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Abstract. Recently, a general framework on characteristic formulae was pro-
posed by Aceto et al. It offers a simple theory that allows oneto easily obtain
characteristic formulae of many non-probabilistic behavioral relations. Our paper
studies their techniques in a probabilistic setting. We provide a general method
for determining characteristic formulae of behavioral relations for probabilistic
automata using fixed-point probability logics. We considersuch behavioral rela-
tions as simulations and bisimulations, probabilistic bisimulations, probabilistic
weak simulations, and probabilistic forward simulations.This paper shows how
their constructions and proofs can follow from a single common technique.

1 Introduction

Probabilistic automata have been extensively used in systems involving both stochastic
and nondeterministic choice. To combat the state space explosion problem, various re-
duction techniques have been introduced and applied to probabilistic automata. These
techniques include bisimulation and simulation relations[21, 20], partial order reduc-
tions [3, 12], symbolic data structures [13], and game-based abstractions [15].

Bisimulation and simulation relations are particularly useful, because they enable
us to use compositional minimization [21]. Briefly, each of the constituting components
can be minimized first before being composed with other interacting components. This
idea is extended to a probabilistic setting in [6]. Various logics have been considered to
reason about probabilistic automata. In [5], a model checking algorithm is presented for
probabilistic automata with respect to the logic PCTL, and in [9, 14], Hennessy-Milner
logics are used to characterize behavioral relations.

A characteristic formula for a behavioral relation is associated with each state in a
model; the formula for a given state characterizes the set ofstates that the given state is
related to according to the behavioral relation. In the casethat the behavioral relation is
simulation, one state is related to another if the first can besimulated by the other, that
is, can be mimicked by the other. In effect, a characteristicformula allows us to reduce
the problem of determining whether one state is simulated byanother to the problem of
model checking. Instead of directly checking whether the first state is simulated by the
other, we check if the other state satisfies the characteristic formula of the first. In a more
theoretical setting, some modal completeness and decidability theorems can be proved
by constructing a finite satisfying model whose elements arenormal forms, which are
characteristic formulae for bisimulation or approximations to such formulae [18].



This paper focuses on behavioral relations over probabilistic automata and their
characteristic formulae. The semantics of our languages involve fixed-points, which
provide us with a natural facility for expressing various kinds of infinite behavior, such
as those that are infinite or have loops. We present a single method, adapted from [1],
that allows one to easily obtain characteristic formulae ofmany behavioral relations,
including simulations and bisimulations, probabilistic bisimulations, probabilistic weak
simulations, and probabilistic forward simulations. The strength of this technique is
its generality: we can construct a variety of characteristic formulae and prove their
correctness using a single simple method.

Relation to Related Work:Our theory builds on a recent paper by Aceto et al. [1],
where a general framework is introduced for constructing non-probabilistic character-
istic formulae over transition systems. It allows one to directly obtain the characteristic
formulae for many behavioral relations, which have traditionally involved technical –
even if not difficult – proofs. Their main result (an earlier version of Theorem 1 in this
paper), in its generality, can be used for all the behavioralrelations we consider, except
for probabilistic forward simulation. We thus provide a modest generalization of this
theorem to address forward simulation.

A more universally relevant extension to the overall setting of [1] is to involve in its
applications (previously developed) liftings of relations. Liftings are discussed in [10,
23], and employed in [14] for fixed-point characterizationsof (bi)simulations and prob-
abilistic (bi)simulations. As they are central to probabilistic behavioral relations, liftings
play a key role in adapting the framework of [1] to a probabilistic setting.

Another difference between our work and [1] is with the language used. The lan-
guages in [1] are fixed-point variants of Hennessy-Milner logic. For all our behavioral
relations except the probabilistic forward simulation, weuse a fixed-point variant of a
two-sorted probability logic given in [16]. This allows us to interpret the characteristic
formulae over states, as in [1], but to also have formulae over distributions that better
fit with the setting of probabilistic automata. For probabilistic forward simulation, we
involve a language, as in [19], only interpreted over distributions rather than states.

In [7], Deng and van Glabbeek study characteristic formulaefor all the behavioral
relations over probabilistic automata that we consider, though they restrict their au-
tomata to being finite. For all their behavioral relations, their characteristic formulae use
a more complex one-sorted language over distributions thanthe one we use for proba-
bilistic forward simulation, and the form of their formulaeare different (reflecting their
different but equivalent approach to lifting) and somewhatsimpler (our characteristic
formula for probabilistic bisimulation involve an infinitary disjunction). But the differ-
ence that we emphasize is that they use a separate technique for proving correctness
of characteristic formulae for each preorder considered, while our framework provides
characteristic formulae which are correct by construction.

Organization of the paper:In Section 2, we provide definitions to be used later in
the paper. In Section 3, we present a slight adaptation of theframework developed
in [1]. In Section 4, we recall the definition of probabilistic automata, the fixed-point
characterization of bisimulation and simulation relations, and the weak bisimulations,
and then we clarify the relationship between liftings used in [7] and in [14]. In Section



5, we present the language that we use for all our formulae except those from a language
introduced in Section 6 that is defined specifically to characterize forward simulations.
In Section 6, we illustrate how the characteristic formulaefor all the behavioral relations
that we consider can be constructed by applying the general framework. In Section 7,
we describe some possible extensions of our work. Finally, Section 8 concludes the
paper.

