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Abstract. We apply multivariate Lagrange interpolation to synthesiz-
ing polynomial quantitative loop invariants for probabilistic programs.
We reduce the computation of an quantitative loop invariant to solv-
ing constraints over program variables and unknown coefficients. La-
grange interpolation allows us to find constraints with less unknown coef-
ficients. Counterexample-guided refinement furthermore generates linear
constraints that pinpoint the desired quantitative invariants. We evalu-
ate our technique by several case studies with polynomial quantitative
loop invariants in the experiments.

1 Introduction

A probabilistic program may change its computation due to probabilistic choic-
es. Consider, for instance, the Miller-Rabin algorithm for primality test [20].
Given a composite number, the algorithm reports incorrectly with probability
at most 0.25. Since the outcome of the algorithm is not always correct, classical
program correctness specifications [5, 13, 7] do not apply. For probabilistic pro-
grams, quantitative specifications are needed to reason about program correct-
ness [17, 16, 4]. Instead of logic formulae, probabilistic programs are specified by
numerical functions over program variables. Since a probabilistic program gives
random outcomes, a numerical function may have different values on different
executions. The expected value of a numerical function is then determined by
the probability distribution induced by the executions of program.

Since probabilistic programs are specified by numerical functions, their cor-
rectness can be established by annotations with expectations. In particular, cor-
rectness of while loops can be proved by inferring special expectations called
the quantitative loop invariants [17, 18]. Similar to classical programs, finding
general quantitative loop invariants is hard. Techniques for generating linear
quantitative loop invariants however are available [18, 15, 8, 1].

Interestingly, existing linear loop invariant generation techniques can be ex-
tended to synthesize polynomial invariants [1]. Observe that polynomial mul-
tivariate polynomials are linear combinations of monomials. For instance, any
polynomial over x, y with degree 2 is a linear combination of the monomials
1, x, y, x2, y2, and xy. It suffices to find coefficients of the monomials to represent
any multivariate polynomial of a fixed degree. Linear loop invariant generation



techniques can hence be applied to infer invariants of a fixed degree. The number
of monomials however grows rapidly. Quadratic polynomials over 5 variables, for
example, are linear combinations of 21 monomials. One then has to find as many
coefficients. It is unclear whether the extended approach is still feasible.

In this paper, we develop a Lagrange interpolation-based technique to syn-
thesize polynomial loop invariants for simple loops in probabilistic programs.
Lagrange interpolation is a well-known method to construct explicit expression-
s for polynomials by sampling. For example, suppose that the values of f(x)
are known to be s1, s3, and s4 at the sampling points 1, 3, and 4, respective-
ly. By Lagrange interpolation, we immediately have an explicit expression of

f(x) = s1 · (x−3)(x−4)(1−3)(1−4) + s3 · (x−1)(x−4)(3−1)(3−4) + s4 · (x−1)(x−3)(4−1)(4−3) . Our new technique em-

ploys multivariate Lagrange interpolation. Similar to previous techniques [15,
8], we use conditions of quantitative loop invariants as constraints. Lagrange
interpolation moreover allows us to simplify the constraints and sometimes to
determine several coefficients. In the example, suppose f(3) = 1 is known. Then
it suffices to determine s1 and s4 to construct an explicit expression of f(x).
In contrast, if f(x) is represented as c0 + c1x + c2x

2, then f(3) = 1 only gives
c0+3c1+9c2 = 1 and determines none of the coefficients. Lagrange interpolation
hence can reduce the number of unknown coefficients and make our technique
more scalable.

Although there are less unknown coefficients, one still has to solve non-linear
constraints. We give heuristics to determine coefficients efficiently. Our heuris-
tics first perform random experiments and obtain linear constraints about co-
efficients. An SMT solver is then used to find candidate coefficients from the
constraints. If there is no candidate, then the desired loop invariant does not ex-
ist. Otherwise, quantifier elimination verifies whether the candidate coefficients
give a loop invariant. If so, our technique has found a quantitative loop invariant.
Otherwise, we add more linear constraints to exclude infeasible coefficients.

We apply our technique to find quantitative loop invariants for ten annotated
simple loops from probabilistic programs. Our case studies range from gambler’s
ruin problem [6] to simulation of a fair coin by a biased coin [8]. In all but one
cases, our technique is able to synthesize polynomial quantitative loop invariants
within 10 seconds. It takes less than 30 seconds to find a loop invariant of degree
2 over 3 variables with 7 terms for the simulation of a fair coin.

Related Work. Constraint-based techniques for automated loop invariants
generation have been much progressed over the past years [2, 3, 11, 22, 14, 10, 15].
Gupta and Rybalchenko [11, 12] proposed a GEGAR framework, so that static
and dynamic information of a program can be exploited incrementally to restrict
the search space of qualitative loop invariants. Sankaranarayanan et al. [22] used
Gröbner bases to reduce the problem of generating algebraic polynomial loop in-
variants to that of solving non-linear constraints in the parametric linear form.
These techniques however deal with classical programs and cannot be applied to
probabilistic programs directly. McIver and Morgan [17] were among the first to
consider quantitative loop invariants for probabilistic programs. Katoen et al. [15]
studied the synthesis of quantitative loop invariants using a constraint-solving
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approach. The approach was further developed and implemented in the Prinsys
tool [8], which synthesizes quantitative invariants by solving constraints over un-
known template coefficients. The performance of the tool however is sensitive to
manually supplied templates. Recently, a technique based on abstract interpre-
tation is proposed in [1]. It formulates linear loop invariants with the collecting
semantics and synthesizes coefficients via fixed-point computation. Although the
authors only report experiments on linear loop invariants, the technique can be
extended to generate polynomial invariants by representing polynomials as lin-
ear combinations of monomials. The effectiveness of the extension however is
unclear.

