
Computable analysis and control synthesis
over complex dynamical systems

via formal verification

Alessandro Abate

Department of Computer Science, University of Oxford

Delft Center for Systems and Control, TU Delft

September 25, 2013

Alessandro Abate 1 / 46

Key references will appear here

Outline

1 Formal abstractions for verification of complex models

2 Formal verification of stochastic hybrid systems
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

3 Formal verification of max-plus linear models
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

4 Concluding remarks

Alessandro Abate 2 / 46

Outline

1 Formal abstractions for verification of complex models

2 Formal verification of stochastic hybrid systems
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

3 Formal verification of max-plus linear models
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

4 Concluding remarks

Alessandro Abate 2 / 46

Formal abstractions for verification of complex models

model
checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6
ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 3 / 46

Formal abstractions for verification of complex models

model
checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6
ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 3 / 46

Formal abstractions for verification of complex models

model
checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6
ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 3 / 46

Formal abstractions for verification of complex models

model
checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6
ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 3 / 46

Formal abstractions for verification of complex models
model

checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6
ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 3 / 46

Formal abstractions for verification of complex models
model

checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6
ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 3 / 46

Formal abstractions for verification of complex models
model

checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6
ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 3 / 46

Formal abstractions for verification of complex models
model

checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6
ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 3 / 46

Formal abstractions for verification of complex models
model

checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6
ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 3 / 46

Outline

1 Formal abstractions for verification of complex models

2 Formal verification of stochastic hybrid systems
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

3 Formal verification of max-plus linear models
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

4 Concluding remarks

Alessandro Abate 4 / 46

Formal abstractions for verification of complex models
model

checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6 ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 5 / 46

Formal abstractions for verification of dtSHS
PRISM
MRMC

?

dtMC
dtMDP

relax’d/strenght’d PCTL
inflated LTL – ε-spec

prob. model
checking

-
dynamic

programming

ε-spec holds
policy max/min ε-spec

6

?

adaptive,
sequential
abstractions

approximate
probabilistic
bisimulations

?

refine back

dtSHS
PCTL
LTL – spec
automata

spec holds
policy max/min spec

Alessandro Abate 6 / 46

Stochastic hybrid (discrete/continuous) systems
PRISM
MRMC

?

dtMC
dtMDP

relax’d/strenght’d PCTL
inflated LTL – ε-spec

prob. model
checking

-
dynamic

programming

ε-spec holds
policy max/min ε-spec

6

?

adaptive,
sequential
abstractions

approximate
probabilistic
bisimulations

?

refine back

dtSHS
PCTL
LTL – spec
automata

spec holds
policy max/min spec

Alessandro Abate 7 / 46

Stochastic hybrid (discrete/continuous) systems

discrete-time models

finite-space Markov chain uncountable-space Markov process

(Z,T) (S,Ts)

Z = (z1, z2, z3) S = R2

T =

 p11 p12 p13

p21 · · · · · ·
· · · · · · · · ·

 Ts(x |s) = e− 1
2 (x−m(s))T Σ−1(s)(x−m(s))
√

2π|Σ(s)|1/2

P(z1, {z2, z3}) = p12 + p13 P(s,A) =
∫

A Ts(dx |s), A ∈ B(S)

⇒ discrete-time, stochastic hybrid systems

Alessandro Abate 7 / 46

Stochastic hybrid (discrete/continuous) systems

discrete-time models

finite-space Markov chain uncountable-space Markov process

(Z,T) (S,Ts)

Z = (z1, z2, z3) S = R2

T =

 p11 p12 p13

p21 · · · · · ·
· · · · · · · · ·

 Ts(x |s) = e− 1
2 (x−m(s))T Σ−1(s)(x−m(s))
√

2π|Σ(s)|1/2

P(z1, {z2, z3}) = p12 + p13 P(s,A) =
∫

A Ts(dx |s), A ∈ B(S)

⇒ discrete-time, stochastic hybrid systems

Alessandro Abate 7 / 46

[AA et al - Automatica 08]

Stochastic hybrid (discrete/continuous) systems
Definition
A discrete-time stochastic hybrid system is a pair (S,Ts), where

S = ∪q∈Q({q} × Rn(q)),Q a discrete set of modes, n : Q→ N
Ts : S× S→ [0, 1] specifies the dynamics of process at point s = (q, x):

Ts(ds′ |s) =

{
Tx (dx ′|(q, x))Tq(q|(q, x)), if q′ = q (no transition)
Tr (dx ′|(q, x), q′)Tq(q′|(q, x)), if q′ 6= q (transition)

initial state π : S→ [0, 1]

Alessandro Abate 7 / 46

[AA et al - Automatica 08]

Stochastic hybrid (discrete/continuous) systems
Definition
A discrete-time stochastic hybrid system is a pair (S,Ts), where

S = ∪q∈Q({q} × Rn(q)),Q a discrete set of modes, n : Q→ N
Ts : S× S→ [0, 1] specifies the dynamics of process at point s = (q, x):

Ts(ds′ |s) =

{
Tx (dx ′|(q, x))Tq(q|(q, x)), if q′ = q (no transition)
Tr (dx ′|(q, x), q′)Tq(q′|(q, x)), if q′ 6= q (transition)

initial state π : S→ [0, 1]

can be control dependent (u ∈ U):

Ts(ds′ |s, u) =

{
Tx (dx ′|(q, x), u)Tq(q|(q, x), u), if q′ = q (no transition)
Tr (dx ′|(q, x), u, q′)Tq(q′|(q, x), u), if q′ 6= q (transition)

policy µ: “string” of controls
equivalent dynamical representation: sk+1 = f (sk , ξk , uk)

related to other models, e.g. LMP
Alessandro Abate 7 / 46

[I. Tkachev, AA - CDC 11]

Stochastic hybrid systems in risk analysis

{
Zn+1 = g(Zn, θn) Zn ∈ R, ← capital
θn+1 = h(Zn, θn, ξn) θn ∈ {Θ1, . . . ,ΘN}, ← interest

where ξn i.i.d. random variables; g, h measurable; (Z0, θ0) given

x = 12

y = 16

50 100 150 200
t

5

10

15

Capital

objective: what is the probability that, starting from initial capital Z0 = x , high
capitalization y is reached, while company’s bankruptcy is avoided

Alessandro Abate 8 / 46

[I. Tkachev, AA - CDC 11]