2 Preliminaries

Distributions. Let S be a set. Adistribution overS is a functionµ : S → R≥0 such
that thesupportof µ, defined bysupp(µ) := {s | µ(s) > 0}, is countable, and∑

s∈S µ(s) = 1. We letµ(A) denote the sum
∑

s∈A µ(s), for all A ⊆ S. We denote
by Dist(S) the set of discrete probability distributions overS and, given an element
s ∈ S, we denote byδs theDirac distributionons that assigns probability1 to {s}.

Given a countable set of distributions{µi}i∈I and a set{pi}i∈I of real numbers in
[0, 1] such that

∑
i∈I pi = 1, we define theconvex combination

∑
i∈I piµi of {µi}i∈I

as the probability distributionµ such that, for eachs ∈ S, µ(s) =
∑

i∈I piµi(s).
Given a distribution over distributions (µ ∈ Dist(Dist(S))), define the flattening of

µ by the functionflatten, that mapsµ to a distributionν, defined by

ν(s) =
∑

ν′∈supp(µ)

µ(ν′)ν′(s). (1)

Complete lattices.A partially ordered set(poset) is a setA together with a relation⊑A

that is reflexive (a ⊑A a for everya ∈ A), anti-symmetric (a ⊑A b andb ⊑A a implies
a = b), and transitive (a ⊑A b andb ⊑A c impliesa ⊑A c). We omit the subscript
A when it should be clear from context. Acomplete latticeis a partially ordered set
(A,⊑), such that every subsetB ⊆ A has a least upper bound inA, written⊔B, and
consequently a greatest lower bound⊓B in A as well.

A function f : A → B between lattices ismonotoneif a ⊑A a′ impliesf(a) ⊑B

f(a′) for eacha, a′ ∈ A. A functionf : A → B is an isomorphismif it is bijective,
monotone, andf−1 is monotone, and consequently maps least upper bounds to least
upper bounds. We call a functionf from A to itself anendofunction. We call a point
a ∈ A a post-fixpointof f if f(a) ≥ a, and afixed-pointof f if f(a) = a. By Tarski’s
fixed-point theorem [22], every monotone endofunctionf on a complete latticeA has
a least upper boundgfp f given by⊔{a | a ⊑ f(a)}.

3 General Framework

In this section we present some background behind our technique for finding charac-
teristic formulae for behavioral relations. We involve languagesL consisting of a set of
formulae with variables. We often useI for the index set of the variables. The formulae
will be interpreted over a setP , such as a set of states or distributions. In [1],I = P . We
find that in order to apply this general framework to forward simulations (Section 6.4),



it is helpful to distinguishing the index setI from the setP over which formulas will be
interpreted, in particular settingI to be the set of states andP the set of distributions.

Variables are interpreted by a functionσ : I → P(P ), called avariable interpreta-
tion. Hereσ(i) is viewed as the set of elements ofP where the variable is considered to
be true. This is similar to a valuation of atomic propositions in modal logic. The vari-
able interpretation can be extended to a full fledged semanticsσ∗ : L → P(P ), using
rules such asσ∗(ϕ∧ψ) = σ∗(ϕ)∩σ∗(ψ). For all formulaeϕ andp ∈ P , we generally
write p ∈ [[ϕ]]σ or (σ, p) |= ϕ for p ∈ σ∗(ϕ).

We call a functionE : I → L a declaration. Such a function characterizes an
equational system of formulae, equating the variableXi with the formulaE(i). As
formulae can contain variables, a declaration is effectively recursive. Involving recur-
sive features of a language allows us to characterize some infinite or looping behavior
without the need for infinitary formulae. Lanugages with recursion generally involve
fixed-points of an endofunction.1 Hence we extend a declarationE to an endofunction
[[E]] : P(P )I → P(P )I on variable intepretations (here we writeP(P )I for the set of
functions that mapI toP(P )), given by

([[E]]σ)(i) = [[E(i)]]σ.

The endofunction[[E]] has a greatest fixed point if the language is monotone.2 A lan-
guage is monotone if wheneverσ1 ⊑ σ2 (pointwise set inclusion), then for all formulae
ϕ and elementsp, it holds that(σ1, p) |= ϕ⇒ (σ2, p) |= ϕ.

Behavioral relations, such as bisimulation, are often defined as the greatest fixed-
point of a monotone endofunctionF onP(I × P ), whereI andP are typically set to
be the set of states. The following definition clarifies our formulation of a characteristic
formula, which in our setting is really a declaration.3

Definition 1 (Declaration characterizing a relation).A declarationE : I → L char-
acterizesthe greatest fixed-point of an endofunctionF : P(I × P ) → P(I × P ) if for
all i ∈ I andp ∈ P ,

gfp[[E]], p |= E(i) iff (i, p) ∈ gfpF .

1 Although we do not involve fixed-points operators directly in the language, we make use of
fixed-points of a function induced by the declaration. A fixed-point sematics based on this
equational system is equivalent to a fragment of theµ-calculi. The equational system provides
us with a more intuitive way of handling what is equivalent tomultiple nestings of fixed-point
operators.

