Computable analysis and control synthesis

over complex dynamical systems
via formal verification

Alessandro Abate

Department of Computer Science, University of Oxford
Delft Center for Systems and Control, TU Delft

September 25, 2013

Outline

0 Formal abstractions for verification of complex models

e Formal verification of stochastic hybrid systems
@ Analysis and control synthesis problems
@ Computable analysis and control synthesis via formal abstractions

e Formal verification of max-plus linear models
@ Analysis and control synthesis problems
@ Computable analysis and control synthesis via formal abstractions

e Concluding remarks

Key references will appear here

Outline

0 Formal abstractions for verification of complex models

Formal abstractions for verification of complex models

concrete property,
complex specification,
model cost or reward

Formal abstractions for verification of complex models

e-quantitative

abstraction

concrete property,
complex specification,
model cost or reward

Formal abstractions for verification of complex models

abstract
simple e-specification
model

e-quantitative
abstraction

concrete property,
complex specification,
model cost or reward

Formal abstractions for verification of complex models

automatic
abstract verification
simple e-specification _—
model control

synthesis

e-quantitative
abstraction

concrete property,
complex specification,
model cost or reward

Formal abstractions for verification of complex models

model
checking

automatic
abstract verification
simple e-specification _—

model control
synthesis

e-quantitative
abstraction

concrete property,
complex specification,
model cost or reward

Formal abstractions for verification of complex models

model
checking

automatic

abstract verification
simple e-specification > e-spec holds yes/no
policy i — e-spec

model control
synthesis

e-quantitative
abstraction

concrete property,
complex specification,
model cost or reward

Formal abstractions for verification of complex models

model
checking

automatic

abstract verification
simple e-specification > e-spec holds yes/no
policy i — e-spec

model control
synthesis

e-quantitative refine back
abstraction

concrete property,
complex specification,
model cost or reward

Formal abstractions for verification of complex models

model
checking
automatic
abstract verification
simple e-specification -, e-spec holds yes/no
model control policy 1 — e-spec
synthesis
e-quantitative refine back
abstraction
concrete property, spec holds yes/no
complex specification, policy i — spec
model cost or reward (correct by design)

Formal abstractions for verification of complex models

model
checking
automatic
abstract verification
simple e-specification -
model control
synthesis
e-quantitative
abstraction
concrete property,
complex specification, "
model cost or reward 1 no,
tune €

e-spec holds yes/no
policy i — e-spec

refine back

spec holds yes/no
policy i — spec
(correct by design)

Outline

e Formal verification of stochastic hybrid systems

Formal abstractions for verification of complex models

model
checking
automatic
abstract verification
simple e-specification . €-spec holds yes/no
model control policy pu — e-spec
synthesis
c-quantitative refine back
abstraction
concrete property, spec holds yes/no
complex specification, " policy i — spec
model cost or reward tlu:: (correct by design)
€

Formal abstractions for verification of dtSHS

PRISM
MRMC

prob. model

hecki
dtMC relax'd/strenght'd PCTL checking e-spec holds

dtMDP inflated LTL — e-spec dynamic. policy max/min e-spec

programming

adaptive, approximate
sequential probabilistic refine back
abstractions bisimulations
PCTL spec holds
dtSHS | LTL - spec pe .
policy max/min spec
automata

Stochastic hybrid (discrete/continuous) systems

PRISM
MRMC

prob. model

hecki
dtMC relax'd/strenght'd PCTL checking e-spec holds

dtMDP inflated LTL — e-spec dynamic. policy max/min e-spec

programming

sequential probabilistic refine back

adaptive, approximate
abstractions bisimulations

PCTL spec holds
diSHS | LTL — spec pe .
policy max/min spec
automata

Stochastic hybrid (discrete/continuous) systems

@ discrete-time models

finite-space Markov chain uncountable-space Markov process
(Z,7) (8, Ts)
Z:(Z1722,Z3) 8§ = R?

x=m(s)T =1 (s)(x—m(s))

7= NROE

_15(
P21 Ts(x|s) = ¢

P11 P12 P13]

P(z1,{22, 23}) = P12 + P13 P(s,A) = [, Ts(dx|s), Ae B(S)

Stochastic hybrid (discrete/continuous) systems

@ discrete-time models

finite-space Markov chain uncountable-space Markov process
(Z,7) (8, Ts)
Z:(Z1722,Z3) 8§ = R?