Stochastic hybrid systems in risk analysis

{
Zn+1 = g(Zn, θn) Zn ∈ R, ← capital
θn+1 = h(Zn, θn, ξn) θn ∈ {Θ1, . . . ,ΘN}, ← interest

where ξn i.i.d. random variables; g, h measurable; (Z0, θ0) given

x = 12

y = 16

50 100 150 200
t

5

10

15

Capital

objective: what is the probability that, starting from initial capital Z0 = x , high
capitalization y is reached, while company’s bankruptcy is avoided

Alessandro Abate 8 / 46

Outline

1 Formal abstractions for verification of complex models

2 Formal verification of stochastic hybrid systems
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

3 Formal verification of max-plus linear models
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

4 Concluding remarks

Alessandro Abate 9 / 46

Analysis and control synthesis problems
PRISM
MRMC

?

dtMC
dtMDP

relax’d/strenght’d PCTL
inflated LTL – ε-spec

prob. model
checking

-
dynamic

programming

ε-spec holds
policy max/min ε-spec

6

?

adaptive,
sequential
abstractions

approximate
probabilistic
bisimulations

?

refine back

dtSHS
PCTL
LTL – spec
automata

spec holds
policy max/min spec

Alessandro Abate 10 / 46

Analysis and control synthesis problems

reachability
(safety/invariance)

reach-avoid
(constrained reachability)

sequential reachability
(trajectory planning)

∞-horizon objectives
(i.o., eventually always)

properties expressed via PCTL, LTL (DFA or Büchi automata)

Alessandro Abate 10 / 46

Analysis and control synthesis problems

synthesis for reachability
games (2− 1/2 players)

synthesis for reach-avoid
(pursuit evasion games)

sequential reachability
(trajectory planning)

∞-horizon objectives
(i.o., eventually always)

properties expressed via PCTL, LTL (DFA or Büchi automata)

Alessandro Abate 10 / 46

[AA et al. - Automatica 08]

Probabilistic safety/invariance: characterization
probabilistic invariance is the probability that the execution associated with an
initial distribution π stays in S (safe set) during the time horizon [0,N]:

Pπ(S) := Pπ(sk ∈ S,∀k ∈ [0,N])

consider realization sk ∈ S, k ∈ [0,N] – then

N∏
k=0

1S(sk) =

{
1, if ∀k ∈ [0,N] : sk ∈ S
0, otherwise

⇒ Pπ(S) = Pπ

(
N∏

k=0

1S(sk) = 1

)
= Eπ

[
N∏

k=0

1S(sk)

]

select ε ∈ [0, 1] – probabilistic safe/invariant set with safety level ε is

S(ε)
.

= {s ∈ S : Ps(S) ≥ ε} (here π = δs)

Alessandro Abate 11 / 46

[AA et al. - Automatica 08]

Probabilistic safety/invariance: characterization
probabilistic invariance is the probability that the execution associated with an
initial distribution π stays in S (safe set) during the time horizon [0,N]:

Pπ(S) := Pπ(sk ∈ S,∀k ∈ [0,N])

consider realization sk ∈ S, k ∈ [0,N] – then

N∏
k=0

1S(sk) =

{
1, if ∀k ∈ [0,N] : sk ∈ S
0, otherwise

⇒ Pπ(S) = Pπ

(
N∏

k=0

1S(sk) = 1

)
= Eπ

[
N∏

k=0

1S(sk)

]

select ε ∈ [0, 1] – probabilistic safe/invariant set with safety level ε is

S(ε)
.

= {s ∈ S : Ps(S) ≥ ε} (here π = δs)

Alessandro Abate 11 / 46

[AA et al. - Automatica 08]

Probabilistic safety/invariance: characterization
probabilistic invariance is the probability that the execution associated with an
initial distribution π stays in S (safe set) during the time horizon [0,N]:

Pπ(S) := Pπ(sk ∈ S,∀k ∈ [0,N])

consider realization sk ∈ S, k ∈ [0,N] – then

N∏
k=0

1S(sk) =

{
1, if ∀k ∈ [0,N] : sk ∈ S
0, otherwise

⇒ Pπ(S) = Pπ

(
N∏

k=0

1S(sk) = 1

)
= Eπ

[
N∏

k=0

1S(sk)

]

select ε ∈ [0, 1] – probabilistic safe/invariant set with safety level ε is

S(ε)
.

= {s ∈ S : Ps(S) ≥ ε} (here π = δs)

Alessandro Abate 11 / 46

[AA et al. - Automatica 08]

Probabilistic invariance: computation

computation of Ps(S) (and thus of S(ε)) via dynamic programming:
sequential update, backward in time, of multi-stage value function

Vk (s) : [0,N]× S→ R+,

accounting for current and expected future rewards – in particular

VN(s) = 1S(s), Vk (s) =

∫
S

Vk+1(x)Ts(dx |s)

V0(s) = Ps(S)⇒ S(ε)

control dependent models: find optimal policy µ, optimizing recursively over

Vk (s, u) : [0,N]× S× U→ R+

Alessandro Abate 12 / 46

[AA et al. - Automatica 08]

Probabilistic invariance: computation

computation of Ps(S) (and thus of S(ε)) via dynamic programming:
sequential update, backward in time, of multi-stage value function

Vk (s) : [0,N]× S→ R+,

accounting for current and expected future rewards – in particular

VN(s) = 1S(s), Vk (s) =

∫
S

Vk+1(x)Ts(dx |s)

V0(s) = Ps(S)⇒ S(ε)

control dependent models: find optimal policy µ, optimizing recursively over

Vk (s, u) : [0,N]× S× U→ R+

Alessandro Abate 12 / 46

Computing probabilistic invariance: issues

issues
1 non-standard (max, multiplicative) value functions
2 continuous control space
3 hybrid state space

⇒ solution of DP is seldom analytical

numerical solutions are needed

⇒ problem # 1: difference between real solution and computed solution
(in verification and correct-by-design controller synthesis)

⇒ problem # 2: Bellman’s curse of dimensionality
(state/control space gridding)

Alessandro Abate 13 / 46

Computing probabilistic invariance: issues

issues
1 non-standard (max, multiplicative) value functions
2 continuous control space
3 hybrid state space

⇒ solution of DP is seldom analytical

numerical solutions are needed

⇒ problem # 1: difference between real solution and computed solution
(in verification and correct-by-design controller synthesis)