2 This is because variable interpretations form a complete lattice, ordered under pointwise set
inclusion, and the function[[E]] is monotone if the language is. Hence we can apply Tarski’s
fixed-point theorem.

3 As we do not involve fixed-point operators directly in the formulae of the language, our recur-
sive features come from the equational system given by the declaration. Aformula together
with a declarationcontains the information we would normally obtain from a formula in the
sufficiently expressive fragment ofµ-calculus. Given a declarationE andi ∈ I , we always set
the formula component toE(i) when providing a characteristic formula-with-declaration for
i. With this convension, the declaration is all we need to specify.



We link variable interpretations with subsets ofI×P , using the functionϕ : P(I×
P ) → P(P )I given by

ϕ(R) = (i 7→ R(i)) (2)

wherei 7→ R(i) is the function mapping elementi ∈ I to the set{p | iRp}.

Definition 2 (Declaration expressing an endofunction).A declarationE expressesa
monotone endofunctionF : P(I × P ) → P(I × P ) if

ϕ(R), p |= E(i) iff (i, p) ∈ F (R)

for every relationR ⊆ I × P .

More formally, the theorem from [1] is as follows.

Theorem 1. If a declarationE expresses a monotone endofunctionF , thenE charac-
terizes its greatest fixed-pointgfpF .

This theorem and the prior two definitions differ from the onein [1] in that they set
I = P . Our generalization of distinguishingI from P does not affect the proof in [1]
of the main theorem.

4 Probabilistic automata, simulations, and bisimulations

We first discuss lifting of relations, followed by the definition of probabilistic automata
and simulation relations.

4.1 Lifting of relations

A relation lifting transforms a relation between two sets into a relation between two
sets related to the first two. Having two levels of relations is central to definitions of
probabilistic behavioral relations. Liftings of relations fromS ×Dist(S) toDist(S)×
Dist(S) were introduced by Jonssen & Larsen [17] usingweight functionsto define
simulations for Markov chains. Later, Desharnais [8] gave adefinition of liftings that did
not involve weight functions. We prove (Theorem 2 below) that these characterizations
of liftings are equivalent, by using recent key insights (Lemma 1 below) from [10, 23].

First we present the following characterization [10, 23] ofthe lifting of a relation
R ⊆ S × P (with S andP both arbitrary sets) to a relation̂R ⊆ Dist(S)×Dist(P ):

µR̂ν ⇔ ∀(A ⊆ suppµ). µ(A) ≤ ν(R(A)). (3)

WhenP = Dist(S), we can define fromR ⊆ Dist(S) × Dist(P ) a relationR ⊆
Dist(S) × Dist(S) by flattening the elements (see Eq. (1)) ofDist(P ): for µ, ν ∈
Dist(S),

µRν ⇔ ∃ν′ ∈ Dist(P ). ν = flatten(ν′) & µRν′. (4)



We next present the following characterization, based on weight functions, of a
lifting from R ⊆ S ×Dist(S) to R̃ ⊆ Dist(S)×Dist(S), given by

µR̃ν ⇔ ∃{si}i∈N ∈ S. ∃{νi}i∈N ∈ Dist(S) such that
µ =

∑∞

i=1 piδsi andν =
∑∞

i=1 piνi, for
somepi ≥ 0,

∑∞

i=1 pi = 1, andsiRνi.
(5)

Note thatδx
a
→ µ if and only if x

a
 µ. We will, as in [14], use the lifting (3) in

our formulations of behavioral relations. The form (5) was used in [7] to define weak
transitions, and will be used by us in the corresponding section (Definition 6). The two
characterizations of relation liftings are equivalent in the following sense.

Theorem 2. Given a relationR ⊆ S ×Dist(S), R̃ = R̂.

Before proving this, we define weight functions [17] and networks, which will be useful
in the proof.

Definition 3 (Weight function). LetS andP be arbitrary sets. Letµ ∈ Dist(S), ν ∈
Dist(P ) andR ⊆ S × P . A weight functionfor (µ, ν) with respect toR is a function
∆ : S × P → [0, 1], such that

1. ∆(s, p) > 0 impliess R p,
2. µ(s) =

∑
p∈P ∆(s, p), for s ∈ S and

3. ν(p) =
∑

s∈S ∆(s, p), for p ∈ P .

We only make sense of sums that have countably many non-zero terms. The conditions
of Definition 3 ensure that∆(s, p) = 0 whenever eithers 6∈ suppµ or p 6∈ supp ν.
Thus as an uncountable sum, only countably many terms would be non-zero, and hence
it is safe to formulate this as an uncountable sum.

Definition 4 (The network for µ, ν andR). LetR ⊆ S×P , and letµ ∈ Dist(S), ν ∈
Dist(P ) be distributions. AnetworkN (µ, ν,R) is a tuple(V,E, c), where

1. V = {1,%} ∪ supp(S) ∪ supp(P ), with 1,% 6∈ S, P ,
2. E = {(s, p) | (s, p) ∈ R} ∪ {(1, s) | s ∈ supp(µ)} ∪ {(p,%) | p ∈ supp(ν)},
3. c, thecapacity function, is defined by:

(a) c(1, s) = µ(s) for all s ∈ suppµ,
(b) c(p,%) = ν(p) for all p ∈ supp(ν), and
(c) c(s, p) = ∞ for all other (s, p) ∈ E.

