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Formal abstractions for verification of dtSHS
PRISM
MRMC

?

dtMC
dtMDP

relax’d/strenght’d PCTL
inflated LTL – ε-spec

prob. model
checking

-
dynamic

programming

ε-spec holds
policy max/min ε-spec

6

?

adaptive,
sequential
abstractions

approximate
probabilistic
bisimulations

?

refine back

dtSHS
PCTL
LTL – spec
automata

spec holds
policy max/min spec

Alessandro Abate 6 / 46



Stochastic hybrid (discrete/continuous) systems
PRISM
MRMC

?

dtMC
dtMDP

relax’d/strenght’d PCTL
inflated LTL – ε-spec

prob. model
checking

-
dynamic

programming

ε-spec holds
policy max/min ε-spec

6

?

adaptive,
sequential
abstractions

approximate
probabilistic
bisimulations

?

refine back

dtSHS
PCTL
LTL – spec
automata

spec holds
policy max/min spec

Alessandro Abate 7 / 46



Stochastic hybrid (discrete/continuous) systems

discrete-time models

finite-space Markov chain uncountable-space Markov process

(Z,T) (S,Ts)

Z = (z1, z2, z3) S = R2

T =

 p11 p12 p13

p21 · · · · · ·
· · · · · · · · ·

 Ts(x |s) = e− 1
2 (x−m(s))T Σ−1(s)(x−m(s))
√

2π|Σ(s)|1/2

P(z1, {z2, z3}) = p12 + p13 P(s,A) =
∫

A Ts(dx |s), A ∈ B(S)

⇒ discrete-time, stochastic hybrid systems
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[AA et al - Automatica 08]

Stochastic hybrid (discrete/continuous) systems
Definition
A discrete-time stochastic hybrid system is a pair (S,Ts), where

S = ∪q∈Q({q} × Rn(q)),Q a discrete set of modes, n : Q→ N
Ts : S× S→ [0, 1] specifies the dynamics of process at point s = (q, x):

Ts(ds′ |s) =

{
Tx (dx ′|(q, x))Tq(q|(q, x)), if q′ = q (no transition)
Tr (dx ′|(q, x), q′)Tq(q′|(q, x)), if q′ 6= q (transition)

initial state π : S→ [0, 1]
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Tx (dx ′|(q, x))Tq(q|(q, x)), if q′ = q (no transition)
Tr (dx ′|(q, x), q′)Tq(q′|(q, x)), if q′ 6= q (transition)

initial state π : S→ [0, 1]

can be control dependent (u ∈ U):

Ts(ds′ |s, u) =

{
Tx (dx ′|(q, x), u)Tq(q|(q, x), u), if q′ = q (no transition)
Tr (dx ′|(q, x), u, q′)Tq(q′|(q, x), u), if q′ 6= q (transition)

policy µ: “string” of controls
equivalent dynamical representation: sk+1 = f (sk , ξk , uk )

related to other models, e.g. LMP
Alessandro Abate 7 / 46



[I. Tkachev, AA - CDC 11 ]

Stochastic hybrid systems in risk analysis

{
Zn+1 = g(Zn, θn) Zn ∈ R, ← capital
θn+1 = h(Zn, θn, ξn) θn ∈ {Θ1, . . . ,ΘN}, ← interest

where ξn i.i.d. random variables; g, h measurable; (Z0, θ0) given

x = 12

y = 16

50 100 150 200
t

5

10

15

Capital

objective: what is the probability that, starting from initial capital Z0 = x , high
capitalization y is reached, while company’s bankruptcy is avoided
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Analysis and control synthesis problems
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Analysis and control synthesis problems

reachability
(safety/invariance)

reach-avoid
(constrained reachability)

sequential reachability
(trajectory planning)

∞-horizon objectives
(i.o., eventually always)

properties expressed via PCTL, LTL (DFA or Büchi automata)
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Analysis and control synthesis problems

synthesis for reachability
games (2− 1/2 players)

synthesis for reach-avoid
(pursuit evasion games)

sequential reachability
(trajectory planning)

∞-horizon objectives
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[AA et al. - Automatica 08]

Probabilistic safety/invariance: characterization
probabilistic invariance is the probability that the execution associated with an
initial distribution π stays in S (safe set) during the time horizon [0,N]:

Pπ(S) := Pπ(sk ∈ S,∀k ∈ [0,N])

consider realization sk ∈ S, k ∈ [0,N] – then

N∏
k=0

1S(sk ) =

{
1, if ∀k ∈ [0,N] : sk ∈ S
0, otherwise

⇒ Pπ(S) = Pπ

(
N∏

k=0

1S(sk ) = 1

)
= Eπ

[
N∏

k=0

1S(sk )

]

select ε ∈ [0, 1] – probabilistic safe/invariant set with safety level ε is

S(ε)
.

