Incremental Bisimulation Abstraction Refinement

LEI SONG, Max-Planck-Institut für Informatik, Saarbrücken, Germany
Saarland University, Germany
LIJUN ZHANG, State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, China
HOLGER HERMANNNS, Saarland University, Germany
JENS CHR. GODSKESSEN, IT University of Copenhagen, Denmark

Abstraction refinement techniques in probabilistic model checking are prominent approaches to the verification of very large or infinite-state probabilistic concurrent systems. At the core of the refinement step lies the implicit or explicit analysis of a counterexample. This paper proposes an abstraction refinement approach for the probabilistic computation tree logic (PCTL), which is based on incrementally computing a sequence of may- and must-quotient automata. These are induced by depth-bounded bisimulation equivalences of increasing depth. The approach is both sound and complete, since the equivalences converge to the genuine PCTL equivalence. Experimental results with a prototype implementation show the effectiveness of the approach.

Categories and Subject Descriptors: D2.4 [Software/Program Verification]: Model Checking
General Terms: Algorithms, Experimentation, Verification
Additional Key Words and Phrases: Bisimulation, CEGAR, Probabilistic automata

ACM Reference Format:
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The model checking of large or infinite-state systems has been revolutionized by the invention of counterexample guided abstraction-refinement (CEGAR) [Clarke et al. 2003]. This approach, originally tailored to software model checking, automatically abstracts and refines a given system model, until either the property of interest is found to be satisfied, or a valid counterexample is found, demonstrating that the property is not satisfied (or the checker runs out of memory, or the user runs out of patience). During this process, which starts off from a very coarse abstract model, it often happens that the property is evaluated to false on the abstract system, while it is indeed true on the original system. In this case the CEGAR machinery will provide an abstract counterexample, which is not valid in the original model, and therefore is used to re-
fine the abstract model. The CEGAR approach has inspired a large body of work in related fields. It has also found its way into the area of model checking of probabilistic concurrent systems.

Probabilistic automata (PAs) are a very natural model of probabilistic concurrent systems [Segala and Lynch 1995]. Extending both labelled transition systems and Markov chains, they are convenient to represent systems with nondeterminism and randomization. PAs are akin to Markov decision processes (MDPs) and form the backbone model of successful model checkers such as PRISM [Kwiatkowska et al. 2011] enabling the analysis of randomized concurrent systems. Despite the remarkable versatility of this approach, its power is limited by the state space explosion problem, and several abstraction-refinement approaches have been proposed to alleviate that problem [D’Argenio et al. 2001; 2002; Hermanns et al. 2008; Chadha and Viswanathan 2010; Kattenbelt et al. 2010; Wachter and Zhang 2010; de Alfaro and Roy 2007; Roy et al. 2008].

The first abstraction refinement techniques have been proposed [D’Argenio et al. 2001] for MDPs, and implemented in the tool RAPTURE. Based on a chosen partition of the state space, an abstract MDP is constructed. Heuristics for getting a better refinement have been further studied in [D’Argenio et al. 2002]. Probabilistic counterexample-guided abstraction-refinement [Hermanns et al. 2008] is a natural extension of CEGAR to the PA setting. It aims at identifying the maximal probability of reaching a set of goal states in the PA. For this, an abstract quotient PA is constructed based on an initially coarse partition of the state space. The reachability probability is computed then on the abstraction. This provides a safe upper bound on the probability in the original model. If the bound is not good enough, a counterexample can be derived, usually expressed as a set of paths, which are then used to refine the abstraction. Extensions of the abstraction yielding two players games provide both upper and lower bounds for maximal/minimal probabilities [Wachter and Zhang 2010; Kattenbelt et al. 2010; Chadha and Viswanathan 2010].

The probabilistic CEGAR approach has been successfully applied to several examples [Hermanns et al. 2008; Wachter and Zhang 2010; Kattenbelt et al. 2010] to study reachability properties, and an extension to general PCTL properties has been developed [Chadha and Viswanathan 2010]. That approach however involves expensive simulation checking and counterexample generation. The algorithm for computing simulation runs in time $O(m^2n)$ [Zhang and Hermanns 2007] where n and m are the number of states and transitions of the MDP. Moreover in [Chadha and Viswanathan 2010, Theorem 3.11] it was shown that the problem of finding the smallest counterexample is NP-hard, and it is also unlikely to be efficiently approximable.

This paper proposes a radically different approach to abstraction-refinement of probabilistic concurrent systems. The approach is compatible with and applicable to the full logic PCTL, and it works without counterexamples. Instead, the refinement is based on a sequence of incrementally computed bisimulations. We call the technique Probabilistic Incremental Bisimulation Abstraction Refinement (PIBAR).

The approach is rooted in the fact that probabilistic bisimulation equivalence [Segala 1995] is strictly finer than the equivalence induced by PCTL. Our approach turns this disturbing difference into an algorithmic idea. We harvest a recent characterization of PCTL equivalence as the limit of a sequence of step indexed bisimulation relations [Song et al. 2013a], and combine this theoretical insight with an effective computational procedure. With some inspiration from modal transition systems [Larsen 1990], we use probabilistic may- and must-quotient automata to represent the behaviour of an abstract system. Intuitively, we work with a sequence of may- and must-quotient automata induced by the sequence of step indexed bisimulation relations, which guarantees convergence to PCTL equivalence. But since the computation of the step indexed
relations is in general NP-complete we define, for each step indexed relation, a sequence of relations, some of which can be computed in polynomial time. Moreover they converge to the step indexed relation eventually. Still, the may- and must-abstractions we use are guaranteed to provide upper- and lower-bounds for maximal and minimal probabilities respectively. In case that this interval is too large, the abstraction is refined by recomputing it for a finer bisimulation. In the re-computation, we reuse intermediate results from the previous iterations. In this way, the PIBAR approach, just like the probabilistic CEGAR approaches automatically abstracts and refines a given PA model, until either the property of interest is found to be satisfied, or the property is found not to be satisfied (or the checker runs out of memory, or the user runs out of patience). But it does so without resorting to any kind of counterexample analysis. The approach is complete in the sense that for finite-state systems it terminates after a finite number of refinement steps. PIBAR is not restricted to reachability properties. As we will demonstrate, it instead works for the safety fragment \cite{Baier2005, Chadha2010} of PCTL (where negation only appears at atomic propositions and probabilities appear lower bounded only), and can be twisted to work with full PCTL by delaying the check until refinement has terminated, i.e., the PCTL-equivalence is obtained.

Experimental results carried out with a prototypical implementation of the PIBAR approach demonstrate its effectiveness. We compare with PRISM \cite{Kwiatkowska2011} on a selection of case studies and report promising results. For several case studies, we obtain a sufficiently good bisimulation abstraction efficiently such that we can perform model checking on the may- and must-quotient automata.

Contributions. Our contributions in this paper are as follows:

— We propose a novel framework of probabilistic bisimulation guided abstraction, avoiding the need to analyse counterexamples.
— Our algorithm works for the entirety of PCTL and is both sound and complete. This means it will always terminate and return the correct answer, in an ideal setting with unlimited memory and time.
— We refine the abstract system by computing a sequence of step depth indexed bisimulations.
— We propose a novel way to conduct property driven abstraction and refinement.
— We report on a prototypical implementation of PIBAR, and demonstrate that the approach can accelerate probabilistic model checking in many cases.

Organization of the paper. Section 2 recalls some notations, and in section 3, we recall the definition of strong \(i\)-depth bisimulation. We propose may-quotient and must-quotient of a probabilistic system w.r.t. an equivalence relation in Section 4. We describe in detail how PIBAR works in Section 5. The experimental results are discussed in Section 6. Related work is discussed in Section 7, while Section 8 concludes the paper.

2. PRELIMINARIES

We first introduce some notations which we will use throughout this paper.

For a finite set \(S\), a distribution is a function \(\mu : S \rightarrow [0,1]\) satisfying \(|\mu| := \sum_{s \in S} \mu(s) = 1\). We denote by \(\text{Dist}(S)\) the set of distributions over \(S\). We shall use \(s, r, t, \ldots\) and \(\mu, \nu, \ldots\) to range over \(S\) and \(\text{Dist}(S)\), respectively. The support of \(\mu\) is defined by \(\text{supp}(\mu) := \{s \in S \mid \mu(s) > 0\}\). A distribution \(\mu\) is called \(\text{Dirac}\) if \(|\text{supp}(\mu)| = 1\), and we let \(\mathcal{D}_s\) denote the Dirac distribution with \(\mathcal{D}_s(s) = 1\). For a distribution \(\mu\) we also write it as \(\{\mu(s) : s \in \text{supp}(\mu)\}\).
Given an equivalence relation \mathcal{R} on S, let $[s]_{\mathcal{R}}$ denote the equivalence class $C \in S/\mathcal{R}$ such that $s \in C$, and $[\mu]_{\mathcal{R}}$ is the distribution over S/\mathcal{R} such that $[\mu]_{\mathcal{R}}(C) = \sum_{s \in C} \mu(s)$ for each $C \in S/\mathcal{R}$.