We have the following organization. After preliminaries, we review probabilis-
tic programs in Section 3. Quantitative loop invariants are presented in Section 4.
Section 5 introduces multivariate Lagrange interpolation. Our technical contri-
bution is presented in Section 6. Applications are given in Section 7. We evaluate
our technique in the following section. Section 9 concludes our presentation.

2 Preliminaries

Let xm be a sequence of variables x1, x2, . . . , xm. We use R[xn
m] to denote the

set of real coefficient polynomials over m variables of degree at most n. Observe
that R[xn

m] can be seen as a vector space over R of dimension d =
(
m+n
n

)
. For

instance, the set of d monomials {xd1
1 x

d2
2 · · ·xdm

m : 0 ≤ d1 + d2 + · · · + dm ≤ n}
forms a basis of R[xn

m]. If e1, e2, . . . , em are expressions, f(e1, e2, . . . , em) denotes
the polynomial obtained by replacing xi with ei for 1 ≤ i ≤ m in f . Particularly,
f(v) is the value of f at v ∈ Rm.

A constraint is a quantifier-free logic formula with equality, linear order,
addition, multiplication, division, and integer constants. A constraint is linear
if it contains only linear expressions; otherwise, it is non-linear. A quantified
constraint is a constraint with quantifiers over its variables. A valuation over
xm assigns a value to each variable in xm. A model of a constraint is a valuation
which evaluates the constraint to true.

Given a quantified constraint, quantifier elimination removes quantifiers and
returns a logically equivalent constraint. Given a linear constraint, a Satisfiability
Modulo Theory (SMT) solver returns a model of the constraint if it exists.

3 Probabilistic Programs

A probabilistic program in the probabilistic guarded command language is of the
following form:

P ::= skip | abort |x := E |P ;P |P [p]P | if (G) then {P} else {P} |while (G) {P}

where E is an expression and G is a Boolean expression. For p ∈ (0, 1), the prob-
abilistic choice command P0[p]P1 executes P0 with probability p and P1 with
probability 1 − p. For instance, x := 1 [0.75]x := 0 sets x to 1 with probability
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0.75 and to 0 with probability 0.25. A program state is a valuation over pro-
gram variables. For simplicity, we assume program variables are in non-negative
integers, and use 0 and 1 for the truth values false and true respectively.

3.1 Expectations

From an initial program state, a probabilistic program can have different final
program states due to probabilistic choice commands. Particularly, a function
over program variables gives different values on different final program states.
Note that a probabilistic program induces a probability distribution on final
program states. One therefore can discuss the expected value of any function
over program variables with respect to that probability distribution. More pre-
cisely, one can take an expectation transformer [17] approach to characterize a
probabilistic program by annotating the program with expectations.

Formally, an expectation is a function mapping program states to a nonneg-
ative real number. An expectation is called a post-expectation when it is to
be evaluated on final program states. Similarly, an expectation is called a pre-
expectation if it is to be evaluated on initial program states. Let preE and postE
be expectations, and prog a probabilistic program. We say a quantitative Hoare
triple 〈preE〉 prog 〈postE〉 holds if the expected value of postE before executing
prog is greater than or equal to preE. Note that the expected values of postE
and preE are functions over states and hence are compared pointwisely.

For any Boolean expression G, define the indicator function [G] = 1 if G is
true and [G] = 0 otherwise. Consider an qualitative Hoare triple {P} prog {Q}
with a pre-condition P , a post-condition Q, and a classical program prog. Ob-
serve that {P} prog {Q} holds if and only if 〈[P ]〉 prog 〈[Q]〉 holds. Expectations
are therefore the quantitative analogue to predicates for classical programs.

3.2 Expectation Transformer for Probabilistic Programs

Let P and Q be probabilistic programs, g a post-expectation, x a program vari-
able, E an expression, G a Boolean expression, and p ∈ (0, 1). Define the expec-
tation transformer wp( · , g) as follows [17].

wp(skip, g) = g
wp(abort, g) = 0

wp(x := E, g) = g[x/E]
wp(P ;Q, g) = wp(P,wp(Q, g))

wp(if (G) then {P} else {Q}, g) = [G] · wp(P, g) + [¬G] · wp(Q, g)
wp(P [p]Q, g) = p · wp(P, g) + (1− p) · wp(Q, g)

wp(while (G) {P}, g) = µX.([G] · wp(P,X) + [¬G] · g).