Lemma 1. Let R ⊆ S × P , and letµ1 ∈ Dist(S), µ2 ∈ Dist(P ). The following
statements are equivalent:

1. There exists a weight function for(µ1, µ2) with respect toR.
2. The maximum flow of the networkN (µ1, µ2, R) is 1.
3. µ1(A) ≤ µ2(R(A)) for all A ⊆ S.
4. µ1(A) ≤ µ2(R(A)) for all A ⊆ supp(µ1).



The above lemma has been proposed in [10, 23], and used in [14]. The formal proof for
countable systems makes use of a recent result in [2]. Thus, for completeness, the proof
of this lemma for countable systems is given below.

Proof. The equivalence between1 and2 is from Lemma 5.1 in [4]. The equivalence
between3 and4 is straight forward. We will show that1 implies3 and that4 implies2.

(1 =⇒ 3): Let∆ denote the corresponding weight function for(µ1, µ2) with respect
to R. Now we want to prove that for everyA ⊆ S: µ1(A) ≤ µ2(R(A)). First, letting
Dom(R) represent the set of first coordinates of the relationR, we have

µ1(A) =
∑

u∈A

∑

v∈P

∆(u, v) =
∑

u∈A

∑

v∈R(A)

∆(u, v) =
∑

u∈A∩Dom(R)

∑

v∈R(A)

∆(u, v),

which follows from the properties of a weight function (Definition 3), especially that
∆(u, v) = 0 if u 6∈ Dom(R) or v 6∈ R(u). Similarly, from the first and third conditions
of a weight function, we have thatµ2(R(A)) =

∑
u∈R−1(R(A))

∑
v∈R(A)∆(u, v).

From basic set theory, we see thatA ∩ Dom(R) ⊆ R−1(R(A)). Thus by comparing
µ1(A) andµ2(R(A)), we have our desired result:µ1(A) ≤ µ2(R(A)).

(4 =⇒ 2): Assume that the fourth clause is true. We show that the maximum flow of
the networkN (µ1, µ2, R) has value1. To construct such a maximum flow, we borrow
the proof idea of Theorem 7.3.4 from Desharnais [8]. According to theMaximum Flow
Minimum Cut Theorem[2], the maximum flow equals the capacity of a minimal cut.
Therefore, it suffices to show that there exists a minimal cutof capacity1. Cut{1} has
capacity1, but we still have to show that it is minimal. LetC be some minimal cut (not
necessarily{1}). We letB = C ∩S. The capacity ofC is the sum:c(C) =

∑
{c(i, j) |

i ∈ C, j /∈ C}. CutC has to fulfills ∈ B =⇒ R(s) ⊆ C because otherwise it would
have infinite capacity. Hence the capacity ofC is: c(C) = µ1(S \B) + µ2(R(B)). By
construction of the networkN , it holds thatB ⊆ supp(µ1). Sinceµ1(B) ≤ µ2(R(B)),
we have:c(C) ≥ µ1(S \B)+µ1(B) = µ1(S) = 1. Hence, the capacity ofC is greater
than or equal to1, implying that the minimum cut has value1. �

Proof. (Proof of Theorem 2)
Suppose thatµR̃ν. Thenµ =

∑∞

i=1 piδsi andν =
∑∞

i=1 piνi, wherepi ≥ 0,∑∞

i=1 pi = 1, andsiRνi. Defineν′ ∈ Dist(Dist(S)), such thatν′(νi) = pi. Then
thepi are the weights∆(si, νi) in the weight function forµ andν′ (Definition 3). By

Lemma 1,µ(A) ≤ ν′(R(A)), for allA ∈ supp(µ). ThusµR̂ν′, and henceµR̂ν.

Suppose thatµR̂ν. Then there is aν′ ∈ Dist(Dist(S)), such thatν = flatten(ν′)

andµR̂ν′, i.e., for allA ∈ suppµ, µ(A) ≤ ν′(R(A)). By Lemma 1, there is a weight
function∆ for µ andν′ with respect toR. Enumerate the pairs(s, ν), using a bijective
functionf : (supp(µ)× supp(ν′)) → N (replaceN with {1, 2, . . . , N} if | supp(µ)×
supp(ν′)| = N < ∞). Let g = f−1, pi = ∆(g(i)), si = π1(g(i)) (whereπ1 is the
projection onto the first coordinate), and letνi = π2(g(i)). We then obtain the desired
condition of (5) from the conditions of the weight function by plugging in an arbitrary
s into the right hand side of the equation forµ in (5), and applying second condition of
the weight function to see that we indeed getµ(s); and then note that the third condition
of the weight function collapses the right hand side of the equation forν in (5) into the



right hand side of the equation for flattening ofν′ into ν (recall that we used equation
(4) to obtainν′). �

4.2 Probabilistic automata

Now recall the definition of probabilistic automaton [21], or PA for short.

Definition 5. A probabilistic automatonis a triple M = (S,Act , Steps), whereS is
a countable set ofstates, Act is a countable set ofactions, and the relationSteps ⊆
S ×Act ×Dist(S) is thetransition relation.