⇒ problem # 2: Bellman’s curse of dimensionality
(state/control space gridding)

Alessandro Abate 13 / 46

Outline

1 Formal abstractions for verification of complex models

2 Formal verification of stochastic hybrid systems
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

3 Formal verification of max-plus linear models
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

4 Concluding remarks

Alessandro Abate 14 / 46

Dynamical properties as temporal specifications
PRISM
MRMC

?

dtMC
dtMDP

relax’d/strenght’d PCTL
inflated LTL – ε-spec

prob. model
checking

-
dynamic

programming

ε-spec holds
policy max/min ε-spec

6

?

adaptive,
sequential
abstractions

approximate
probabilistic
bisimulations

?

refine back

dtSHS
PCTL
LTL – spec
automata

spec holds
policy max/min spec

Alessandro Abate 14 / 46

[AA et al. - EJC 11]

Approximate model checking of probabilistic invariance

model (S,Ts), invariance set S ∈ S, finite time horizon N, safety level ε

δ-approximate (S,Ts) with finite-state dt-MC (Z,T)

? compute approximation error f (δ,N)

S → Sδ: define formula ΦSδ characterizing set Sδ, label states in Z

⇒ probabilistic safe set

S(ε) = {s ∈ S : Ps(S) ≥ ε}
= {s ∈ S : (1− Ps(S)) ≤ 1− ε}

can be related to

Zδ(ε)
.

= Sat
(
P≤1−ε

(
true U≤N ¬ΦSδ

))
= {z ∈ Z : z |= P≤1−ε

(
true U≤N ¬ΦSδ

)
}

Alessandro Abate 15 / 46

[AA et al. - EJC 11]

Approximate model checking of probabilistic invariance

model (S,Ts), invariance set S ∈ S, finite time horizon N, safety level ε

δ-approximate (S,Ts) with finite-state dt-MC (Z,T)

? compute approximation error f (δ,N)

S → Sδ: define formula ΦSδ characterizing set Sδ, label states in Z

⇒ probabilistic safe set

S(ε) = {s ∈ S : Ps(S) ≥ ε}
= {s ∈ S : (1− Ps(S)) ≤ 1− ε}

can be related to

Zδ(ε)
.

= Sat
(
P≤1−ε

(
true U≤N ¬ΦSδ

))
= {z ∈ Z : z |= P≤1−ε

(
true U≤N ¬ΦSδ

)
}

Alessandro Abate 15 / 46

[AA et al. - EJC 11]

Approximate model checking of probabilistic invariance

model (S,Ts), invariance set S ∈ S, finite time horizon N, safety level ε

δ-approximate (S,Ts) with finite-state dt-MC (Z,T)

? compute approximation error f (δ,N)

S → Sδ: define formula ΦSδ characterizing set Sδ, label states in Z

⇒ probabilistic safe set

S(ε) = {s ∈ S : Ps(S) ≥ ε}
= {s ∈ S : (1− Ps(S)) ≤ 1− ε}

can be related to

Zδ(ε)
.

= Sat
(
P≤1−ε

(
true U≤N ¬ΦSδ

))
= {z ∈ Z : z |= P≤1−ε

(
true U≤N ¬ΦSδ

)
}

Alessandro Abate 15 / 46

[AA et al. - EJC 11]

Approximate model checking of probabilistic invariance

model (S,Ts), invariance set S ∈ S, finite time horizon N, safety level ε

δ-approximate (S,Ts) with finite-state dt-MC (Z,T)

? compute approximation error f (δ,N)

S → Sδ: define formula ΦSδ characterizing set Sδ, label states in Z

⇒ probabilistic safe set

S(ε) = {s ∈ S : Ps(S) ≥ ε}
= {s ∈ S : (1− Ps(S)) ≤ 1− ε}

can be related to

Zδ(ε)
.

= Sat
(
P≤1−ε

(
true U≤N ¬ΦSδ

))
= {z ∈ Z : z |= P≤1−ε

(
true U≤N ¬ΦSδ

)
}

Alessandro Abate 15 / 46

[AA et al. - EJC 11]

Approximate model checking of probabilistic invariance
model (S,Ts), invariance set S ∈ S, finite time horizon N, safety level ε

δ-approximate (S,Ts) with finite-state dt-MC (Z,T)

? compute approximation error f (δ,N)

S → Sδ: define formula ΦSδ characterizing set Sδ, label states in Z

1 define

S(ε) = {s ∈ S : Ps(S) ≥ ε}
Zδ(ε) = Sat

(
P≤1−ε

(
true U≤N ¬ΦSδ

))
2 select η > 0 : η/2 ∈ (0, 1− ε)
3 pick δ : f (δ,N) ≤ η/2
4 compute Zδ(ε+ η/2)

5 define Ŝη(ε)
.

= {s ∈ S↔ z ∈ Zδ(ε+ η/2)}
⇒

S(ε+ η) ⊆ Ŝη(ε) ⊆ S(ε)

Alessandro Abate 15 / 46

[D’Innocenzo, AA, J.-P. Katoen - HSCC 12]

Verification of over- or under-specifications in PCTL

any PCTL formula can be expressed via equivalent DP recursions

consider PCTL formula P∼ε (Ψ) on SHS (S,Ts)

δ-approximate SHS (S,Ts) as a dt-MC (Z,T)

compute approximation error f (δ,N)

compute g(Ψ, f), a function based on formula & error

model check P∼ε±g(Ψ,f) (Ψ) on (Z,T)

1 if PCTL formula is “robust”, then conclusion holds for P∼ε (Ψ) on SHS

2 else refine δ → reduce f (δ,N)→ decrease g(Ψ, f)

Alessandro Abate 16 / 46

[D’Innocenzo, AA, J.-P. Katoen - HSCC 12]

Verification of over- or under-specifications in PCTL

any PCTL formula can be expressed via equivalent DP recursions

consider PCTL formula P∼ε (Ψ) on SHS (S,Ts)

δ-approximate SHS (S,Ts) as a dt-MC (Z,T)

compute approximation error f (δ,N)

compute g(Ψ, f), a function based on formula & error

model check P∼ε±g(Ψ,f) (Ψ) on (Z,T)

1 if PCTL formula is “robust”, then conclusion holds for P∼ε (Ψ) on SHS

2 else refine δ → reduce f (δ,N)→ decrease g(Ψ, f)

Alessandro Abate 16 / 46

[AA et al. - HSCC 11; I. Tkachev et al. - HSCC13]

Approximate model checking of automata specifications

with σi : R → [0, 1] a sigmoidal function given by

σi(y) =
ydi

αdi
i + ydi

, y ∈ R. (14)

Function σi(y), y ∈ R, is parameterized by a “threshold”
parameter αi and a “steepness” parameter di > 0. αi is the
value of y at which the probability of the heater changing
status becomes equal to 0.5, whereas di is related to the
slope of the sigmoidal function at y = αi (which amounts to
di/(4αi)). We shall refer to the three possible values for the
steepness parameter di respectively as di = 1 (flat), di = 10
(gradual), and di = 100 (steep), in increasing order. The
values for the threshold αi are determined as a convex com-
bination of the temperatures xl

i and xu
i , xl

i < xu
i , defining

the desired temperature range [xl
i, x

u
i] in room i.

