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Abstract. Recently, a general framework on characteristic formulas wro-
posed by Aceto et al. It offers a simple theory that allows tmeasily obtain
characteristic formulae of many non-probabilistic bebeaii relations. Our paper
studies their techniques in a probabilistic setting. Wevigl® a general method
for determining characteristic formulae of behaviorahtieins for probabilistic
automata using fixed-point probability logics. We consisiech behavioral rela-
tions as simulations and bisimulations, probabilistigrhidations, probabilistic
weak simulations, and probabilistic forward simulatiofibis paper shows how
their constructions and proofs can follow from a single camrtechnique.

1 Introduction

Probabilistic automata have been extensively used inmgsitevolving both stochastic
and nondeterministic choice. To combat the state spacesrpl problem, various re-
duction techniques have been introduced and applied tcapilidtic automata. These
techniques include bisimulation and simulation relatiff21s 20], partial order reduc-
tions [3, 12], symbolic data structures [13], and game-thabestractions [15].

Bisimulation and simulation relations are particularlefud, because they enable
us to use compositional minimization [21]. Briefly, eachhad tonstituting components
can be minimized first before being composed with other autiimng components. This
idea is extended to a probabilistic setting in [6]. Varioogits have been considered to
reason about probabilistic automata. In [5], a model chregkigorithm is presented for
probabilistic automata with respect to the logic PCTL, anfj 14], Hennessy-Milner
logics are used to characterize behavioral relations.

A characteristic formula for a behavioral relation is asatad with each state in a
model; the formula for a given state characterizes the satatds that the given state is
related to according to the behavioral relation. In the thatthe behavioral relation is
simulation, one state is related to another if the first casilmeilated by the other, that
is, can be mimicked by the other. In effect, a characteristimula allows us to reduce
the problem of determining whether one state is simulateahoyher to the problem of
model checking. Instead of directly checking whether that fitate is simulated by the
other, we check if the other state satisfies the charagtefiosiula of the first. In a more
theoretical setting, some modal completeness and detitgdabeorems can be proved
by constructing a finite satisfying model whose elementsarenal forms, which are
characteristic formulae for bisimulation or approximagdo such formulae [18].



This paper focuses on behavioral relations over probébileaitomata and their
characteristic formulae. The semantics of our languageshia fixed-points, which
provide us with a natural facility for expressing variousds of infinite behavior, such
as those that are infinite or have loops. We present a singleotheadapted from [1],
that allows one to easily obtain characteristic formulaenahy behavioral relations,
including simulations and bisimulations, probabilistisimulations, probabilistic weak
simulations, and probabilistic forward simulations. Theesgth of this technique is
its generality: we can construct a variety of characterigirmulae and prove their
correctness using a single simple method.

Relation to Related WorkOur theory builds on a recent paper by Aceto et al. [1],
where a general framework is introduced for constructing-pmbabilistic character-
istic formulae over transition systems. It allows one t@dily obtain the characteristic
formulae for many behavioral relations, which have tradiélly involved technical —
even if not difficult — proofs. Their main result (an earli@rsion of Theorem 1 in this
paper), in its generality, can be used for all the behavialations we consider, except
for probabilistic forward simulation. We thus provide a nestigeneralization of this
theorem to address forward simulation.

A more universally relevant extension to the overall sgttf[1] is to involve in its
applications (previously developed) liftings of relatsoriftings are discussed in [10,
23], and employed in [14] for fixed-point characterizatiofi¢bi)simulations and prob-
abilistic (bi)simulations. As they are central to probéastit behavioral relations, liftings
play a key role in adapting the framework of [1] to a probatidi setting.

Another difference between our work and [1] is with the laage used. The lan-
guages in [1] are fixed-point variants of Hennessy-MilnglidoFor all our behavioral
relations except the probabilistic forward simulation, uge a fixed-point variant of a
two-sorted probability logic given in [16]. This allows usinterpret the characteristic
formulae over states, as in [1], but to also have formulae digtributions that better
fit with the setting of probabilistic automata. For probaiit forward simulation, we
involve a language, as in [19], only interpreted over disttions rather than states.