— 3 (x=m(s) T~ (s)(x—m(s))

J= NG

Ts(x|s) = €

P21

P11 P12 P13]
P(Z1,{22723}) = P12 + P13 P(S7 A) = fA TS(dX|S), Ac ‘B(S)

=- discrete-time, stochastic hybrid systems

Stochastic hybrid (discrete/continuous) systems
Definition
A discrete-time stochastic hybrid system is a pair (8, Ts), where

0 8 = Ugea({q} x R™@), Q a discrete set of modes, n: Q — N

o T,:8 x 8 — [0, 1] specifies the dynamics of process at point s = (g, x):

(a1} = To(dX'|(g, x)) To(ql(q, x)), if @ = g (no transition)
s(ds’[s) = T.(ax’|(g, %), q") To(d'|(g, X)), if g’ # q (transition)

@ initial state 7 : § — [0, 1]

[AA et al - Automatica 08]

Stochastic hybrid (discrete/continuous) systems
Definition
A discrete-time stochastic hybrid system is a pair (8, Ts), where

@ 8 = Ugeo({q} x R™9),Q a discrete set of modes, n: Q — N

o T;:8 x 8 — [0, 1] specifies the dynamics of process at point s = (q, x):

T(gs' 1) — 4 T(@Xl(a,x))To(ql(q, X)), if ' = g (no transition)
s(ds’[s) = T(dx'|(g,x),q9)T4(d'|(q, x)), if § # q (transition)

o initial state 7 : § — [0, 1]

@ can be control dependent (v € U):

T.(ds' |s, u) = T (aX'|(qg, x), u)T4(ql(q, x), u), if ¢ = g (no transition)
s O TH(aX (g, x), u, @) Te(9'|(q, x), u), if @ # g (transition)

@ policy p: “string” of controls
@ equivalent dynamical representation: sxi1 = f(Sk, &k, Uk)
@ related to other models, e.g. LMP [AA et al - Automatica 08]

Stochastic hybrid systems in risk analysis

Zni1 = 9(Zn, 0n) Z, €R, <+ capital
Oni1 = h(Zn, 0n,&n) On € {O1,...,0On}, < interest

where £, i.i.d. random variables; g, h measurable; (Z, 6) given

[I. Tkachev, AA - CDC 11]

Stochastic hybrid systems in risk analysis

Zni1 = 9(Zn, 0n) Z, € R, <+ capital
Oni1 = h(Zn, 0n,&n) On € {O1,...,0On}, « interest

where £, i.i.d. random variables; g, h measurable; (Z, 6) given

Capital

OO W \M g

50 100\‘</ Ljﬁ” Wzoo(

@ objective: what is the probability that, starting from initial capital Z, = x, high
capitalization y is reached, while company’s bankruptcy is avoided

[I. Tkachev, AA - CDC 11]

Outline

e Formal verification of stochastic hybrid systems
@ Analysis and control synthesis problems

Analysis and control synthesis problems

PRISM
MRMC

prob. model

hecki
dtMC relax'd/strenght'd PCTL checking e-spec holds

dtMDP inflated LTL — e-spec dynamiC. policy max/min e-spec

programming

adaptive, approximate
sequential probabilistic refine back
abstractions bisimulations
PCTL spec holds
dtSHS LTL - spec pe .
policy max/min spec
automata

Analysis and control synthesis problems

|

reachability reach-avoid
(safety/invariance) (constrained reachability)

sequential reachability oo-horizon objectives
(trajectory planning) (i.0., eventually always)

@ properties expressed via PCTL, LTL (DFA or Blchi automata)

Analysis and control synthesis problems

synthesis for reachability synthesis for reach-avoid
games (2 — 1/2 players) (pursuit evasion games)

sequential reachability oo-horizon objectives
(trajectory planning) (i.0., eventually always)

@ properties expressed via PCTL, LTL (DFA or Blchi automata)

Probabilistic safety/invariance: characterization

@ probabilistic invariance is the probability that the execution associated with an
initial distribution 7 stays in S (safe set) during the time horizon [0, N|:

P.(S) = P.(sx € S,Yk € [0.N))

[AA et al. - Automatica 08]

Probabilistic safety/invariance: characterization

@ probabilistic invariance is the probability that the execution associated with an
initial distribution 7 stays in S (safe set) during the time horizon [0, N|:

P.(S) := P, (sx € S,k € [0. N])

@ consider realization s € 8, k € [0, N] —then

N .

1, ifVke|[0O,N]:sce S
I I 1S(sk) — [)] k
o 0, otherwise

N
=P (S)=P. (H 15(sk) = 1) =E,
k=0

N
I1 1s(Sk)]
k=0

[AA et al. - Automatica 08]

Probabilistic safety/invariance: characterization

@ probabilistic invariance is the probability that the execution associated with an
initial distribution 7 stays in S (safe set) during the time horizon [0, N|:

P.(S) := P, (sx € S,k € [0. N])

@ consider realization s, € 8, k € [0, N| —then

N .