Here g[x/E] denotes the formula obtained from g by replacing free occurrences
of x by E. The least fixed point operator µ is defined over the domain of expec-
tations [9]. It can be shown that 〈f〉 P 〈g〉 if and only if f ≤ wp(P, g). That is,
wp(P, g) is the greatest lower bound of pre-expectation of P with respect to g.
We say wp(P, g) is the weakest pre-expectation of P with respect to g.
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Example 1. The weakest pre-expectation of command x := x + 1 [p]x := x − 1
with respect to x is computed below:

wp(x := x+ 1 [p]x := x− 1, x)

= p · wp(x := x+ 1, x) + (1− p) · wp(x := x− 1, x)

= p · (x+ 1) + (1− p) · (x− 1)

= x− 2p+ 1

It follows that 〈x+ 2p− 1〉 x := x+ 1 [p]x := x− 1 〈x〉 holds.

4 Quantitative Loop Invariants

Given a pre-expectation preE, a post-expectation postE, a Boolean expression
G, and a loop-free probabilistic program body, we would like to verify whether

〈preE〉 while (G) {body} 〈postE〉

holds or not. One way to solve this problem is to compute the weakest pre-
expectation wp(while (G) {body}, postE) and check if it is not less than preE
pointwisely. However, the weakest pre-expectation of a while-command requires
fixed point computation. To avoid the expensive computation, we can solve the
problem by finding quantitative loop invariants.

Theorem 1 ([8, 17]). Let preE be a pre-expectation, postE a post-expectation,
G a Boolean expression, and body a loop-free probabilistic program. To show

〈preE〉 while (G) {body} 〈postE〉,

it suffices to find a loop invariant I which is an expectation such that

1. (boundary) preE ≤ I and I · [¬G] ≤ postE;
2. (invariant) I · [G] ≤ wp(body, I);
3. (soundness) the loop terminates from any state in G with probability 1, and

(a) the number of iterations is finite;
(b) I is bounded above by some fixed constant; or
(c) the expected value of I · [G] tends to zero as the loop continues to iterate.

Example 2. Consider the following probabilistic program:

z := 0; while (0 < x < y) { x := x+ 1 [0.5]x := x− 1; z := z + 1; }

The program models a game where a player has x dollars at the beginning and
keeps tossing a coin with head probability 0.5. The player wins one dollar for
each head and loses one dollar for each tail. The game ends either when the
player loses all his money, or when he wins y − x dollars for a predetermined
y > x. The variable z counts the number of tosses made by the player during
the game.
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In Example 2, it can be shown that any polynomial expectation satisfying the
boundary and invariant conditions is also sound, and thus is a loop invariant.
Observe that the soundness of an loop invariant can be verified independent
of the pre- and post-expectations. In fact, one can establish the soundness of
a large class of loop invariants before any specific invariant is found. In this
paper, we only focus on the boundary and invariant conditions in Theorem 1.
The soundness condition of loop invariants is checked manually. 1

5 Multivariate Lagrange Interpolation

Fix a degree n of quantitative loop invariants and number of variables m. Let
d =

(
m+n
n

)
. Lagrange interpolation is a method to construct an explicit expres-

sion for any polynomial in R[xn
m] by sampling, see e.g., [19]. Given d sampling

points s1, s2, . . . , sd ∈ Rm, we can compute a Lagrange basis as follows [21].
Let {b1, b2, . . . , bd} = {xd1

1 x
d2
2 · · ·xdm

m : d1 + d2 + · · · + dm ≤ n} be the set of
monomials in R[xn

m]. For 1 ≤ i ≤ d, define

Mi = det



b1(s1) · · · bd(s1)
...

...
b1 · · · bd
...

...
b1(sd) · · · bd(sd)

← the ith row

Observe that Mi ∈ R[xn
m] for 1 ≤ i ≤ d. Moreover, Mi(sj) = 0 for i 6= j and

M1(s1) = M2(s2) = · · · = Md(sd) = r for some r ∈ R. If r = 0, then there is no
Lagrange basis associated with the sampling points s1, s2, . . . , sd.2 If r 6= 0, define
Bi = Mi/r for 1 ≤ i ≤ d. Then B(s1, s2, . . . , sd) = {Bi : 1 ≤ i ≤ d} ⊆ R[xn

m] is
called a Lagrange basis of R[xn

m].

Observe that Bi(sj) = [i = j] for 1 ≤ i, j ≤ d. Thus
∑d

i=1 f(si)Bi(sj) = f(sj)

for 1 ≤ j ≤ d. Moreover, given any f ∈ R[xn
m], we can write f =

∑d
i=1 f(si)Bi.

Define the Lagrange functional L[s1, s2, . . . , sd] : Rd → R[xn
m] by

L[s1, s2, . . . , sd](c1, c2, . . . , cd) =

d∑
i=1

ciBi.

Then f = L[s1, s2, . . . , sd](f(s1), f(s2), . . . , f(sd)) for any f ∈ R[xn
m]. We call

f(s1), f(s2), . . . , f(sd) ∈ R the coefficients for f on basis B(s1, s2, . . . , sd).

6 Interpolation of Loop Invariants

Suppose we would like to find a quantitative loop invariant I ∈ R[xn
m] for

〈preE〉 while (G) {body} 〈postE〉
1 One can actually show that any polynomial expectation is sound for our case studies.
2 r = 0 reflects a geometrical dependency among the sampling points s1, s2, . . . , sd [19].
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where preE is a pre-expectation, postE is a post-expectation, G is a Boolean
expression, and body is a loop-free probabilistic program. Assume the soundness
of I can be verified. We shall use Lagrange interpolation to find I.