In [7], Deng and van Glabbeek study characteristic formtdaeall the behavioral
relations over probabilistic automata that we considesugih they restrict their au-
tomata to being finite. For all their behavioral relatioh&it characteristic formulae use
a more complex one-sorted language over distributionsti@one we use for proba-
bilistic forward simulation, and the form of their formulaee different (reflecting their
different but equivalent approach to lifting) and somewsiatpler (our characteristic
formula for probabilistic bisimulation involve an infinitadisjunction). But the differ-
ence that we emphasize is that they use a separate techoigpe¥ing correctness
of characteristic formulae for each preorder considerédulgvour framework provides
characteristic formulae which are correct by construction

Organization of the paper:In Section 2, we provide definitions to be used later in
the paper. In Section 3, we present a slight adaptation ofrtireework developed
in [1]. In Section 4, we recall the definition of probabilstutomata, the fixed-point
characterization of bisimulation and simulation relaipand the weak bisimulations,
and then we clarify the relationship between liftings usef'] and in [14]. In Section



5, we present the language that we use for all our formulagptxicose from a language
introduced in Section 6 that is defined specifically to chigréxe forward simulations.

In Section 6, we illustrate how the characteristic formditaeall the behavioral relations
that we consider can be constructed by applying the genaalefvork. In Section 7,

we describe some possible extensions of our work. Finaigti8n 8 concludes the
paper.

2 Preliminaries

Distributions. Let S be a set. Adistribution over S is a functionu: S — R=° such
that thesupportof u, defined bysupp(p) := {s | u(s) > 0}, is countable, and
Y ses i(s) = 1. We letu(A) denote the sumy -, pu(s), for all A € S. We denote
by Dist(S) the set of discrete probability distributions ovgrand, given an element
s € S, we denote by, theDirac distributionon s that assigns probability to {s}.

Given a countable set of distributiofig; } ic; and a sef{p; };c; of real numbers in
[0,1] such thad ", _; p; = 1, we define theonvex combinatiod , ; pi; Of { ;i }ier
as the probability distributiop such that, for each € S, u(s) = >, pipi(s).

Given a distribution over distributiong (€ Dist(Dist(S))), define the flattening of
1 by the functionflatten, that maps: to a distributiorv, defined by

vis)= 3 u)(s). (1)

v’ €supp(u)

Complete latticesA partially ordered sef{poset) is a setl together with a relatiof 4
that is reflexive ¢ C 4 a for everya € A), anti-symmetric¢ C4 b andb C 4 a implies
a = b), and transitived "4 b andb C4 c impliesa T4 ¢). We omit the subscript
A when it should be clear from context. @mplete latticas a partially ordered set
(A,C), such that every subsé& C A has a least upper bound iy written UB, and
consequently a greatest lower boun# in A as well.

A function f : A — B between lattices imonotonéf a C 4 o’ implies f(a) Cp
f(a’) for eacha,a’ € A. A functionf : A — B is anisomorphismif it is bijective,
monotone, angf~! is monotone, and consequently maps least upper boundssto lea
upper bounds. We call a functighfrom A to itself anendofunctionWe call a point
a € A apost-fixpoinof f if f(a) > a, and afixed-pointof f if f(a) = a. By Tarski’'s
fixed-point theorem [22], every monotone endofunctfoon a complete latticel has
a least upper boungfp f given byl{a | a C f(a)}.

3 General Framework

In this section we present some background behind our tqubrfor finding charac-
teristic formulae for behavioral relations. We involvedaragesC consisting of a set of
formulae with variables. We often ugdor the index set of the variables. The formulae
will be interpreted over a sét, such as a set of states or distributions. In [1} P. We
find that in order to apply this general framework to forwardudations (Section 6.4),



it is helpful to distinguishing the index séfrom the setP over which formulas will be
interpreted, in particular settingto be the set of states artithe set of distributions.

Variables are interpreted by a functien I — P(P), called avariable interpreta-
tion. Hereo () is viewed as the set of elements®fvhere the variable is considered to
be true. This is similar to a valuation of atomic propositiam modal logic. The vari-
able interpretation can be extended to a full fledged sewsriti: £ — P(P), using
rules such as*(p AY) = o*(p) No*(¢). For all formulaep andp € P, we generally
write p € [¢]o or (o,p) = ¢ forp € o*(p).

We call a functionE : I — L adeclaration Such a function characterizes an
equational system of formulae, equating the variaklewith the formulaFE(i). As
formulae can contain variables, a declaration is effelstivecursive. Involving recur-
sive features of a language allows us to characterize sofinéenor looping behavior
without the need for infinitary formulae. Lanugages withuiesiton generally involve
fixed-points of an endofunctiohHence we extend a declaratiéhto an endofunction
[E] : P(P)f — P(P)! on variable intepretations (here we wrieg P)! for the set of
functions that mag to P(P)), given by

([Elo)(@) = [E(@)]o

The endofunctiorfE] has a greatest fixed point if the language is monotofdan-
guage is monotone if whenevey C o (pointwise set inclusion), then for all formulae
¢ and elementsp, it holds that(cy,p) = ¢ = (02,p) E .