5.2 Property Specification
We will consider two properties. The first one is a DFA

and the second one is an LTL-formula expressed as a GBA.
Recall that the difference between a DFA property and an
LTL-formula is that the former reasons over the finite paths
whereas the latter reasons over the infinite paths.

DFA property.
The property specified as a DFA A is depicted in Fig. 8.

q0 q1

q2

S

q3

UA
A

S

T

T

Figure 8: DFA A.

x2

x1

A U

T

xl
1

S = I

x1
1 x2

1 x3
1 xu

1x4
1

xl
2

x3
2

x1
2

x2
2

x4
2

xu
2

Figure 9: Domains
for DFA A of Fig. 8.

Intuitively, A describes all the paths, the continuous part
of which can reach the region labeled with D (see Fig. 9)
by first visiting the region labeled with G while avoiding the
regions labeled with B. Region S is given by ([xl

1, x
u
1] ×

[xl
2, x

u
2])\(G ∪ B ∪ D). Notice that no equivalent CTL for-

mula can be formulated for property A.
We specify the heating system as a DTSHS H with 16

locations: to every subset S, G, D and B of each continuous
domain we assign a location, each of which has the con-
ditional discrete stochastic kernel T! specified as in Fig. 1
and Eq. (13). The parameter di is taken to be equal to 10
(gradual) and the parameter αi is equal to 1

4
xl

i + 3
4
xu

i for
i ∈ {1, 2}. The regions within the continuous domains are
specified by the parameters from Table 1. The set of atomic
propositions is AP = {S, G, D, B}. Every location is labeled
with a single element from the set AP. The continuous tran-
sition kernels Tx and R are given by Eq. (11), and depend
on the parameters a12 = a21 = 0.25, b1 = b2 = 0.1, c1 = 2.6,
c2 = 2.4, xa = 6 and ν = 0.5. We partition the continuous
domains [xl

1, x
u
1]× [xl

2, x
u
2] into square regions, uniformly di-

viding each interval [xl
1, x

u
1] into l slots. We leverage the dis-

cretization technique from Section 3.2 in order to obtain the
discretized DTMC from the product H ⊗ A. The DTMC

xl
1\xl

2 x1
1\x1

2 x2
1\x2

2 x3
1\x3

2 x4
1\x4

2 xu
1\xu

2

10\10 15\15 20\20 25\25 30\30 35\35

Table 1: Parameters characterizing continuous domains.

is highly connected, namely most of the transition proba-
bilites are non zero. The results reported in this section
refer to computations performed on a AMD Athlon 64 Dual
Core Processor with 2GB RAM. The product construction
and the discretization algorithm were implemented in MAT-
LAB. Table 2 shows the verification time and the DTMC

Slots l 5 10 20
DTMC states 400 1600 6400

Time (sec) 29.5 466.7 5694.6

Table 2: Verification time for the DFA A in (Fig. 8) over
the DTMC obtained from the DTSHS H.

size for different number of slots. The obtained verifica-
tion times critically depend on the discretization procedure,
rather than the model checking algorithms: the time spent
on the product construction and solving the system of linear
equations is much smaller compared to the time spent for
the generation of the DTMC. Fig. 10 displays the probabil-

10

15

20

25

30

35

10

15

20

25

30

35

0

0.1

0.2

0.3

0.4

Temp. room 1Temp. room 2

P
ro

b
a

b
ili

ty

Figure 10: Satisfiability probability for the DFA A over the
DTSHS H (through its DTMC discretization), with the
first set of parameters.

ity that the two-room DTSHS satisfies the DFA property
A given that the initial location is (OFF, OFF) and the con-
tinuous state is chosen in any of the 4 domains S, G, B and
D. (The surface is obtained at the representative points.)
The number of discretization slots l is 10. A similar plot is
reported on Fig. 11 in 2D for a parameter choice of di of
100 (steep) and of αi of 1

2
xl

i + 1
2
xu

i , respectively — all other
parameters are as before. Here warmer colors denote higher
probabilities. In both the described instances, the proba-
bility is higher for all the states starting from the domain
G or nearby. This is due to the fact that the property A
is satisfied only for the paths of DTSHS that reach D by
starting anywhere in G or S and having crossed G.

generalization to “richer” set of properties over dtSHS

specifications expressed as a DFA or a Büchi automata

probabilistic reachability-like computation over product construction

recent extensions to controller synthesis

Alessandro Abate 17 / 46

[I. Tkachev, AA - CDC 11, HSCC 12, CDC12,TCS 13]

Characterization & computation of∞-horizon properties

consider target set T ; invariant set S = T c = S \ T ; ∀s ∈ S:

Ps(∀n ≥ 0 : sn ∈ S) ↔ 1− Ps(trueUT)

existence and computation of absorbing set B : ∀x ∈ B,Ts(B|x) = 1

characterization – study of existence/uniqueness of (non-trivial) solutions of
Bellman equations

convergence of Bellman recursions, contractivity of operators

computation – formal reduction to finite-horizon problems

Alessandro Abate 18 / 46

[I. Tkachev, AA - CDC 11, HSCC 12, CDC12,TCS 13]

Characterization & computation of∞-horizon properties

consider target set T ; invariant set S = T c = S \ T ; ∀s ∈ S:

Ps(∀n ≥ 0 : sn ∈ S) ↔ 1− Ps(trueUT)

existence and computation of absorbing set B : ∀x ∈ B,Ts(B|x) = 1

characterization – study of existence/uniqueness of (non-trivial) solutions of
Bellman equations

convergence of Bellman recursions, contractivity of operators

computation – formal reduction to finite-horizon problems

Alessandro Abate 18 / 46

On the approximation error f (δ,N)