Obviously, PAs comprise labeled transition systems (LTS) for the special case that
for all (s, a, µ) ∈ Steps, µ is a Dirac distribution. Denote a transition(s, a, µ) ∈ Steps

by s
a
→ µ, which is also referred to as ana-transition ofs. We denote the set of distri-

butions leaving a states by actiona by Stepsa(s) = {µ | s
a
→ µ}.

Given a probabilistic automaton(S,Act, Steps), we can augment the transition re-
lation Steps (which maps states via actions to distributions) to anothertransition rela-
tionComb (which also maps states via actions to distributions), suchthat each transition
in Comb for any action corresponds to a convex combination of transitions inSteps for
that action. Precisely, if{s

a
→ µi}i∈I is a set of transitions, then

s
a
 µ iff µ =

∑

i∈I

piµi for somepi where
∑

i∈I

pi = 1. (6)

The a transitions inStep are denoted by
a
→ and those inComb are denoted by

a
 . Note that as

a
→ may represent a finite relation over states,

a
 typically represents a

relation that is uncountable.

4.3 Simulations and bisimulations

In the following exposition, we fix some PAM = (S,Act , Steps) and observe that the
set of relations overS, denoted by2S×S , is a complete lattice with set inclusion as the
partial order. We review in this section how some notions of simulation and bisimulation
can be presented in terms of suitable monotone functions over this lattice [14].

Simulation.Consider the functionF- : 2S×S → 2S×S defined as follows:

R 7→ {(s, t) ∈ S × S | ∀s
a
→ µ. ∃t

a
→ µ′ : µR̂µ′} (7)

We say that a relationR ∈ 2S×S is asimulation relationif R is a post-fixpoint ofF-,
i.e.R ⊆ F-(R). Note that the functionF- is monotone. Recall that Tarski’s fixed-point
theorem [22] says that the fixed-points of a monotone function form a complete lattice
and that the greatest fixed-point is the union of all post-fixpoints.Similarity, denoted
-, is defined as the greatest fixed point ofF-, and hence must be the union of all
simulation relations, the greatest simulation relation.



Example 1.Let M be such that for every(s, a, µ) ∈ Steps , µ is a Dirac distribution.
Then

F- : R 7→ {(s, t) ∈ S × S | ∀s
a
→ δs′ . ∃t

a
→ δt′ : δs′R̂δt′}

= {(s, t) ∈ S × S | ∀s
a
→ δs′ . ∃t

a
→ δt′ : δs′({s

′}) ≤ δt′(R({s
′}))}

= {(s, t) ∈ S × S | ∀s
a
→ δs′ . ∃t

a
→ δt′ : s

′Rt′}.

By replacing the Dirac distributionsδs by statess in the definition ofF- over the LTS
M, we obtain the same definition that is given in [1] for an endofunction, whose post-
fixpoints are simulations.

A coarser relation, calledprobabilistic simulation, is defined in the same way by
replacing transitions with combined transitions so that the greatest probabilistic simu-
lation is the greatest fixed-point of the functionF-p : 2S×S → 2S×S defined by:

R 7→ {(s, s′) ∈ S × S | ∀s
a
→ µ. ∃s′

a
 µ′ : µR̂µ′} . (8)

A relationR ⊆ S × S is a probabilistic simulation if it is a post-fixpoint ofF-p .
The greatest probabilistic simulation preorder-p is defined as the greatest fixed-point
of F-p .

Bisimulation. The function corresponding to bisimulation is a symmetric variation of
the function for simulation, such thatF∼ : 2S×S → 2S×S is defined by:

R 7→

{
(s, t) ∈ S × S

∣∣∣∣∣
∀s

a
→ µ. ∃t

a
→ µ′ : µR̂µ′

∀t
a
→ µ′. ∃s

a
→ µ : µR̂µ′

}

We say that a relationR ∈ 2S×S is abisimulation relationif R is a post-fixpoint of
F∼, i.e.R ⊆ F∼(R). The greatest bisimulation∼ is defined as the greatest fixed-point
gfp F∼.

Similarly, we introduceprobabilistic bisimulation. The functionF∼p : 2S×S →
2S×S for probabilistic bisimulation is defined analogously, however using combined
transitions:

R 7→

{
(s, t) ∈ S × S

∣∣∣∣∣
∀s

a
→ µ. ∃t

a
 µ′ : µR̂µ′

∀t
a
→ µ′. ∃s

a
 µ : µR̂µ′

}

A relationR ⊆ S × S is a probabilistic bisimulation if it is a post-fixpoint ofF∼p .
The greatest bisimulation∼p is defined as the greatest fixed-pointgfp F∼p .

It is easy to see that∼ and∼p are equivalence relations. It is not difficult to see that,
restricting to LTSs, (bi-)simulation and probabilistic (bi-)simulation coincide.

Weak simulation.We say that an automaton(S,Actτ , Steps) is divergent if there is
an infinite sequence(si, µi), such thatsi

τ
→ µi andsi+1 is in the support ofµi. An

automaton that is not divergent is convergent.
Let Act be a non-empty set of actions, and letActτ = Act∪ {τ}, whereτ is an ele-

ment not appearing inActand is regarded as an internal step. We define weak transitions
similarly to those in [7, 20]:



Definition 6 (Weak transitions). Given a convergent countable probabilistic automa-
ton (S,Actτ , Steps), we define the following relations:

– definex
τ̂
→ µ iff x

τ
→ µ or µ = δx, and definex

â
→ µ iff x

a
→ µ.