Below we define the downward closure of a subset of states.

Definition 2.1 (Downward Closure). For a relation \mathcal{R} over S and $C \subseteq S$, define

$$\mathcal{R}^\downarrow(C) = \{ s' \mid \exists s \in C . s' \mathcal{R} s \}.$$

We say C is \mathcal{R} downward closed iff $C = \mathcal{R}^\downarrow(C)$.

We shall use $\mathcal{R}^\downarrow(s)$ as the shorthand of $\mathcal{R}^\downarrow(\{s\})$, and let $\mathcal{R}^\downarrow = \{ \mathcal{R}^\downarrow(C) \mid C \subseteq S \}$ denote the set of all \mathcal{R} downward closed sets.

Given a relation \mathcal{R}, let $\equiv_\mathcal{R}$ be the largest equivalence relation contained in \mathcal{R}. The following lemma from [Hermanns et al. 2011] shows that each \mathcal{R} downward closed set can be seen as a union of equivalence classes of $\equiv_\mathcal{R}$.

Lemma 2.2 (Lemma 5.1 [Hermanns et al. 2011]). Let $\mathcal{R} \subseteq S \times S$ and let $C \subseteq S$ be a \mathcal{R} downward closed set, then C is a union of equivalence classes of $\equiv_\mathcal{R}$.

2.1. Probabilistic Automata

We recall the notion of probabilistic automata, as coined by Segala [Segala 1995].

Definition 2.3 (Probabilistic Automata). A probabilistic automaton is a tuple $\mathcal{P} = (S, \rightarrow, s_0, \mathcal{AP}, L)$ where

- S is a finite set of states,
- $\rightarrow \subseteq S \times \text{Dist}(S)$ is a finite set of transition relation,
- $s_0 \in S$ is the initial state,
- \mathcal{AP} is a set of atomic propositions, and
- $L : S \rightarrow 2^{\mathcal{AP}}$ is a labelling function.

A transition $(s, \mu) \in \rightarrow$ is denoted by $s \rightarrow \mu$. A path is a finite or infinite sequence $\omega = s_0s_1s_2 \ldots$ of states, such that for each $i \geq 0$ (except for the last state of a finite path) there exists a distribution μ with $s_i \rightarrow \mu$ and $\mu(s_{i+1}) > 0$. We introduce some notations as follows:

- $\text{lstate}(\omega)$, the last state of ω, provided ω is finite,
- $\omega^i = s_is_i+1 \ldots s_t$, the fragment of ω ending at state ω^i,
- $\omega[i] = s_is_{i+1} \ldots$, the fragment of ω starting from state $\omega[i]$.

Let $\text{Path}^*(\mathcal{P})$ and $\text{Path}^\omega(\mathcal{P})$ denote the sets containing all infinite and finite paths of \mathcal{P} respectively. Let $\text{Path}(\mathcal{P}) = \text{Path}^*(\mathcal{P}) \cup \text{Path}^\omega(\mathcal{P})$. In case \mathcal{P} is clear from the context, we simply omit it. We also let $\text{Path}(s_0)$ be the set containing all paths starting from s_0, similarly for $\text{Path}^\omega(s_0)$.

Due to nondeterministic choices in PAAs, a probability measure cannot be defined directly. As usual, we shall introduce the definition of schedulers to resolve the nondeterminism. Intuitively, a scheduler will decide which transition to choose at each step, based on the history execution. Formally, a scheduler is a function $\sigma : \text{Path}^* \rightarrow \text{Dist}(\rightarrow)$ such that $\sigma(\omega)(s, \mu) > 0$ implies $s = \text{lstate}(\omega)$ and $s \rightarrow \mu$. A scheduler σ is deterministic if it returns only Dirac distributions, that is, $\sigma(\omega)(s, \mu) = 1$ for some s and μ.

The cone of a finite path ω, denoted C_ω, is the set of infinite paths having ω as their prefix, i.e., $C_\omega = \{ \omega' \in \text{Path}^\omega \mid \omega \preceq \omega' \}$, where $\omega \preceq \omega'$ iff ω is a prefix of ω'. Fixing a starting state s and a scheduler σ, the measure $\text{Prob}_{\sigma,s}^\omega$ of a cone C_ω, where $\omega = s_0s_1 \ldots s_k$, is defined inductively as: $\text{Prob}_{\sigma,s}^\omega(C_\omega) = 0$ if $s \neq s_0$, $\text{Prob}_{\sigma,s}^\omega(C_\omega) = 1$ if
\[s = s_0 \text{ and } k = 0, \text{ otherwise}, \]

\[\text{Prob}_{\sigma,s_0}(C_\omega) = \text{Prob}_{\sigma,s_0}(C_{\omega|^{k-1}}) \cdot \left(\sum_{(s_{k-1},\mu') \in \Rightarrow} \sigma(\omega|^{k-1})(s_{k-1},\mu') \cdot \mu'(s_k) \right). \]

Let \(B \) be the smallest algebra that contains all the cones and is closed under complement and countable unions. By standard measure theory [Halmos 1974; Rudin 2006], this algebra is a \(\sigma \)-algebra and all its elements are measurable sets of paths. Moreover, \(\text{Prob}_{\sigma,s_0} \) can be extended to a unique measure on \(B \).

2.2. PCTL

We recall the syntax of PCTL [Hansson and Jonsson 1994] which is a probabilistic extension of CTL [Clarke et al. 1986]. Over the set \(\text{AP} \) of atomic propositions, PCTL is formed according to the following grammar:

\[\Phi ::= a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid P_{\leq i q}(\varphi) \]

\[\varphi ::= X \Phi \mid \Phi_1 U \Phi_2 \mid \Phi_1 U^\leq_1 \Phi_2 \]

where \(a \in \text{AP}, \infty \in \{<,\leq,\geq,\rangle\}, q \in [0,1], \) and \(n \) is a positive integer. We write \(\text{true} \) as an abbreviation for \(a \lor \neg a \) for some \(a \in \text{AP} \). We refer to \(\Phi \) and \(\varphi \) as PCTL state and path formulae, respectively.

The satisfaction relation \(s \models \Phi \) for state formulae is defined in a standard manner for boolean formulae. For the probabilistic operator, it is defined by

\[s \models P_{\leq i q}(\varphi) \iff \forall \sigma. \text{Prob}_{\sigma,s}(\{ \omega \in \text{Path}(s) \mid \omega \models \varphi \}) \preccurlyeq q, \]

namely, \(s \models P_{\leq i q}(\varphi) \iff \) whichever scheduler we choose, the probability of paths starting from \(s \) and satisfying \(\varphi \) always meets the given bound \(\preccurlyeq q \). The satisfaction relation \(\omega \models \varphi \) for path formulae is defined in the same manner as in CTL:

\[\omega \models X \Phi \iff \omega[1] \models \Phi \]

\[\omega \models \Phi_1 U \Phi_2 \iff \exists j \geq 0. \omega[j] \models \Phi_2 \land \forall 0 \leq k < j. \omega[k] \models \Phi_1 \]

\[\omega \models \Phi_1 U^\leq_1 \Phi_2 \iff \exists 0 \leq j \leq n. \omega[j] \models \Phi_2 \land \forall 0 \leq k < j. \omega[k] \models \Phi_1 \]

In this paper we are especially interested in the safety fragment of PCTL, i.e., safety PCTL [Baier et al. 2005], denoted \(\text{PCTL}^{\text{safety}} \), whose syntax is given as follows:

\[\Phi ::= a \mid \neg a \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid P_{\geq i q}(\varphi) \mid P_{\geq i q}(\varphi) \]

\[\varphi ::= X \Phi \mid \Phi_1 U \Phi_2 \mid \Phi_1 U^\leq_1 \Phi_2 \]

In \(\text{PCTL}^{\text{safety}} \), only \(\geq \) (or \(> \)) is allowed in the probabilistic operator, and negation only appears in atomic propositions. In the sequel let \(\text{PCTL}^i \) denote the subset of PCTL in which the path formula is restricted to: \(\varphi ::= X \Phi \mid \Phi_1 U^\leq_1 \Phi_2 \) where \(j \leq i \), similarly for \(\text{PCTL}^{\text{safety}}_i \). In other words, \(\text{PCTL}^i \) only specifies (conditional) reachability probability up to \(i \) steps. Moreover for a given logic \(\mathcal{L} \), we write \(s \preccurlyeq_{\mathcal{L}} r \iff \Phi \) implies \(s \models \Phi \) for any state formula \(\Phi \) of \(\mathcal{L} \). Intuitively, all properties in \(\mathcal{L} \) are considered safe, which cannot be violated; \(r \) represents a specification which defines all possible safe behaviours that a system is allowed to do. If \(s \) represents a concrete system implementing \(r \), then its behaviours should be subsumed by the behaviours of \(r \). Thus in case \(r \) satisfies a safety property \(\Phi \), \(s \) must also satisfy \(\Phi \). We write \(s \equiv_{\mathcal{L}} r \iff s \preccurlyeq_{\mathcal{L}} r \) and \(r \preccurlyeq_{\mathcal{L}} s \).