Behavioral relations, such as bisimulation, are often @efias the greatest fixed-
point of a monotone endofunctidn onP(I x P), wherel andP are typically set to
be the set of states. The following definition clarifies ounfalation of a characteristic
formula, which in our setting is really a declaratidn.

Definition 1 (Declaration characterizing a relation).A declarationE : I — £ char-
acterizeghe greatest fixed-point of an endofunctiBn P(I x P) — P(I x P) if for
alli e Tandp € P,

gfp[El,p = EG) iff (i,p) € gfp I .

! Although we do not involve fixed-points operators directiythe language, we make use of
fixed-points of a function induced by the declaration. A fbpaint sematics based on this
equational system is equivalent to a fragment ofithealculi. The equational system provides
us with a more intuitive way of handling what is equivalentialtiple nestings of fixed-point
operators.

2 This is because variable interpretations form a complétieda ordered under pointwise set
inclusion, and the functiofi~£] is monotone if the language is. Hence we can apply Tarski's
fixed-point theorem.

% As we do not involve fixed-point operators directly in therfarlae of the language, our recur-
sive features come from the equational system given by thiadgion. Aformula together
with a declarationcontains the information we would normally obtain from anfioda in the
sufficiently expressive fragment pfcalculus. Given a declaratidd andi € I, we always set
the formula component t&'(7) when providing a characteristic formula-with-declaratfor
1. With this convension, the declaration is all we need to $pec



We link variable interpretations with subsetsiof P, using the functiorp : P(I x
P) — P(P)! given by

p(R) = (i = R(i)) (2)

wherei — R(3) is the function mapping elemeht I to the set{p | iRp}.

Definition 2 (Declaration expressing an endofunction)A declarationE expressea
monotone endofunctiofi : P(I x P) — P(I x P) if

e(R),p = E(i) iff (i,p) € F(R)
for every relationR C I x P.

More formally, the theorem from [1] is as follows.

Theorem 1. If a declarationE expresses a monotone endofunctigrthenE charac-
terizes its greatest fixed-poigfp F'.

This theorem and the prior two definitions differ from the dnd1] in that they set
I = P. Our generalization of distinguishingfrom P does not affect the proof in [1]
of the main theorem.

4 Probabilistic automata, simulations, and bisimulations

We first discuss lifting of relations, followed by the defiait of probabilistic automata
and simulation relations.

4.1 Lifting of relations

A relation lifting transforms a relation between two settia relation between two
sets related to the first two. Having two levels of relationséntral to definitions of
probabilistic behavioral relations. Liftings of relat®from.S x Dist(S) to Dist(S) x
Dist(S) were introduced by Jonssen & Larsen [17] usweight functiongo define
simulations for Markov chains. Later, Desharnais [8] gasgefnition of liftings that did
not involve weight functions. We prove (Theorem 2 below} thase characterizations
of liftings are equivalent, by using recent key insightsrfirea 1 below) from [10, 23].

First we present the following characterization [10, 23}twé lifting of a relation
R C S x P (with S andP both arbitrary sets) to a relatidd C Dist(S) x Dist(P):

pRv < V(A C suppp). u(A) < v(R(A)). 3

WhenP = Dist(S), we can define fronk C Dist(S) x Dist(P) a relationR C
Dist(S) x Dist(S) by flattening the elements (see Eq. (1)) ofst(P): for u,v €
Dist(S),

pRv < W' € Dist(P). v = flatten(v') & uRv'. 4)



We next present the following characterization, based omghtdunctions, of a
lifting from R C S x Dist(S) to R C Dist(S) x Dist(S), given by

uﬁu < Hsitien € S. I{v; ien € Dist(S) such that

p=>72, pids, andv = 37 p;v;, for (5)
somep; Z 07 Zzoil Pi = 17 andSiRVi.

Note thats, — p if and only if z ~> ;. We will, as in [14], use the lifting (3) in
our formulations of behavioral relations. The form (5) wasd in [7] to define weak
transitions, and will be used by us in the correspondingae¢bDefinition 6). The two
characterizations of relation liftings are equivalenttie following sense.

~

Theorem 2. Given a relationk C S x Dist(S), R = R.

Before proving this, we define weight functions [17] and reates, which will be useful
in the proof.