Let s1, s2, . . . , sd ∈ Rm be sampling points that determine a Lagrange basis.
If the coefficients I(s1), I(s2), . . . , I(sd) ∈ R are known, then

I = L[s1, s2, . . . , sd](I(s1), I(s2), . . . , I(sd))

by Lagrange interpolation. Our idea therefore is to find the coefficients via
constraint-solving. By the boundary and invariant conditions in Theorem 1, we
have the following requirements about any loop invariant I:

preE ≤ I
I · [¬G] ≤ postE
I · [G] ≤ wp(body, I).

(1)

Example 3. Consider

〈xy− x2〉 z := 0; while (0 < x < y) { x := x+ 1 [0.5]x := x− 1; z := z+ 1; } 〈z〉.

The following must hold for any loop invariant I

xy − x2 ≤ I
I · [x ≤ 0 ∨ y ≤ x] ≤ z

I · [0 < x < y] ≤ 0.5 · I(x+ 1, y, z + 1) + 0.5 · I(x− 1, y, z + 1).

Observe that wp(x := x + 1 [0.5]x := x − 1; z := z + 1, I(x, y, z)) = wp(x :=
x+1 [0.5]x := x−1, I(x, y, z+1)) = 0.5·wp(x := x+1, I(x, y, z+1))+0.5·wp(x :=
x− 1, I(x, y, z + 1)) = 0.5 · I(x+ 1, y, z + 1) + 0.5 · I(x− 1, y, z + 1).

Requirements (1) can have indicators on both sides of inequality, which is
beyond the capability of the solvers we use. We would like to obtain a constraint
by removing indicators in two steps. First, we rewrite the expectations to a
normal form. An expectation is in disjoint normal form (DNF) if it is of the
form f = [P1] · f1 + · · · + [Pk] · fk, where P1, P2, . . . , Pk are disjoint, that is, at
most one of P1, P2, . . . , Pk evaluates to true on any valuation.

Theorem 2 ([15]). Given an expectation of the form f = [P1]·f1+· · ·+[Pk]·fk,
f is equivalent to the following expectation in DNF:

∑
I⊆K

(∧
i∈I

Pi

)
∧ ¬

 ∧
j∈K\I

Pj

 ·∑
i∈I

fi

where K = {1, 2, . . . , k}.

We then transform inequalities between expectations in DNF to constraints.
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Theorem 3 ([8]). Suppose f = [P1] · f1 + · · ·+ [Pk] · fk and g = [Q1] · g1 + · · ·+
[Qh] · gh are expectations over xm in DNF. f ≤ g if and only if for every xm∧

j∈K

∧
i∈H

((Pj ∧Qi)⇒ fj ≤ gi) ∧

∧
j∈K

(( ∧
i∈H
¬Qi ∧ Pj

)
⇒ fj ≤ 0

)
∧
∧
i∈H

(( ∧
j∈K
¬Pj ∧Qi

)
⇒ 0 ≤ gi

)

where K = {1, 2, . . . , k} and H = {1, 2, . . . , h}.

Example 4. By Theorem 2 and 3, requirements in Example 3 are equivalent to

xy − x2 ≤ I ∧
(x ≤ 0 ∨ y ≤ x)⇒ I ≤ z ∧
(x ≤ 0 ∨ y ≤ x)⇒ 0 ≤ z ∧
(0 < x < y)⇒ I ≤ 0.5 · I(x+ 1, y, z + 1) + 0.5 · I(x− 1, y, z + 1) ∧
(0 < x < y)⇒ 0 ≤ 0.5 · I(x+ 1, y, z + 1) + 0.5 · I(x− 1, y, z + 1)

for every x, y, z.

Define the loop invariant constraint φ[s1, s2, . . . , sd](c1, c2, . . . , cd) as the con-
straint transformed from the requirements (1) where the quantitative loop in-
variant I is replaced by Lagrange functional L[s1, s2, . . . , sd] (c1, c2, . . . , cd).

Example 5. We have the following loop invariant constraint from Example 4.

φ[s1, s2, . . . , s10](c1, c2, . . . , c10) =

xy − x2 ≤ L[s1, s2, . . . , s10](c1, c2, . . . , c10) ∧
(x ≤ 0 ∨ y ≤ x)⇒ L[s1, s2, . . . , s10](c1, c2, . . . , c10) ≤ z ∧
(0 < x < y)⇒ 2 · L[s1, s2, . . . , s10](c1, c2, . . . , c10) ≤

L[s1, s2, . . . , s10](c1, c2, . . . , c10)(x+ 1, y, z + 1) +

L[s1, s2, . . . , s10](c1, c2, . . . , c10)(x− 1, y, z + 1).

With loop invariant constraints, it is easy to state our goal. Observe that
∃s1, s2, . . . , sd ∃c1, c2, . . . , cd ∀xm. φ[s1, s2, . . . , sd](c1, c2, . . . , cd) implies the exis-
tence of a quantitative loop invariant satisfying the boundary and invariant con-
ditions in Theorem 1. Our strategy hence is to choose sampling points s1, s2, . . . , sd
such that ∃c1, c2, . . . , cd ∀xm. φ[s1, s2, . . . , sd](c1, c2, . . . , cd) holds.

