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Stochastic hybrid (discrete/continuous) systems

@ discrete-time models

finite-space Markov chain uncountable-space Markov process
(Z,7) (8, Ts)
Z:(Z1722,Z3) 8§ = R?

x=m(s)T =1 (s)(x—m(s))

7= NROE

_15(
P21 Ts(x|s) = ¢

P11 P12 P13]

P(z1,{22, 23}) = P12 + P13 P(s,A) = [, Ts(dx|s), Ae B(S)




Stochastic hybrid (discrete/continuous) systems

@ discrete-time models

finite-space Markov chain uncountable-space Markov process
(Z,7) (8, Ts)
Z:(Z1722,Z3) 8§ = R?

— 3 (x=m(s) T~ (s)(x—m(s))

J= NG

Ts(x|s) = €

P21

P11 P12 P13 ]
P(Z1,{22723}) = P12 + P13 P(S7 A) = fA TS(dX|S), Ac ‘B(S)

=- discrete-time, stochastic hybrid systems



Stochastic hybrid (discrete/continuous) systems
Definition
A discrete-time stochastic hybrid system is a pair (8, Ts), where

0 8 = Ugea({q} x R™@), Q a discrete set of modes, n: Q — N

o T,:8 x 8 — [0, 1] specifies the dynamics of process at point s = (g, x):

(a1} = To(dX'|(g, x)) To(ql(q, x)), if @ = g (no transition)
s(ds’[s) = T.(ax’|(g, %), q") To(d'|(g, X)), if g’ # q (transition)

@ initial state 7 : § — [0, 1]

[AA et al - Automatica 08]




Stochastic hybrid (discrete/continuous) systems
Definition
A discrete-time stochastic hybrid system is a pair (8, Ts), where

@ 8 = Ugeo({q} x R™9),Q a discrete set of modes, n: Q — N

o T;:8 x 8 — [0, 1] specifies the dynamics of process at point s = (q, x):

T(gs' 1) — 4 T(@Xl(a,x))To(ql(q, X)), if ' = g (no transition)
s(ds’[s) = T(dx'|(g,x),q9)T4(d'|(q, x)), if § # q (transition)

o initial state 7 : § — [0, 1]

@ can be control dependent (v € U):

T.(ds' |s, u) = T (aX'|(qg, x), u)T4(ql(q, x), u), if ¢ = g (no transition)
s O TH(aX (g, x), u, @) Te(9'|(q, x), u), if @ # g (transition)

@ policy p: “string” of controls
@ equivalent dynamical representation: sxi1 = f(Sk, &k, Uk)
@ related to other models, e.g. LMP [AA et al - Automatica 08]



Stochastic hybrid systems in risk analysis

Zni1 = 9(Zn, 0n) Z, €R, <+ capital
Oni1 = h(Zn, 0n,&n) On € {O1,...,0On}, < interest

where £, i.i.d. random variables; g, h measurable; (Z, 6) given

[I. Tkachev, AA - CDC 11 ]




Stochastic hybrid systems in risk analysis

Zni1 = 9(Zn, 0n) Z, € R, <+ capital
Oni1 = h(Zn, 0n,&n) On € {O1,...,0On}, « interest

where £, i.i.d. random variables; g, h measurable; (Z, 6) given

Capital

OO W \M g

50 100\‘</ Ljﬁ” Wzoo(

@ objective: what is the probability that, starting from initial capital Z, = x, high
capitalization y is reached, while company’s bankruptcy is avoided

[I. Tkachev, AA - CDC 11 ]




Outline
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@ Analysis and control synthesis problems
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Analysis and control synthesis problems

|

reachability reach-avoid
(safety/invariance) (constrained reachability)

sequential reachability oo-horizon objectives
(trajectory planning) (i.0., eventually always)

@ properties expressed via PCTL, LTL (DFA or Blchi automata)




Analysis and control synthesis problems

synthesis for reachability synthesis for reach-avoid
games (2 — 1/2 players) (pursuit evasion games)

sequential reachability oo-horizon objectives
(trajectory planning) (i.0., eventually always)

@ properties expressed via PCTL, LTL (DFA or Blchi automata)




Probabilistic safety/invariance: characterization

@ probabilistic invariance is the probability that the execution associated with an
initial distribution 7 stays in S (safe set) during the time horizon [0, N|:

P.(S) = P.(sx € S,Yk € [0.N))

[AA et al. - Automatica 08]
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P.(S) := P, (sx € S,k € [0. N])

@ consider realization s € 8, k € [0, N] —then
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Probabilistic safety/invariance: characterization

@ probabilistic invariance is the probability that the execution associated with an
initial distribution 7 stays in S (safe set) during the time horizon [0, N|:

P.(S) := P, (sx € S,k € [0. N])

@ consider realization s, € 8, k € [0, N| —then

N .