Definition 3 (Weight function). Let.S and P be arbitrary sets. Let, € Dist(S),v €
Dist(P) andR C S x P. Aweight functionfor (u, ) with respect taR is a function
A: S x P—]0,1], such that

1. A(s,p) > 0impliess R p,
2. pu(s) =3 ,epAls,p), fors € Sand
3. v(p) =) g Als,p), forp e P.

We only make sense of sums that have countably many nonaeng.tThe conditions
of Definition 3 ensure that\(s,p) = 0 whenever eithes ¢ supp p or p & supp v.
Thus as an uncountable sum, only countably many terms wa@utbh-zero, and hence
it is safe to formulate this as an uncountable sum.

Definition 4 (The network for 1, v and R).LetR C S x P, and lety € Dist(S),v €
Dist(P) be distributions. metworkA (u, v, R) is a tuple(V, E, ¢), where

1. V={/,\}Usupp(S) Usupp(P), with /,\, &€ S, P,
2. E={(s,p) | (s,p) € Ry U{(/,5) | s € supp(u)} U{(p,\) | p € supp(v)},
3. ¢, thecapacity functionis defined by:

(@) c(/,s) = u(s)forall s € supp p,

(b) ¢(p,\) = v(p) for all p € supp(v), and

(c) c(s,p) = oo for all other (s, p) € E.

Lemmal. LetR C S x P, and lety; € Dist(S),pu2 € Dist(P). The following
statements are equivalent:

1. There exists a weight function fgi;, u2) with respect taR.
2. The maximum flow of the netwokk(y;, u2, R) is 1.

3. 11(A) < po(R(A)) forall AC S.

4. 11 (A) < pa(R(A)) forall A C supp(p).



The above lemma has been proposed in [10, 23], and used inlidformal proof for
countable systems makes use of a recent result in [2]. TouspMmpleteness, the proof
of this lemma for countable systems is given below.

Proof. The equivalence betwednand? is from Lemma 5.1 in [4]. The equivalence
betweerB and4 is straight forward. We will show thdtimplies3 and thatt implies?2.

(1 = 3): Let A denote the corresponding weight function o, 12) with respect
to R. Now we want to prove that for everyt C S: i1 (A4) < p2(R(A)). First, letting
Dom(R) represent the set of first coordinates of the relafipnve have

=Y Y Aun = ¥ Awn= Y Y Aw)

ueAveP u€AveER(A) u€ANDom(R) vER(A)

which follows from the properties of a weight function (Déefion 3), especially that
A(u,v) =0if u & Dom(R) orv € R(u). Similarly, from the first and third conditions
of a weight function, we have that;(R(A)) = > ,cr-1(ra)) 2overa) AW v).
From basic set theory, we see thhth Dom(R) C R™!(R(A)). Thus by comparing
p1(A) andus(R(A)), we have our desired resulti (A) < pz(R(A)).

(4 = 2): Assume that the fourth clause is true. We show that the mmaixi flow of
the network\/ (p11, 12, R) has valuel. To construct such a maximum flow, we borrow
the proofidea of Theorem 7.3.4 from Desharnais [8]. Acanydo theMaximum Flow
Minimum Cut Theoren?2], the maximum flow equals the capacity of a minimal cut.
Therefore, it suffices to show that there exists a minimab€eapacityl. Cut{/} has
capacityl, but we still have to show that it is minimal. LEtbe some minimal cut (not
necessaril{/}). We letB = C'NS. The capacity o€ is the sume(C) = > {c(4,J) |
i€ C,j¢ C} CutChastofulfills € B = R(s) C C because otherwise it would
have infinite capacity. Hence the capacity®fs: ¢(C') = u1 (S \ B) + p2(R(B)). By
construction of the network/, it holds thatB C supp(u1). Sinceu; (B) < pa(R(B)),
we haver(C) > p1(S\ B)+ p1(B) = p1(S) = 1. Hence, the capacity @f is greater
than or equal td, implying that the minimum cut has valde O

Proof. (Proof of Theorem 2)

Suppose thatRv. Thenp = Y22 pid,, andv = Y2, p;v;, wherep; > 0,
Yoo pi = 1, ands;Ry;. Definev’ € Dist(Dist(S)), such that/(v;) = p;. Then
thep; are the weightg\(s;, ;) in the weight function fog: and’ (Definition 3). By

Lemma1,.(A) < v'(R(A)), forall A € supp(p). ThuspRy/, and hence.Ry.