= {s ∈ S : Ps(S) ≥ ε} (here π = δs)
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[AA et al. - Automatica 08]

Probabilistic invariance: computation

computation of Ps(S) (and thus of S(ε)) via dynamic programming:
sequential update, backward in time, of multi-stage value function

Vk (s) : [0,N]× S→ R+,

accounting for current and expected future rewards – in particular

VN(s) = 1S(s), Vk (s) =

∫
S

Vk+1(x)Ts(dx |s)

V0(s) = Ps(S)⇒ S(ε)

control dependent models: find optimal policy µ, optimizing recursively over

Vk (s, u) : [0,N]× S× U→ R+
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Computing probabilistic invariance: issues

issues
1 non-standard (max, multiplicative) value functions
2 continuous control space
3 hybrid state space

⇒ solution of DP is seldom analytical

numerical solutions are needed

⇒ problem # 1: difference between real solution and computed solution
(in verification and correct-by-design controller synthesis)

⇒ problem # 2: Bellman’s curse of dimensionality
(state/control space gridding)
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Dynamical properties as temporal specifications
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[AA et al. - EJC 11]

Approximate model checking of probabilistic invariance

model (S,Ts), invariance set S ∈ S, finite time horizon N, safety level ε

δ-approximate (S,Ts) with finite-state dt-MC (Z,T)

? compute approximation error f (δ,N)

S → Sδ: define formula ΦSδ characterizing set Sδ, label states in Z

⇒ probabilistic safe set

S(ε) = {s ∈ S : Ps(S) ≥ ε}
= {s ∈ S : (1− Ps(S)) ≤ 1− ε}

can be related to

Zδ(ε)
.

= Sat
(
P≤1−ε

(
true U≤N ¬ΦSδ

))
= {z ∈ Z : z |= P≤1−ε

(
true U≤N ¬ΦSδ

)
}
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[AA et al. - EJC 11]

Approximate model checking of probabilistic invariance
model (S,Ts), invariance set S ∈ S, finite time horizon N, safety level ε

δ-approximate (S,Ts) with finite-state dt-MC (Z,T)

? compute approximation error f (δ,N)

S → Sδ: define formula ΦSδ characterizing set Sδ, label states in Z

1 define

S(ε) = {s ∈ S : Ps(S) ≥ ε}
Zδ(ε) = Sat

(
P≤1−ε

(
true U≤N ¬ΦSδ

))
2 select η > 0 : η/2 ∈ (0, 1− ε)
3 pick δ : f (δ,N) ≤ η/2
4 compute Zδ(ε+ η/2)

5 define Ŝη(ε)
.

= {s ∈ S↔ z ∈ Zδ(ε+ η/2)}
⇒

S(ε+ η) ⊆ Ŝη(ε) ⊆ S(ε)

Alessandro Abate 15 / 46



[D’Innocenzo, AA, J.-P. Katoen - HSCC 12]

Verification of over- or under-specifications in PCTL

any PCTL formula can be expressed via equivalent DP recursions

consider PCTL formula P∼ε (Ψ) on SHS (S,Ts)

δ-approximate SHS (S,Ts) as a dt-MC (Z,T)

compute approximation error f (δ,N)

compute g(Ψ, f ), a function based on formula & error

model check P∼ε±g(Ψ,f ) (Ψ) on (Z,T)

1 if PCTL formula is “robust”, then conclusion holds for P∼ε (Ψ) on SHS

2 else refine δ → reduce f (δ,N)→ decrease g(Ψ, f )
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[AA et al. - HSCC 11; I. Tkachev et al. - HSCC13]