2.3. Bisimulation and Simulation

In this section, we introduce the definitions of bisimulation and simulation for PAs. In order to do so, we shall introduce the weight functions [Jonsson and Larsen 1991]:

Definition 2.4 (Weight Function). Let \(R \) be a relation over \(S \). A weight function for \(\mu \) and \(\nu \) with respect to \(R \) is a function \(\Delta : S \times S \to [0, 1] \) such that:

1. \(\Delta(s, r) > 0 \) implies that \(s R r \),
2. \(\mu(s) = \sum_{r \in S} \Delta(s, r) \) for any \(s \in S \),
3. \(\nu(r) = \sum_{s \in S} \Delta(s, r) \) for any \(r \in S \).

We write \(\mu \leq R \nu \) iff there exists a weight function for \(\mu \) and \(\nu \) with respect to \(R \).

Strong simulation and bisimulation for PAs are defined as follows [Segala 1995]. Since we are only interested in strong relations throughout this paper, we take the liberty to drop the prefix 'strong'. All relations considered throughout this paper are strong relations.

Definition 2.5 (Strong Simulation and Bisimulation). A relation \(R \subseteq S \times S \) is a simulation relation iff \(s R r \) implies that \(L(s) = L(r) \) and for each \(s \rightarrow \mu \), there exists \(r \rightarrow \nu \) such that \(\mu \leq R \nu \).

If a simulation relation \(R \) is symmetric, then \(R \) is a bisimulation relation. We write \(s \prec_{R} r \) (\(s \sim_{R} r \)) whenever there is a (bi)simulation relation \(R \) such that \(s R r \).

In [Segala 1995] it was shown that \(\prec_{R} \) and \(\sim_{R} \) are sound (but not complete) for PCTL and \(\text{PCTL}_{\text{safe}} \) respectively:

Lemma 2.6 ([SEGALA 1995]). \(\sim_{R} \equiv_{\text{PCTL}} \prec_{R} \leq_{\text{PCTL}_{\text{safe}}} \).

According to Lemma 2.6, bisimulation preserves PCTL equivalence, i.e., bisimilar states satisfy the same PCTL formulae (soundness), but the other direction (completeness) does not hold, i.e., states satisfying the same PCTL formulae are not necessarily bisimilar.

2.4. Sound and Complete Bisimulation for PCTL

The inclusion in Lemma 2.6 is strict. In this section we will recall a variation of bisimulation which is both sound and complete for PCTL equivalence [Song et al. 2013a]. As in [Song et al. 2013a], we are restricted to deterministic schedulers, which suffices for PCTL formulae [Baier and Katoen 2008, Remark 10.99].

Let \(\text{Prob}_{\sigma,s}(C, C', n, \omega) \) denote the probability from \(s \) to states in \(C' \), via states in \(C \) possibly, in at most \(n \) steps under deterministic scheduler \(\sigma \), where \(\omega \) is used as a parameter of \(\sigma \) to keep track of the path. Formally,

\[
\text{Prob}_{\sigma,s}(C, C', n, \omega) = \begin{cases}
1 & \text{if } s \in C' \\
\sum_{r \in \text{supp}(\mu')} \mu'(r) \cdot \text{Prob}_{\sigma,r}(C, C', n-1, \omega r) & n > 0 \land (s \in C \setminus C') \\
0 & \text{otherwise}
\end{cases}
\]

where \(\sigma(\omega)(s, \mu') = 1 \) for some \(\mu' \), i.e., the transition \(s \rightarrow \mu' \) is chosen with probability 1 by the scheduler \(\sigma \) given the history \(\omega \). In case \(s \in C' \), the target states \(C' \) are already reached, so \(\text{Prob}_{\sigma,s}(C, C', n, \omega) = 1 \). In case that neither \(s \in C' \) nor \(s \in C \), \(\text{Prob}_{\sigma,s}(C, C', n, \omega) = 0 \). Since it is not possible to reach states in \(C' \) only via states in \(C \). Otherwise, we shall move one step further under the guidance of the scheduler \(\sigma \), provided \(n > 0 \). Then \(\text{Prob}_{\sigma,s}(C, C', n, \omega) \) is equal to the weighted sum of the probability of successors of \(s \) to reach states in \(C' \) via only states in \(C \) in at most \(n-1 \) steps, i.e., \(\text{Prob}_{\sigma,r}(C, C', n-1, \omega r) \), where \(r \) is a successor of \(s \) under the given scheduler \(\sigma \). Moreover \(\omega \) is updated to keep track of the visited path.

We are now ready to introduce an indexed family of \(\nu \)-depth (bi)simulations. We let \(s \sim_{\nu} r \) and \(s \preceq_{\nu} r \) iff \(L(s) = L(r) \).
Definition 2.7 (i-depth Simulation and Bisimulation). A relation $\mathcal{R} \subseteq S \times S$ is an i-depth simulation with $i \geq 1$ if $s \mathcal{R} r$ implies $s \preceq_{i-1} r$ and for any \mathcal{R} downward closed sets C, C' and scheduler σ, there exists a scheduler σ' such that

$$\text{Prob}_{\sigma',r}(C, C', i, r) \leq \text{Prob}_{\sigma,s}(C, C', i, s).$$

(1)

If a simulation relation \mathcal{R} is symmetric, then \mathcal{R} is an i-depth bisimulation. We write $s \preceq_{i,j} r$ (s $\sim_{i,j}$ r) whenever there is an i-depth (bi)simulation \mathcal{R} such that $s \mathcal{R} r$.

In comparison with Definition 2.5, this definition does not require the matching of distributions out of s and r. The essential difference to the standard definition is: We only consider conditional reachability probabilities up to i steps. In the definition of PCTL_safe, we only have probability formulas in form of $P_{\geq q}(\varphi)$ or $P_{\geq q}(\varphi)$, i.e., PCTL_safe is characterized by the minimal probabilities of satisfying some φ. A state s is considered "safer" than r (whenever r satisfies some safety properties, so is s), whenever the minimal probability of s satisfying φ is greater than r. This justifies the \leq operator in Eq. (1).

The following lemma establishes some properties of i-depth (bi)simulation.

Lemma 2.8 ([SONG ET AL. 2013A]).

(1) \sim_{i} is an equivalence relation, and \preceq_{i} is a pre-order for each $i \geq 0$,

(2) $\sim_{i} \subseteq \sim_{j}$ provided $i \geq j$,

(3) $\sim_{i} = \equiv_{\text{PCTL}}$ and $\preceq_{i} = \preceq_{\text{PCTL}_\text{safe}}$ for each $i \geq 0$,

(4) For any finite PA, there exists $i \geq 0$ such that $\sim_{i} = \equiv_{\text{PCTL}}$ and $\preceq_{i} = \preceq_{\text{PCTL}_\text{safe}}$.

Clause 2 says that we will obtain a finer bisimulation by increasing i. Clause 3 assures that i-depth bisimulation is both sound and complete for PCTL_i equivalence, similarly for i-depth simulation with respect to $\text{PCTL}_i^\text{safe}$. More importantly, Clause 4 assures that the i-depth bisimulations define a sequence of relations which equals PCTL equivalence eventually.

3. A TWO DIMENSIONAL BISIMULATION GRID

Lemma 2.8 shows that by increasing i we can obtain a sequence of bisimulation relations converging to the PCTL-equivalence. In this section we refine each bisimulation \sim_{i} further to a subsequence of equivalence relations. Our PIBAR framework is based on the induced two dimensional grid of relations. We first define the size of a downward closed set as follows:

Definition 3.1 (Sizes of Downward Closed Sets). Let $\mathcal{R} \subseteq S \times S$ be a relation, and $C \subseteq S$ a \mathcal{R} downward closed set. The size of C, denoted $size(C)$, is defined as the number of equivalence classes of $\equiv_\mathcal{R}$ in C, i.e., $size(C) = |\{C' \in S/ \equiv_\mathcal{R} \mid C' \subseteq C\}|$.

The concept of size will now be incorporated into a refined bisimulation definition. Let $s \preceq_{0,j} r$ and $s \sim_{0,j} r$ iff $L(s) = L(r)$ for any $j \geq 0$. Moreover:

Definition 3.2 ((i, j)-depth Simulation and Bisimulation). A relation $\mathcal{R} \subseteq S \times S$ is an (i, j)-depth simulation with $i, j \geq 1$ if $s \mathcal{R} r$ implies $s \preceq_{i-1,j} r$ and for any scheduler σ and \mathcal{R} downward closed sets C, C' with $size(C), size(C') \leq j$, there exists a scheduler σ' such that

$$\text{Prob}_{\sigma',r}(C, C', i, r) \leq \text{Prob}_{\sigma,s}(C, C', i, s).$$

(2)

If a simulation relation \mathcal{R} is symmetric, then \mathcal{R} is an (i, j)-depth bisimulation. We write $s \preceq_{i,j} r$ (s $\sim_{i,j}$ r) whenever there is an (i, j)-depth (bi)simulation \mathcal{R} such that $s \mathcal{R} r$.