1, ifVke|[0O,N]:sce S
I I 1S(sk) — [)] k
o 0, otherwise

N N
=P (S)=P. (H 15(sk) = 1) =E |]] 1s(sk)]
k=0 k=0

@ select e € [0, 1] — probabilistic safe/invariant set with safety level ¢ is

S(e) ={s€8:Ps(S) > ¢} (heren =Js)

[AA et al. - Automatica 08]

Probabilistic invariance: computation

@ computation of P¢(S) (and thus of S(¢)) via dynamic programming:
sequential update, backward in time, of multi-stage value function
Vi(s) : [0, N] x 8 — R,

accounting for current and expected future rewards — in particular

Vi(s) = 1s(s), Vi(s) = [S Vi (x)T(x]s)

| Vo(s) = Ps(S) = S() |

[AA et al. - Automatica 08]

Probabilistic invariance: computation

@ computation of P¢(S) (and thus of S(¢)) via dynamic programming:
sequential update, backward in time, of multi-stage value function
Vi(s) : [0, N] x 8 — R,

accounting for current and expected future rewards — in particular

Vi(s) = 1s(s), Vi(s) = [S Vi (x)T(x]s)

| Vo(s) = Ps(S) = S() |

@ control dependent models: find optimal policy 1., optimizing recursively over

Vi(s,u) : [0,N] x 8 x U — RT

[AA et al. - Automatica 08]

Computing probabilistic invariance: issues

@ issues
@ non-standard (max, multiplicative) value functions
@ continuous control space
@ hybrid state space

= solution of DP is seldom analytical

Computing probabilistic invariance: issues

@ issues

@ non-standard (max, multiplicative) value functions
@ continuous control space
@ hybrid state space

= solution of DP is seldom analytical
@ numerical solutions are needed

= problem # 1: difference between real solution and computed solution
(in verification and correct-by-design controller synthesis)

= problem # 2: Bellman’s curse of dimensionality
(state/control space gridding)

Outline

e Formal verification of stochastic hybrid systems

@ Computable analysis and control synthesis via formal abstractions

Dynamical properties as temporal specifications

PRISM
MRMC

prob. model

dtMC relax'd/strenght'd PCTL checking ¢-spec holds

dtMDP inflated LTL — e-spec dynamic. policy max/min e-spec

programming

adaptive, approximate
sequential probabilistic refine back
abstractions bisimulations
PCTL spec holds
dtSHS | LTL - spec pe .
policy max/min spec
automata

Approximate model checking of probabilistic invariance

@ model (8, T), invariance set S € 8, finite time horizon N, safety level ¢

[AAetal. - EJC 11]

Approximate model checking of probabilistic invariance

@ model (8, T), invariance set S € 8, finite time horizon N, safety level ¢
o J-approximate (8, Ts) with finite-state dt-MC (2, T)

* compute approximation error f(6, N)

@ S — S;: define formula @, characterizing set S, label states in Z

[AAetal. - EJC 11]

Approximate model checking of probabilistic invariance

@ model (8, T), invariance set S € 8, finite time horizon N, safety level ¢
o J-approximate (8, Ts) with finite-state dt-MC (2, T)

* compute approximation error f(6, N)

@ S — S;: define formula @, characterizing set S, label states in Z

= probabilistic safe set

S(e) ={s€8:PS) > ¢}
={se8:(1—PsS)) <1—¢}

[AAetal. - EJC 11]

Approximate model checking of probabilistic invariance

@ model (8, T), invariance set S € 8, finite time horizon N, safety level ¢
o J-approximate (8, Ts) with finite-state dt-MC (2, T)

* compute approximation error f(6, N)

@ S — S;: define formula @, characterizing set S, label states in Z

= probabilistic safe set

S(e) ={s€8:PS) > ¢}
={se8:(1—PsS)) <1—¢}

can be related to
Zs(e) = Sat (P<i_. (true US" —dg)))
={ze2:zEPs_. (true U ~dg)}

[AAetal. - EJC 11]

Approximate model checking of probabilistic invariance

@ model (8, Ts), invariance set S € 8, finite time horizon N, safety level ¢
@ J-approximate (8, T;) with finite-state dt-MC (2, T)

* compute approximation error f(4, N)

@ S — Ss: define formula ¢, characterizing set S;, label states in Z

@ define

S(e) ={s€8:Py(S) > ¢}
Zs(e) = Sat (IP’S1_6 (true USN—\¢35))

Q selectn >0:n/2€ (0,1 —¢)

@ pick o : (5, N) <n/2

@ compute Zs(e + n/2)

Q define 5,(c) = {s € 8 <+ z € Zs(c +1/2)}

:> A~
S(e +1) € 8,(c) € ()

[AAetal. - EJC 11]

Verification of over- or under-specifications in PCTL

@ any PCTL formula can be expressed via equivalent DP recursions

@ consider PCTL formula P (W) on SHS (8, Ts)
o J-approximate SHS (8, Tg) as a dt-MC (Z, 7)
@ compute approximation error f(5, V)

[D’Innocenzo, AA, J.-P. Katoen - HSCC 12]