1, ifVke|[0O,N]:sce S
I I 1S(sk) — [ ) ] k
o 0, otherwise

N N
=P (S)=P. (H 15(sk) = 1) =E |]] 1s(sk)]
k=0 k=0

@ select e € [0, 1] — probabilistic safe/invariant set with safety level ¢ is

S(e) ={s€8:Ps(S) > ¢} (heren =Js)

[AA et al. - Automatica 08]



Probabilistic invariance: computation

@ computation of P¢(S) (and thus of S(¢)) via dynamic programming:
sequential update, backward in time, of multi-stage value function
Vi(s) : [0, N] x 8 — R,

accounting for current and expected future rewards — in particular

Vi(s) = 1s(s),  Vi(s) = [S Vi (x)T(x]s)

| Vo(s) = Ps(S) = S() |

[AA et al. - Automatica 08]



Probabilistic invariance: computation

@ computation of P¢(S) (and thus of S(¢)) via dynamic programming:
sequential update, backward in time, of multi-stage value function
Vi(s) : [0, N] x 8 — R,

accounting for current and expected future rewards — in particular

Vi(s) = 1s(s),  Vi(s) = [S Vi (x)T(x]s)

| Vo(s) = Ps(S) = S() |

@ control dependent models: find optimal policy 1., optimizing recursively over

Vi(s,u) : [0,N] x 8 x U — RT

[AA et al. - Automatica 08]



Computing probabilistic invariance: issues

@ issues
@ non-standard (max, multiplicative) value functions
@ continuous control space
@ hybrid state space

= solution of DP is seldom analytical




Computing probabilistic invariance: issues

@ issues

@ non-standard (max, multiplicative) value functions
@ continuous control space
@ hybrid state space

= solution of DP is seldom analytical
@ numerical solutions are needed

= problem # 1: difference between real solution and computed solution
(in verification and correct-by-design controller synthesis)

= problem # 2: Bellman’s curse of dimensionality
(state/control space gridding)
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e Formal verification of stochastic hybrid systems

@ Computable analysis and control synthesis via formal abstractions
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Approximate model checking of probabilistic invariance

@ model (8, T), invariance set S € 8, finite time horizon N, safety level ¢

[AAetal. - EJC 11]
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@ S — S;: define formula @, characterizing set S, label states in Z
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@ S — S;: define formula @, characterizing set S, label states in Z
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Approximate model checking of probabilistic invariance

@ model (8, T), invariance set S € 8, finite time horizon N, safety level ¢
o J-approximate (8, Ts) with finite-state dt-MC (2, T)

* compute approximation error f(6, N)

@ S — S;: define formula @, characterizing set S, label states in Z

= probabilistic safe set

S(e) ={s€8:PS) > ¢}
={se8:(1—PsS)) <1—¢}

can be related to
Zs(e) = Sat (P<i_. (true US" —dg)))
={ze2:zEPs_. (true U ~dg)}

[AAetal. - EJC 11]



Approximate model checking of probabilistic invariance

@ model (8, Ts), invariance set S € 8, finite time horizon N, safety level ¢
@ J-approximate (8, T;) with finite-state dt-MC (2, T)

* compute approximation error f(4, N)

@ S — Ss: define formula ¢, characterizing set S;, label states in Z

@ define

S(e) ={s€8:Py(S) > ¢}
Zs(e) = Sat (IP’S1_6 (true USN—\¢35))

Q selectn >0:n/2€ (0,1 —¢)

@ pick o : (5, N) <n/2

@ compute Zs(e + n/2)

Q define 5,(c) = {s € 8 <+ z € Zs(c +1/2)}

:> A~
S(e +1) € 8,(c) € ()

[AAetal. - EJC 11]



Verification of over- or under-specifications in PCTL

@ any PCTL formula can be expressed via equivalent DP recursions

@ consider PCTL formula P (W) on SHS (8, Ts)
o J-approximate SHS (8, Tg) as a dt-MC (Z, 7)
@ compute approximation error f(5, V)

[D’Innocenzo, AA, J.-P. Katoen - HSCC 12]