Approximate model checking of automata specifications

with σi : R → [0, 1] a sigmoidal function given by

σi(y) =
ydi

αdi
i + ydi

, y ∈ R. (14)

Function σi(y), y ∈ R, is parameterized by a “threshold”
parameter αi and a “steepness” parameter di > 0. αi is the
value of y at which the probability of the heater changing
status becomes equal to 0.5, whereas di is related to the
slope of the sigmoidal function at y = αi (which amounts to
di/(4αi)). We shall refer to the three possible values for the
steepness parameter di respectively as di = 1 (flat), di = 10
(gradual), and di = 100 (steep), in increasing order. The
values for the threshold αi are determined as a convex com-
bination of the temperatures xl

i and xu
i , xl

i < xu
i , defining

the desired temperature range [xl
i, x

u
i ] in room i.

5.2 Property Specification
We will consider two properties. The first one is a DFA

and the second one is an LTL-formula expressed as a GBA.
Recall that the difference between a DFA property and an
LTL-formula is that the former reasons over the finite paths
whereas the latter reasons over the infinite paths.

DFA property.
The property specified as a DFA A is depicted in Fig. 8.

q0 q1

q2

S

q3

UA
A

S

T

T

Figure 8: DFA A.

x2

x1

A U

T

xl
1

S = I

x1
1 x2

1 x3
1 xu

1x4
1

xl
2

x3
2

x1
2

x2
2

x4
2

xu
2

Figure 9: Domains
for DFA A of Fig. 8.

Intuitively, A describes all the paths, the continuous part
of which can reach the region labeled with D (see Fig. 9)
by first visiting the region labeled with G while avoiding the
regions labeled with B. Region S is given by ([xl

1, x
u
1 ] ×

[xl
2, x

u
2 ])\(G ∪ B ∪ D). Notice that no equivalent CTL for-

mula can be formulated for property A.
We specify the heating system as a DTSHS H with 16

locations: to every subset S, G, D and B of each continuous
domain we assign a location, each of which has the con-
ditional discrete stochastic kernel T! specified as in Fig. 1
and Eq. (13). The parameter di is taken to be equal to 10
(gradual) and the parameter αi is equal to 1

4
xl

i + 3
4
xu

i for
i ∈ {1, 2}. The regions within the continuous domains are
specified by the parameters from Table 1. The set of atomic
propositions is AP = {S, G, D, B}. Every location is labeled
with a single element from the set AP. The continuous tran-
sition kernels Tx and R are given by Eq. (11), and depend
on the parameters a12 = a21 = 0.25, b1 = b2 = 0.1, c1 = 2.6,
c2 = 2.4, xa = 6 and ν = 0.5. We partition the continuous
domains [xl

1, x
u
1 ]× [xl

2, x
u
2 ] into square regions, uniformly di-

viding each interval [xl
1, x

u
1 ] into l slots. We leverage the dis-

cretization technique from Section 3.2 in order to obtain the
discretized DTMC from the product H ⊗ A. The DTMC

xl
1\xl

2 x1
1\x1

2 x2
1\x2

2 x3
1\x3

2 x4
1\x4

2 xu
1\xu

2

10\10 15\15 20\20 25\25 30\30 35\35

Table 1: Parameters characterizing continuous domains.

is highly connected, namely most of the transition proba-
bilites are non zero. The results reported in this section
refer to computations performed on a AMD Athlon 64 Dual
Core Processor with 2GB RAM. The product construction
and the discretization algorithm were implemented in MAT-
LAB. Table 2 shows the verification time and the DTMC

Slots l 5 10 20
DTMC states 400 1600 6400

Time (sec) 29.5 466.7 5694.6

Table 2: Verification time for the DFA A in (Fig. 8) over
the DTMC obtained from the DTSHS H.

size for different number of slots. The obtained verifica-
tion times critically depend on the discretization procedure,
rather than the model checking algorithms: the time spent
on the product construction and solving the system of linear
equations is much smaller compared to the time spent for
the generation of the DTMC. Fig. 10 displays the probabil-
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Figure 10: Satisfiability probability for the DFA A over the
DTSHS H (through its DTMC discretization), with the
first set of parameters.