PRISM
MRMC

?

dtMC
dtMDP

relax’d/strenght’d PCTL
inflated LTL – ε-spec

prob. model
checking

-
dynamic

programming

ε-spec holds
policy max/min ε-spec

6

?

adaptive,
sequential
abstractions

approximate
probabilistic
bisimulations

?

refine back

dtSHS
PCTL
LTL – spec
automata

spec holds
policy max/min spec

Alessandro Abate 19 / 46

[AA et al. - EJC 11, S. Soudjani, AA - QEST 11, TAC 13]

On the approximation error f (δ,N)
approximation via δ-partitioning: S = ∪i=1,...,m × Si

under Lip-continuity assumptions on density of kernel Ts,

h(i, j), i, j = 1, . . . ,m

for any z i
q ∈ Sδ, ∀s : s ∧ z i ∈ Si , error is

f (δ,N)
.

= |Ps(S)− Pz i (Sδ)| ≤ max
i=1,...,m

Nδi

∑
j=1,...,m

h(i, j),

δ = maxi=1,...,m δi , δq,i = diam (Si)

error is linear in N, δi and depends on local constants h(i, j)→ local tuning

Alessandro Abate 19 / 46

[S. Soudjani, AA - QEST 11, HSCC 12, ATVA12, SIAM 13]

On the approximation error f (δ,N)

formula-based abstractions

software (in the making) for sequential, adaptive grid generation based on
approximation error

from MATLAB/Simuling model to MRMC/PRISM input
number of cells: 958 number of cells: 1582 number of cells: 2017

0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16

60

62

64

66

68

70

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16

60

62

64

66

68

70

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

Alessandro Abate 20 / 46

Approximate probabilistic bisimulations
PRISM
MRMC

?

dtMC
dtMDP

relax’d/strenght’d PCTL
inflated LTL – ε-spec

prob. model
checking

-
dynamic

programming

ε-spec holds
policy max/min ε-spec

6

?

adaptive,
sequential
abstractions

approximate
probabilistic
bisimulations

?

refine back

dtSHS
PCTL
LTL – spec
automata

spec holds
policy max/min spec

Alessandro Abate 21 / 46

[AA - ENTCS 13; I. Tkachev, AA - HSCC 13]

Approximate probabilistic bisimulations
above abstraction leads to approximate probabilistic bisimulation [Larsen &
Skou, 91] - alternatively . . .

consider models (Ts,i , Si) with solution processes si (k), i = 1, 2, k ≥ 0
parallel composition of models with output s1,2(k) = s1(k)− s2(k)

Definition
A function ψ : S1 × S2 → R+ is a probabilistic bisimulation function if
ψ(s1,2) ≥ ‖s1 − s2‖2 and if ψs0 (s1,2(k)) is a supermartingale.

ψ is an upper bound on the distance btw solutions of two models:
Ps0

(
supk≥0 ‖s1(k)− s2(k)‖2 ≥ ε

)
≤ ψs0 (s1,2(0))/ε

Alessandro Abate 21 / 46

[AA - ENTCS 13; I. Tkachev, AA - HSCC 13]

Approximate probabilistic bisimulations
above abstraction leads to approximate probabilistic bisimulation [Larsen &
Skou, 91] - alternatively . . .

consider models (Ts,i , Si) with solution processes si (k), i = 1, 2, k ≥ 0
parallel composition of models with output s1,2(k) = s1(k)− s2(k)

Definition
A function ψ : S1 × S2 → R+ is a probabilistic bisimulation function if
ψ(s1,2) ≥ ‖s1 − s2‖2 and if ψs0 (s1,2(k)) is a supermartingale.

ψ is an upper bound on the distance btw solutions of two models:
Ps0

(
supk≥0 ‖s1(k)− s2(k)‖2 ≥ ε

)
≤ ψs0 (s1,2(0))/ε

Alessandro Abate 21 / 46

Outline

1 Formal abstractions for verification of complex models

2 Formal verification of stochastic hybrid systems
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

3 Formal verification of max-plus linear models
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

4 Concluding remarks

Alessandro Abate 22 / 46

Formal abstractions for verification of complex models
model

checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6 ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 23 / 46

Formal abstractions for verification of MPL models

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes

Alessandro Abate 24 / 46

Introduction to MPL systems

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes

Alessandro Abate 25 / 46

Introduction to MPL systems

Max-Plus-Linear (MPL) systems are event-driven models

applications: railway scheduling, planning of production lines, network
calculus

x(k) is the time of k -th event, k ∈ N ∪ {0}
timing updates: maximization (⊕) and addition (⊗) operations

→ max-plus algebra

ε = −∞, Rε = R ∪ {ε}, α, β ∈ Rε
α⊕ β := max(α, β), α⊗ β := α + β, and matrix operations

Alessandro Abate 25 / 46

[Baccelli et al., 92]

Max-plus-linear models
Definition (Autonomous MPL model)

x(k + 1) = A⊗ x(k),

where A ∈ Rn×n
ε and k ∈ N ∪ {0}

Example
A simple railway model [Heidergott, 06]

x(k + 1) =

[
2 5
3 3

]
⊗ x(k),

[
x1(k + 1)
x2(k + 1)

]
=

[
max{2 + x1(k), 5 + x2(k)}
max{3 + x1(k), 3 + x2(k)}

]

2 3

3

5
Alessandro Abate 26 / 46

[Baccelli et al., 92]

Max-plus-linear models

Definition (Autonomous MPL model)

x(k + 1) = A⊗ x(k),

where A ∈ Rn×n
ε and k ∈ N ∪ {0}

Example
A simple railway model [Heidergott, 06]

x(k + 1) =

[
2 5
3 3

]
⊗ x(k),

[
x1(k + 1)
x2(k + 1)

]
=

[
max{2 + x1(k), 5 + x2(k)}
max{3 + x1(k), 3 + x2(k)}

]

Definition (Non-autonomous MPL model)

x(k + 1) = A⊗ x(k)⊕ B ⊗ u(k),

where B ∈ Rn×m
ε and u ∈ Rm (synthesis = scheduling)

Alessandro Abate 26 / 46

Outline

1 Formal abstractions for verification of complex models

2 Formal verification of stochastic hybrid systems
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

3 Formal verification of max-plus linear models
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

4 Concluding remarks

Alessandro Abate 27 / 46

Classical analysis of MPL models

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes

Alessandro Abate 28 / 46

[Gaubert, 03] [Katz, 07]