Intuitively, $\sim_{i,j}$ is almost the same as \sim_i except that only downward closed sets with size not greater than j are considered. $\sim_{i,j}$ has the following properties.

Lemma 3.3.

1. $\sim_{i,j}$ is an equivalence relation and $\lesssim_{i,j}$ is a pre-order for each $i, j \geq 0$,
2. $\sim_{j,i} \subseteq \sim_{k,i}$ and $\lesssim_{j,i} \subseteq \lesssim_{k,i}$ for any $i, j, k \geq 0$ provided $j \geq k$,
3. $\sim_{i,j} \subseteq \sim_{i,k}$ and $\lesssim_{i,j} \subseteq \lesssim_{i,k}$ for any $i, j, k \geq 0$ provided $j \geq k$,
4. For any finite PA, there exists $j \geq 0$ such that $\sim_{i,j} = \sim_i$ and $\lesssim_{i,j} = \lesssim_i$.

Proof.

1. Clauses 1 and 2 are straightforward by Definition 2.7 and 3.2 respectively.
2. Let $\mathcal{R} = \{(s, r) \mid L(s) = L(r)\}$, we now show that \mathcal{R} is an (i, k)-depth simulation provided that $j \geq k$. For any \mathcal{R} downward closed set C, if $\text{size}(C) \leq k$, then we also have $\text{size}(C) \leq j$, hence the following proof is straightforward.
3. We consider PAs with finite state spaces. In the worst case each state belongs to a distinct equivalence class. Therefore there always exists $j \geq 0$ such that $\sim_{i,j} = \sim_i$ and $\lesssim_{i,j} = \lesssim_i$.

We have defined a sequence of (i, j)-depth bisimulations, which will converge to \sim_i after a finite number of iterations. The inclusion hierarchy of all the bisimulations are summarized in Fig. 1 where the lower right corner indicates that there exists $n \geq 0$ such that $\sim_n = \equiv_{PCTL}$. Obviously, all relations are coarser than it.

4. BISIMULATION QUOTIENT

Quotient constructions shall be the keys in the PIBAR approach. Inspired by modal transition systems, we define the may- and must-quotient systems as follows:

Definition 4.1 (May- and Must-Quotient). Given a PA $\mathcal{P} = (S, \rightarrow, s_0, AP, L)$ and an equivalence relation \mathcal{R} over S such that $\mathcal{R} \subseteq \{(s, r) \mid L(s) = L(r)\}$, the may-quotient and must-quotient of \mathcal{P} w.r.t. \mathcal{R} are defined as

$$P_{\mathcal{R}}^\triangledown = (S/\mathcal{R}, \rightarrow_\triangledown, [s_0]_\mathcal{R}, AP, L)$$

$$P_{\mathcal{R}}^\Box = (S/\mathcal{R}, \rightarrow_\Box, [s_0]_\mathcal{R}, AP, L)$$

respectively, where
— L is overloaded for simplicity such that $L([s]_R) = L(s)$ for each s,
— $[s]_R \rightarrow [\mu]_R$ iff there exists $r \in [s]_R$ such that $r \rightarrow \mu$, and
— $[s]_R \rightarrow [\nu]_R$ iff for all $r \in [s]_R$ there exists $r \rightarrow \nu$ such that $[\mu]_R = [\nu]_R$.

The only difference between may- and must-quotients is the definition of transitions of the quotient systems. In the definition of may-quotient, we let the transitions of $[s]_R$ be the union of transitions for each $r \in [s]_R$. On the other hand, in the definition of must-quotient, we let the transitions of $[s]_R$ be the joint transitions for all $r \in [s]_R$.

Given two PAs P and P' with initial states of s_0 and s'_0 respectively, the simulation relations can be lifted to the automata level: $P \preceq P'$ iff $s_0 \preceq s'_0$ in the direct sum obtained from P and P'. The following theorem shows the relation between the quotients and their original system.

Theorem 4.2. Let $P = (S, \rightarrow, s_0, AP, L)$ be a PA and R be an equivalence relation over S, we have: $P(R) \preceq P \preceq P(R)$.

Proof. We only prove that $P \preceq P(R)$, i.e., $s_0 \preceq [s_0]_R$; the other part can be proven in a similar way. Let $R = \{(s, [r]_R) \mid s \in [r]_R\}$. Since $(s_0, [s_0]_R) \in R$, it suffices to show that R is a simulation according to Definition 2.5. Suppose that $s \rightarrow \mu$, we need to show that there exists $[r]_R \rightarrow \nu$ such that $\mu \sqsubseteq R \nu$.

We know that for each $s \in [r]_R$, $s \rightarrow \mu$ implies $[r]_R \rightarrow [\mu]_R$ according to Definition 4.1. Let Δ be a function such that $\Delta(s', [s']_R) = \mu(s')$ for each s', we need to show that Δ is a valid weight function between μ and $[\mu]_R$. Since $(s', [s']_R) \in R$ according to the definition of R, condition 1) in Definition 2.4 is satisfied. Moreover,

$$\mu(s') = \Delta(s', [s']_R) = \sum_{[t]_R \in S/R} \Delta(t, [s']_R) \quad \text{and}$$

$$[\mu]_R([s']_R) = \sum_{t \in [s']_R} \mu(t) = \sum_{t \in [s']_R} \Delta(t, [s']_R) = \sum_{t \in S} \Delta(t, [s']_R),$$

hence condition 2) and 3) are also satisfied. Consequently, $\mu \sqsubseteq R [\mu]_R$ which completes the proof. □

5. PROBABILISTIC INCREMENTAL BI-SIMULATION ABSTRACTION REFINEMENT

In this section we propose an abstraction refinement framework based on our notions of incremental bisimulation relations. Further, we also discuss a property driven extension of our framework.

5.1. Probabilistic Incremental Bisimulation Abstraction Refinement

Given a PA and an equivalence relation R over its state space, we can first construct the may- and must-quotients according to Definition 4.1. Then the verification of a PCTL$_{safe}$ formula Φ can be done on the quotient systems. By Lemma 2.6 and Theorem 4.2, if $P_R^\square \models \Phi$, we know that $P \models \Phi$ since $P \preceq P_R^\square$, and the verification can be terminated. On the other hand, if $P_R^\square \not\models \Phi$, we have $P \not\models \Phi$ since $P_R^\square \preceq P$. If neither $P_R^\square \models \Phi$ nor $P_R^\square \not\models \Phi$ holds, this means that the current abstraction is too coarse and needs to be further refined. Lemma 2.8 and 3.3 indicate that $\sim_{i,j}$ defines a grid of bisimulations which will converge to PCTL-equivalence after a finite number of steps. This gives us a straightforward way for refinement: The refinement is simply done by increasing j until \sim_i is reached, then i will be increased by 1, and j is reset to 0. In other words, we walk through the grid in Fig. 1 in a ‘horizontally-first’ manner. The thus resulting algorithm is shown in Algorithm 1, where the refinement process starts with the coarsest relation $R = \sim_{0,0} = \{(s, r) \mid L(s) = L(r)\}$. The Algorithm 1 will for sure terminate, because there exists an integer n such that $\sim_n = \equiv_{PCTL}$ for any PA.
Algorithm 1: The Algorithm of PIBAR

Input: A PA P and a property Φ of PCTL$_{safe}$
Output: True if $P \models \Phi$, else False

// Initialize R to be \sim_0, i.e., $(s, r) \in R$ iff $L(s) = L(r)$
i $\leftarrow 0$;
$R \leftarrow \{(s, r) \mid L(s) = L(r)\};$

while (True) do
 // Once \sim_i is computed, increase i by 1 and reset j to 0;
i $\leftarrow i + 1$; $j \leftarrow 0$;
 // Increase j until it is equal to the number of equivalence classes in j, in which case $R = \sim_i$;
 while ($j \leq |S/R|$) do
 // Compute $\sim_{i,j}$ by calling Refine in Algorithm 2;
 $R \leftarrow \text{Refine}(P, R, i, j)$;
 j $\leftarrow j + 1$;
 $P_R^i = \text{May}(P, R)$;
 $P_R^{i+1} = \text{Must}(P, R)$;
 if ($P_R^i \models \Phi$) then
 return True;
 else
 return False;
 end
end

The algorithm for refining R is shown in Algorithm 2, where splitters are used to store all the splitters. A splitter is a pair of R downward closed sets (C_1, C_2). Before computing $\sim_{i,j}$, we have computed $\sim_{i,j-1}$, i.e., all the splitters (C_1, C_2) such that $\text{size}(C_1) < j$ and $\text{size}(C_2) < j$ have been considered. Therefore only splitters (C_1, C_2) satisfying

$$(\text{size}(C_1) = j \land \text{size}(C_2) \leq j) \lor (\text{size}(C_2) = j \land \text{size}(C_1) \leq j)$$

are taken into account. The refinement is done as follows: For each $C \in S/R$, we first compute the minimal probability of each state $s \in C$ reaching states in C_2 only via states in C_1 in at most i steps, i.e.,

$$\text{Prob}_{\text{min}}(s, C_1, C_2, i, s) = \inf_{\sigma} \text{Prob}_{\sigma,s}(C_1, C_2, i, s)$$

with σ ranging over all schedulers of s. We then partition C into several disjoint subsets such that $s, r \in C$ are in the same subset iff $\text{Prob}_{\text{min}}(s, C_1, C_2, i) = \text{Prob}_{\text{min}}(r, C_1, C_2, i)$. After refining R, we will incorporate some new blocks into the current partition. Therefore we need to update the set of splitters by adding pairs satisfying Eq. (2) and containing new equivalence classes.