Verification of over- or under-specifications in PCTL

@ any PCTL formula can be expressed via equivalent DP recursions

@ consider PCTL formula P (V) on SHS (8, Ts)
o J-approximate SHS (8, Tg) as a dt-MC (Z, 7)
@ compute approximation error f(5, V)

@ compute g(WV, f), a function based on formula & error
@ model check P 5w 1) (V) on (Z,7)

1 if PCTL formula is “robust”, then conclusion holds for P... (V) on SHS

2 else refine § — reduce f(d, N) — decrease g(V, )

[D’Innocenzo, AA, J.-P. Katoen - HSCC 12]



Approximate model checking of automata specifications

@ generalization to “richer” set of properties over dtSHS
@ specifications expressed as a DFA or a Blchi automata

@ probabilistic reachability-like computation over product construction
@ recent extensions to controller synthesis

[AA etal. - HSCC 11; I. Tkachev et al. - HSCC13]




Characterization & computation of co-horizon properties

@ consider target set T; invariantset S=T¢ =8\ T; Vs € §:

Ps(Vvn>0:5,€8) <+ 1—Ps(truelUT)

[I. Tkachev, AA - CDC 11, HSCC 12, CDC12,TCS 13 ]



Characterization & computation of co-horizon properties

@ consider target set T; invariantset S=T¢ =8\ T; Vs € §:

Ps(Vvn>0:5,€8) <+ 1—Ps(truelUT)

@ existence and computation of absorbing set B : Vx € B, Ts(B|x) = 1

@ characterization — study of existence/uniqueness of (non-trivial) solutions of
Bellman equations

convergence of Bellman recursions, contractivity of operators

@ computation — formal reduction to finite-horizon problems
[I. Tkachev, AA - CDC 11, HSCC 12, CDC12,TCS 13]
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On the approximation error (3, N)
@ approximation via J-partitioning: S = Uj—1,...m X S

@ under Lip-continuity assumptions on density of kernel Tg,
h(’?])? i)j:'l?"'ﬂm

o forany z; € S;,Vs:sAZ € S, erroris

f(65,N) = [Ps(S) = P(Ss)l < max Ng; » h(i,),
i=1,....m

J=1,....m

0= maXi=1,....m 5,’, 5q_’,' = diam (SI)

‘ error is linear in NV, §; and depends on local constants h(i, j) — local tuning ‘
[AA et al. - EJC 11, S. Soudjani, AA - QEST 11, TAC 13]




On the approximation error (3, N)

@ formula-based abstractions

@ software (in the making) for sequential, adaptive grid generation based on
approximation error

o from MATLAB/Simuling model to MRMC/PRISM input

number ofcols: 958

i col 1552

09 098 1 102 104 106 108 11 132 134 116

09 098 1 102 104 106 108 11 112 114 116

[S. Soudjani, AA - QEST 11, HSCC 12, ATVA12, SIAM 13]




Approximate probabilistic bisimulations
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Approximate probabilistic bisimulations
@ above abstraction leads to approximate probabilistic bisimulation [Larsen &

Skou, 91] - alternatively ...
%

@ consider models (T, 8;) with solution processes s;(k),i =1,2,k >0
@ parallel composition of models with output s 2(k) = s1(k) — sz2(k)

AA - ENTCS 13; I. Tkachev, AA - HSCC 13




Approximate probabilistic bisimulations
@ above abstraction leads to approximate probabilistic bisimulation [Larsen &

Skou, 91] - alternatively ...

@ consider models (T, 8;) with solution processes s;(k),i =1,2,k >0
@ parallel composition of models with output s 2(k) = s1(k) — sz2(k)

Definition

A function ¢ : 84 x 82 — R is a probabilistic bisimulation function if
Y(s1.2) > ||s1 — S| and if 1, (s1.2(k)) is @ supermartingale.

@ ¢ is an upper bound on the distance btw solutions of two models:

P (SUPio 191 () — S2(K)I* 2 €) < (s ’2(0))/4/6\-ENTCS 13; I. Tkachev, AA - HSCC 13
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Formal abstractions for verification of complex models

model
checking
automatic
abstract verification
simple e-specification . €-spec holds yes/no
model control policy pu — e-spec
synthesis
c-quantitative refine back
abstraction
concrete property, spec holds yes/no
complex specification, " policy i — spec
model cost or reward tlu:: (correct by design)
€




Formal abstractions for verification of MPL models

SPIN
LTS LTL C::e Zi?nl (3 policy) spec yes/no
safe LTL 9 (V policies) spec yes
VeriSiMPL T bisimulations l refine back
simulations

MPL transient or \ (3 policy) property yes/no

determ.

steady-state (V policies) property yes




Introduction to MPL systems

SPIN
LTS LTL C::e Zi?nl (3 policy) spec yes/no
safe LTL 9 (V policies) spec yes
VeriSiMPL bisimulations refine back
simulations
transient or (3 policy) property yes/no

MPL

steady-state (V policies) property yes

determ.