Suppose that.Rv. Then there is &' € Dist(Dist(S)), such that = flatten (1)
anduRy/, i.e., forallA € supp p, u(A) < V'(R(A)). By Lemma 1, there is a weight
function A for ¢, andy’ with respect taR. Enumerate the pairs, v/), using a bijective
function f : (supp(p) x supp(v')) — N (replaceN with {1,2,..., N} if | supp(u) x
supp(V)| = N < o). Letg = f=1, p; = A(9(4)), si = m1(g(i)) (Wherer is the
projection onto the first coordinate), and lgt= m2(g(7)). We then obtain the desired
condition of (5) from the conditions of the weight functiop plugging in an arbitrary
s into the right hand side of the equation foin (5), and applying second condition of
the weight function to see that we indeed gét); and then note that the third condition
of the weight function collapses the right hand side of theagign forv in (5) into the



right hand side of the equation for flatteninguéfinto v (recall that we used equation
(4) to obtain’). O

4.2 Probabilistic automata

Now recall the definition of probabilistic automaton [21{,RA for short.

Definition 5. A probabilistic automators a triple M = (S, Act, Steps), wheresS is
a countable set oftates Act is a countable set o&ctions and the relationSteps C
S x Act x Dist(S) is thetransition relation

Obviously, PAs comprise labeled transition systems (LDB}lie special case that
forall (s,a, 1) € Steps, uis a Dirac distribution. Denote a transition a, 1) € Steps
by s % u, which is also referred to as antransition ofs. We denote the set of distri-
butions leaving a stateby actiona by Steps,,(s) = {u | s = pu}.

Given a probabilistic automatdib, Act, Steps), we can augment the transition re-
lation Steps (which maps states via actions to distributions) to ancttarsition rela-
tion Comb (which also maps states via actions to distributions), shabeach transition
in Comb for any action corresponds to a convex combination of tteoms in Steps for
that action. Precisely, ifs % 1;}ic; is a set of transitions, then

s~ piff p = Zpi,ui for somep; whereZpi =1 (6)
il il

The a transitions inStep are denoted by and those inComb are denoted by
. Note that as™ may represent a finite relation over statéstypically represents a
relation that is uncountable.

4.3 Simulations and bisimulations

In the following exposition, we fix some PA1 = (S, Act, Steps) and observe that the
set of relations ove$, denoted by2° <, is a complete lattice with set inclusion as the
partial order. We review in this section how some notionsrofsation and bisimulation
can be presented in terms of suitable monotone functionstbigdattice [14].

Simulation. Consider the functior’ : 25%x8 _ 25%S defined as follows:
R {(s,t) € Sx S |VsSp 3ty uRy'} @)

We say that a relatiof® € 2°% is asimulation relationif R is a post-fixpoint off'5,
i.e. R C F<(R). Note that the functiof’< is monotone. Recall that Tarski's fixed-point
theorem [22] says that the fixed-points of a monotone fundiiom a complete lattice
and that the greatest fixed-point is the union of all postefirts. Similarity, denoted
=, is defined as the greatest fixed pointief, and hence must be the union of all
simulation relations, the greatest simulation relation.



Example 1.Let M be such that for everfs, a, ) € Steps, p is a Dirac distribution.
Then
Fi:Res{(s,t) €S xS |Vs S 6y.3t % 8y 65ROy}
={(s,t) € Sx S| Vs 3 6y.3t 56 :65({s'}) <6 (R{s'}))}
={(s,t) €S xS |Vs S 6y. 3% 6y : s'R'}.
By replacing the Dirac distribution® by statess in the definition ofF’< over the LTS

M, we obtain the same definition that is given in [1] for an enthetion, whose post-
fixpoints are simulations.

A coarser relation, callegrobabilistic simulationis defined in the same way by
replacing transitions with combined transitions so thatgheatest probabilistic simu-
lation is the greatest fixed-point of the functidh,, : 25%5 — 2<% defined by:

R {(s,8)€SxS|VsSp 3 %y uRy'} . (8)

Arelation R C S x S is a probabilistic simulation if it is a post-fixpoint df-,.
The greatest probabilistic simulation preordétis defined as the greatest fixed-point
of Fp.

Bisimulation. The function corresponding to bisimulation is a symmetddation of
the function for simulation, such that. : 25%5 — 25%5 is defined by:

Vs Lo 3t S uﬁu’}

R~ ,t)e S xS a a,
{(S ) YVt — /. ds — o pRy

We say that a relatiof® € 2°* 9 is abisimulation relationf R is a post-fixpoint of
F.,i.e.R C F.(R). The greatest bisimulation is defined as the greatest fixed-point
9fp F~.