Classical analysis of MPL models
study of transient and periodic regimes, of asymptotics

classical analysis based on algebraic or geometric properties

Definition
1 max-plus eigenvector x ∈ Rn: A⊗ x = λ⊗ x ⇒ x(k + 1) = λ⊗ x(k)

2 cycles on precedence graph⇒ periodic regime with period c:
∀k ≥ k0, x(k + c) = λ⊗

c ⊗ x(k)

Example
1 eigenspace (periodic regime with period 1 and λ = 4):[

1
0

]
,
[
5
4

]
,
[
9
8

]
,
[
13
12

]
,
[
17
16

]
,
[
21
20

]
,
[
25
24

]
,
[
29
28

]
,
[
33
32

]
,
[
37
36

]
,
[
41
40

]
,
[
45
44

]
, . . .

2 periodic regime with period c = 2 (transient k0 = 3):[
4
0

]
,
[
6
7

]
,
[
12
10

]
,
[
15
15

]
,
[
20
18

]
,
[
23
23

]
,
[
28
26

]
,
[
31
31

]
,
[
36
34

]
,
[
39
39

]
,
[
44
42

]
,
[
47
47

]
, . . .

Alessandro Abate 28 / 46

Outline

1 Formal abstractions for verification of complex models

2 Formal verification of stochastic hybrid systems
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

3 Formal verification of max-plus linear models
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

4 Concluding remarks

Alessandro Abate 29 / 46

Labeled transition system (LTS)

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes

Alessandro Abate 30 / 46

[Baier & Katoen, 08]

Labeled transition system (LTS)

1 2

4 3α

β
α

α
β

∅

{a} {a, b}

{b}

set of states S = {1, 2, 3, 4}
set of inputs Act = {α, β}
transitions −→ = {(1, α, 4), (4, α, 3), . . . }
set of outputs AP = {a, b} and
output map L(1) = ∅, L(2) = {b}, . . .

labels can be defined over states or transitions

LTS can be deterministic vs non-deterministic

LTS can be infinite vs finite

Alessandro Abate 30 / 46

Finite LTS as abstractions of MPL models
SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes

procedure: need to compute
1 S: states of LTS
2 →: LTS transitions
3 L: LTS labels

Alessandro Abate 31 / 46

LTS states: partitioning of state space

state space Rn is partitioned in finitely many polytopic regions

partition is not arbitrary, it is adapted to underlying dynamics

obtained state-space partition defines states of LTS

partition can be possibly refined (determinization – more later)

Example

we obtain a total of 5 regions:

R1 = {x ∈ R2 : x1 − x2 < 0}
R2 = {x ∈ R2 : x1 − x2 = 0}
R3 = {x ∈ R2 : x1 − x2 > 3}
R4 = {x ∈ R2 : x1 − x2 = 3}
R5 = {x ∈ R2 : 0 < x1 − x2 < 3}

x1

x2

R2

R3

R5

3

R1

R4

Alessandro Abate 32 / 46

[Dill, 90]

Difference-bound matrices (DBM)

Definition (DBM)
A difference-bound matrix in Rn is the finite intersection of sets defined by

xi − xj 'i,j αi,j ,

where 'i,j∈ {<,≤}, αi,j ∈ R ∪ {+∞}, for 1 ≤ i 6= j ≤ n

DBM allow compact matrix representation

DBM are easy to manipulate (projections, emptiness and inclusion check)

closure: image/inverse image of DBM over MPL dynamics is again a DBM

Alessandro Abate 33 / 46

[Dill, 90]

Difference-bound matrices (DBM)

Definition (DBM)
A difference-bound matrix in Rn is the finite intersection of sets defined by

xi − xj 'i,j αi,j ,

where 'i,j∈ {<,≤}, αi,j ∈ R ∪ {+∞}, for 1 ≤ i 6= j ≤ n

DBM allow compact matrix representation

DBM are easy to manipulate (projections, emptiness and inclusion check)

closure: image/inverse image of DBM over MPL dynamics is again a DBM

Alessandro Abate 33 / 46

LTS transitions: one-step reachability

consider any two TS states (partitioning regions) R,R′

R → R′ iff there exists a x(k) ∈ R such that x(k + 1) ∈ R′: check

R′ ∩ {x(k + 1) : x(k) ∈ R} 6= ∅

computation of transitions:
use region representation via DBM, DBM forward-mapping via PWA dynamics,
DBM emptiness check

transitions are stored on sparse Boolean matrix

Alessandro Abate 34 / 46

LTS transitions: one-step reachability

consider any two TS states (partitioning regions) R,R′

R → R′ iff there exists a x(k) ∈ R such that x(k + 1) ∈ R′: check

R′ ∩ {x(k + 1) : x(k) ∈ R} 6= ∅

computation of transitions:
use region representation via DBM, DBM forward-mapping via PWA dynamics,
DBM emptiness check

transitions are stored on sparse Boolean matrix

Alessandro Abate 34 / 46

LTS transitions, an example

Example

x1

x2

R2

R3

R5

3

R1

R4
R′

1

R′
3

R′
2

R′
5R′

4

R′
7

R′
6

R′
9

R′
8

determinism vs non-determinism of obtained TS

above Ri - original partitions, R′i - refined partitions (determinization)

Alessandro Abate 35 / 46

Relationship between LTS and MPL

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes

Alessandro Abate 36 / 46

Relationship between LTS and MPL

Theorem
TS simulates the original MPL model

TS bisimulates the MPL model if and only if it is deterministic

non-deterministic TS can be “determinized” by refining partitioning regions

however, refinement procedure may not terminate

Theorem
if TS is deterministic over the periodic regime, then TS is globally
deterministic

every irreducible MPL model admits finite deterministic TS abstraction

Alessandro Abate 36 / 46

LTS labels

Definition
state labels:
all possible values of xi (k)− xj (k), for 1 ≤ i < j ≤ n
time difference of same-event variables

transition labels:
all possible values of xi (k + 1)− xi (k), for 1 ≤ i ≤ n
time difference of successive events

labels are vectors of intervals, can be represented as DBM

Alessandro Abate 37 / 46

LTS labels, an example

Example
LTS transition labels

R′
1

R′
3

R′
2

R′
5R′

4

R′
7

R′
6

R′
9

R′
8

(3, 4)
(4, 5)

[5, 5]
[3, 3]

[2, 2]
(6,∞)

(4, 5)
(3, 4)

[4, 4]
[4, 4]

[3, 3]
[5, 5]

(5,∞)
[3, 3]

[2, 2]
[6, 6]

(2, 3)
(5, 6)

R′
1

R′
3

R′
2

R′
5R′

4

R′
7

R′
6

R′
9

R′
8

Alessandro Abate 38 / 46

Formal analysis of MPL models is now “very simple”
VeriSiMPL – Verification via biSimulation of MPL models

SPIN

?