– define
τ̂
֌ and

â
֌ from respectively

τ̂
→ and

â
→ according to(5).

– for all a ∈ Actτ , defineµ
â
⇒ ν iff there areµ′ andν′, such thatµ

τ̂
֌

∗

µ′, µ′
â
֌ ν′,

ν′
τ̂
֌

∗

ν, where
τ̂
֌

∗

is the reflexive transitve closure of
τ̂
֌.

A weak simulation relationis defined as a post-fixpoint of the endofunctionFw :

2S×S → 2S×S defined by:

R 7→ {(s, t) ∈ S × S | ∀a ∈ Actτ . ∀s
a
→ µ. ∃t. δt

â
⇒ µ′ : µR̂µ′} .

Weak similarity, denotedw, is defined is the greatest fixed-point ofFw.

5 Hennessy-Milner logic for probabilistic automata

Here we present our basic languageLbas, a two-sorted language, similar to one in [16],
consisting of state formulae (interpreted over the statesS of the automaton) and dis-
tribution formulae (to be interpreted overDist(S)). It is suggested in [14] that such a
two-sorted language could be useful for a coalgebraic approach, but we leave coalge-
braic characteristic formulae for future work.

Of the two sorts, we are ultimately interested in the formulae over states, as the sim-
ulation and bisimulation relations we have seen so far are defined over states. Formally,
given a setActτ of actions augmented with a silent actionτ , we define the language
Lbas(Actτ ) by the following two-sorted syntax. State formulae are given by:

ϕ ::= Xz | ⊤ | ⊥ |
∧

k∈K

ϕk |
∨

k∈K

ϕk | 〈T 〉ψ | [T ]ψ

whereT ∈ {
a
→,

a
 ,

a
⇒| a ∈ Actτ}, k ∈ K for some cardinalK, andz ∈ I for some

index setI, which we will typically set equal to the setS of states; distribution formulae
are given by:

ψ ::= ⊤ | ⊥ |
∧

k∈K

ψk |
∨

k∈K

ψk | Lpϕ

wherep ∈ [0, 1] andk ∈ K for some cardinalK.4

Semantics.Let M = (S,Act , Steps) be a PA. The formulaϕ is interpreted on states
andψ on distributions over. Both will make use of a variable interpretationσ : I →
P(P ), whereP is the set of statesS. Select components of the semantics are given by:

4 It may be desirable to restrictp to rational numbers so as to have a countable language, but
doing so would require we add a countable conjunction to manyof our characteristic formulae.



σ, s |= Xz iff s ∈ σ(z)
σ, s |= 〈T 〉ψ iff σ, µ |= ψ for someµ such thatsTµ
σ, s |= [T ]ψ iff σ, µ |= ψ for all µ such thatsTµ
σ, µ |= Lpϕ iff µ({s | σ, s |= ϕ}) ≥ p

whereT ∈ {
a
→,

a
 ,

a
⇒| a ∈ Actτ}. To be clear, we take

a
→ to be the primitive relation

component in the probabilistic automaton,
a
 to be derived from

a
→ according to (6),

and
a
⇒ to be defined according to Definition 6.
We observe that this language is monotone:

Proposition 1. if σ1 ⊑ σ2 (pointwise set inclusion), then for all state formulaeϕ and
statess, we haveσ1, s |= ϕ ⇒ σ2, s |= ϕ and for all distribution formulaeψ and
distributionsµ, we haveσ1, µ |= ψ ⇒ σ2, µ |= ψ.5

Proof. This is by induction on the structure of formulae:

IH suppose for every subformulaψ of ϕ, we have that wheneverσ1 ⊑ σ2, if ψ were
a state formula, we have for each states, σ1, s |= ϕ ⇒ σ2, s |= ϕ and ifψ were a
distribution formula, we have for each distributionσ1, µ |= ψ ⇒ σ2, µ |= ψ.

base caseϕ = Xz immediate from definition.
Case booleans: these may be either state or distribution formulae, but the proof is

straight forward.
Case ϕ = 〈T 〉ψ, suppose thatσ1, s |= 〈T 〉ψ. Then there is aµ such thatsTµ and

σ1, µ |= ψ. Then by the IH,σ2, µ |= ψ, and henceσ2, s |= 〈T 〉ψ.
Case ϕ = [T ]ψ, this is almost identical to the〈T 〉ψ case.
Case ϕ = Lpψ. Suppose thatσ1, µ |= Lpψ. Thenµ({s | σ1, s |= ψ}) ≥ p. But then

by the IH,µ({s | σ2, s |= ψ}) ≥ µ({s | σ1, s |= ψ}) ≥ p. Thusσ2, µ |= Lpψ. �

6 Characteristic formulae

In this section, we illustrate how the characteristic formulae for all the behavioral rela-
tions that we consider can be constructed by using our adaptation of the general frame-
work of [1].6

6.1 Simulations

We express inLbas the endofunctionF- with the endodeclaration

E- : s 7→
∧

a∈Act

∧

µ:s
a
→µ

〈
a
→〉

∧

A⊆suppµ

Lµ(A)

∨

z∈A

Xz.