Introduction to MPL systems

@ Max-Plus-Linear (MPL) systems are event-driven models

@ applications: railway scheduling, planning of production lines, network
calculus

@ x(k) is the time of k-th event, k € NU {0}

@ timing updates: maximization ($) and addition (®) operations
— max-plus algebra

0 e=-00, R.=RU{e}, o,f€eR,

0 a®f :=max(a,B), a®pB:=a+F, andmatrixoperations



Max-plus-linear models

Definition (Autonomous MPL model)
x(k+1) = A x(k),

where A € R7*"and k € NU {0}

Example
A simple railway model [Heidergott, 06]

> 5 1k+1 2+1k,5+ 2(k)}
x(k+1) = [3 3] ® x(k), [ﬁzgkwﬂ - [2:§%3+§1§k§’3+i2(k)}}

3 .
“ Iﬁ,”
2 3
< Looo]
5

[Baccelli et al., 92]




Max-plus-linear models

Definition (Autonomous MPL model)

x(k+1)=A® x(k),
where A € R7*" and k € NU {0}

Example
A simple railway model [Heidergott, 06]

> 5 1k+1 2+1k,5+ 2(k)}
x(k+1) = [3 3] ® x(k), [L&J] - [2zﬁs+;§k§’3+§2(")}}

Definition (Non-autonomous MPL model)

x(k+1)=A® x(k) ® B® u(k),

where B € R and u € R™ (synthesis = scheduling)

[Baccelli et al., 92]
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Classical analysis of MPL models

SPIN
LTS LTL C:; zi?nl (3 policy) spec yes/no
safe LTL 9 (V policies) spec yes
VeriSiMPL bisimulations refine back
simulations
transient or (3 policy) property yes/no

MPL

steady-state (V policies) property yes

determ.




Classical analysis of MPL models
@ study of transient and periodic regimes, of asymptotics
@ classical analysis based on algebraic or geometric properties

@ max-plus eigenvector x e R”: AQ x =A@ x = x(k + 1) = A ® x(k)

@ cycles on precedence graph = periodic regime with period c:
Vk > ko, x(k + ¢) = \®° @ x(k)

Bampe

@ eigenspace (periodic regime with period 1 and A = 4):

o] &) B 52 e ol (2] ] 32 e 4]~

_O_ ’
@ periodic regime with period ¢ = 2 (transient ky = 3):

) 7] ) 55 ) (5] 2] )3 3] ] 4]~

o
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@ Computable analysis and control synthesis via formal abstractions




Labeled transition system (LTS)

SPIN
LTS LTL C::e Zi?nl (3 policy) spec yes/no
safe LTL 9 (V policies) spec yes
VeriSiMPL T bisimulations l refine back
simulations

MPL transient or \ (3 policy) property yes/no

determ.

steady-state (V policies) property yes




Labeled transition system (LTS)

o setof states S = {1,2,3,4}
o set of inputs Act = {«a, 5}
@ transitions — = {(1,, 4),(4,2,3),...}

@ set of outputs AP = {a, b} and
output map L(1) =0, L(2) = {b}, ...

@ labels can be defined over states or transitions
@ LTS can be deterministic vs non-deterministic
@ LTS can be infinite vs finite

[Baier & Katoen, 08]




Finite LTS as abstractions of MPL models

SPIN

LTS LTL cha 2?(?; (3 policy) spec yes/no

safe LTL 9 (V policies) spec yes
VeriSiMPL b.|3|mul.at|ons refine back

simulations

transient or (3 policy) property yes/no
MPL L

steady-state determ (V policies) property yes

@ procedure: need to compute
@ S: states of LTS
@ —: LTS transitions
© L: LTS labels




LTS states: partitioning of state space

@ state space R” is partitioned in finitely many polytopic regions
@ partition is not arbitrary, it is adapted to underlying dynamics
@ obtained state-space partition defines states of LTS

@ partition can be possibly refined (determinization — more later)

