∼i r) whenever there is an i-depth

(bi)simulation R such that s R r.

In comparison with Definition 4, this definition does not

require the matching of distributions out of s and r. The

essential difference to the standard definition is: We only

consider conditional reachability probabilities up to at most

i steps.

The following lemma establishes some properties of i-
depth (bi)simulation.

Lemma 3 ([32]) 1) ∼i is an equivalence relation, and

-i is a preorder for each i ≥ 0,

2) ∼i ⊆ ∼j provided i ≥ j,
3) ∼i = ≡PCTLi and -i = �PCTLi

safe
for each

i ≥ 0,

4) For any PA, there exists i ≥ 0 such that

∼i = ≡PCTL and -i = �PCTLsafe
.

Clause 2 says that we will obtain a finer bisimulation by

increasing i. Clause 3 assures that i-depth bisimulation is

both sound and complete for PCTL
i equivalence, similarly

for i-depth simulation. More importantly, Clause 4 assures

that there always exists i ≥ 0 such that ∼i = ≡PCTL

and -i = �PCTLsafe
for any PA. In other words, for

increasing i, the i-depth bisimulations define a sequence of

relation which converges to PCTL equivalence eventually.

III. A TWO DIMENSIONAL BISIMULATION GRID

Lemma 3 shows that by increasing i we can obtain a

sequence of bisimulation relations converging to the PCTL-

equivalence. In this section we refine the bisimulation ∼i

further to a subsequence of equivalence relations. Our

PIBAR framework is based on the induced two dimensional

grid of relations. First, we define the size of a downward

closed set as follows:

Definition 6 Let R ⊆ S×S be a relation, and C ⊆ S be

a R downward closed set, the size of C, denoted as size(C),
is defined as the number of equivalence classes of ≡R in C
i.e. size(C) = |{C ′ ∈ S/ ≡R| C ′ ⊆ C}|.

The concept of size will now be incorporated into a refined

bisimulation definition. First, we set s -0,j r and s ∼0,j r
iff L(s) = L(r) for any j ≥ 0. Moreover:

Definition 7 A relation R ⊆ S × S is an (i, j)-depth

simulation with i, j ≥ 1 if s R r implies s -i−1,j r
and for any R downward closed sets C,C ′ and scheduler σ
with size(C), size(C ′) ≤ j, there exists a scheduler σ′ such

that

Probσ′,r(C,C
′, i, r) ≤ Probσ,s(C,C

′, i, s).

If R is symmetric, then R is an (i, j)-depth bisimulation. We

write s -i,j r (s ∼i,j r) whenever there is an (i, j)-depth

(bi)simulation R such that s R r.

Intuitively ∼i,j is almost the same as ∼i except that

only downward closed sets with size not greater than j are

considered. ∼i,j has the following properties.

Lemma 4 1) ∼i,j is an equivalence relation for each

i, j ≥ 0,

2) ∼j,i ⊆ ∼k,i and -j,i ⊆ -k,i for any i, j, k ≥ 0
provided j ≥ k,

3) ∼i,j ⊆ ∼i,k and -i,j ⊆ -i,k for any i, j, k ≥ 0
provided j ≥ k,

4) For any PA, there exists j ≥ 0 such that ∼i,j = ∼i

and -i,j = -i.

Proof:

1) Clause 1 is straightforward from Definition 5.

2) Let R = {(s, r) | s -j,i r}, we show that R is a

(k, i)-depth simulation provided that j ≥ k. Suppose

sR r i.e. s -j,i r, according to Definition 4, we have

Probσ′,r(C,C
′, l, r) ≤ Probσ,s(C,C

′, l, s) for any R
downward closed sets C and C ′ where l ≤ j. This

implies Probσ′,r(C,C
′, l, r) ≤ Probσ,s(C,C

′, l, s)
for any l ≤ k, therefore R is a (k, i)-depth simulation.

3) Let R = {(s, r) | s -i,j r}, we now show that

R is a (i, k)-depth simulation provided that j ≥ k.