Verification of over- or under-specifications in PCTL

@ any PCTL formula can be expressed via equivalent DP recursions

@ consider PCTL formula P (V) on SHS (8, Ts)
o J-approximate SHS (8, Tg) as a dt-MC (Z, 7)
@ compute approximation error f(5, V)

@ compute g(WV, f), a function based on formula & error
@ model check P 5w 1) (V) on (Z,7)

1 if PCTL formula is “robust”, then conclusion holds for P... (V) on SHS

2 else refine § — reduce f(d, N) — decrease g(V,)

[D’Innocenzo, AA, J.-P. Katoen - HSCC 12]

Approximate model checking of automata specifications

@ generalization to “richer” set of properties over dtSHS
@ specifications expressed as a DFA or a Blchi automata

@ probabilistic reachability-like computation over product construction
@ recent extensions to controller synthesis

[AA etal. - HSCC 11; I. Tkachev et al. - HSCC13]

Characterization & computation of co-horizon properties

@ consider target set T; invariantset S=T¢ =8\ T; Vs € §:

Ps(Vvn>0:5,€8) <+ 1—Ps(truelUT)

[I. Tkachev, AA - CDC 11, HSCC 12, CDC12,TCS 13]

Characterization & computation of co-horizon properties

@ consider target set T; invariantset S=T¢ =8\ T; Vs € §:

Ps(Vvn>0:5,€8) <+ 1—Ps(truelUT)

@ existence and computation of absorbing set B : Vx € B, Ts(B|x) = 1

@ characterization — study of existence/uniqueness of (non-trivial) solutions of
Bellman equations

convergence of Bellman recursions, contractivity of operators

@ computation — formal reduction to finite-horizon problems
[I. Tkachev, AA - CDC 11, HSCC 12, CDC12,TCS 13]

On the approximation error (3, N)

PRISM
MRMC

prob. model

hecki
dtMC relax'd/strenght'd PCTL checking e-spec holds

dtMDP inflated LTL — e-spec dynamic. policy max/min e-spec

programming

adaptive, approximate
sequential probabilistic refine back
abstractions bisimulations
PCTL spec holds
dtSHS | LTL - spec pe .
policy max/min spec
automata

On the approximation error (3, N)
@ approximation via J-partitioning: S = Uj—1,...m X S

@ under Lip-continuity assumptions on density of kernel Tg,
h(’?])? i)j:'l?"'ﬂm

o forany z; € S;,Vs:sAZ € S, erroris

f(65,N) = [Ps(S) = P(Ss)l < max Ng; » h(i,),
i=1,....m

J=1,....m

0= maXi=1,....m 5,’, 5q_’,' = diam (SI)

‘ error is linear in NV, §; and depends on local constants h(i, j) — local tuning ‘
[AA et al. - EJC 11, S. Soudjani, AA - QEST 11, TAC 13]

On the approximation error (3, N)

@ formula-based abstractions

@ software (in the making) for sequential, adaptive grid generation based on
approximation error

o from MATLAB/Simuling model to MRMC/PRISM input

number ofcols: 958

i col 1552

09 098 1 102 104 106 108 11 132 134 116

09 098 1 102 104 106 108 11 112 114 116

[S. Soudjani, AA - QEST 11, HSCC 12, ATVA12, SIAM 13]

Approximate probabilistic bisimulations

PRISM
MRMC

prob. model

hecki
dtMC relax'd/strenght'd PCTL checking e-spec holds

dtMDP inflated LTL — e-spec dynamic. policy max/min e-spec

programming

adaptive, approximate
sequential probabilistic refine back
abstractions bisimulations
PCTL spec holds
dtSHS | LTL - spec pe .
policy max/min spec
automata

Approximate probabilistic bisimulations
@ above abstraction leads to approximate probabilistic bisimulation [Larsen &

Skou, 91] - alternatively ...
%

@ consider models (T, 8;) with solution processes s;(k),i =1,2,k >0
@ parallel composition of models with output s 2(k) = s1(k) — sz2(k)

AA - ENTCS 13; I. Tkachev, AA - HSCC 13

Approximate probabilistic bisimulations
@ above abstraction leads to approximate probabilistic bisimulation [Larsen &

Skou, 91] - alternatively ...

@ consider models (T, 8;) with solution processes s;(k),i =1,2,k >0
@ parallel composition of models with output s 2(k) = s1(k) — sz2(k)

Definition

A function ¢ : 84 x 82 — R is a probabilistic bisimulation function if
Y(s1.2) > ||s1 — S| and if 1, (s1.2(k)) is @ supermartingale.