The following theorem shows that Algorithm 1 is both sound and complete in the sense that it will always terminate and give the right answer. In the worst case it will terminate when the PCTL-equivalent relation is obtained, i.e., $R = \equiv_{PCTL}$.

Theorem 5.1. Algorithm 1 is sound and complete.

Proof. We first remark that once Algorithm 2 terminates, we are sure that $R = \sim_{i,j}$, since all possible splitters have been processed. Termination is guaranteed because the inner loop of Algorithm 1 keeps increasing j until \sim_i is obtained.
ALGORITHM 2: The Algorithm of Refine

Input: A PA P, a relation R, i, and j;
Output: A refined relation \mathcal{R} equal to $\sim_{i,j}$;

// Initialize the set of splitter.
$splitters \leftarrow \{ (C_1, C_2) \text{ satisfying Eq. (2)} \}$;

while ($splitters \neq \emptyset$) do
 // Get a splitter and remove it from the splitter set
 $(C_1, C_2) \leftarrow splitters.GetAndRemoveFirst()$;
 foreach $C \in S/R$ do
 Compute $\text{Prob}_{\min}(s, C_1, C_2, i)$ for each $s \in C$;
 Partition C according to the value of $\text{Prob}_{\min}(s, C_1, C_2, i)$ such that only states with the same value are in the same subset;
 end
 Add new generated splitters to $splitters$;
end

$\text{Prob}_{\min}(1, 0.3, 0.4, 0.5)$

Fig. 2. A counterexample of the completeness of probabilistic bisimulation

Lemma 3.3 then implies that the inner loop always terminates. On obtaining \sim_{i}, parameter i is incremented in the outer loop and the inner loop is started over. The termination of the outer loop is implied by Lemma 2.8. Since in the worst case \mathcal{R} will equal \equiv_{PCTL}, it is assured that either $P_\mathcal{R}^\diamond \models \Phi$ or $P_\mathcal{R}^\lozenge \not\models \Phi$ holds.

The theoretical time complexity of Algorithm 1 is high because every potential splitter might need to be processed in each iteration. In the worst case the size of \mathcal{R}^\downarrow is 2^n. Therefore, a pessimistic estimate of the number of splitters is $2^n * 2^n$, thus 2^{2n}, and similar for the space complexity, since all untouched splitters need to be stored. As we will see in Section 6, Algorithm 1 in practice stays far below the theoretical bounds.

To illustrate how PIBAR works, we discuss the following example.

Example 5.2. Suppose we face a state t as shown in Fig. 2. We assume that s_2, s_4, and s_5 are absorbing, i.e., can only evolve into themselves with probability 1, while the transitions of s_1 and s_3 are shown in the right side of Fig. 2. Moreover, state s_4 is labelled \triangle, different from all other states. We first observe that $s \sim_1 r$: The only nontrivial cases to consider concern the minimal probabilities from s and r to state sets $C \subseteq \{s_1, s_2, s_3\}$. Notably states s_1, s_2, and s_3 are pairwise distinguishable, because each can reach state s_4 with a different probability. For $C = \{s_1, s_2\}$ the minimal one-step probabilities from s and r to C equal 0.6, obtained taking the transition to distribution $\{0.3 : s_1, 0.3 : s_2, 0.4 : s_3\}$. We can reason similarly for other possible sets C. Therefore $s \sim_1 r$, implying that in the quotient induced by \sim_1, states s and r will be grouped together, while all other states will be pairwise distinct, and thus form singleton blocks in the quotient. So, $\sim_1 = \{(s, r), (r, s)\} \cup ID$ is the equivalence relation R induced by the current partition, where ID is the identity relation.

We now assume that $\Phi = P_{\geq 0.6}(true U \neg \triangle)$ is the property we are going to check. The minimal probability for the paths starting from t satisfying $true U \neg \triangle$ is 0.64, which is induced by choosing the transition to r and then choosing the dashed transitions in Fig. 2. Therefore $t \models \Phi$ holds. According to Definition 4.1, block $[s]_R$ (or equivalently $[r]_R$) containing s and r has the same (up to \equiv_\triangle) transitions as r in the may-quotient. Therefore we can lift the reasoning showing that $t \models \Phi$ to the may-quotient to establish $t_2^R \models \Phi$. As a consequence, we can see that \sim_1 is fine enough to preserve Φ.

Now let us instead consider $\Psi = P_{\geq 0.65}(true U \neg \triangle)$. We know from the above discussion that $t \models \Psi$, since there exists an execution that reaches $\neg \triangle$ from t with probability 0.64. If we now attempt to derive this fact by reasoning on the quotients induced by \sim_1 as before, we find that $t_2^R \not\models \Psi$, which implies neither $t \models \Psi$ nor $t \not\models \Psi$. So we now consider the must-quotient, where block $[s]_R$ has the same (up to \equiv_\triangle) transitions as s (opposed to r in the may-quotient). This implies that the middle transition of r (up to \equiv_\triangle) existing from block $[s]_R$ in the may-quotient is absent in the must-quotient, as the transition is absent in s. Therefore the minimal probability for the paths of t_2^R satisfying $true U \neg \triangle$ is the same as s, namely 0.66, and hence $t_2^R \models \Psi$. This means that \sim_1 is too coarse to preserve Ψ, and we need to refine it further. It turns out that $s \not\sim_2 r$. As for instance $r \not\models P_{\geq 0.65}(true U \equiv_2 \neg \triangle)$, but $s \models P_{\geq 0.65}(true U \equiv_2 \neg \triangle)$. Therefore in the second refinement step, s and r will be distinguished, yielding an $\sim_2 = \equiv_\triangle$ (namely the identity relation), on which we will be able to conclude $t_2^R \not\models \Psi$. Obviously, \sim_2 is fine enough to preserve Ψ.

It is worthwhile to highlight that if we instead were using the classical bisimulation [Segala 1995] states s and r would never be grouped together. This is rooted in the fact that the middle transition of r cannot be simulated by s even if considering combined transitions. As a result $s \not\sim r$, and the abstract system induced by the classical bisimulation will be too fine for properties such as $P_{\geq 0.6}(true U \neg a)$. This is mainly caused by the fact that s and r are PCTL-equivalent [Song et al. 2013a], and \sim is strictly finer than \equiv_{PCTL}.

We establish the complexities of computing the relevant bisimulations as follows.

Lemma 5.3.

1. It is NP-complete to check whether $s \sim_i r$ for any $i \geq 1$ and s, r.
2. $\sim_{1,1}$ can be computed in polynomial time.

Proof. (Sketch) It has been shown that the problem of computing the simulation version of \sim_1 is NP-complete [Desharnais et al. 2011]. The proof idea proceeds by reducing the subset sum problem to our problem: Given n decimal numbers d_1, d_2, \ldots, d_n,
can be found a set $D \subseteq \{d_i \mid 1 \leq i \leq n\}$ such that $\sum_{d \in D} d = 0$. In a similar way one can show for $i \geq 1$ that \sim_i is NP-complete, too.

For the second clause, we note that $\sim_{1,1}$ can be computed using a standard partition refinement algorithm, which has been applied to compute bisimulations for both DTMCs [Derisavi et al. 2003; Valmari and Franceschinis 2010] and MDPs [Baier et al. 2000]. This algorithm can be applied in our setting, since in order to compute $\sim_{1,1}$, we only need to consider individual equivalence classes. □

Likewise, $\sim_{2,1}$ can also be computed in polynomial time. We first compute $\sim_{1,1}$ and then consider all reachability probabilities up to 2 steps. The number of splitters we shall consider in Algorithm 2 is at most n^2 with n being the number of states. The other relations can be computed in a similar way, but with increased complexities.