ity that the two-room DTSHS satisfies the DFA property
A given that the initial location is (OFF, OFF) and the con-
tinuous state is chosen in any of the 4 domains S, G, B and
D. (The surface is obtained at the representative points.)
The number of discretization slots l is 10. A similar plot is
reported on Fig. 11 in 2D for a parameter choice of di of
100 (steep) and of αi of 1

2
xl

i + 1
2
xu

i , respectively — all other
parameters are as before. Here warmer colors denote higher
probabilities. In both the described instances, the proba-
bility is higher for all the states starting from the domain
G or nearby. This is due to the fact that the property A
is satisfied only for the paths of DTSHS that reach D by
starting anywhere in G or S and having crossed G.

generalization to “richer” set of properties over dtSHS

specifications expressed as a DFA or a Büchi automata

probabilistic reachability-like computation over product construction

recent extensions to controller synthesis
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[I. Tkachev, AA - CDC 11, HSCC 12, CDC12,TCS 13 ]

Characterization & computation of∞-horizon properties

consider target set T ; invariant set S = T c = S \ T ; ∀s ∈ S:

Ps(∀n ≥ 0 : sn ∈ S) ↔ 1− Ps(trueUT )

existence and computation of absorbing set B : ∀x ∈ B,Ts(B|x) = 1

characterization – study of existence/uniqueness of (non-trivial) solutions of
Bellman equations

convergence of Bellman recursions, contractivity of operators

computation – formal reduction to finite-horizon problems
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On the approximation error f (δ,N)

PRISM
MRMC

?

dtMC
dtMDP

relax’d/strenght’d PCTL
inflated LTL – ε-spec

prob. model
checking

-
dynamic

programming

ε-spec holds
policy max/min ε-spec

6

?

adaptive,
sequential
abstractions

approximate
probabilistic
bisimulations

?

refine back

dtSHS
PCTL
LTL – spec
automata

spec holds
policy max/min spec
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[AA et al. - EJC 11, S. Soudjani, AA - QEST 11, TAC 13]

On the approximation error f (δ,N)
approximation via δ-partitioning: S = ∪i=1,...,m × Si

under Lip-continuity assumptions on density of kernel Ts,

h(i, j), i, j = 1, . . . ,m

for any z i
q ∈ Sδ, ∀s : s ∧ z i ∈ Si , error is

f (δ,N)
.

= |Ps(S)− Pz i (Sδ)| ≤ max
i=1,...,m

Nδi

∑
j=1,...,m

h(i, j),

δ = maxi=1,...,m δi , δq,i = diam (Si )

error is linear in N, δi and depends on local constants h(i, j)→ local tuning
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[S. Soudjani, AA - QEST 11, HSCC 12, ATVA12, SIAM 13]

On the approximation error f (δ,N)

formula-based abstractions

software (in the making) for sequential, adaptive grid generation based on
approximation error

from MATLAB/Simuling model to MRMC/PRISM input
number of cells: 958 number of cells: 1582 number of cells: 2017
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Approximate probabilistic bisimulations
PRISM
MRMC

?

dtMC
dtMDP

relax’d/strenght’d PCTL
inflated LTL – ε-spec

prob. model
checking

-
dynamic

programming

ε-spec holds
policy max/min ε-spec

6

?

adaptive,
sequential
abstractions

approximate
probabilistic
bisimulations

?

refine back

dtSHS
PCTL
LTL – spec
automata

spec holds
policy max/min spec

Alessandro Abate 21 / 46



[AA - ENTCS 13; I. Tkachev, AA - HSCC 13]

Approximate probabilistic bisimulations
above abstraction leads to approximate probabilistic bisimulation [Larsen &
Skou, 91] - alternatively . . .

consider models (Ts,i , Si ) with solution processes si (k), i = 1, 2, k ≥ 0
parallel composition of models with output s1,2(k) = s1(k)− s2(k)

Definition
A function ψ : S1 × S2 → R+ is a probabilistic bisimulation function if
ψ(s1,2) ≥ ‖s1 − s2‖2 and if ψs0 (s1,2(k)) is a supermartingale.