Similarly, we introduceprobabilistic bisimulation The functionF., : 25%5 —
25%5 for probabilistic bisimulation is defined analogously, few&r using combined
transitions:

RH{(s,t)ESXS

Vs % . 3t -5l pRy
Yt S 3s <5 pRy

ArelationR C S x S is a probabilistic bisimulation if it is a post-fixpoint @f.».
The greatest bisimulatior? is defined as the greatest fixed-pajfit F-».

Itis easy to see that and~? are equivalence relations. It is not difficult to see that,
restricting to LTSs, (bi-)simulation and probabilistié-jsimulation coincide.

Weak simulation.We say that an automatdi, Act., Steps) is divergent if there is
an infinite sequences;, 11;), such thats; 5 i ands,y is in the support ofu;. An
automaton that is not divergent is convergent.

Let Actbe a non-empty set of actions, andAet, = ActU {7}, wherer is an ele-
ment not appearing iActand is regarded as an internal step. We define weak trarssition
similarly to those in [7, 20]:



Definition 6 (Weak transitions). Given a convergent countable probabilistic automa-
ton (S, Act, Steps), we define the following relations:

— definer 5 piff 2 5 puor u = 8, and define: % 1 iff 2 % pu.

— define> andﬁ from respectivelyi and-% according to(5).

*

— forall a € Act,, defineu = v iff there are’ andy/, such thau — 4/, p/ » 1/,

T T, ) . T
v — v, where— is the reflexive transitve closure of.

A weak simulation relations defined as a post-fixpoint of the endofunctibg :
29x5 5 29%5 defined by:

Rl—>{(s,t)ESXS|Va€ACt,..Vsﬂ>u.Elt.5t:a>u’: Ry

Weak similarity denoteds, is defined is the greatest fixed-point/of.

5 Hennessy-Milner logic for probabilistic automata

Here we present our basic langualjgs, a two-sorted language, similar to one in [16],
consisting of state formulae (interpreted over the stated the automaton) and dis-
tribution formulae (to be interpreted ovéXist(.S)). It is suggested in [14] that such a
two-sorted language could be useful for a coalgebraic ambr,dut we leave coalge-
braic characteristic formulae for future work.

Of the two sorts, we are ultimately interested in the forraudaer states, as the sim-
ulation and bisimulation relations we have seen so far dieetbover states. Formally,
given a setAct, of actions augmented with a silent actionwe define the language
Lpas(Act;) by the following two-sorted syntax. State formulae are gilg:

=X TILI N el \V er | (T | [T

keK keK

whereT € {5, 2| a € Act,}, k € K for some cardinal(, andz € I for some
index setl, which we will typically set equal to the sstof states; distribution formulae
are given by:

po=T L] A onl V ol Lye

keK keK

wherep € [0, 1] andk € K for some cardinak’.*

SemanticsLet M = (S, Act, Steps) be a PA. The formule is interpreted on states
and+ on distributions over. Both will make use of a variable iptetations : I —
P(P), whereP is the set of stateS. Select components of the semantics are given by:

41t may be desirable to restrigtto rational numbers so as to have a countable language, but
doing so would require we add a countable conjunction to ne&oyr characteristic formulae.



o,sE X, iff s€o(z)
o,s = (TYy iff o, u =+ for somep such thatT i
0,8 E [Ty iff o, =4 forall p such thatsT

op =Ly iff u({s|o,skEp}) >p

whereT € {5, %, 2| a € Act, }. To be clear, we také’ to be the primitive relation
component in the probabilistic automatef, to be derived from according to (6),
and= to be defined according to Definition 6.

We observe that this language is monotone:

Proposition 1. if o1 C o9 (pointwise set inclusion), then for all state formulaend
statess, we haves,s = ¢ = 02,8 &= ¢ and for all distribution formulae) and
distributionsy, we haver, y = ¢ = o9, p = 9.

Proof. This is by induction on the structure of formulae:

IH suppose for every subformujaof ¢, we have that whenever, C o, if ) were
a state formula, we have for each state,s = ¢ = 02,5 = ¢ and ify were a
distribution formula, we have for each distributien, i |= ¥ = o9, = 9.

base casep = X, immediate from definition.

Case booleans: these may be either state or distribution foreydat the proof is
straight forward.

Case ¢ = (T4, suppose that;, s = (T)y. Then there is a such thatsT'y and
o1, 1 = 1. Then by the IHgo, 1 = ¢, and hencers, s = (T).

Case ¢ = [Ty, this is almost identical to thél")¢) case.