T2
@ we obtain a total of 5 regions:
R ={xeR?: x — x <0} Y
R, ={xc€R2: x; — x, = 0} S ya A
Ry = {x € R?: x; — xo > 3} R2 /:;,:3/ -
Ry ={x €R?: x; — xo = 3} /,:j::/ /’,;f:'/ R,
Rs = {x €R2:0 < X — X < 3}




Difference-bound matrices (DBM)

Definition (DBM)

A difference-bound matrix in R" is the finite intersection of sets defined by
Xi — Xj =j,j Qi

where ~; i€ {<, <}, jj € RU {400}, for1 <i#j<n

@ DBM allow compact matrix representation
o DBM are easy to manipulate (projections, emptiness and inclusion check)

[Dill, 90]



Difference-bound matrices (DBM)

Definition (DBM)

A difference-bound matrix in R" is the finite intersection of sets defined by
Xi — Xj =j,j Qi

where ~; i€ {<, <}, jj € RU {400}, for1 <i#j<n

@ DBM allow compact matrix representation
o DBM are easy to manipulate (projections, emptiness and inclusion check)

@ closure: image/inverse image of DBM over MPL dynamics is again a DBM

[Dill, 90]



LTS transitions: one-step reachability

@ consider any two TS states (partitioning regions) R, R’
@ R — R’ iff there exists a x(k) € R such that x(k + 1) € R’: check

R n{x(k+1):x(k)e R} #0




LTS transitions: one-step reachability

@ consider any two TS states (partitioning regions) R, R’
@ R — R’ iff there exists a x(k) € R such that x(k + 1) € R’: check

R n{x(k+1):x(k)e R} #0

@ computation of transitions:

use region representation via DBM, DBM forward-mapping via PWA dynamics,
DBM emptiness check

@ transitions are stored on sparse Boolean matrix




LTS transitions, an example

T2 Rs

e RY R, R Ry RY
i )
A
A
A
A
A
A
A
A
7 R, ; o
A
Y. iy
A
3 /2 /0
Rz |7 Y
Z
—4—>1]
1 R 7
A
. 2 / 7
/7 /'/ R7
Y e R
/o Yz 1
A
v S R2

@ determinism vs non-determinism of obtained TS

@ above R; - original partitions, R; - refined partitions (determinization)



Relationship between LTS and MPL

SPIN
LTS LTL C:; zi?nl (3 policy) spec yes/no
safe LTL 9 (V policies) spec yes
VeriSiMPL T bisimulations l refine back
simulations

MPL transient or \ (3 policy) property yes/no

determ.

steady-state (V policies) property yes




Relationship between LTS and MPL

@ TS simulates the original MPL model
@ TS bisimulates the MPL model if and only if it is deterministic

@ non-deterministic TS can be “determinized” by refining partitioning regions
@ however, refinement procedure may not terminate

if TS is deterministic over the periodic regime, then TS is globally
deterministic
@ every irreducible MPL model admits finite deterministic TS abstraction




LTS labels

@ state labels:
all possible values of xj(k) — xj(k), for1 <i<j<n

time difference of same-event variables

@ transition labels:
all possible values of x;(k + 1) — xi(k), for 1 <j<n
time difference of successive events

@ labels are vectors of intervals, can be represented as DBM




LTS labels, an example

Example
@ LTS transition labels

Ry R} R R’sD Ry kﬁ)
NI/ i

, [4,4] ,
R Re:){.u R

[n/ (,5) > (3,4)
(6.6] 34 | @)

Ry

R 5 =

R} Ry
| (5,00)
3,3]
R
Ry 33 | 55
5.5 | [3.3)




Formal analysis of MPL models is now “very simple”
VeriSIMPL — Verification via biSimulation of MPL models

SPIN
LTS LTL C:; Ziﬁ: (3 policy) spec yes/no
safe LTL ¢ (V policies) spec yes
—_—
VeriSiMPL bisimulations refine back
simulations

MPL transient or \ (3 policy) property yes/no

determ.

steady-state (V policies) property yes




Formal analysis of MPL models is now “very simple”

VeriSiMPL — Verification via biSimulation of MPL models
@ abstract MPL model as LTS (in MATLAB)
@ export LTS abstraction (as PROMELA script) into SPIN model checker
@ consider properties in LTL logic
o verify property via SPIN over LTS and export outcome back to MPL model

A VeriSiMPL (“very simple”)