@ ¢ is an upper bound on the distance btw solutions of two models:

P (SUPio 191 () — S2(K)I* 2 €) < (s ’2(0))/4/6\-ENTCS 13; I. Tkachev, AA - HSCC 13

Outline

e Formal verification of max-plus linear models

Formal abstractions for verification of complex models

model
checking
automatic
abstract verification
simple e-specification . €-spec holds yes/no
model control policy pu — e-spec
synthesis
c-quantitative refine back
abstraction
concrete property, spec holds yes/no
complex specification, " policy i — spec
model cost or reward tlu:: (correct by design)
€

Formal abstractions for verification of MPL models

SPIN
LTS LTL C::e Zi?nl (3 policy) spec yes/no
safe LTL 9 (V policies) spec yes
VeriSiMPL T bisimulations l refine back
simulations

MPL transient or \ (3 policy) property yes/no

determ.

steady-state (V policies) property yes

Introduction to MPL systems

SPIN
LTS LTL C::e Zi?nl (3 policy) spec yes/no
safe LTL 9 (V policies) spec yes
VeriSiMPL bisimulations refine back
simulations
transient or (3 policy) property yes/no

MPL

steady-state (V policies) property yes

determ.

Introduction to MPL systems

@ Max-Plus-Linear (MPL) systems are event-driven models

@ applications: railway scheduling, planning of production lines, network
calculus

@ x(k) is the time of k-th event, k € NU {0}

@ timing updates: maximization ($) and addition (®) operations
— max-plus algebra

0 e=-00, R.=RU{e}, o,f€eR,

0 a®f :=max(a,B), a®pB:=a+F, andmatrixoperations

Max-plus-linear models

Definition (Autonomous MPL model)
x(k+1) = A x(k),

where A € R7*"and k € NU {0}

Example
A simple railway model [Heidergott, 06]

> 5 1k+1 2+1k,5+ 2(k)}
x(k+1) = [3 3] ® x(k), [ﬁzgkwﬂ - [2:§%3+§1§k§’3+i2(k)}}

3 .
“ Iﬁ,”
2 3
< Looo]
5

[Baccelli et al., 92]

Max-plus-linear models

Definition (Autonomous MPL model)

x(k+1)=A® x(k),
where A € R7*" and k € NU {0}

Example
A simple railway model [Heidergott, 06]

> 5 1k+1 2+1k,5+ 2(k)}
x(k+1) = [3 3] ® x(k), [L&J] - [2zﬁs+;§k§’3+§2(")}}

Definition (Non-autonomous MPL model)

x(k+1)=A® x(k) ® B® u(k),

where B € R and u € R™ (synthesis = scheduling)

[Baccelli et al., 92]

Outline

e Formal verification of max-plus linear models
@ Analysis and control synthesis problems

Classical analysis of MPL models

SPIN
LTS LTL C:; zi?nl (3 policy) spec yes/no
safe LTL 9 (V policies) spec yes
VeriSiMPL bisimulations refine back
simulations
transient or (3 policy) property yes/no

MPL

steady-state (V policies) property yes

determ.

Classical analysis of MPL models
@ study of transient and periodic regimes, of asymptotics
@ classical analysis based on algebraic or geometric properties

@ max-plus eigenvector x e R”: AQ x =A@ x = x(k + 1) = A ® x(k)

@ cycles on precedence graph = periodic regime with period c:
Vk > ko, x(k + ¢) = \®° @ x(k)

Bampe

@ eigenspace (periodic regime with period 1 and A = 4):

o] &) B 52 e ol (2]] 32 e 4]~

O ’
@ periodic regime with period ¢ = 2 (transient ky = 3):

) 7]) 55) (5] 2])3 3]] 4]~

o

Outline

e Formal verification of max-plus linear models

@ Computable analysis and control synthesis via formal abstractions

Labeled transition system (LTS)

SPIN
LTS LTL C::e Zi?nl (3 policy) spec yes/no
safe LTL 9 (V policies) spec yes
VeriSiMPL T bisimulations l refine back
simulations

MPL transient or \ (3 policy) property yes/no

determ.

steady-state (V policies) property yes

Labeled transition system (LTS)

o setof states S = {1,2,3,4}
o set of inputs Act = {«a, 5}
@ transitions — = {(1,, 4),(4,2,3),...}

@ set of outputs AP = {a, b} and
output map L(1) =0, L(2) = {b}, ...

@ labels can be defined over states or transitions
@ LTS can be deterministic vs non-deterministic
@ LTS can be infinite vs finite

[Baier & Katoen, 08]

Finite LTS as abstractions of MPL models

SPIN

LTS LTL cha 2?(?; (3 policy) spec yes/no

safe LTL 9 (V policies) spec yes
VeriSiMPL b.|3|mul.at|ons refine back

simulations

transient or (3 policy) property yes/no
MPL L

steady-state determ (V policies) property yes

@ procedure: need to compute
@ S: states of LTS
@ —: LTS transitions
© L: LTS labels

LTS states: partitioning of state space

@ state space R” is partitioned in finitely many polytopic regions
@ partition is not arbitrary, it is adapted to underlying dynamics
@ obtained state-space partition defines states of LTS