We will choose sampling points to simplify the loop invariant constraint.
Recall that sampling points are not unique in Lagrange interpolation. For a
loop invariant constraint, we select sampling points so that several coefficients
among c1, c2, . . . , cd are determined. This helps us to evaluate the quantified loop
invariant constraint ∃c1, c2, . . . , cd ∀xm. φ[s1, s2, . . . , sd](c1, c2, . . . , cd).

To evaluate the quantified loop invariant constraint, observe that the La-
grange functional L[s1, s2, . . . , sd](c1, c2, . . . , cd) is a multivariate polynomial over
c1, c2, . . . , cd and xm. A loop invariant constraint is hence non-linear. However,
φ[s1, s2, . . . , sd] (c1, c2, . . . , cd)(e) is a linear constraint over coefficients for every
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Input: 〈preE〉 while (G) {body} 〈postE〉 : a loop over program variables xm; n :
the degree of an loop invariant

Output: I : a loop invariant satisfying the boundary and invariant conditions
in Theorem 1

d←
(
m+n

n

)
;

s1, s2, . . . , sd ← SamplingPoints();
C ← InitialConstraint(s1, s2, . . . , sd);
while C has a model do

ĉ1, ĉ2, . . . , ĉd ← a model of C from an SMT solver;
switch RandomExperiments(C) do

case Pass:
switch UQElem(xm, φ[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd)) do

case True: return L[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd) case
CounterExample (e) : RefineConstraint(C, e)

endsw

case CounterExample (e) : RefineConstraint(C, e)

endsw

end
// No loop invariant

Algorithm 1: Quantitative loop invariant synthesis

experiment e ∈ Zm, i.e., valuation over xm. We therefore use experiments to
construct a series of linear constraints and find coefficients by an SMT solver.

Algorithm 1 shows our top-level algorithm. The algorithm starts by choosing
sampling points (Section 6.1). The sampling points are then used to construct the
initial linear constraint over coefficients (Section 6.2). The while loop evaluates
the quantified loop invariant constraint ∃c1, c2, . . . , cd ∀xm. φ[s1, s2, . . . , sd](c1, c2,
. . . , cd). In each iteration, the algorithm selects coefficients ĉ1, ĉ2, . . . , ĉd by a
model of the linear constraint obtained from an SMT solver. It then checks
whether ∀xm. φ[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd) is true. The algorithm does this by
first trying a number of random experiments (Section 6.3). Only after the ran-
dom experiments are passed, will the algorithm performs universal quantifier
elimination to evaluate the quantified constraint (Section 6.4). If the random ex-
periments fail, or quantifier elimination does not evaluate to true, our algorithm
refines the linear constraint by a counterexample and reiterates (Section 6.5).

6.1 Choosing Sampling Points

In Lagrange interpolation, sampling points need be chosen in the first place. We
would like to choose sampling points so that as many coefficients are determined
as possible. To this end, observe that L[s1, s2, . . . , sd](c1, c2, . . . , cd)(si) = ci for
1 ≤ i ≤ d. In other words, φ[s1, s2, . . . , sd](c1, c2, . . . , cd)(si) can be significantly
simplified if a sampling point si is used as an experiment. Consider, for instance,
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the boundary condition in our running example:

xy − x2 ≤ L[s1, s2, . . . , sd](c1, c2, . . . , cd)(x, y, z); and
(x ≤ 0 ∨ y ≤ x)⇒ L[s1, s2, . . . , sd](c1, c2, . . . , cd)(x, y, z) ≤ z

If sj = (0, 3, 0) is a sampling point, then the condition is simplified to 0 ≤ cj
and cj ≤ 0. Thus cj is determined by choosing (0, 3, 0) as both a sampling point
and an experiment.

Ideally, one would choose sampling points so that all coefficients are deter-
mined. Unfortunately, such points tend to be geometrically dependent. Thus we
cannot establish a Lagrange basis from these points exclusively. Instead, we try
to find sampling points which yield a Lagrange basis and determine as many
coefficients as possible. For this purpose, we adopt a weighted random search.
That is, we pick sampling points randomly according to their weights, so that
points determining more coefficients are more likely to be picked. If the ran-
domly selected sampling points fail to yield a Lagrange basis, we discard them
and select other sampling points randomly again. In practice, this heuristic finds
pretty good sampling points for our purpose in reasonable time.

6.2 Initial Constraint

After sampling points are chosen, we compute the initial linear constraint over
coefficients. Recall that L[s1, s2, . . . , sd] (c1, c2, . . . , cd)(si) = ci for 1 ≤ i ≤ d.
By taking sampling points as experiments, the loop invariant constraint φ[s1,
s2, . . . , sd](c1, c2, . . . , cd) is simplified to a linear constraint over c1, c2, . . . , cd.