LTS
LTL
safe LTL

model
checking

-

(∃ policy) spec yes/no
(∀ policies) spec yes

6
VeriSiMPL

bisimulations
simulations

?

refine back

MPL
transient or
steady-state @

@
@

@I

determ.

(∃ policy) property yes/no
(∀ policies) property yes

Alessandro Abate 39 / 46

Formal analysis of MPL models is now “very simple”
VeriSiMPL – Verification via biSimulation of MPL models

abstract MPL model as LTS (in MATLAB)
export LTS abstraction (as PROMELA script) into SPIN model checker
consider properties in LTL logic
verify property via SPIN over LTS and export outcome back to MPL model

http://sourceforge.net/projects/verisimpl

Alessandro Abate 39 / 46

MPL verification in practice
Example

automatically identify MPL eigenspace:
∨
ϕ∈L=AP(�ϕ ∧ |ϕ| = 0)

(3, 4)
(4, 5)

[5, 5]
[3, 3]

[2, 2]
(6,∞)

(4, 5)
(3, 4)

[4, 4]
[4, 4]

[3, 3]
[5, 5]

(5,∞)
[3, 3]

[2, 2]
[6, 6]

(2, 3)
(5, 6)

R′
1

R′
3

R′
2

R′
5R′

4

R′
7

R′
6

R′
9

R′
8

Alessandro Abate 40 / 46

MPL verification in practice
Example

automatically identify MPL periodic regime: Ψ =
∨
ϕ∈L=AP �(ϕ ∧©cϕ)

(3, 4)
(4, 5)

[5, 5]
[3, 3]

[2, 2]
(6,∞)

(4, 5)
(3, 4)

[4, 4]
[4, 4]

[3, 3]
[5, 5]

(5,∞)
[3, 3]

[2, 2]
[6, 6]

(2, 3)
(5, 6)

R′
1

R′
3

R′
2

R′
5R′

4

R′
7

R′
6

R′
9

R′
8

Alessandro Abate 40 / 46

Computational benchmark for abstraction

coded in MATLAB, run over 12-core Intel Xeon, 3.47 GHz, 24 GB

A randomly generated with elements taking values between 1 and 100

10 independent experiments per dimension – mean values are displayed:

size time for time for time for total total
of MPL generation of generation of generation of number of number of
model states transitions labels LTS states LTS transitions

3 0.1 [s] 0.4 [s] 0.1 [s] 3.6 4.3
5 0.2 [s] 0.4 [s] 0.1 [s] 8.6 13.8
7 0.9 [s] 0.5 [s] 0.3 [s] 37.2 289.3
9 4.1 [s] 0.8 [s] 1.6 [s] 120.0 1.7·103

11 24.8 [s] 15.2 [s] 16.1 [s] 613.2 1.9·104

13 3.5 [m] 5.5 [m] 2.8 [m] 1.9·103 1.9·105

15 53.6 [m] 2.0 [h] 39.4 [m] 7.4·103 2.0·106

bottleneck: generation of transitions

Alessandro Abate 41 / 46

Computational benchmark for reachability analysis

A randomly generated with elements taking values between 1 and 100

set of initial conditions is selected as the unit hypercube

10 independent experiments per dimension – mean values are displayed:

size time for number of time for
of MPL generation of regions of generation of
model abstract TS abstract TS reach tube

3 0.09 [s] 5 0.09 [s]
10 4.73 [s] 700 8.23 [s]
19 67.07 [m] 3.48 ·105 7.13 [h]

generation time for reach tube of 10-dimensional MPL model, different time horizons

comparison VeriSiMPL vs MPT (multi-parametric tool, ETH Zürich):

time horizon 20 40 60 80 100
VeriSiMPL 11.02 [s] 17.94 [s] 37.40 [s] 51.21 [s] 64.59 [s]

MPT 47.61 [m] 1.19 [h] 2.32 [h] 3.03 [h] 3.73 [h]

Alessandro Abate 41 / 46

Stochastic Max-plus-linear models
Definition (Deterministic MPL model)

x(k + 1) = A⊗ x(k),

where A ∈ Rn×n
ε and k ∈ N ∪ {0}

Definition (Stochastic MPL model)

x(k + 1) = A⊗ x(k),

where A(k) = [aij (k)]i,j ∈ Rn×n
ε , {aij (k)}k are i.i.d. random processes with pdf

tij (·), and k ∈ N ∪ {0}

abstraction of SMPL models as Markov chains
can be obtained in two possible ways:

1 leveraging theory above, under continuity assumptions on kernels tij(·)
2 by symbolic approach over distributions that are closed under max-plus algebra

operations

error quantification

Alessandro Abate 42 / 46

Stochastic Max-plus-linear models
Definition (Deterministic MPL model)

x(k + 1) = A⊗ x(k),

where A ∈ Rn×n
ε and k ∈ N ∪ {0}

Definition (Stochastic MPL model)

x(k + 1) = A⊗ x(k),

where A(k) = [aij (k)]i,j ∈ Rn×n
ε , {aij (k)}k are i.i.d. random processes with pdf

tij (·), and k ∈ N ∪ {0}

abstraction of SMPL models as Markov chains
can be obtained in two possible ways:

1 leveraging theory above, under continuity assumptions on kernels tij(·)
2 by symbolic approach over distributions that are closed under max-plus algebra

operations

error quantification

Alessandro Abate 42 / 46

Simulations over 2D SMPL model
exponential distributions (rates btw 1/3 and 1) for the entries of 2D matrix A
pick time horizon N = 5, safe set A = [−5, 5]2

select (3700, 2900) bins per dimension, partition uniformly
abstraction error results in E = 32.5δ < 0.1

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

z1

z 2
Pz(A)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Alessandro Abate 43 / 46