Case ¢ = L. Suppose that1, 1 = Ly. Thenp({s | o1,s = ¥}) > p. But then

by the H,pu({s | 02,5 = }) > u({s | o1, = ¥}) > p. Thusom, u = Ly, O

6 Characteristic formulae

In this section, we illustrate how the characteristic folaeufor all the behavioral rela-
tions that we consider can be constructed by using our atitapta the general frame-
work of [1].8

6.1 Simulations

We express iiCp,s the endofunctiorf’s with the endodeclaration

Ei P58 /\ /\ <i>> /\ LN(A) \/ X

aEACt#:SiML ACsupp p zE€EA

Recall thaff E<] is an endofunction on variable interpretations, and is nmmesince
the IanguageNis. Had we restricted our language to only ailpwational subscriptg
in L, then we could replade,,4) by A ,cqnio,.(4) Lo

We see that’< expresseg’< as follows:

5 Note that this formulation of a monotone language is sligstionger than the definition of a
monotone language given in Section 3.

8 The general framework in [1] should apply to most of the bébvaV relations as presented in
that paper; our adaptation is only needed for forward sitraria



1. (s,t) € F5(R)
2. Va € Act Vs % i, 3t % i/, pRy
3. Va € Act Vs 5 p, 3t 5 1/, VA C supp(A), u(A) < p/(R(A)).
4 </7(R)vt ': /\aeACt /\Misiﬁt<£)> /\Agsupp n LM(A) \/ZEA XZ'
5. o(R),t = Ex(s)
To see the relationship between Items (3) and (4), note[ifat , X.]Jo(R) = R(A),

and hence the formula, 4y \/ .. 4, X holds wheneven(A) < p/(R(A)).
Then by Theorem 17« characterizegfp Fx.

Opsim: Toward investigating the opposite of simulation (which viebeeviateopsimor
0), we express the endofunction

Fio: R {(s,t) € Sx S |VaeAct Vi ' 35S pu: pRy'}
with the endodeclaration
E<o 5 /\[3] \/ /\ L(a) \/XZ.
a€Act .59, ACsuppu z€A
We see that’<. expressed’, as follows:
1. (s,t) € Fxo(R)

2. Va € Act Vt % 1/, 3s S p, pRy
3. Va € Act Vt % 1/, 3s % p, VA C supp(A), u(A) < p/(R(A)).

4 @(R)at ': /\aeAct[&] \/stg# /\Agsuppu LM(A) szA X
5. p(R),t | E<.(s)

Then by Theorem 1i7<. characterizegfp F'<.. Note thatE< A E<. is the character-
istic formula for bisimulation-.

6.2 Probabilistic simulations and probabilistic bisimulation

Using the same argument as for simulation and opsimulatiersee that the endofunc-

tion
Ejp 1S — /\ /\ <g—>> /\ LM(A) \/ Xz-

tIEAClM;Sﬂ>H ACsupp i z€A
expresseg’s,, and that the endofunction
Fepo : R {(s,t) € S x S| Va € Act Vi = /. Js %t pRy'}

is expressed by the endodeclaration

Ejpo 1S = /\ [i)] \/ /\ LM(A) \/ X..

a€Act s ACsupp p z€A

Henceb<, andE=" characterizgfp F<, andgfp F,. respectively. Note that <,. is
typlcally infinitary, since the d|SJunct|on may be over arcaantable set. Similar to the
case for ordinary bisimulatiort;< A E<. is the characteristic formula for probabilistic
bisimulation~?.



6.3 Weak simulations

A weak simulation is defined as the greatest fixed-point ofehdofunctionF :
29%5 _ 929%5 defined by

R'—>{(s,t)€S><S|Va€ACtT.Vsi>,u.3t.§tg,u’: pRy'}

Letting s % 1 be defined by, & 1, we express this endofunction with the endodec-

laration )
EQ:SH /\ /\ <:§> /\ LM(A) \/Xz-

acAct, H:S_a)ll ACsupp i zEA

Note that this is the same as for simulation, but withreplaced by=. The proof that
E expressed’ is essentially the same as the proof for simulation. Thushsofem
1, E< characterizegfp Fx.

6.4 Probabilistic forward simulation for probabilistic au tomata

Given a distribution: € Dist(S), we defingi € Dist(Dist(S)) by

i) = {4 o

otherwise’

Note thatflatten(ft) = w. In this section we consider the probabilistic forward diamau
tion, defined by:

Fys: R {(s,p) € S x Dist(S) | Va € Act;. Vs Sv 3 w2 ) vREY

Note also thatF; is monotone, as increasing the sizefwill in turn increase the

size ofR, and hencé'<; (R) will not shrink.