Obviously if for any R downward closed set C, it



∼1,1 ⊇ ∼1,2 ⊇ ∼1,3 ⊇ · · · ⊇ ∼1

⊇ ⊇ ⊇ ⊇

∼2,1 ⊇ ∼2,2 ⊇ ∼2,3 ⊇ · · · ⊇ ∼2

⊇ ⊇ ⊇ ⊇

∼3,1 ⊇ ∼3,2 ⊇ ∼3,3 ⊇ · · · ⊇ ∼3

⊇ ⊇ ⊇ ⊇

...
...

...
. . .

...

⊇ ⊇ ⊇ ⊇

∼n,1 ⊇ ∼n,2 ⊇ ∼n,3 ⊇ · · · ⊇ ∼n = ≡PCTL

Figure 1. Inclusion among the bisimulations considered.

holds size(C) ≤ k, then it also hold that size(C) ≤ j,
hence the following proof is straightforward.

4) We consider PAs with finite state spaces. In the

worst case each state belongs to a distinct equivalence

class, therefore there always exists j ≥ 0 such that

∼i,j = ∼i and -i,j = -i.

We have defined a sequence of (i, j)-depth bisimulations,

which will converge to ∼i after a finite number of iterations.

The inclusion hierarchy of all the bisimulations are summa-

rized in Fig. 1 where the lower right corner indicates that

there exists n ≥ 0 such that ∼n = ≡PCTL. Obviously, all

relations are coarser than it.

IV. BISIMULATION QUOTIENT

The quotients shall be the keys in the PIBAR approach.

Inspired by modal transition systems, we define the may and

must quotient systems as follows:

Definition 8 (May Quotient) Given a PA P = (S,→
, s0,AP, L) and an equivalence relation R over S such that

R ⊆ {(s, r) | L(s) = L(r)}, the may quotient of P w.r.t.

R, is denoted as P⋄
R = (S/R,→⋄, [s0]R,AP, L), where

L([s]R) = L(s) for each s, and [s]R →⋄ [µ]R iff there

exists r ∈ [s]R such that r → µ.

Definition 9 (Must Quotient) Given a PA P = (S,→
, s0,AP, L) and an equivalence relation R over S such that

R ⊆ {(s, r) | L(s) = L(r)}, the must quotient of P w.r.t.

R, is denoted as P�R = (S/R,→�, [s0]R,AP, L), where

L([s]R) = L(s) for each s, and [s]R →� [µ]R iff for all

r ∈ [s]R there exists r → ν such that [µ]R = [ν]R.

The function L is overloaded for simplicity. Note the only

difference between may and must quotients is the definition

of transitions of the quotient systems. In Definition 8, we

let the transition of [s]R be the union of the transition for

each r ∈ [s]R, on the other hand, in Definition 9 we let the

transitions of [s]R be the joint transitions for all r ∈ [s]R.

Given two PAs P and P ′ with initial states of s0 and

s′0 respectively, the simulation relations can be lifted to the

automata level: P - P ′ iff s0 - s′0 in the direct sum

obtained from P and P ′. The following theorem shows the

relation between the quotients and their original system.

Theorem 1 Let P be a PA and R be an equivalence

relation, we have

P�R - P - P⋄
R.

Proof: We only prove that P - P⋄
R i.e. s0 - [s0]R,

since the other one can be proved in a similar way. Let

R = {(s, [r]R) | s ∈ [r]R}. Apparently (s0, [s0]R) ∈ R,

therefore it is enough to show that R is a simulation

according to Definition 4. Suppose that s → µ, we need

to show that there exists [r]R → ν such that µ ⊑R ν.

We know that for each s ∈ [r]R, s → µ implies [r]R →
[µ]R according to Definition 8. Let ∆ be a function such

that ∆(s′, [s′]R) = µ(s′) for each s′, we need to show that

∆ is a valid weight function between µ and [µ]R. Since

(s′, [s′]R) ∈ R according to the definition of R, therefore

condition 1) in Definition 3 is satisfied. Moreover µ(s′) =
∑

[t]R∈S/R ∆(s′, [t]R) = ∆(s′, [s′]R) and [µ]R([s′]R) =
∑

t∈S ∆(t, [s′]R) =
∑

t∈[s′]R
∆(t, [s′]R) =

∑

t∈[s′]R
µ(t),

hence condition 2) and 3) are also satisfied. Consequently,

µ ⊑R [µ]R which completes the proof.