Recall that[[E-]] is an endofunction on variable interpretations, and is monotone since
the language is. Had we restricted our language to only allowing rational subscriptsp
in Lp, then we could replaceLµ(A) by

∧
p∈Q∩[0,µ(A)] Lp.

We see thatE- expressesF- as follows:

5 Note that this formulation of a monotone language is slightly stronger than the definition of a
monotone language given in Section 3.

6 The general framework in [1] should apply to most of the behavioral relations as presented in
that paper; our adaptation is only needed for forward simulation.



1. (s, t) ∈ F-(R)

2. ∀a ∈ Act, ∀s
a
→ µ, ∃t

a
→ µ′, µR̂µ′

3. ∀a ∈ Act, ∀s
a
→ µ, ∃t

a
→ µ′, ∀A ⊆ supp(A), µ(A) ≤ µ′(R(A)).

4. ϕ(R), t |=
∧

a∈Act

∧
µ:s

a
→µ

〈
a
→〉

∧
A⊆suppµ Lµ(A)

∨
z∈AXz.

5. ϕ(R), t |= E-(s)

To see the relationship between Items (3) and (4), note that[[
∨

z∈AXz]]ϕ(R) = R(A),
and hence the formulaLµ(A)

∨
z∈AXz holds wheneverµ(A) ≤ µ′(R(A)).

Then by Theorem 1,E- characterizesgfpF-.

Opsim: Toward investigating the opposite of simulation (which we abbreviateopsimor
o), we express the endofunction

F-o : R 7→ {(s, t) ∈ S × S | ∀a ∈ Act. ∀t
a
→ µ′. ∃s

a
→ µ : µR̂µ′}

with the endodeclaration

E-o : s 7→
∧

a∈Act

[
a
→]

∨

µ:s
a
→µ

∧

A⊆suppµ

Lµ(A)

∨

z∈A

Xz.

We see thatE-o expressesF-o as follows:

1. (s, t) ∈ F-o(R)

2. ∀a ∈ Act, ∀t
a
→ µ′, ∃s

a
→ µ, µR̂µ′

3. ∀a ∈ Act, ∀t
a
→ µ′, ∃s

a
→ µ, ∀A ⊆ supp(A), µ(A) ≤ µ′(R(A)).

4. ϕ(R), t |=
∧

a∈Act[
a
→]

∨
µ:s

a
→µ

∧
A⊆suppµ Lµ(A)

∨
z∈AXz.

5. ϕ(R), t |= E-o(s)

Then by Theorem 1,E-o characterizesgfpF-o . Note thatE- ∧ E-o is the character-
istic formula for bisimulation∼.

6.2 Probabilistic simulations and probabilistic bisimulation

Using the same argument as for simulation and opsimulation,we see that the endofunc-
tion

E-p : s 7→
∧

a∈Act

∧

µ:s
a
→µ

〈
a
 〉

∧

A⊆suppµ

Lµ(A)

∨

z∈A

Xz.

expressesF-p , and that the endofunction

F-po : R 7→ {(s, t) ∈ S × S | ∀a ∈ Act. ∀t
a
→ µ′. ∃s

a
 µ : µR̂µ′}

is expressed by the endodeclaration

E-po : s 7→
∧

a∈Act

[
a
→]

∨

µ:s
a
 µ

∧

A⊆suppµ

Lµ(A)

∨

z∈A

Xz.

HenceE-p andE-
po

characterizegfpF-p andgfpF-po respectively. Note thatE-po is
typically infinitary, since the disjunction may be over an uncountable set. Similar to the
case for ordinary bisimulation,E- ∧E-o is the characteristic formula for probabilistic
bisimulation∼p.



6.3 Weak simulations

A weak simulation is defined as the greatest fixed-point of theendofunctionFw :

2S×S → 2S×S defined by

R 7→ {(s, t) ∈ S × S | ∀a ∈ Actτ . ∀s
a
→ µ. ∃t. δt

â
⇒ µ′ : µR̂µ′} .

Letting s
â

⇒ µ be defined byδs
â
⇒ µ, we express this endofunction with the endodec-

laration

Ew : s 7→
∧

a∈Actτ

∧

µ:s
a
→µ

〈
â

⇒〉
∧

A⊆suppµ

Lµ(A)

∨

z∈A

Xz.

Note that this is the same as for simulation, but with
a
→ replaced by

a

⇒. The proof that
Ew expressesFw is essentially the same as the proof for simulation. Thus by Theorem
1,Ew characterizesgfpFw.

6.4 Probabilistic forward simulation for probabilistic au tomata

Given a distributionµ ∈ Dist(S), we definĕµ ∈ Dist(Dist(S)) by

µ̆(ν) =

{
µ(s) ν = δs
0 otherwise

.