As before, we want to express the endofunctiory. We employ a “distribution”
languagelqs:, define as follows. Given a séctof actions, the languag@ysi(Act.) is
given by:

=X, | T| L] /\ﬁpk| v90k|<£>>90|[£>]90||-p§0
keK keK

wherea € Act., k € K for some cardinak’, andz € I for some index sef, (which
we will typically, or maybe always, make the set of distribas),p € [0, 1].

We interpret all formulae on distributions, and will use a variable interpretation
o : I — P(P), whereP = Dist(S). Select components of the semantics are:

opEX, iff peo(z)
o, = () iff o, v = ¢ for somer wherey = v

o, u = [—ﬂ>]1/) iff o, v = for all v wherey = v
o =Ly it (v | o o)) > p




Note thatlL, is defined differently here as it was Byas: in Lyst, We take the prob-
abilities to be over sets of distributions, while iy, we take them to be over sets
of states. Also, although the variables are indexed by statdoth languages, their
interpretations are also different. One can check flgtis monotone.

Then the endofunction

Eéf g /\ /\ <é> /\ Ll/(A) \/ X..

a€ACt .o, ACsupp v 2€A
expresseﬁéf, which can be seen as follows:

1. (s,p) € Fxr (R)

2. Va € ACtT,NVs Sv, Ju :a> ', VR

3. Ya € Act, Vs 5 v, Ju = ', VA C supp(v), v(A) < i'(R(A)).

4. QO(R)a w ': /\aEACt,- /\V;Si>1,<:a>> /\ACsuppu LV(A) VZEA XZ'
5. 0(R), 1 |F Exs(s)

Thus by Theorem 1<; characterizegfp F<;.

7 Extensions

For simplicity of presentation, we have chosen probabilaitomata, as they are one of
the most important types of stochastic models studied ititdrature. We want to note,
however, that the general framework can be easily exteraether types of stochastic
models.

Let us briefly discuss the model called continuous-time Maidhains (CTMC). In
CTMCs, we do not have nondeterministic choices, whereasitians are governed by
a negative exponential distribution. Briefly, from eachiestawe have a unique tran-

sition of the forms 2 1, where) is a positive constant characterizing the negative
exponential distribution, and is the distribution (as in probabilistic automata). Then,
starting froms, the probability of triggering the transition within time> 0 is given by

1 — e~*, and once the transition is triggereds reached with probability (s’).

As for probabilistic automata, the important preparatitaps are to (i) provide a
fixed-point based definition of bisimulation and simulati@ations, and (ii) define
appropriate logic and semantics, such as those in the Heywhditner style. Indeed,
both can be done for CTMCs in a straightforward way. The figeat based definition
of simulation is based on the functioR: — {(s,t) | E(s) < E(t) A uRy'ywhere

E(s) is such thas ) u (which is unique as we mentioned), and similarly foft).
The only additional information is that the exit rai&(t) from ¢ is larger than that
of s, meaning that is fasterthans. The logic is also simple because of the lack of
nondeterministic choices: the only modal operator forestatmulae is of the form
(A9, and the distribution formulae are the same as for PAs. Theas#cs for the

modal operator iss satisfies(\)¢ if and only if E(s) > X and u satisfiesy) with

s E—(}S) 1 (as for probabilistic automata). In this way, charactarifdrmulae can be

obtained for CTMCs, with respect to simulations, and alsinulations. Moreover,
further extensions to Markov automata [11], an orthogom#&resion of CTMCs and
PAs, can also be obtained along the same line.



8 Conclusion

This paper shows how the general theory in [1] for finding abteristic formulae can
be adapted and applied to forward simulation and other heftavelations in a setting
for probabilistic automata. Although the characteristimiiulae constructed using this
method may differ from ones developed using other methad(as those in [7]), it is
helpful to see how a single method can be used to find chaistatdormulae for these
probabilistic behavioral relations in general, and tha technique can likely be used
for far more probabilistic behavioral relations. Thus thaimthrust of this paper is not
in the results themselves, but in highlighting a method #s2arch community should
be aware of.

In [10], Desharnais et al. have considered a relaxationipfs{mulations in which
the weight functions may differ by as muchasThe case = 0 reduces to the tradi-
tional bisimulation relations considered in this paperevdas the case> 0 is partic-
ularly useful for reasoning about systems thaarly match each other. Extending our
results to suchk-bisimulations would be an interesting line of future work.
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