V. PROBABILISTIC INCREMENTAL BISIMULATION

ABSTRACTION REFINEMENT

For an equivalence relation R, we can first construct

the may and must quotients. If P⋄
R |= φ, we know that

P |= φ since P - P⋄
R, and the refinement terminates.

On the other hand, if P�R 6|= φ, we have P 6|= φ since

P�R - P . If neither P⋄
R |= φ nor P�R 6|= φ holds, this

means that the current abstract system is too coarse and

needs to be further refined. Lemma 3 and 4 indicate that

∼i,j defines a grid of bisimulations which will converge to

PCTL-equivalence after a finite number of steps. This gives

us a straightforward way for refinement: The refinement

is simply done by increasing j until ∼i is reached, then

i will be increased by 1, and j is reset to 0. In other

words, we walk through the grid in Fig. 1 in a ’horizontally-

first’ manner. The thus resulting algorithm is shown in

Algorithm 1, where the refinement process starts with the

coarsest relation R =∼0,0= {(s, r) | L(s) = L(r)}. The

Algorithm 1 will for sure terminate since there exists n such

that ∼n = ≡PCTL for any PA.

The algorithm for refining R is shown in Algorithm 2,

where splitters are used to store all the splitters. A splitter

is a pair of R downward closed sets (C1, C2). Before com-

puting ∼i,j , we have computed ∼i,j−1 i.e. all the splitters

(C1, C2) such that size(C1) < j and size(C2) < j have



Algorithm 1 The Algorithm of PIBAR

Input:

A PA P and a property φ of PCTLsafe
Output:

True if P |= φ, else False

1.1: i = 0;

1.2: while (True) do

1.3: i++, j = 0;
1.4: while (R 6=∼i) do

1.5: // Compute ∼i,j ;

1.6: R = Refine(P,R, i, j ++);
1.7: P⋄

R = May(P,R);
1.8: P�R = Must(P,R);
1.9: if (P⋄

R |= φ) then

1.10: return True;

1.11: else if (P�R 6|= φ) then

1.12: return False;

1.13: end if

1.14: end while

1.15: end while

been considered, therefore only splitters (C1, C2) such that

either size(C1) = j or size(C2) = j are taken into account.

The refinement is done as follows: For each C ∈ S/R, we

first compute the minimal probability of each state s ∈ C
reaching states in C1 only via states in C2 in at most

i steps i.e. Probmin(s, C1, C2, i), we then divide C into

several disjoint subsets such that s, r ∈ C are in the same

subset iff Probmin(s, C1, C2, i) = Probmin(r, C1, C2, i).
After refining R, we will introduce some new blocks to the

current partition thus we need to update the set of splitters

by adding pairs like (C1, C2), where C1 and C2 are new

equivalence classes.

The following theorem shows that Algorithm 1 is both

sound and complete in the sense that it will always terminate

and give the right answer. In the worst case it will terminate

when the PCTL-equivalent relation is obtained i.e. when

R = ≡PCTL.

Theorem 2 Algorithm 1 is sound and complete.

Proof: First note that when Algorithm 2 terminates, we

can make sure that R = ∼i,j , since all the possible splitters

have been considered. In the inner loop of Algorithm 1, we

keep increasing j until ∼i is obtained. Lemma 4 shows that

the inner loop will always terminate. When ∼i is obtained,

we increase the parameter i by 1 and start the inner loop

again. The termination of the outer loop is guaranteed by

Lemma 3. Since in the worst case, R will be equal to ≡PCTL,

and we can make sure that either P⋄
R |= φ or P�R 6|= φ holds.

In theory, the time complexity of Algorithm 1 is high since

we have to consider every possible splitter at each iteration.

Algorithm 2 The Algorithm of Refine

Input:

A PA P , a relation R, i, and j;
Output:

A refined relation R equal to ∼i,j ;

2.1: // Initialize the set of splitter.

2.2: splitters = {(C1, C2) | C1, C2 ∈ R↓ ∧ (size(C1) =
j ∨ size(C2) = j)};

2.3: while (splitters 6= ∅) do

2.4: // Get a splitter and remove it from the splitter set;

2.5: (C1, C2) = splitters.GetAndRemoveF irst();
2.6: for all C ∈ S/R do

2.7: Compute Probmin(s, C1, C2, i) for each s ∈ C;

2.8: Divide C according to the value of

Probmin(s, C1, C2, i) such that only states

with the same value are in the same subset;

2.9: end for

2.10: Add new generated splitters to splitters;

2.11: end while

In the worst case the number of splitters is equal to 2n ∗ 2n

i.e. 22n, and similarly for the space complexity since we have

to store all the splitters untouched. But we will show in the

following, Algorithm 1 performs much better in practice.