Example 6. Consider the loop invariant constraint in Example 5. We first choose
10 sampling points s1, . . . , s10 (see table below) to establish a Lagrange basis. We
then compute the initial constraints by simplifying the loop invariant constraint
with the sampling points. For example, we obtain constraint c2 = 0 from point
s2 = (2, 2, 0) as follows:

φ[s1, s2, . . . , s10](c1, c2, . . . , c10)(2, 2, 0)
iff (2 · (2− 2) ≤ c2) ∧ ((2 ≤ 0 ∨ 2 ≤ 2)⇒ c2 ≤ 0) ∧

(0 < 2 < 2⇒ 0 ≤ −2c1 − 42c2 + 3c3 + 27c4 + 9c5 + 6c6 + 14c7 − 12c8 − 3c10)
iff 0 ≤ c2 ∧ c2 ≤ 0
iff c2 = 0.

We list all initial constraints in the following table, where φ[s1, s2, . . . , s10] (c1,
c2, . . . , c10)(si) is denoted by ψ(si) for simplicity.

i si ψ(si) i si ψ(si) i si ψ(si)

1 0, 3, 0 c1 = 0 2 2, 2, 0 c2 = 0 3 0, 3, 1 0 ≤ c3 ≤ 1
4 1, 1, 0 c4 = 0 5 1, 1, 2 0 ≤ c5 ≤ 2 6 2, 2, 1 0 ≤ c6 ≤ 1
7 3, 3, 0 c7 = 0 8 0, 0, 1 0 ≤ c8 ≤ 1 9 0, 1, 0 c9 = 0
10 2, 3, 3 6 ≤ 3c10 ≤ −4c1 − 36c2 + 5c3 + 30c4 + 12c5 − 6c6 + 16c7 − 14c8
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Note that our choice of sampling points helps the initial constraints determine
5 coefficients. If a standard monomial basis were used, none of the coefficients
could be determined by the initial constraints.

6.3 Random Experiments

From a linear constraint of coefficients, we obtain a model ĉ1, ĉ2, . . . , ĉd of the
linear constraint from an SMT solver. Recall that we would like to check if
∀xm. φ[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd) is true. Before using expensive quantifier e-
limination immediately, we first perform a number of random tests. If φ[s1, s2, . . . , sd]
(ĉ1, ĉ2, . . . , ĉd)(e) evaluates to true for all random experiments e ∈ Zm, the coeffi-
cients ĉ1, ĉ2, . . . , ĉd may induce a loop invariant. Otherwise, a witness experiment
e is used to refine the linear constraint over coefficients.

When the coefficients do not induce a loop invariant, the random experiments
make it possible to avoid expensive quantifier elimination and to obtain a witness
experiment without resorting to an SMT solver. This possibility is important,
because the solver we use does not always find a valid witness experiment.

6.4 Universal Quantifier Elimination

After random tests, we perform quantifier elimination check if ∀xm. φ[s1, s2, . . . ,
sd] (ĉ1, ĉ2, . . . , ĉd) is true. If so, the polynomial L[s1, s2, . . . , sd] (ĉ1, ĉ2, . . . , ĉd) is
a quantitative loop invariant satisfying the boundary and invariant conditions.
Otherwise, we obtain a witness experiment to refine our linear constraint.

Universal quantifier elimination is carried out in two steps. We first eliminate
the quantifiers in the ordered field theory. Intuitively, the ordered field theory for-
malizes real numbers R. Since quantifier elimination tools such as Redlog em-
ploy algebra and real algebraic geometry, eliminating quantifiers over real num-
bers is more efficient than over integers. If ∀xm. φ[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd) is
true over R, it is also true over Z. Thus ĉ1, ĉ2, . . . , ĉd induces a quantitative loop
invariant. Otherwise, we perform quantifier elimination over Z.

If ∀xm. φ[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd) evaluates to true over Z, we are done.
Otherwise, quantifier elimination gives a constraint equivalent to the quantified
query. We then use an SMT solver to obtain a witness experiment. We abort
the procedure if the solver times-out or fails to yield a valid witness experiment.

6.5 Constraint Refinement

Let e = (x̂1, x̂2, . . . , x̂m) ∈ Zm be a witness experiment such that φ[s1, s2, . . . , sd]
(ĉ1, ĉ2, . . . , ĉd) (e) evaluates to false. Recall that we would like to find coef-
ficients c1, c2, . . . , cd such that φ[s1, s2, . . . , sd] (c1, c2, . . . , cd) is true for every
valuations over xm. Particularly, φ[s1, s2, . . . , sd] (c1, c2, . . . , cd) (x̂1, x̂2, . . . , x̂m)
must also be true for such coefficients. Note that φ[s1, s2, . . . , sd] (c1, c2, . . . , cd)
(x̂1, x̂2, . . . , x̂m) is a linear constraint on coefficients c1, c2, . . . , cd excluding the
incorrect coefficients ĉ1, ĉ2, . . . , ĉd. By adding the linear constraint φ[s1, s2, . . . , sd]
(c1, c2, . . . , cd) (x̂1, x̂2, . . . , x̂m), will find different coefficient in the next iteration.
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7 Applications