ψ is an upper bound on the distance btw solutions of two models:
Ps0

(
supk≥0 ‖s1(k)− s2(k)‖2 ≥ ε

)
≤ ψs0 (s1,2(0))/ε
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Outline

1 Formal abstractions for verification of complex models

2 Formal verification of stochastic hybrid systems
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

3 Formal verification of max-plus linear models
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions
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Formal abstractions for verification of complex models
model

checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6 ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)
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Formal abstractions for verification of MPL models

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes
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Introduction to MPL systems

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes
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Introduction to MPL systems

Max-Plus-Linear (MPL) systems are event-driven models

applications: railway scheduling, planning of production lines, network
calculus

x(k) is the time of k -th event, k ∈ N ∪ {0}
timing updates: maximization (⊕) and addition (⊗) operations

→ max-plus algebra

ε = −∞, Rε = R ∪ {ε}, α, β ∈ Rε
α⊕ β := max(α, β), α⊗ β := α + β, and matrix operations
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[Baccelli et al., 92]

Max-plus-linear models
Definition (Autonomous MPL model)

x(k + 1) = A⊗ x(k),

where A ∈ Rn×n
ε and k ∈ N ∪ {0}

Example
A simple railway model [Heidergott, 06]

x(k + 1) =

[
2 5
3 3

]
⊗ x(k),

[
x1(k + 1)
x2(k + 1)

]
=

[
max{2 + x1(k), 5 + x2(k)}
max{3 + x1(k), 3 + x2(k)}

]

2 3

3

5
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[Baccelli et al., 92]

Max-plus-linear models

Definition (Autonomous MPL model)

x(k + 1) = A⊗ x(k),

where A ∈ Rn×n
ε and k ∈ N ∪ {0}

Example
A simple railway model [Heidergott, 06]

x(k + 1) =

[
2 5
3 3

]
⊗ x(k),

[
x1(k + 1)
x2(k + 1)

]
=

[
max{2 + x1(k), 5 + x2(k)}
max{3 + x1(k), 3 + x2(k)}

]

Definition (Non-autonomous MPL model)

x(k + 1) = A⊗ x(k)⊕ B ⊗ u(k),

where B ∈ Rn×m
ε and u ∈ Rm (synthesis = scheduling)
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Classical analysis of MPL models

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes
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[Gaubert, 03] [Katz, 07]

Classical analysis of MPL models
study of transient and periodic regimes, of asymptotics

classical analysis based on algebraic or geometric properties

Definition
1 max-plus eigenvector x ∈ Rn: A⊗ x = λ⊗ x ⇒ x(k + 1) = λ⊗ x(k)

2 cycles on precedence graph⇒ periodic regime with period c:
∀k ≥ k0, x(k + c) = λ⊗

c ⊗ x(k)

Example
1 eigenspace (periodic regime with period 1 and λ = 4):[

1
0

]
,
[
5
4

]
,
[
9
8

]
,
[
13
12

]
,
[
17
16

]
,
[
21
20

]
,
[
25
24

]
,
[
29
28

]
,
[
33
32

]
,
[
37
36

]
,
[
41
40

]
,
[
45
44

]
, . . .

2 periodic regime with period c = 2 (transient k0 = 3):[
4
0

]
,
[
6
7

]
,
[
12
10

]
,
[
15
15

]
,
[
20
18

]
,
[
23
23

]
,
[
28
26

]
,
[
31
31

]
,
[
36
34

]
,
[
39
39

]
,
[
44
42

]
,
[
47
47

]
, . . .
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Labeled transition system (LTS)

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes
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[Baier & Katoen, 08]

Labeled transition system (LTS)

1 2

4 3α

β
α

α
β

∅

{a} {a, b}

{b}

set of states S = {1, 2, 3, 4}
set of inputs Act = {α, β}
transitions −→ = {(1, α, 4), (4, α, 3), . . . }
set of outputs AP = {a, b} and
output map L(1) = ∅, L(2) = {b}, . . .

labels can be defined over states or transitions

LTS can be deterministic vs non-deterministic

LTS can be infinite vs finite
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Finite LTS as abstractions of MPL models
SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes

procedure: need to compute
1 S: states of LTS
2 →: LTS transitions
3 L: LTS labels
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LTS states: partitioning of state space

state space Rn is partitioned in finitely many polytopic regions

partition is not arbitrary, it is adapted to underlying dynamics

obtained state-space partition defines states of LTS

partition can be possibly refined (determinization – more later)