@ partition can be possibly refined (determinization — more later)

T2
@ we obtain a total of 5 regions:
R ={xeR?: x — x <0} Y
R, ={xc€R2: x; — x, = 0} S ya A
Ry = {x € R?: x; — xo > 3} R2 /:;,:3/ -
Ry ={x €R?: x; — xo = 3} /,:j::/ /’,;f:'/ R,
Rs = {x €R2:0 < X — X < 3}

Difference-bound matrices (DBM)

Definition (DBM)

A difference-bound matrix in R" is the finite intersection of sets defined by
Xi — Xj =j,j Qi

where ~; i€ {<, <}, jj € RU {400}, for1 <i#j<n

@ DBM allow compact matrix representation
o DBM are easy to manipulate (projections, emptiness and inclusion check)

[Dill, 90]

Difference-bound matrices (DBM)

Definition (DBM)

A difference-bound matrix in R" is the finite intersection of sets defined by
Xi — Xj =j,j Qi

where ~; i€ {<, <}, jj € RU {400}, for1 <i#j<n

@ DBM allow compact matrix representation
o DBM are easy to manipulate (projections, emptiness and inclusion check)

@ closure: image/inverse image of DBM over MPL dynamics is again a DBM

[Dill, 90]

LTS transitions: one-step reachability

@ consider any two TS states (partitioning regions) R, R’
@ R — R’ iff there exists a x(k) € R such that x(k + 1) € R’: check

R n{x(k+1):x(k)e R} #0

LTS transitions: one-step reachability

@ consider any two TS states (partitioning regions) R, R’
@ R — R’ iff there exists a x(k) € R such that x(k + 1) € R’: check

R n{x(k+1):x(k)e R} #0

@ computation of transitions:

use region representation via DBM, DBM forward-mapping via PWA dynamics,
DBM emptiness check

@ transitions are stored on sparse Boolean matrix

LTS transitions, an example

T2 Rs

e RY R, R Ry RY
i)
A
A
A
A
A
A
A
A
7 R, ; o
A
Y. iy
A
3 /2 /0
Rz |7 Y
Z
—4—>1]
1 R 7
A
. 2 / 7
/7 /'/ R7
Y e R
/o Yz 1
A
v S R2

@ determinism vs non-determinism of obtained TS

@ above R; - original partitions, R; - refined partitions (determinization)

Relationship between LTS and MPL

SPIN
LTS LTL C:; zi?nl (3 policy) spec yes/no
safe LTL 9 (V policies) spec yes
VeriSiMPL T bisimulations l refine back
simulations

MPL transient or \ (3 policy) property yes/no

determ.

steady-state (V policies) property yes

Relationship between LTS and MPL

@ TS simulates the original MPL model
@ TS bisimulates the MPL model if and only if it is deterministic

@ non-deterministic TS can be “determinized” by refining partitioning regions
@ however, refinement procedure may not terminate

if TS is deterministic over the periodic regime, then TS is globally
deterministic
@ every irreducible MPL model admits finite deterministic TS abstraction

LTS labels

@ state labels:
all possible values of xj(k) — xj(k), for1 <i<j<n

time difference of same-event variables

@ transition labels:
all possible values of x;(k + 1) — xi(k), for 1 <j<n
time difference of successive events

@ labels are vectors of intervals, can be represented as DBM

LTS labels, an example

Example
@ LTS transition labels

Ry R} R R’sD Ry kﬁ)
NI/ i

, [4,4] ,
R Re:){.u R

[n/ (,5) > (3,4)
(6.6] 34 | @)

Ry

R 5 =

R} Ry
| (5,00)
3,3]
R
Ry 33 | 55
5.5 | [3.3)

Formal analysis of MPL models is now “very simple”
VeriSIMPL — Verification via biSimulation of MPL models

SPIN
LTS LTL C:; Ziﬁ: (3 policy) spec yes/no
safe LTL ¢ (V policies) spec yes
—_—
VeriSiMPL bisimulations refine back
simulations

MPL transient or \ (3 policy) property yes/no

determ.

steady-state (V policies) property yes

Formal analysis of MPL models is now “very simple”

VeriSiMPL — Verification via biSimulation of MPL models
@ abstract MPL model as LTS (in MATLAB)
@ export LTS abstraction (as PROMELA script) into SPIN model checker
@ consider properties in LTL logic
o verify property via SPIN over LTS and export outcome back to MPL model

A VeriSiMPL (“very simple”)

Home Verification via biSimulations of Max-Plus Linear Models

Contact Info
Bio Sketch VeriSiMPL

Frer=h = is asoftware tool for conerete MPL models implemented in Matlab, which exports abstract LTS models to SPIN in Promela language

Interests
Publications Documentation

Group = comes as a text file: txt
Teaching
o Download

= the toolbox as a compressed folder: zip
Contacts
= for questions and queries, please send an email to