Name preE postE Invariant Time

ruin xy − x2 z z + xy − x2 4s

geo1 x+ 3zy x x+ 3zy 3s

geo2 x+ 15
2
z x 25

2
z − 5z2 + x+ 5

2
nx 4s

bin1 x+ 1
4
ny x x+ 1

4
ny 4s

bin2 1
8
n2 − 1

8
n+ 3

4
ny x x+ 1

8
n2 + 1

8
n− 3

4
ny 10s

sum 1
4
n2 + 1

4
n x x+ 1

4
n2 + 1

4
n 2s

prod 1
4
n2 − 1

4
n xy 1

4
n2 + 1

2
nx+ 1

2
ny + xy − 1

4
n 5s

coin1 1
2
− 1

2
x 1− x+ xy −x− 1

2
y2 + 3

2
y + 1 2s

coin2 1
2
− 1

2
y x+ xy −x2 + 2x+ 1

2
y2 − 3

2
y + 1 2s

coin3 8
3
− 8

3
x− 8

3
y + 1

3
n n n− 28

3
x2 + 16

3
xy + 20

3
x+ 4

3
y2 − 4y + 8

3
21s

Table 1. Summary of results. The name of each experiment is shown in column Name.
The annotated pre- and post-expectations are shown in columns preE and postE, respec-
tively. The inferred quantitative loop invariant for each experiment is given in Invariant.
Finally, column Time lists the time our prototype takes to infer each invariant.

We have implemented a prototype in JavaScript (Node.js) to test our Lagrange
interpolation-based technique. For each simple loop, we manually perform the
weakest pre-expectation computation and the DNF transformation to translate
the requirements (1) into loop invariant constraints. We then use our prototype
to find a quantitative loop invariant based on the constraints. Our prototype
appeals to GNU Octave version 3.6.4 to compute a Lagrange basis. It uses SMT
solver Z3 version 4.3.1 to solve linear constraints and invokes Redlog released
on 14 April 2011 for quantifier elimination. The quantifier elimination tool sup-
ports theories of ordered fields and integers. The experiments are done on an
Intel Xeon 3.07GHz Linux workstation with 16GB RAM.

We consider six types of applications: gambler’s ruin problem, geometric
distribution, binomial distribution, sum of random series, product of random
variables, and simulation of a fair coin. We also consider variants of geometric and
binomial distributions. For the fair-coin simulation, we find three quantitative
loop invariants to prove the correctness and the expected execution time of
the simulation. In each probabilistic program, we annotate the while loop with
pre- and post-expectations. Observe that the annotated pre-expectation serves
as a precise estimate of the annotated post-expectation at the entrance of the
loop. Our results are summarized in Table 1 and Table 2. We now discuss the
applications in more details.

Gambler’s Ruin Problem In Example 2, we consider a game where a player
has x dollars initially and plays until he loses all his money or wins up to y − x
dollars for some y > x. The expected number of rounds before the game ends is
E[z] = x · (y − x). Our prototype proves this result in 6 seconds.
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Geometric Distribution The geometric distribution describes the number of
tails before the first head in a sequence of coin-tossing. When the probability of
head is 0.25, we expect to see 1−0.25

0.25 = 3 tails before the first head. The following
program computes a geometrically distributed random variable x:

x := 0; z := 1; while (z 6= 0) { z := 0 [0.25]x := x+ y; }

Our prototype finds a quantitative loop invariant for the pre-expectation E[x] =
3y in 2 seconds. We moreover consider the following variant of the game. A
player keeps flipping a coin until the head turns up. He wins k dollars if the tail
turns up at the kth flip. The variant is modeled as follows.

x := 0; y := 0; z := 1; while (z 6= 0) { y := y + 1; z := 0 [0.25]x := x+ y; }

The expected amount of money a player can win is E[x] = 1
2

(
0.25−2 − 1

)
= 15

2 .
Our prototype proves this result in 4 seconds.

Binomial Distribution The binomials distribution describes the number of
heads that appear in a fixed number of coin-tossing. If the probability of head is
0.25 and the number of tosses is n, then the expected number of heads is 0.25n.
The following program computes a binomially distributed random variable x:

x := 0; while (0 < n) { x := x+ y [0.25] skip; n := n− 1; }

Our prototype proves E[x] = 0.25ny in 4 seconds. We moreover consider the
following variant. A player flips a coin for n times. At the kth flip, he wins k
dollars if the head turns up and wins y dollars otherwise. This game can be
modeled as follows.

x := 0; while (0 < n) { x := x+ n [0.25]x := x+ y; n := n− 1; }

The expected amount of money a player can win is E[x] = 0.25 · 12n(n + 1) +
(1− 0.25) ·ny = 1

8n
2− 1

8n+ 3
4ny. Our prototype proves this result in 4 seconds.

Sum of Random Series Consider a game where a player flips a coin for n
times. The player wins k dollars if the head turns up at the kth flip. The following
program models this game when the head probability of the coin is 0.5:

x := 0; while (0 < n) { x := x+ n [0.5] skip; n := n− 1; }

The expected amount of money the player can win from this game is E[x] =
0.5·

∑n
i=1 i = 0.5· 12n(n+1) dollars. Our prototype proves this result in 2 seconds.