In [Valmari and Franceschinis 2010], an efficient algorithm running in time $O(n \log m)$ is presented to compute bisimulation for DTMCs. Although the essence of $\sim_{1,1}$ is close to strong bisimulation on DTMCs, the approach cannot be extended to our setting directly. The reason is that the $O(n \log m)$ complexity crucially relies on the fact that in DTMCs $\text{Prob}^\text{min}(s, C, C', 1) = \text{Prob}^\text{min}(r, C, C', 1)$ and $\text{Prob}^\text{min}(s, C, C', 1) = \text{Prob}^\text{min}(r, C, C, 1)$ together imply $\text{Prob}^\text{min}(s, C, C, 1) = \text{Prob}^\text{min}(r, C, C, 1)$, for any C, C_1, C_2, and C_3 such that $C_2 \subseteq C_1$ and $C_3 = C_1 \setminus C_2$. This is in general not true in MDPs due to the existence of non-deterministic transitions.

5.2. Property Driven Abstraction and Refinement

In general $\sim_{i,j}$ is expensive to compute, since we have to consider exponentially many downward closed sets. In this section, we propose a method to avoid full exploration of all the downward closed sets.

Algorithm 1 works independently of any property. Once it terminates, we obtain an equivalence relation preserving all PCTL formulas. However, in case that we are only interested in whether a system satisfies a specific property, this relation may be too fine. This is because it suffices to preserve that very property, instead of all PCTL properties. In other words, we may utilize a technique called property driven abstraction and refinement, and perform the abstraction and refinement based on the given property. This technique has been applied for Markov chains in [Katoen et al. 2007].

In our setting this allows for drastic improvements: If we are facing the property $\Phi = P_{\geq 0.5}(\Phi_1 \cup \Phi_2)$, it is enough to only consider a single splitter in Algorithm 2, namely (C, C'), where $C = \{s \in S \mid s \models \Phi_1 \}$ and $C' = \{s \in S \mid s \models \Phi_2 \}$. The refinement can then proceed by simply increasing the depth, i.e., the parameter i in Algorithm 1, as we will explain below.

Without loss of generality, we can assume a preprocessing step so that Φ_1 and Φ_2 are turned into atomic propositions, and all states satisfying neither Φ_1 nor Φ_2 are omitted. At the beginning, we let $R = \{(s, r) \mid s, r \models \Phi_1 \setminus \Phi_2\} \cup \{(s, r) \mid s, r \models \Phi_2\}$. By fixing the splitter to be (C, C'), we first compute the one step conditional reachability probability $\text{Prob}^\text{min}(s, C, C', 1)$ for each state s, and then partition states such that s and r are in the same block iff $\text{Prob}^\text{min}(s, C, C', 1) = \text{Prob}^\text{min}(r, C, C', 1)$. In case the obtained abstract system is too coarse, we need to refine it. As before, the refinement proceeds by computing $\text{Prob}^\text{min}(s, C, C', i)$ with a greater i for each state. This process will continue until a fine enough abstraction is obtained. But throughout the entire process the splitter (C, C') is considered, which boils down to skipping the outer iteration of Algorithm 2, making it terminate in polynomial time. And it implies that each inner loop of Algorithm 1 terminates with $j = 1$. As we will see in Section 6, this strategy often induces a smaller final quotient system.
THEOREM 5.4. For a given property, the property driven refinement runs in time $O((m+n) \cdot n)$ and in space $O(n)$, where n and m are the number of states and transitions respectively.

Proof. It takes $O(m)$ time to compute the minimal (maximal) i bounded reachability probability for each state, provided that all the minimal (maximal) $i-1$ bounded reachability probabilities have been computed upfront, since we then have to consider each transition once. Using hashing, the partitioning process can be done in $O(n)$ time, in order to group states with the same minimal bounded reachability probability together. Therefore one iteration of the refinement takes $O(m+n)$ time. Moreover it takes at most n refinements, since each state ends up in a distinct equivalence class in the worst case. Therefore the property driven abstraction and refinement will terminate in time $O((m+n) \cdot n)$. The space complexity is easy to see, we only need to store the minimal (maximal) reachability probability for each state.

The following example illustrates how the property driven abstraction and refinement works.

Example 5.5. Consider the PA in Fig. 3, where state labels are indicated by their shapes and colors. For simplicity, we assume that states s_3, s_5, s_6, s_7, and s_8 are absorbing. Since states s_1 and s_2 can reach \mathcal{O}-states with different probabilities, they are neither bisimilar nor i-depth bisimilar for any i.

Let $\Phi = P_{\geq 0.5}(\mathcal{O} \cup \mathcal{U})$ be the property under consideration. We want to decide whether $s_0 \models \Phi$ holds or not. It is routine to verify that no pair of states in Fig. 3 is 1-depth bisimilar. Thus without adopting the property driven technique, we cannot do any abstraction, since already \sim_1 is the identity relation, and thus verification of Φ needs to be conducted on the original system.

However, we notice that in order to compute the conditional probability of reaching \mathcal{U}-states via \mathcal{O}-states, some transitions are irrelevant, for instance those from s_3 to \mathcal{O}-states. By adopting the property driven technique, we shall fix the splitter to be (C, C') such that C and C' contain only \mathcal{O}-states and \mathcal{U}-states respectively. We observe that s_1 and s_2 can reach the \mathcal{U}-states s_5, respectively s_6, in one step, each with probability 0.5. They will thus be grouped together after the first round of refinement. It is not hard to see that by grouping states s_1 and s_2 into the same block, the resulting
may-quotient system still satisfies Φ, which indicates that $s_0 \models \Phi$. This shows that by adopting property driven abstraction and refinement, we may terminate with a coarser abstraction system than Algorithm 1.

5.3. Extensions

Until now we have only presented our framework to deal with PCTL_safe properties. However, Algorithm 1 can be used to deal with full PCTL with a slight change: We keep refining the systems by increasing the index i and j until PCTL equivalence is reached. By Theorem 2.8, this process will terminate. Then we are able to check arbitrary PCTL formulas on the result.

Further, we remark that the approach described in this paper can be easily extended to work with PCTL^* properties: As shown in [Song et al. 2013a], there is a sequence of bisimulation relations converging to PCTL^* equivalence. This sequence can be exploited to construct quotients to check PCTL^* formulas. Detailed discussions are omitted as they are similar to the PCTL setting.

6. EXPERIMENTAL RESULTS

We have implemented PIBAR with and without property driven abstraction and refinement in a prototype tool using JAVA. All results were obtained on a laptop with an Intel i7-3520 2.9GHz CPU and 4GB RAM running Ubuntu 12.04. The tool and its source code can be downloaded at http://depend.cs.uni-sb.de/~song/pibar.html. The benchmarks are taken from the PRISM webpage http://www.prismmodelchecker.org, including

— the asynchronous leader election protocol [Itai and Rodeh 1990],
— randomized consensus shared coin protocol [Aspnes and Herlihy 1990],
— IEEE 802.3 CSMA/CD protocol,
— randomized self-stabilizing algorithms (Beauquier et al. [Beauquier et al. 1999] and Israeli & Jalfon [Israeli and Jalfon 1990]).

In Table 1 we compare the sizes of the original models and the abstract models, where the abstract models are as small as possible but large enough to preserve the properties we want to check. The columns n and m denote the number of states and transitions respectively in the original system, while n' and m' denote the number of states and transitions respectively in the abstract system. The last column “Abs.(s)” denotes the time in seconds used to construct the quotients. For all the examples, Algorithm 1 terminated within about one minute except for “ij18”, which were more than 10 minutes.

As we can see, the abstract systems are much smaller than the original ones. For example for “csma4.2”, we reduce the number of states by a factor of 45 and the number of transitions by a factor of 74.

6.1. Reachability Probabilities

During the experiment, we consider the derivation of probabilistic reachability probabilities. Moreover, until further notice we always compute precise values for all (maximal or minimal) reachability probabilities. This means that we do not exploit the fact that we can terminate refinement earlier if given a probability bound (as illustrated in Example 5.2.)