= D.Adzkiya, d dot adzkiya at tudelft dot nl
= A. Abate, a dot abate at tudelft dot nl

jemdoc.

http://sourceforge.net/projects/verisimpl

MPL verification in practice

Example
@ automatically identify MPL eigenspace: chGL:AP(D‘P A |p] =0)

(5,00)
3,3]

[5,5]
3,3]

MPL verification in practice

Example
o automatically identify MPL periodic regime: W =\ ;.o O(p A O%%)

(5,00)
3,3]

[5,5]
3,3]

Computational benchmark for abstraction

@ coded in MATLAB, run over 12-core Intel Xeon, 3.47 GHz, 24 GB
@ Arandomly generated with elements taking values between 1 and 100
@ 10 independent experiments per dimension — mean values are displayed:

size time for time for time for total total

of MPL | generation of | generation of | generation of | number of number of

model states transitions labels LTS states | LTS transitions
3 0.1 [s] 0.4 [s] 0.1 [s] 3.6 43
5 0.2 [s] 0.4 [s] 0.1 [s] 8.6 13.8
7 0.9 [s] 0.5 [s] 0.3 [s] 37.2 289.3
9 4.1 [s] 0.8 [s] 1.6 [s] 120.0 1.7.10°
11 24.8 [s] 15.2 [s] 16.1[s] 613.2 1.9-10*
13 3.5[m] 5.5 [m] 2.8 [m] 1.9-10° 1.9-10°
15 53.6 [m] 2.0 [h] 39.4 [m] 7.410° 2.0-10°

@ bottleneck: generation of transitions

Computational benchmark for reachability analysis

@ Arandomly generated with elements taking values between 1 and 100
@ set of initial conditions is selected as the unit hypercube
@ 10 independent experiments per dimension — mean values are displayed:

size time for number of time for
of MPL | generation of regions of generation of
model abstract TS abstract TS reach tube
3 0.09]s] 5 0.09 [s]
10 4.73[s] 700 8.23 [s]
19 67.07 [m] 3.48 -10° 7.131[h]

@ generation time for reach tube of 10-dimensional MPL model, different time horizons

@ comparison VeriSiMPL vs MPT (multi-parametric tool, ETH Zirich):

time horizon 20 40 60 80 100
VeriSiMPL 11.02[s] | 17.94[s] | 37.40[s] | 51.21[s] | 64.59][s]
MPT 47.61[m] 1.191[h] 2.32[h] 3.03[h] 3.73[h]

Stochastic Max-plus-linear models

Definition (Deterministic MPL model)

x(k+1)=A® x(k),
where A € R7*"and k € NU {0}

Definition (Stochastic MPL model)

x(k+1) = A x(k),

where A(k) = [aj(k)]i; € RT*", {aj(k)}« are i.i.d. random processes with pdf
tj(-), and k € NU {0}

Stochastic Max-plus-linear models

Definition (Deterministic MPL model)

x(k+1)=A® x(k),
where A € R7*"and k € NU {0}

Definition (Stochastic MPL model)

x(k+1) = A x(k),

where A(k) = [aj(k)]i; € RT*", {aj(k)}« are i.i.d. random processes with pdf
tj(-), and k € NU {0}

@ abstraction of SMPL models as Markov chains
@ can be obtained in two possible ways:

@ leveraging theory above, under continuity assumptions on kernels ¢;(-)
@ by symbolic approach over distributions that are closed under max-plus algebra
operations

@ error quantification

Simulations over 2D SMPL model

@ exponential distributions (rates btw 1/3 and 1) for the entries of 2D matrix A
@ pick time horizon N = 5, safe set A = [-5, 5]°

o select (3700,2900) bins per dimension, partition uniformly

@ abstraction error results in E = 32.5) < 0.1

P.(4)

Outline

° Concluding remarks

Formal abstractions for verification of complex models

model
checking
automatic
abstract verification
simple e-specification - ¢-spec holds yes/no
model control policy ju — e-spec
synthesis
c-quantitative refine back
abstraction
concrete property, spec holds yes/no
complex specification, i policy p — spec
model cost or reward tlu::, (correct by design)
€

Acknowledgments

@ students: D. Adzkiya, S. Haesaert, S.E.Z. Soudjani, I. Tkachev, M. Zamani

@ main collaborators: J. Lygeros, M. Prandini, J.-P. Katoen, C. Tomlin, B. De
Schutter

@ topics: stochastic hybrid systems, max-plus linear models

Thanks for your attention!

For more info:

www.dcsc.tudelft.nl/~aabate
a.abate@tudelft.nl

Selected key references

— A. Abate, “Approximation Metrics based on Probabilistic Bisimulations for General State-Space Markov Processes:
a Survey,” Electronic Notes in Theoretical Computer Sciences, 2012, In Press.