Product of Dependent Random Variables We consider a game where two
players flip a coin for n times. The first player wins one dollar for each head
and the second player wins one dollars for each tail. When the head probability
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of the coin is 0.5, this game can be modeled by the following program where
variables x, y represent the amount of money won by the respective players:

while (0 < n) { x := x+ 1 [0.5] y := y + 1; n := n− 1; }

It can be shown that E[xy] = 1
4 (n2 − n). Our prototype proves this result in 8

seconds.

Simulation of a Fair Coin We consider an algorithm that simulates a fair
coin flip using biased coins [8]:

x := 0; y := 0; n := 0;

while (x = y) { x := 1 [0.25]x := 0; y := 1 [0.25] y := 0; n := n+ 1; }

The algorithm uses two biased coins x and y with head probability 0.25. The
main loop flips the two coins at each iteration and terminates when the coins
show different outcomes. The value of x is then taken as the final outcome, with
1 representing the head and 0 representing the tail.

To see that the algorithm indeed simulates a fair coin flip, we prove

0.5− 0.5x ≤ wp(loop, 1− x+ xy) and 0.5− 0.5y ≤ wp(loop, x+ xy),

where loop denotes the while-loop in the program. Since x = y = 0 before the
loop starts and xy = 0 after the loop stops, we see that 0.5 ≤ E[1 − x] and
0.5 ≤ E[x] on termination. Since x ∈ {0, 1}, it follows that Pr{x = 1} = Pr{x =
0} = 0.5 on termination and thus the correctness of the algorithm is concluded.

Observe moreover that the number of iterations until the two coins show
different outcomes is the geometric distribution with head probability 0.25 ·2(1−
0.25) = 0.375. Hence, the expected number of iterations is E[n] = 1−0.375

0.375 + 1 =
8
3 . This result is verified by our prototype in 21 seconds.

Name L R S Q T #s #t #r Name L R S Q T #s #t #r

ruin 0 3 1 0 4 4 75 5 sum 0 2 0 0 2 1 42 6
geo1 1 2 0 0 3 19 32 1 prod 0 4 1 0 5 2 83 6
geo2 1 2 1 0 4 19 49 2 coin1 0 2 0 0 2 1 35 5
bin1 1 3 0 0 4 19 64 1 coin2 1 1 0 0 2 12 19 3
bin2 0 5 5 0 10 2 108 9 coin3 16 4 1 0 21 272 83 9

Table 2. Profiling of experiments. Here, columns L, R, S and Q show the time (mea-
sured in seconds) our prototype has spent in sampling a Lagrange basis, making ran-
dom tests, synthesizing coefficients, and performing quantifier eliminations, respective-
ly. Moreover, columns #s,#t and #r show the number of iterations our prototype has
taken to find sampling points, make random tests, and refine constraints, respectively.

8 Evaluation

Our technique is closely related to the Prinsys tool [8], which implements the
constraint-based quantitative invariant synthesis approach developed in [15].
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Prinsys receives a probabilistic program and a template with unknown co-
efficients. It derives loop invariant constraints from the template and exploits
SMT-solvers to perform quantifier elimination and simplification for the con-
straints. The tool generates a formula, which is in effect a conjunction of non-
linear inequalities, describing all coefficients that make the supplied template
an inductive loop invariant. A concrete quantitative invariant has to be derived
manually by extracting solutions from the formula.

For our prototype, the input is a quantitative Hoare triple and there are
three possible outputs: “unknown”, “invalid” with a witness (i.e. a valuation
of program variables), and “valid” with a proof (i.e. an quantitative loop in-
variant). For Prinsys, it receives a program and a template, and outputs a
constraint describing all inductive loop invariants in form of the template. To
verify a specific Hoare triple with Prinsys, one has to encode the interested pre-
and post-expectations as well as the possible invariant form into the template.
Designing a template for Prinsys is a tricky task that needs to be done on a
case-by-case basis. In contrast, our technique does not require manually supplied
templates, though the degree of loop invariants has to be fixed a priori.

One could use templates to represent non-linear loop invariants. We neverthe-
less failed to verify any of our non-linear examples with Prinsys. In particular,
we could not generate formulae that subsume the quantitative loop invariants
computed by our prototype. This however does not imply that our examples are
beyond the capability of Prinsys, since we could not arguably try all templates
manually. The designers of Prinsys also examined the tool on some non-linear
examples (including the gambler’s ruin problem considered in this paper) and
reported negative results [8]. In general, when the supplied template is non-
linear, it becomes intractable to derive a loop invariant, or even to decide the
existence of a loop invariant, from the formula yielded by Prinsys. Maybe a
counterexample-refinement approach is helpful here, but this requires further
research and experiments.

9 Conclusion

We propose an automated technique to generate polynomial quantitative invari-
ants for probabilistic programs by Lagrange interpolation. Fixing the degree of
loop invariants, our technique can infer polynomial quantitative loop invariants
for simple loops. By choosing sampling points carefully, constraints are simpli-
fied so that coefficients of loop invariants can be determined. We also develop
a counterexample-guided refining heuristics to find coefficients of quantitative
loop invariants. We report applications in several case studies.

Our technique does not yet support parameters such as probability in proba-
bilistic choice commands. Such parameters would induce non-linear constraints
over coefficients and parameters. SMT solvers however could not find candidate
coefficients and parameters as easily. Also, non-determinism is not implemented
in our prototype. We plan to address both issues in our future work.
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