Let P, P^R, and P^\leq be as in Definition 4.1. Let $P_{\text{max}}(\text{true } \cup \text{stable})(P)$ and $P_{\text{min}}(\text{true } \cup \text{stable})(P)$ denote the maximal and minimal probabilities of reaching “stable” states in P. We explain by means of example how precise values of extreme reachability probabilities can be obtained. Since $P^R_{\leq} \models P_{\geq q}(\text{true } \cup \text{stable})$ implies $P \models P_{\geq q}(\text{true } \cup \text{stable})$ for any $q \geq 0$ by Theorem 4.2, it holds $P_{\text{min}}(\text{true } \cup \text{stable})(P^R_{\leq}) \leq P_{\text{min}}(\text{true } \cup \text{stable})(P)$ for any R. Similarly, we can show that $P_{\text{min}}(\text{true } \cup \text{stable})(P)$ ≤
Table I. Experiment Results (Abstract)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>n</th>
<th>m</th>
<th>n’</th>
<th>m’</th>
<th>Abs.(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>leader3</td>
<td>364</td>
<td>654</td>
<td>47</td>
<td>81</td>
<td>0.038</td>
</tr>
<tr>
<td>leader5</td>
<td>27299</td>
<td>74365</td>
<td>1527</td>
<td>4386</td>
<td>2.506</td>
</tr>
<tr>
<td>leader6</td>
<td>237656</td>
<td>760878</td>
<td>9012</td>
<td>30103</td>
<td>42.658</td>
</tr>
<tr>
<td>coin2</td>
<td>1296</td>
<td>2412</td>
<td>720</td>
<td>1197</td>
<td>0.011</td>
</tr>
<tr>
<td>coin4</td>
<td>104576</td>
<td>351712</td>
<td>8827</td>
<td>21141</td>
<td>10.198</td>
</tr>
<tr>
<td>csma2_6</td>
<td>66718</td>
<td>93072</td>
<td>7504</td>
<td>14706</td>
<td>3.075</td>
</tr>
<tr>
<td>csma4.2</td>
<td>761962</td>
<td>1327608</td>
<td>9901</td>
<td>17526</td>
<td>61.203</td>
</tr>
<tr>
<td>i16</td>
<td>65535</td>
<td>1048576</td>
<td>2249</td>
<td>28736</td>
<td>20.498</td>
</tr>
<tr>
<td>i18</td>
<td>262143</td>
<td>4128768</td>
<td>7684</td>
<td>114814</td>
<td>688.095</td>
</tr>
<tr>
<td>beauquier5</td>
<td>1024</td>
<td>3840</td>
<td>512</td>
<td>1920</td>
<td>0.093</td>
</tr>
<tr>
<td>beauquier7</td>
<td>16384</td>
<td>86016</td>
<td>523</td>
<td>2817</td>
<td>0.862</td>
</tr>
<tr>
<td>beauquier9</td>
<td>262144</td>
<td>1769472</td>
<td>7031</td>
<td>47869</td>
<td>61.68</td>
</tr>
</tbody>
</table>

\(P_{min}(\text{true} \cup \text{stable})(P_R^\mathbb{R})\). Therefore the precise value of each minimal reachability probability can be obtained by keeping refining a system until the values obtained from the may- and must-quotient systems coincide. However, the maximal reachability probability cannot be obtained in a similar way, because Theorem 4.2 is restricted to properties in \(\text{PCTL}_{\text{safe}}\). In order to obtain precise values of maximal reachability properties, we keep refining a system until the may- and must-quotients coincide, in which case the PCTL equivalence relation is reached.

For all properties considered in this section, we consider both unbounded and bounded versions. We choose 5,000 as the step bound of all bounded reachability properties. This is a somewhat arbitrary choice. It is “half-way” to the default maximum iteration number of the value iteration engine of PRISM, which is 10,000.

In Table II we compare the time to check properties on the original systems and the abstract systems, where the last three columns denote the time spent to check the properties on the abstract systems, the time spent to check the properties on the original systems, and the acceleration ratio of PIBAR with respect to PRISM for checking all properties, respectively. For checking on the abstract systems, the time consists of three parts: i) Time for abstracting the system, ii) time for generating the quotient system, and iii) time for checking properties on the quotient system. For most of the examples, Algorithm 1 runs faster than PRISM if we consider the total time for checking all the properties except for “ij18”. For instance in “csma4.2”, PRISM takes more than 1 hour to check all the properties, while the time for using PIBAR to check these properties is less than 2 minutes (the abstract time in Table I plus the checking time in Table II), and we obtain an acceleration up to 64 times.

Generally, Algorithm 1 cannot deal with non-safety properties unless the PCTL-equivalence is eventually reached. However, we notice that in our experiments the abstract system returned by Algorithm 1 also preserves properties like \(P_{\text{max}}(\varphi)\), i.e., non-safety property \(P_{\leq p}(\varphi)\), which indicates that Algorithm 1 often terminates with the \(\mathcal{R}\) being very close (if not identical) to \(\equiv_{\text{PCTL}}\).

6.2. Property Driven PIBAR

We now turn to the property driven PIBAR approach, applying it to all cases considered in Table II. Experimental results are displayed in Table III, where column “Iterations” denotes the number of refinements before termination, i.e., the value of \(i\) after termination. From Table III, we can see the time taken to abstract “ij18” is on-
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Properties</th>
<th>$Time(s)$</th>
<th>$Acc.$</th>
</tr>
</thead>
<tbody>
<tr>
<td>leader3</td>
<td>$P_{\min}(true \leq 5000 \text{ elected})$</td>
<td>0.015</td>
<td>1.758</td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true \leq 5000 \text{ elected})$</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(true \text{ elected})$</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true \text{ elected})$</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>leader5</td>
<td>$P_{\min}(true \leq 5000 \text{ elected})$</td>
<td>0.491</td>
<td>4.041</td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true \leq 5000 \text{ elected})$</td>
<td>0.596</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(true \text{ elected})$</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true \text{ elected})$</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>leader6</td>
<td>$P_{\min}(true \leq 5000 \text{ elected})$</td>
<td>6.607</td>
<td>7.916</td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true \leq 5000 \text{ elected})$</td>
<td>6.699</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(true \text{ elected})$</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true \text{ elected})$</td>
<td>3.743</td>
<td></td>
</tr>
<tr>
<td>coin2</td>
<td>$P_{\min}(true \leq 5000 \text{ finished})$</td>
<td>0.096</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true \leq 5000 \text{ finished})$</td>
<td>0.087</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(true \text{ finished})$</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true \text{ finished})$</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>coin4</td>
<td>$P_{\min}(true \leq 5000 \text{ finished})$</td>
<td>6.948</td>
<td>2.718</td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true \leq 5000 \text{ finished})$</td>
<td>5.735</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(true \text{ finished})$</td>
<td>2.984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true \text{ finished})$</td>
<td>6.234</td>
<td></td>
</tr>
<tr>
<td>csma2_6</td>
<td>$P_{\min}(\neg \text{collision max backoff} U \leq 5000 \text{ all delivered})$</td>
<td>3.055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(\neg \text{collision max backoff} U \leq 5000 \text{ all delivered})$</td>
<td>3.043</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(\neg \text{collision max backoff} U \text{ all delivered})$</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(\neg \text{collision max backoff} U \text{ all delivered})$</td>
<td>12.786</td>
<td></td>
</tr>
<tr>
<td>csma4_2</td>
<td>$P_{\min}(\neg \text{collision max backoff} U \leq 5000 \text{ all delivered})$</td>
<td>3.879</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(\neg \text{collision max backoff} U \leq 5000 \text{ all delivered})$</td>
<td>3.602</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(\neg \text{collision max backoff} U \text{ all delivered})$</td>
<td>3.406</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(\neg \text{collision max backoff} U \text{ all delivered})$</td>
<td>8.688</td>
<td></td>
</tr>
<tr>
<td>ij16</td>
<td>$P_{\min}(true U \leq 5000 \text{ stable})$</td>
<td>2.813</td>
<td>3.078</td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true U \leq 5000 \text{ stable})$</td>
<td>2.322</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(true U \text{ stable})$</td>
<td>0.757</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true U \text{ stable})$</td>
<td>0.547</td>
<td></td>
</tr>
<tr>
<td>ij18</td>
<td>$P_{\min}(true U \leq 5000 \text{ stable})$</td>
<td>17.419</td>
<td>0.620</td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true U \leq 5000 \text{ stable})$</td>
<td>13.388</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(true U \text{ stable})$</td>
<td>4.318</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true U \text{ stable})$</td>
<td>1.912</td>
<td></td>
</tr>
<tr>
<td>beauquier5</td>
<td>$P_{\min}(true U \leq 5000 \text{ stable})$</td>
<td>0.109</td>
<td>2.158</td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true U \leq 5000 \text{ stable})$</td>
<td>0.091</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(true U \text{ stable})$</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true U \text{ stable})$</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>beauquier7</td>
<td>$P_{\min}(true U \leq 5000 \text{ stable})$</td>
<td>0.202</td>
<td>6.795</td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true U \leq 5000 \text{ stable})$</td>
<td>0.163</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(true U \text{ stable})$</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true U \text{ stable})$</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>beauquier9</td>
<td>$P_{\min}(true U \leq 5000 \text{ stable})$</td>
<td>8.589</td>
<td>2.353</td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true U \leq 5000 \text{ stable})$</td>
<td>6.394</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\min}(true U \text{ stable})$</td>
<td>2.722</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{\max}(true U \text{ stable})$</td>
<td>0.822</td>
<td></td>
</tr>
</tbody>
</table>
ly about 107 seconds by applying property driven abstraction and refinement, while without applying property driven technique it takes more than 688 seconds. However, the property driven PIBAR does not always exceed PIBAR. For instance for “coin4” and “csma4.2”, property driven PIBAR is slower than PIBAR. This difference is rooted in the structures of the models: Our experiments indicate that property driven PIBAR is more efficient if the target states are in close reach from the initial states, otherwise PIBAR is more preferable. For instance in “coin4” the minimal expected number of steps needed from the initial states to states labelled with finished is more than 4781, while for “ij18” the maximal expected number of steps before reaching target states labelled with stable is less than 153.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Abs.(s)</th>
<th>Iterations</th>
<th>Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>leader3</td>
<td>0.066</td>
<td>24</td>
<td>1.225</td>
</tr>
<tr>
<td>leader5</td>
<td>2.025</td>
<td>51</td>
<td>4.843</td>
</tr>
<tr>
<td>leader6</td>
<td>18.702</td>
<td>65</td>
<td>13.406</td>
</tr>
<tr>
<td>coin2</td>
<td>0.037</td>
<td>54</td>
<td>0.723</td>
</tr>
<tr>
<td>coin4</td>
<td>19.18</td>
<td>125</td>
<td>2.256</td>
</tr>
<tr>
<td>csma2.6</td>
<td>7.451</td>
<td>194</td>
<td>0.628</td>
</tr>
<tr>
<td>csma4.2</td>
<td>95.662</td>
<td>187</td>
<td>45.527</td>
</tr>
<tr>
<td>ij16</td>
<td>5.011</td>
<td>19</td>
<td>7.307</td>
</tr>
<tr>
<td>ij18</td>
<td>107.319</td>
<td>22</td>
<td>3.112</td>
</tr>
<tr>
<td>beauquier5</td>
<td>0.011</td>
<td>11</td>
<td>3.085</td>
</tr>
<tr>
<td>beauquier7</td>
<td>0.403</td>
<td>14</td>
<td>10.915</td>
</tr>
<tr>
<td>beauquier9</td>
<td>10.104</td>
<td>14</td>
<td>6.587</td>
</tr>
</tbody>
</table>