Example

we obtain a total of 5 regions:

R1 = {x ∈ R2 : x1 − x2 < 0}
R2 = {x ∈ R2 : x1 − x2 = 0}
R3 = {x ∈ R2 : x1 − x2 > 3}
R4 = {x ∈ R2 : x1 − x2 = 3}
R5 = {x ∈ R2 : 0 < x1 − x2 < 3}

x1

x2

R2

R3

R5

3

R1

R4

Alessandro Abate 32 / 46



[Dill, 90]

Difference-bound matrices (DBM)

Definition (DBM)
A difference-bound matrix in Rn is the finite intersection of sets defined by

xi − xj 'i,j αi,j ,

where 'i,j∈ {<,≤}, αi,j ∈ R ∪ {+∞}, for 1 ≤ i 6= j ≤ n

DBM allow compact matrix representation

DBM are easy to manipulate (projections, emptiness and inclusion check)

closure: image/inverse image of DBM over MPL dynamics is again a DBM
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LTS transitions: one-step reachability

consider any two TS states (partitioning regions) R,R′

R → R′ iff there exists a x(k) ∈ R such that x(k + 1) ∈ R′: check

R′ ∩ {x(k + 1) : x(k) ∈ R} 6= ∅

computation of transitions:
use region representation via DBM, DBM forward-mapping via PWA dynamics,
DBM emptiness check

transitions are stored on sparse Boolean matrix
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LTS transitions, an example

Example

x1

x2

R2

R3

R5

3

R1

R4
R′

1

R′
3

R′
2

R′
5R′

4

R′
7

R′
6

R′
9

R′
8

determinism vs non-determinism of obtained TS

above Ri - original partitions, R′i - refined partitions (determinization)
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Relationship between LTS and MPL

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes
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Relationship between LTS and MPL

Theorem
TS simulates the original MPL model

TS bisimulates the MPL model if and only if it is deterministic

non-deterministic TS can be “determinized” by refining partitioning regions

however, refinement procedure may not terminate

Theorem
if TS is deterministic over the periodic regime, then TS is globally
deterministic

every irreducible MPL model admits finite deterministic TS abstraction
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LTS labels

Definition
state labels:
all possible values of xi (k)− xj (k), for 1 ≤ i < j ≤ n
time difference of same-event variables

transition labels:
all possible values of xi (k + 1)− xi (k), for 1 ≤ i ≤ n
time difference of successive events

labels are vectors of intervals, can be represented as DBM
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LTS labels, an example

Example
LTS transition labels

R′
1

R′
3

R′
2

R′
5R′

4

R′
7

R′
6

R′
9

R′
8

(3, 4)
(4, 5)

[5, 5]
[3, 3]

[2, 2]
(6,∞)

(4, 5)
(3, 4)

[4, 4]
[4, 4]

[3, 3]
[5, 5]

(5,∞)
[3, 3]

[2, 2]
[6, 6]

(2, 3)
(5, 6)

R′
1

R′
3

R′
2

R′
5R′

4

R′
7

R′
6

R′
9

R′
8

Alessandro Abate 38 / 46



Formal analysis of MPL models is now “very simple”
VeriSiMPL – Verification via biSimulation of MPL models

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes
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Formal analysis of MPL models is now “very simple”
VeriSiMPL – Verification via biSimulation of MPL models

abstract MPL model as LTS (in MATLAB)
export LTS abstraction (as PROMELA script) into SPIN model checker
consider properties in LTL logic
verify property via SPIN over LTS and export outcome back to MPL model

http://sourceforge.net/projects/verisimpl
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MPL verification in practice
Example

automatically identify MPL eigenspace:
∨
ϕ∈L=AP(�ϕ ∧ |ϕ| = 0)

(3, 4)
(4, 5)

[5, 5]
[3, 3]

[2, 2]
(6,∞)

(4, 5)
(3, 4)

[4, 4]
[4, 4]

[3, 3]
[5, 5]

(5,∞)
[3, 3]

[2, 2]
[6, 6]

(2, 3)
(5, 6)