Outline

1 Formal abstractions for verification of complex models

2 Formal verification of stochastic hybrid systems
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

3 Formal verification of max-plus linear models
Analysis and control synthesis problems
Computable analysis and control synthesis via formal abstractions

4 Concluding remarks

Alessandro Abate 44 / 46

Formal abstractions for verification of complex models
model

checking

?

abstract
simple
model

ε-specification

automatic
verification

-
control

synthesis

ε-spec holds yes/no
policy µ→ ε-spec

6 ε-quantitative
abstraction

?

refine back

concrete
complex
model

property,
specification,
cost or reward

@
@

@
@I

if no,
tune ε

spec holds yes/no
policy µ→ spec
(correct by design)

Alessandro Abate 45 / 46

Acknowledgments

students: D. Adzkiya, S. Haesaert, S.E.Z. Soudjani, I. Tkachev, M. Zamani

main collaborators: J. Lygeros, M. Prandini, J.-P. Katoen, C. Tomlin, B. De
Schutter

topics: stochastic hybrid systems, max-plus linear models

Alessandro Abate 46 / 46

Thanks for your attention!

For more info:

www.dcsc.tudelft.nl/∼aabate
a.abate@tudelft.nl

Alessandro Abate 46 / 46

Selected key references
– A. Abate, “Approximation Metrics based on Probabilistic Bisimulations for General State-Space Markov Processes:
a Survey,” Electronic Notes in Theoretical Computer Sciences, 2012, In Press.
– A. Abate, A. D’Innocenzo, and M.D. Di Benedetto, “Approximate Abstractions of Stochastic Hybrid systems,” IEEE
Transactions on Automatic Control, vol. 56, nr. 11, pp. 2688-2694, 2011.
– A. Abate, J.P Katoen, J. Lygeros, and M. Prandini, “Approximate Model Checking of Stochastic Hybrid Systems,”
European Journal of Control, nr. 6, pp. 624-641, 2010.
– A. Abate, J. Lygeros, and S. Sastry, “Probabilistic Safety and Optimal Control for Survival Analysis of Bacillus
Subtilis,” Systems and Control Letters, vol. 59, nr. 1, pp. 79-85, 2010.
– A. Abate, M. Prandini, J. Lygeros, and S. Sastry: “Probabilistic Reachability and Safety Analysis of Controlled
Discrete-Time Stochastic Hybrid Systems,” Automatica, vol. 44, nr. 11, pp. 2724-2734, Nov. 2008.
– I. Tkachev and A. Abate, “Computation of ruin probabilities for general discrete-time Markov models,” 2013, Under
Review.
– S. Soudjani and A. Abate, “Adaptive and Sequential Gridding for Abstraction and Verification of Stochastic
Processes,” SIAM Journal on Applied Dynamical Systems, 2013.
– I. Tkachev and A. Abate, “Characterization and computation of infinite horizon specifications over Markov
processes,” Theoretical Computer Science, 2013, In Press.
– I. Tkachev and A. Abate, “Regularization of Bellman equations for infinite-horizon probabilistic properties,” Hybrid
Systems: Computation and Control (HSCC 12), Beijing, PRC, Apr 2012.
– S. Soudjani and A. Abate, “Probabilistic Invariance of Mixed Deterministic-Stochastic Dynamical Systems,” Hybrid
Systems: Computation and Control (HSCC 12), Beijing, PRC, Apr 2012.
– A. D’Innocenzo, A. Abate and J.-P. Katoen, “Robust PCTL model checking,” Hybrid Systems: Computation and
Control (HSCC 12), Beijing, PRC, Apr 2012.
– I. Tkachev and A. Abate, “On infinite-horizon probabilistic properties and stochastic bisimulation functions,” 50th
IEEE Conference on Decision and Control and European Control Conference (CDC 11), Orlando, FL, December
2011, pp. 526–531.
– S. Soudjani and A. Abate, “Adaptive Gridding for Abstraction and Verification of Stochastic Hybrid Systems,”
Quantitative Evaluation of SysTems (QEST 11), Aachen (DE), Sept. 2011, pp. 59–69.
– A. Abate, J.-P. Katoen, and A. Mereacre, “Quantitative Automata Model Checking of Autonomous Stochastic Hybrid
Systems,” Hybrid Systems: Computation and Control (HSCC 11), Chicago, IL, April 2011, pp. 83 - 92.

Alessandro Abate 46 / 46

Additional references

– J. Ding, M. Kamgarpour, S. Summers, A. Abate, J. Lygeros and C.J. Tomlin, “A dynamic game framework for
verification and control of stochastic hybrid systems,” Automatica, 2013.
– A. Abate and M. Prandini, “Approximate abstractions of stochastic systems: a randomized method,” Proceedings of
the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, December 2011,
pp. 4861–4866.
– A. Abate, A. D’Innocenzo, M.D. Di Benedetto and S. Sastry, “Markov Set-Chains as abstractions of Stochastic
Hybrid Systems,” Hybrid Systems: Computation and Control (HSCC 08), Saint Louis (MS), April 2008.
– A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Approximation of General Stochastic Hybrid Systems by Switching
Diffusions with Random Hybrid Jumps,” Hybrid Systems: Computation and Control, Saint Louis (MS), April 2008.
– A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry, “Computational Approaches to Reachability Analysis of
Stochastic Hybrid Systems,” Hybrid Systems: Computation and Control, Pisa (IT), April 2007.
– A. Abate, “Probabilistic Bisimulations of Switching and Resetting Diffusions,” 49th IEEE Conference of Decision and
Control, Atlanta, GA, Dec. 2010, pp. 5918 - 5923.
– A. Abate, “A Contractivity Approach for Probabilistic Bisimulations of Diffusion Processes,” 48th IEEE Conference of
Decision and Control, Shanghai, CN, Dec. 2009, pp. 2230-2235.
– A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “An approximate dynamic programming approach to probabilistic
reachability for stochastic hybrid systems, ” 47th IEEE Conference of Decision and Control, Cancun, MX, Dec. 2008,
pp. 4018-4023.

Alessandro Abate 46 / 46

	Formal abstractions for verification of complex models
	Formal verification of stochastic hybrid systems
	Analysis and control synthesis problems
	Computable analysis and control synthesis via formal abstractions

	Formal verification of max-plus linear models
	Analysis and control synthesis problems
	Computable analysis and control synthesis via formal abstractions

	Concluding remarks