From Table I, II, and III, we can see that PIBAR and property driven PIBAR perform quite differently in practice. The reason is that they try to refine the system in different dimensions. With reference to Fig. 1, plain PIBAR computes the relation in the first row, then the relations in the second row, and so forth, i.e., \equiv_{PCTL} is approximated in a ‘horizontally-first’ manner. Instead, property driven PIBAR considers only a single splitter to refine which means that the parameter j governing the inner loop of Algorithm 1 is 1 and that the outer loop in Algorithm 2 is basically omitted. Pictorially speaking, Fig. 1 collapses into a single column, and the refinement simply proceeds by increasing the depth, i.e. the parameter i in Algorithm 1. Thus we effectively converge to \equiv_{PCTL} from the top to bottom in a ‘vertically-first’ manner.

6.3. Properties with Probabilistic Bounds

In the previous subsections, we always computed precise values of reachability probabilities. In this subsection we give an example showing that for PCTL properties with explicit probabilistic bounds, PIBAR may terminate after fewer iterations of refinement than computing precise values.

In Fig. 4, we visualise the convergence for “csma4.2” with respect to the property $P_{\text{max}}(\neg\text{collision_max_backoff U all_delivered})$. By increasing the number of iterations, we obtain a finer quotient system, and the abstract result is closer to the real probability in the original model. However, in many cases it is not necessary to do so. For instance if we were to check whether “csma4.2” satisfies $P_{\geq 0.8}(\neg\text{collision_max_backoff U all_delivered})$, there is no need to know the precise probability of satisfying $\neg\text{collision_max_backoff U all_delivered}$. In fact, we can stop refinement...
after 180 iterations, because at this point we already know for sure the minimal probability of satisfying \(-\text{collision_max_backoff} \cup \text{all_delivered}\) is less than 0.8 and thus we can conclude that the property is not satisfied by “csma4_2". If the bound were 0.96, we could stop after 150 iterations. Notably, this is not an \textit{a posteriori} analysis: The algorithm terminates after reaching the needed probability bound.

6.4. Comparison with Probabilistic CEGAR

We also compared our PIBAR implementation with PASS [Hahn et al. 2010] on finite probabilistic models. PASS implements probabilistic CEGAR [Hermanns et al. 2008] and game-based abstraction-refinement [Kattenbelt et al. 2010], where refinement steps are guided by counterexamples expressed by a set of paths violating the property. Our experimental evaluation shows that PIBAR usually performs better than PASS. This seems to be rooted in the fact that PASS relies on predicate abstraction and refinement, which may take many rounds of refinement before termination. For instance, for the “Bounded Retransmission Protocol” model with parameters 32 and 5 and property 1 considered in [Hermanns et al. 2008], PASS took more than 2 minutes, while PIBAR took less than 10 seconds. However, this purely runtime-oriented analysis has to be taken with a grain of salt, because there are two significant differences between PIBAR and PASS: PIBAR (i) works with explicit-state representations of models, while PASS works directly on the higher language level (such as the PRISM language). PASS in turn (ii) is able to deal with infinite-state models, which are entirely out of reach for the PIBAR approach. Therefore a direct comparison between PIBAR and PASS does not seem to be making much sense.

7. RELATED WORK

Probabilistic abstraction refinement techniques have first been studied in [D’Argenio et al. 2001; 2002]. While their approach focuses on the reachability probabilities, our approach deals in principle with all PCTL properties. Moreover, the major difference between PIBAR and [D’Argenio et al. 2001; 2002] is that different refinement strategies are adopted. Specifically, in [D’Argenio et al. 2001] whenever it is necessary to refine an abstract system, first those blocks are identified in which the concrete states have different futures, i.e., they can evolve into different distributions (up to the
This refinement strategy is based on the bisimulation criteria and has been used in other models [Ahmed Bouajjani 1992; Alur et al. 1992; Spelberg et al. 1998]. In [D’Argenio et al. 2002] this refinement method is further improved. In the present paper we instead adopt a novel refinement strategy which is directly based on the sequence of bisimulations proposed in [Song et al. 2013a]. The advantage of this refinement strategy is that it needs very few refinements before termination. For many practical examples, it even terminates after the first refinement.

In probabilistic CEGAR [Wachter and Zhang 2010] refinement steps are guided by counterexamples expressed by a set of paths violating the property. As already mentioned further extensions include stochastic games [Wachter and Zhang 2010; Kattenbelt et al. 2010] for obtaining both upper and lower bounds, and also extensions carrying over to probabilistic software verification [Kattenbelt et al. 2009; Esparza and Gaiser 2011] exists.

In [de Alfaro and Roy 2007; Roy et al. 2008] an abstraction technique for MDPs called magnifying lens abstraction was introduced, which does not depend on counterexamples generation and analysis. It first partitions the states into regions (or blocks), and then computes upper and lower bounds on these regions. In order to do so, it considers only one region at a time, and computes the bounds of the concrete states in it. The refinement of a region depends on the computed bounds of its concrete states. The magnifying lens abstraction technique is designed for reachability and safety properties, and moreover it is a property driven abstraction, i.e., it deals with one property each time.

Compared to previous approaches PIBAR constructs abstractions based on the sequence of bisimulation relations converging to the PCTL equivalence. Thus it facilitates the verification of arbitrary PCTL properties. Notice, as said above, that the approach in [Chadha and Viswanathan 2010] has been introduced to handle arbitrary PCTL properties as well: but that approach involves repeated computations of simulation relations which is slow in practice [Zhang and Hermanns 2007]. To the best of our knowledge, the CEGAR approach of [Chadha and Viswanathan 2010] has not yet been implemented.

The PIBAR approach has a flavour similar to the bisimulation based minimization approach for Markov chains [Katoen et al. 2007]. In particular \(\sim_{1,1} \) can be computed in the same way as the bisimulation for Markov chains with minor changes, therefore it can be considered as an extension of this approach to the model of PAs. Our work is also related to [Dehnert 2011; Wimmer et al. 2006], in which the classical bisimulation [Segala 1995] has been computed symbolically: The polynomial algorithm turns out to be rather expensive in practice. The theoretical complexity of checking the PCTL equivalence relation is even worse: It is NP-complete. In [Dehnert 2011] it has been shown that state space minimization based on the classical bisimulation usually does not speed up the verification, since the bisimulation is expensive to compute. In this paper, we observe that for many cases the classical bisimulation is too fine, and usually a quite coarser bisimulation for generating the quotient system is enough. Interestingly, even though with high theoretical complexity (NP-complete), our approach is efficient in almost all of the selected case studies.

8. CONCLUSION AND FUTURE WORK
In this paper we proposed the PIBAR framework, an abstraction-refinement framework based on a sequence of bisimulation equivalence relations. Our prototypical experiments show that PIBAR works well in practice, and very often it terminates after very few refinement steps.

As future work, we will extend PIBAR symbolically to be able to deal with larger systems. Inspired by [Dehnert et al. 2013], an implementation of PIBAR based on
SMT would also be interesting. Many relations in Fig. 1 can be computed efficiently in polynomial time, thus another interesting direction is to identify such relations and compute them first. Since continuous-time Markov decision process (CTMDP) is a continuous extension of PA, we plan to extend this framework further to deal with CTMDPs.

REFERENCES