R′
1

R′
3

R′
2

R′
5R′

4

R′
7

R′
6

R′
9

R′
8

Alessandro Abate 40 / 46



MPL verification in practice
Example

automatically identify MPL periodic regime: Ψ =
∨
ϕ∈L=AP �(ϕ ∧©cϕ)

(3, 4)
(4, 5)

[5, 5]
[3, 3]

[2, 2]
(6,∞)

(4, 5)
(3, 4)

[4, 4]
[4, 4]

[3, 3]
[5, 5]

(5,∞)
[3, 3]

[2, 2]
[6, 6]

(2, 3)
(5, 6)

R′
1

R′
3

R′
2

R′
5R′

4

R′
7

R′
6

R′
9

R′
8
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Computational benchmark for abstraction

coded in MATLAB, run over 12-core Intel Xeon, 3.47 GHz, 24 GB

A randomly generated with elements taking values between 1 and 100

10 independent experiments per dimension – mean values are displayed:

size time for time for time for total total
of MPL generation of generation of generation of number of number of
model states transitions labels LTS states LTS transitions

3 0.1 [s] 0.4 [s] 0.1 [s] 3.6 4.3
5 0.2 [s] 0.4 [s] 0.1 [s] 8.6 13.8
7 0.9 [s] 0.5 [s] 0.3 [s] 37.2 289.3
9 4.1 [s] 0.8 [s] 1.6 [s] 120.0 1.7·103

11 24.8 [s] 15.2 [s] 16.1 [s] 613.2 1.9·104

13 3.5 [m] 5.5 [m] 2.8 [m] 1.9·103 1.9·105

15 53.6 [m] 2.0 [h] 39.4 [m] 7.4·103 2.0·106

bottleneck: generation of transitions
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Computational benchmark for reachability analysis

A randomly generated with elements taking values between 1 and 100

set of initial conditions is selected as the unit hypercube

10 independent experiments per dimension – mean values are displayed:

size time for number of time for
of MPL generation of regions of generation of
model abstract TS abstract TS reach tube

3 0.09 [s] 5 0.09 [s]
10 4.73 [s] 700 8.23 [s]
19 67.07 [m] 3.48 ·105 7.13 [h]

generation time for reach tube of 10-dimensional MPL model, different time horizons

comparison VeriSiMPL vs MPT (multi-parametric tool, ETH Zürich):

time horizon 20 40 60 80 100
VeriSiMPL 11.02 [s] 17.94 [s] 37.40 [s] 51.21 [s] 64.59 [s]

MPT 47.61 [m] 1.19 [h] 2.32 [h] 3.03 [h] 3.73 [h]
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Stochastic Max-plus-linear models
Definition (Deterministic MPL model)

x(k + 1) = A⊗ x(k),

where A ∈ Rn×n
ε and k ∈ N ∪ {0}

Definition (Stochastic MPL model)

x(k + 1) = A⊗ x(k),

where A(k) = [aij (k)]i,j ∈ Rn×n
ε , {aij (k)}k are i.i.d. random processes with pdf

tij (·), and k ∈ N ∪ {0}

abstraction of SMPL models as Markov chains
can be obtained in two possible ways:

1 leveraging theory above, under continuity assumptions on kernels tij(·)
2 by symbolic approach over distributions that are closed under max-plus algebra

operations

error quantification
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Stochastic Max-plus-linear models
Definition (Deterministic MPL model)

x(k + 1) = A⊗ x(k),

where A ∈ Rn×n
ε and k ∈ N ∪ {0}

Definition (Stochastic MPL model)

x(k + 1) = A⊗ x(k),

where A(k) = [aij (k)]i,j ∈ Rn×n
ε , {aij (k)}k are i.i.d. random processes with pdf
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abstraction of SMPL models as Markov chains
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2 by symbolic approach over distributions that are closed under max-plus algebra

operations

error quantification
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Simulations over 2D SMPL model
exponential distributions (rates btw 1/3 and 1) for the entries of 2D matrix A
pick time horizon N = 5, safe set A = [−5, 5]2

select (3700, 2900) bins per dimension, partition uniformly
abstraction error results in E = 32.5δ < 0.1
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Formal abstractions for verification of complex models
model

checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6 ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)
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