To illustrate how PIBAR works, we give the following

example.

Example 1 Suppose we have a state t such that t have two

transitions: t→ Ds and t→ Dr, where s and r are shown

in Fig. 2. We assume that s2, s4, and s5 are absorbing i.e.

can only evolve into themselves with probability 1, while

the transitions of s1 and s3 are shown in the right side of

Fig. 2. Moreover, assume all the states have distinct labels

with state s4 has label . It is easy to check that s ∼1 r,

thus in the quotient systems induced by ∼1, states s and r
will be grouped together, while the other states remain.

Let R =∼1= {(s, r), (r, s)} ∪ ID be the equiva-

lence relation induced by the current partition and φ =
P≥0.6(true U¬ ) where ID is the identity relation. Since

the minimal probability for the paths of t satisfying

true U¬ is equal to 0.64 i.e. by choosing the transition to

r and then choosing the red transitions in Fig. 2, therefore

t |= φ. Note that we also have t⋄R |= φ, since according to

Definition 8, block [s]R (or equivalently [r]R) containing s
and r will have the same transitions as r in the may quotient

(up to ≡R), while in the must quotient [s]R will have the

same transitions as s. Therefore t⋄R |= φ, and we conclude

that R is a fine enough equivalence relation to preserve φ.

On the other hand, if we let φ = P≥0.65(true U¬ ), we

know from above discussion that t 6|= φ. But if we use the

same partition as before, we have t�R |= φ, since in t�R the

middle transition of r will be abstracted away from block

[s]R, as the transition is absent in s. Therefore the minimal
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Figure 2. Counterexample of probabilistic bisimulation.

probability for the paths of t�R satisfying true U¬ is the

same as s i.e. 0.66. This means that R is too coarse to pre-

serve φ, thus we need to refine it again. Moreover, note that

s 6∼2 r, because for instance r 6|= P≥0.65(true U
≤2 ¬ ),

but s |= P≥0.65(true U
≤2 ¬ ). Therefore in the next refine-

ment step, s and r will be distinguished i.e. R =∼2= ID ,

and we will conclude t�R 6|= φ.

However if we compute the classical bisimulation in [30]

directly, s and r will never be grouped together since the

middle transition of r has no way to be simulated by s
even if we apply combined transitions, therefore s 6∼ r.

Consequently, the abstract system induced by the classi-

cal bisimulation will be too fine for many properties like

P≥0.6(true U¬a).

We have the following lemma concerning the complexity

of computing the bisimulation relations.

Lemma 5 1) It is NP-complete to check whether s ∼i r
for any i ≥ 1 and s, r.

2) ∼1,1 can be computed in polynomial time.

Proof: (Sketch) It has been shown that the problem

of computing ∼1 is NP-complete [14], similarly we can

show for i > 1 that ∼i is NP-complete too. The proof

is by reducing the following problem to our problem:

Given n decimal numbers d1, d2, . . . , dn, can we find a set

D ⊆ {di | 1 ≤ i ≤ n} such that
∑

d∈D d = 0. More details

on the strategy are found in [14, Theorem 4].

For the second clause, we note that ∼1,1 can be computed

using a standard partition refinement algorithm, which has

been applied for both DTMCs [13] and MDPs [3].

Remark 1 Until now we have only dealt with PCTLsafe

properties. However, Algorithm 1 can be used to deal with

full PCTL with a slight change: We keep refining the systems

by increasing the index i and j until PCTL equivalence is

reached. By Theorem 3, this process will terminate. Then we

are able to check arbitrary PCTL formulae on the result.

This idea can be further enhanced to work with PCTL*

properties, by exploiting the sequence of bisimulation rela-

tions converging to PCTL* equivalences [32].