Home Verification via biSimulations of Max-Plus Linear Models

Contact Info
Bio Sketch  VeriSiMPL

Frer=h = is asoftware tool for conerete MPL models implemented in Matlab, which exports abstract LTS models to SPIN in Promela language

Interests
Publications Documentation

Group = comes as a text file: txt
Teaching
o Download

= the toolbox as a compressed folder: zip
Contacts
= for questions and queries, please send an email to

= D.Adzkiya, d dot adzkiya at tudelft dot nl
= A. Abate, a dot abate at tudelft dot nl

jemdoc.

http://sourceforge.net/projects/verisimpl



MPL verification in practice

Example
@ automatically identify MPL eigenspace: chGL:AP(D‘P A |p] =0)

(5,00)
3,3]

[5,5]
3,3]




MPL verification in practice

Example
o automatically identify MPL periodic regime: W =\ ;.o O(p A O%%)

(5,00)
3,3]

[5,5]
3,3]




Computational benchmark for abstraction

@ coded in MATLAB, run over 12-core Intel Xeon, 3.47 GHz, 24 GB
@ Arandomly generated with elements taking values between 1 and 100
@ 10 independent experiments per dimension — mean values are displayed:

size time for time for time for total total

of MPL | generation of | generation of | generation of | number of number of

model states transitions labels LTS states | LTS transitions
3 0.1 [s] 0.4 [s] 0.1 [s] 3.6 43
5 0.2 [s] 0.4 [s] 0.1 [s] 8.6 13.8
7 0.9 [s] 0.5 [s] 0.3 [s] 37.2 289.3
9 4.1 [s] 0.8 [s] 1.6 [s] 120.0 1.7.10°
11 24.8 [s] 15.2 [s] 16.1[s] 613.2 1.9-10*
13 3.5[m] 5.5 [m] 2.8 [m] 1.9-10° 1.9-10°
15 53.6 [m] 2.0 [h] 39.4 [m] 7.410° 2.0-10°

@ bottleneck: generation of transitions




Computational benchmark for reachability analysis

@ Arandomly generated with elements taking values between 1 and 100
@ set of initial conditions is selected as the unit hypercube
@ 10 independent experiments per dimension — mean values are displayed:

size time for number of time for
of MPL | generation of regions of generation of
model abstract TS abstract TS reach tube
3 0.09]s] 5 0.09 [s]
10 4.73[s] 700 8.23 [s]
19 67.07 [m] 3.48 -10° 7.131[h]

@ generation time for reach tube of 10-dimensional MPL model, different time horizons

@ comparison VeriSiMPL vs MPT (multi-parametric tool, ETH Zirich):

time horizon 20 40 60 80 100
VeriSiMPL 11.02[s] | 17.94[s] | 37.40[s] | 51.21[s] | 64.59][s]
MPT 47.61[m] 1.191[h] 2.32[h] 3.03[h] 3.73[h]




Stochastic Max-plus-linear models

Definition (Deterministic MPL model)

x(k+1)=A® x(k),
where A € R7*"and k € NU {0}

Definition (Stochastic MPL model)

x(k+1) = A x(k),

where A(k) = [aj(k)]i; € RT*", {aj(k)}« are i.i.d. random processes with pdf
tj(-), and k € NU {0}




Stochastic Max-plus-linear models

Definition (Deterministic MPL model)

x(k+1)=A® x(k),
where A € R7*"and k € NU {0}

Definition (Stochastic MPL model)

x(k+1) = A x(k),

where A(k) = [aj(k)]i; € RT*", {aj(k)}« are i.i.d. random processes with pdf
tj(-), and k € NU {0}

@ abstraction of SMPL models as Markov chains
@ can be obtained in two possible ways:

@ leveraging theory above, under continuity assumptions on kernels ¢;(-)
@ by symbolic approach over distributions that are closed under max-plus algebra
operations

@ error quantification



Simulations over 2D SMPL model

@ exponential distributions (rates btw 1/3 and 1) for the entries of 2D matrix A
@ pick time horizon N = 5, safe set A = [-5, 5]°

o select (3700,2900) bins per dimension, partition uniformly

@ abstraction error results in E = 32.5) < 0.1

P.(4)




Outline

° Concluding remarks




Formal abstractions for verification of complex models

model
checking
automatic
abstract verification
simple e-specification - ¢-spec holds yes/no
model control policy ju — e-spec
synthesis
c-quantitative refine back
abstraction
concrete property, spec holds yes/no
complex specification, i policy p — spec
model cost or reward tlu::, (correct by design)
€
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