Note thatflatten(µ̆) = µ. In this section we consider the probabilistic forward simula-
tion, defined by:

Fwf : R 7→ {(s, µ) ∈ S ×Dist(S) | ∀a ∈ Actτ . ∀s
a
→ ν. ∃µ′.µ

â
⇒ µ′ : νR̂µ̆′}

Note also thatFwf is monotone, as increasing the size ofR will in turn increase the

size ofR̂, and henceFwf (R) will not shrink.
As before, we want to express the endofunctionFwf . We employ a “distribution”

languageLdst, define as follows. Given a setAct of actions, the languageLdst(Actτ ) is
given by:

ϕ ::= Xz | ⊤ | ⊥ |
∧

k∈K

ϕk |
∨

k∈K

ϕk | 〈
â
⇒〉ϕ | [

â
⇒]ϕ | Lpϕ

wherea ∈ Actτ , k ∈ K for some cardinalK, andz ∈ I for some index setI, (which
we will typically, or maybe always, make the set of distributions),p ∈ [0, 1].

We interpret all formulaeϕ on distributions, and will use a variable interpretation
σ : I → P(P ), whereP = Dist(S). Select components of the semantics are:

σ, µ |= Xz iff µ ∈ σ(z)

σ, µ |= 〈
â
⇒〉ψ iff σ, ν |= ψ for someν whereµ

â
⇒ ν

σ, µ |= [
â
⇒]ψ iff σ, ν |= ψ for all ν whereµ

â
⇒ ν

σ, µ |= Lpϕ iff µ̆({ν | σ, ν |= ϕ}) ≥ p



Note thatLpϕ is defined differently here as it was inLbas: in Ldst, we take the prob-
abilities to be over sets of distributions, while inLbas we take them to be over sets
of states. Also, although the variables are indexed by states in both languages, their
interpretations are also different. One can check thatLdst is monotone.

Then the endofunction

Ewf : s 7→
∧

a∈Actτ

∧

ν:s
a
→ν

〈
a
⇒〉

∧

A⊆supp ν

Lν(A)

∨

z∈A

Xz.

expressesFwf , which can be seen as follows:

1. (s, µ) ∈ Fwf (R)

2. ∀a ∈ Actτ , ∀s
a
→ ν, ∃µ

â
⇒ µ′, νR̂µ̆′

3. ∀a ∈ Actτ , ∀s
a
→ ν, ∃µ

â
⇒ µ′, ∀A ⊆ supp(ν), ν(A) ≤ µ̆′(R(A)).

4. ϕ(R), µ |=
∧

a∈Actτ

∧
ν:s

a
→ν

〈
â
⇒〉

∧
A⊆supp ν Lν(A)

∨
z∈AXz .

5. ϕ(R), µ |= Ewf (s)

Thus by Theorem 1,Ewf characterizesgfpFwf .

7 Extensions

For simplicity of presentation, we have chosen probabilistic automata, as they are one of
the most important types of stochastic models studied in theliterature. We want to note,
however, that the general framework can be easily extended to other types of stochastic
models.

Let us briefly discuss the model called continuous-time Markov chains (CTMC). In
CTMCs, we do not have nondeterministic choices, whereas transitions are governed by
a negative exponential distribution. Briefly, from each state s we have a unique tran-

sition of the forms
λ
→ µ, whereλ is a positive constant characterizing the negative

exponential distribution, andµ is the distribution (as in probabilistic automata). Then,
starting froms, the probability of triggering the transition within timet > 0 is given by
1− e−λt, and once the transition is triggered,t is reached with probabilityµ(s′).

As for probabilistic automata, the important preparation steps are to (i) provide a
fixed-point based definition of bisimulation and simulationrelations, and (ii) define
appropriate logic and semantics, such as those in the Hennessy-Milner style. Indeed,
both can be done for CTMCs in a straightforward way. The fixed-point based definition
of simulation is based on the function:R 7→ {(s, t) | E(s) ≤ E(t) ∧ µR̂µ′}where

E(s) is such thats
E(s)
→ µ (which is unique as we mentioned), and similarly forE(t).

The only additional information is that the exit rateE(t) from t is larger than that
of s, meaning thatt is faster thans. The logic is also simple because of the lack of
nondeterministic choices: the only modal operator for state formulae is of the form
〈λ〉ψ, and the distribution formulae are the same as for PAs. The semantics for the
modal operator is:s satisfies〈λ〉ψ if and only if E(s) ≥ λ andµ satisfiesψ with

s
E(s)
→ µ (as for probabilistic automata). In this way, characteristic formulae can be

obtained for CTMCs, with respect to simulations, and also bisimulations. Moreover,
further extensions to Markov automata [11], an orthogonal extension of CTMCs and
PAs, can also be obtained along the same line.



8 Conclusion

This paper shows how the general theory in [1] for finding characteristic formulae can
be adapted and applied to forward simulation and other behavioral relations in a setting
for probabilistic automata. Although the characteristic formulae constructed using this
method may differ from ones developed using other methods (such as those in [7]), it is
helpful to see how a single method can be used to find characteristic formulae for these
probabilistic behavioral relations in general, and that this technique can likely be used
for far more probabilistic behavioral relations. Thus the main thrust of this paper is not
in the results themselves, but in highlighting a method the research community should
be aware of.

In [10], Desharnais et al. have considered a relaxation of (bi)-simulations in which
the weight functions may differ by as much asε. The caseε = 0 reduces to the tradi-
tional bisimulation relations considered in this paper, whereas the caseε > 0 is partic-
ularly useful for reasoning about systems thatnearlymatch each other. Extending our
results to suchε-bisimulations would be an interesting line of future work.
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