VI. EXPERIMENTAL RESULTS

We have implemented our PIBAR approach in a pro-

totype tool using C♯. All the results were obtained on

a Laptop equipped with an Intel Core i5-2410M CPU

2.3GHz processor and 4GB RAM running Windows 7 Pro-

fessional. All the examples are taken from the PRISM web-

page http://www.prismmodelchecker.org, including the asyn-

chronous leader election protocol [21], randomized consen-

sus shared coin protocol [2], IEEE 802.3 CSMA/CD proto-

col, and randomized self-stabilizing algorithms (Beauquiepr

et al. [5] and Israeli & Jalfon [20]). In Table I we compare

the sizes of the original models and the abstract models,

where the abstract models are as small as possible but

large enough to preserve the properties we want to check.

The columns n and m denote the number of states and

transitions respectively in the original system, while n′ and

m′ denote the number of states and transitions respectively

in the abstract system. The last column “Abs.(s)” denotes

the time in seconds used to get the quotients. For all the

examples, Algorithm 1 terminated within one minute with an

enough refined abstract system except for the last case which

were almost 10 minutes. As we can see, the abstract systems

are much smaller than the original ones. For example for

“csma4 2”, we reduce the state space 45 times and the

transition space 74 times.

In Table II we compare the time to check properties on

the original systems and the abstract systems. For check-

ing on the abstract systems, the time should contain two

parts: Time for abstracting and time for checking proper-

ties. For most of the examples, Algorithm 1 runs faster

than PRISM if we consider the total time for checking

all the properties except for the last case. For instance in

“coin4”, PRISM takes more than 163 seconds to check all

the properties, while the time for using PIBAR to these

properties is only about 23 seconds (the abstract time in

Table I plus the checking time in Table II). In Table II,

some properties are not well-formed PCTLsafe properties,

for instance Pmax (true U(finished ∧¬agree)) 1. We notice

1Properties like Pmin (true U(finished ∧ ¬agree)) are well-formed
PCTLsafe formula, since Pmin (ψ) = q is equivalent to P≥q(ψ) for any ψ



Table I
EXPERIMENT RESULTS (ABSTRACT)

Protocol n m n′ m′ Abs.(s)

leader3 364 654 47 67 0.033

leader6 237656 760878 9012 24457 25.95

coin2 1296 2412 720 959 0.056

coin4 104576 351712 8827 16905 8.55

csma2 6 66718 93072 10948 10961 3.04

csma4 2 761962 1327068 16725 17808 55.8

beauquier5 1024 3840 37 89 0.01

beauquier9 262144 1769472 7031 31613 28.62

israeli-jalfon12 4095 43008 223 1056 0.3

israeli-jalfon18 262143 4128768 7684 65790 591.17

that in our experiments the abstract system returned by

Algorithm 1 also preserves properties like Pmax (ψ) i.e. non-

safety property P≤p(ψ), which indicates that Algorithm 1

often terminates with the R quite close (if not equal) to

≡PCTL.

The tool and its source code can be downloaded at

http://www.itu.dk/people/leis.

VII. RELATED WORK

Probabilistic abstraction refinement techniques have first

been studied in [9], [10]. While their approach focuses on

the reachability probabilities, our approach deals in principle

with all PCTL properties. Moreover, the major difference

between PIBAR and [9], [10] is that different refinement

strategies are adopted. Specifically, in [9] whenever it is

necessary to refine an abstract system, first those blocks

are identified in which the concrete states have different

futures i.e. they can evolve into different distributions (up

to the current equivalence relation). This refinement strategy

is based on the bisimulation criteria and has been used in

other models [6], [1], [33]. In [10] this refinement method

is further improved. In the present paper we instead adopt

a novel refinement strategy which is directly based on

the sequence of bisimulations [32]. The advantage of this

refinement strategy is that it needs very few refinements

before termination. For many practical examples, it even

terminates after the first refinement.

In probabilistic CEGAR [34] refinement steps are guided

by counterexamples expressed by a set of paths violating the

property. As already mentioned further extensions include

stochastic games [34], [25] for obtaining both upper and

lower bounds, and also extensions carrying over to proba-

bilistic software verification [24], [15] exists.

In [11], [28] an abstraction technique for MDPs called

magnifying lens abstraction was introduced, which does

not depend on counterexamples generation and analysis. It

first partitions the states into regions (or blocks), and then

computes upper and lower bounds on these regions. In order

to do so, it considers only one region at a time, and computes

the bounds of the concrete states in it. The refinement of

a region depends on the computed bounds of its concrete

states. The magnifying lens abstraction technique is designed

for reachability and safety properties, and moreover it is a

property-driven abstraction, i.e. it deal with one property

each time.