— A. Abate, A. D’Innocenzo, and M.D. Di Benedetto, “Approximate Abstractions of Stochastic Hybrid systems,” IEEE
Transactions on Automatic Control, vol. 56, nr. 11, pp. 2688-2694, 2011.

— A. Abate, J.P Katoen, J. Lygeros, and M. Prandini, “Approximate Model Checking of Stochastic Hybrid Systems,”
European Journal of Control, nr. 6, pp. 624-641, 2010.

— A. Abate, J. Lygeros, and S. Sastry, “Probabilistic Safety and Optimal Control for Survival Analysis of Bacillus
Subtilis,” Systems and Control Letters, vol. 59, nr. 1, pp. 79-85, 2010.

— A. Abate, M. Prandini, J. Lygeros, and S. Sastry: “Probabilistic Reachability and Safety Analysis of Controlled
Discrete-Time Stochastic Hybrid Systems,” Automatica, vol. 44, nr. 11, pp. 2724-2734, Nov. 2008.

—|. Tkachev and A. Abate, “Computation of ruin probabilities for general discrete-time Markov models,” 2013, Under
Review.

— 8. Soudjani and A. Abate, “Adaptive and Sequential Gridding for Abstraction and Verification of Stochastic
Processes,” SIAM Journal on Applied Dynamical Systems, 2013.

—|. Tkachev and A. Abate, “Characterization and computation of infinite horizon specifications over Markov
processes,” Theoretical Computer Science, 2013, In Press.

— I. Tkachev and A. Abate, “Regularization of Bellman equations for infinite-horizon probabilistic properties,” Hybrid
Systems: Computation and Control (HSCC 12), Beijing, PRC, Apr 2012.

— S. Soudjani and A. Abate, “Probabilistic Invariance of Mixed Deterministic-Stochastic Dynamical Systems,” Hybrid
Systems: Computation and Control (HSCC 12), Beijing, PRC, Apr 2012.

— A. D’'Innocenzo, A. Abate and J.-P. Katoen, “Robust PCTL model checking,” Hybrid Systems: Computation and
Control (HSCC 12), Beijing, PRC, Apr 2012.

— |. Tkachev and A. Abate, “On infinite-horizon probabilistic properties and stochastic bisimulation functions,” 50th
IEEE Conference on Decision and Control and European Control Conference (CDC 11), Orlando, FL, December
2011, pp. 526-531.

— 8. Soudjani and A. Abate, “Adaptive Gridding for Abstraction and Verification of Stochastic Hybrid Systems,”
Quantitative Evaluation of SysTems (QEST 11), Aachen (DE), Sept. 2011, pp. 59-69.

— A. Abate, J.-P. Katoen, and A. Mereacre, “Quantitative Automata Model Checking of Autonomous Stochastic Hybrid
Systems,” Hybrid Systems: Computation and Control (HSCC 11), Chicago, IL, April 2011, pp. 83 - 92.

Additional references

—J. Ding, M. Kamgarpour, S. Summers, A. Abate, J. Lygeros and C.J. Tomlin, “A dynamic game framework for
verification and control of stochastic hybrid systems,” Automatica, 2013.

— A. Abate and M. Prandini, “Approximate abstractions of stochastic systems: a randomized method,” Proceedings of
the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, December 2011,
pp. 4861-4866.

— A. Abate, A. D’Innocenzo, M.D. Di Benedetto and S. Sastry, “Markov Set-Chains as abstractions of Stochastic
Hybrid Systems,” Hybrid Systems: Computation and Control (HSCC 08), Saint Louis (MS), April 2008.

— A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Approximation of General Stochastic Hybrid Systems by Switching
Diffusions with Random Hybrid Jumps,” Hybrid Systems: Computation and Control, Saint Louis (MS), April 2008.

— A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry, “Computational Approaches to Reachability Analysis of
Stochastic Hybrid Systems,” Hybrid Systems: Computation and Control, Pisa (IT), April 2007.

— A. Abate, “Probabilistic Bisimulations of Switching and Resetting Diffusions,” 49th IEEE Conference of Decision and
Control, Atlanta, GA, Dec. 2010, pp. 5918 - 59283.

— A. Abate, “A Contractivity Approach for Probabilistic Bisimulations of Diffusion Processes,” 48th IEEE Conference of
Decision and Control, Shanghai, CN, Dec. 2009, pp. 2230-2235.

— A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “An approximate dynamic programming approach to probabilistic
reachability for stochastic hybrid systems, ” 47th IEEE Conference of Decision and Control, Cancun, MX, Dec. 2008,
pp. 4018-4023.

	Formal abstractions for verification of complex models
	Formal verification of stochastic hybrid systems
	Analysis and control synthesis problems
	Computable analysis and control synthesis via formal abstractions

	Formal verification of max-plus linear models
	Analysis and control synthesis problems
	Computable analysis and control synthesis via formal abstractions

	Concluding remarks