Compared to previous approaches PIBAR constructs ab-

stractions based on the sequence of bisimulation relations

converging to the PCTL equivalence. thus it facilitates the

verification of arbitrary PCTL properties. Notice, as said

above, that the approach in [7] has been introduced to handle

arbitrary PCTL properties as well: but that approach in-

volves repeated computations of simulation relations which

is slow in practice [36]. To the best of our knowledge, the

CEGAR approach of [7] has not yet been implemented.

The PIBAR approach has a flavor similar to the bisimu-

lation based minimization approach for Markov chains [23].

In particular ∼1,1 can be computed in the same way as

the bisimulation for Markov chains with minor changes,

therefore it can be considered as an extension of this

approach to the model of PAs. Our work is closely related to

[12], [35], in which the classical bisimulation [30] has been

computed symbolically: The polynomial algorithm turns out

to be rather expensive in practice. The theoretical complexity

of checking the PCTL equivalence relation is even worse: It

is NP-complete. In [12] it has been shown that state space

minimization based on the classical bisimulation usually

does not speed up the verification, since the bisimulation

is expensive to compute. In this paper, we observe that

for many cases the classical bisimulation is too fine, and

usually a quite coarser bisimulation for generating the

quotient system is enough. Interestingly, even though with

high theoretical complexity (NP-complete), our approach is

efficient in almost all of the selected case studies.



Table II
EXPERIMENT RESULTS (PROPERTIES)

Protocol Properties Time(s) [Time](s)

leader3 P≥1(true U
≤1000 elected) 0.033 0.03

leader6 P≥1(true U
≤1000 elected) 38.8 1.29

coin2

P≥1(true Ufinished) 0.025 0.033

Pmin (true U(finished ∧ all coins equal 1 )) 0.382 0.274

Pmin (true U(finished ∧ all coins equal 0 )) 0.384 0.266

Pmax (true U(finished ∧ ¬agree)) 0.025 0.033

coin4

P≥1(true Ufinished) 0.089 1.196

Pmin (true U(finished ∧ all coins equal 1 )) 48.19 4.46

Pmin (true U(finished ∧ all coins equal 0 )) 54.27 4.28

Pmax (true U(finished ∧ ¬agree)) 60.83 4.77

csma2 6

Pmin (true Umin backoff after success ≤ 5) 0.477 0.438

Pmax (true Umin backoff after success ≤ 5) 2.75 1.731

Pmin (¬collision max backoff U all delivered) 1.962 0.578

Pmax (¬collision max backoff U all delivered) 9.853 2.877

Pmin (true Umax collisions ≥ 5) 0.489 0.203

Pmax (true Umax collisions ≥ 5) 0.705 0.313

csma4 2

Pmin (true Umin backoff after success ≤ 1) 2.847 0.436

Pmax (true Umin backoff after success ≤ 1) 6.28 2.124

Pmin (¬collision max backoff U all delivered) 27.092 1.826

Pmax (¬collision max backoff U all delivered) 49.437 5.53

Pmin (true Umax collisions ≥ 5) 0.029 0.001

Pmax (true Umax collisions ≥ 5) 0.002 0.001

beauquier5 Pmin (true U
≤1000 stable) 0.085 0.018

beauquier9 Pmin (true U
≤1000 stable) 34.108 5.668

israeli-jalfon12 Pmin (true U
≤1000 stable) 0.693 0.057

israeli-jalfon18 Pmin (true U
≤1000 stable) 75.534 6.799

VIII. CONCLUSION AND FUTURE WORK

In this paper we proposed an abstraction-refinement

framework based on a sequence of bisimulation equivalence

relations. Our prototypical experiments show that PIBAR

works well in practice, and very often it terminates after

very few refinement steps.

As future work, we will extend PIBAR symbolically to

be able to deal with larger systems. Many relations in Fig. 1

can be computed efficiently in polynomial time, thus another

interesting direction is to identify such relations and compute

them first. Since continuous-time Markov decision process

(CTMDP) is a continuous extension of PA, we plan to extend

this framework further to deal with CTMDPs.
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