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A Stochastic Automata Model
An SA is defined as (L, ini , C, ena, sus, trans, res) where

I L = {1, . . . ,N} is a finite set of locations (automata states),
I ini : L → [0, 1] defines the initial distribution over the set of locations
I C is a finite set of clock processes with classes (defined later)

(K is the set of clock process class pairs),
I ena : L → C enabled clock processes in a location,
I sus : L → C suspended clock processes in a location, for I ∈ L,

ena(I ) ∩ sus(I ) = ∅,
I trans : L×K×L → [0, 1] is the transition function that assigns to a

source location, an enabled clock process class pair and a destination
location a probability distribution over the set of locations,

I res : L ×K × L → C reset function.
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Example 1:
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Example 2:
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How to model clock processes?

I In principle every stochastic process may be used

I But we would like to analyze the process numerically/analytically!

I Use some form of phase type process

I Markov processes and beyond ...!?
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Markov Automata (MA):
I clock process c ∈ C is an MMAP:(

π
(c)
0 ,G(c)

0 ,G(c)
1 , . . . ,G(c)

k

)
nc is the size of the state space π(c)

0 is the initial vector

G(c)
0 is the generator of an absorbing Markov process

G(c)
k (1 ≤ k ≤ K ) are non-negative,

G(c)
0 +

∑K
k=1 G(c)

k is an irreducible generator matrix

Probabilistic interpretation of the behavior
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Phase type processes beyond Markov processes:

Matrix-exponential (ME) distributions: (π0,G0) such that

F(π0,G0) = 1− π0eGot I1

is a valid distribution function.
Example:

π0 = (2.63479,−1.22850,−0.406283)

G0 =

 −2.25709 0 0
0 −2.25709 −2.338187
0 2.338187 −2.25709


distribution with CV 2 = 0.2009

Peter Buchholz: Beyond Markov Models 8



LS Informatik IV

Specification of processes c ∈ C (general case):

(π
(c)
0 ,G(c)

0 ,G(c)
1 , . . . ,G(c)

K )

without probabilistic interpretation, but

I F
π

(c)
0 ,G(c)

0
(t) = 1− π(p)

0 eG(c)
0 t I1 is a valid distribution function,

I f
π

(c)
0 ,G(c)

0 ,G(c)
1 ,...,G(c)

K
(t1, k1, . . . , tj , kj) =

π
(c)
0 eG(c)

0 t1G(c)
k1

eG(c)
0 t2G(c)

k2
. . . eG(c)

0 tjG(c)
kj

I1
is a valid density for ti ≥ 0 and ki ∈ {1, . . . ,K},

I G(c) I1 =
K∑

k=0
G(c)

k I1 = 0 and G(c) is irreducible.

Marked Rational Arrival Process (MRAP)
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Behavior of MRAPs:
I process behaves deterministically according to the ODE π̇ = πG0

(i.e., πt = π0eG0t)

I at time t an event of type/class k occurs with density πtGk I1

I if event k occurs at time t, the state changes from πt
πt I1 to πtGk

πtGk I1

state is given by the whole vector πt

Piecewise Deterministic Markov Process

Behavior is deterministic for a given history
H = (t0, k1, t1, k2, . . . , tH−1, kH , tH)
(removing the stochastic part)
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Some properties of MRAP (π0,G0,G1, . . . ,GK ):

I the MRAP is class random if for every state π that is reached after
an arbitrary history H πeG0t′Gk holds for every k ∈ {1, . . . ,K} and
some t ′ ≥ 0

I the MRAP has an equivalent Markovian representation if an
equivalent MMAP exists (definition of equivalence later)

I MRAPs without a finite MMAP representation exist

I the MRAP is minimal if no equivalent MRAP with a state space of a
smaller dimension exists.
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Behavior of an SA (with MRAPs):

I the initial vector π0 =
(
π1

0, . . . , π
N
0
)

where πI
0 = νI ⊗p∈ena(I )∪sus(I ) π

(p)
0 and νI is the probability to start

in location I

I in a location I MRAPs from ena(I ) behave deterministically
according to the ODE π̇ = π ⊕c∈ena(I ) G(c)

0

I location changes occur according to events defined by the rates of
enabled MRAPs

I state changes occur at event times with respect to
I state change in the MRAP that causes the event
I enabling/suspending/disabling of events in the destination location
I resetting of event due to function res(.)

An SA describes an MRAP!
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Analysis of an SA with representation (π0,G0,G1, . . . ,GK ):
I expectation of the state at time t:

pt = E [πt ] = π0e(G0+
∑K

k=1 Gk)t

I state at time t for history H = (t0, k1, t1, . . . , kH , tH) with
t =

∑H
h=1 th:

πt =
π0eGot0

∏H
h=1 Gkhe

G0th

π0eGot0
∏H

h=1 GkheG0th I1

I if values of the state components in πt or pt are added, then a
probability distribution over the locations of the SA is defined
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Equivalence of SAs:
1. Locations of the SA are observable

equivalent SAs have isomorphic locations but possibly different
processes in C

2. Locations observe predicates
sets of locations with different predicates have to be distinguished,
but not locations with the same predicates

3. Locations are not observable
locations need not be distinguished, only events are observable

1. and 2. can be transformed in 3. by defining pseudo events for states
that have to be distinguished, e.g., event e is state I with
trans(I , e, I ) = 1 and corresponding process with G0 = (−µ), G1 = (µ).
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Equivalence of MRAPs

(π0,G0,G1, . . . ,GK ) and (φ0,H0,H1, . . . ,HK ) are equivalent

if and only if for all histories H = (t0, k1, t1, . . . , kH , 0):

π0

(
H∏

h=1

eG0th−1Gkh

)
I1 = φ0

(
H∏

h=1

eH0th−1Hkh

)
I1

i.e., the conditional density of observing a sequence of events is identical
for both MRAPs
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Let (π0,G0,G1, . . . ,GK ) and (φ0,H0,H1, . . . ,HK ) be two equivalent
MRAPs of size m and n (m ≥ n), respectively.

Then one of the following two relations hold:
1. there exists a m × n matrix V with:

V I1 = I1, π0V = φ0 and GkV = VHk for all k = 0, . . . ,K

2. there exists an n ×m matrix W with:

W I1 = I1, π0 = Wφ0 and WGk = HkW for all k = 0, . . . ,K

V or W can be efficiently computed to find a minimal equivalent
representation for a given MRAP
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An Example:

π0 = (0.5, 0, 0, 0.5) , G0 =


−1 1 0 0
0 −2 2 0
0 0 −3 3
0 0 0 −4

 ,

G1 =


0 0 0 0
0 0 0 0
0 0 0 0
1.5 0 0 1.5

 , G2 =


0 0 0 0
0 0 0 0
0 0 0 0
0.5 0 0 0.5



An equivalent MRAP of size 3

φ0 = (0, 0, 1) ,H0 =

 −1.36364 4.13365 −6.65777
−1.14992 −1.46376 4.02489

0 1.1726 −3.1726

 ,

H1 =

 0 0 2.91582
0 0 −1.05841
0 0 1.5

 ,H2 =

 0 0 0.97194
0 0 −0.3528
0 0 0.5

 .
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Computation of minimal equivalent
representations

I compute minimal representations for all processes in C

I compute minimal representation for the whole SA

Steps for larger state spaces:

1. compute stochastic bisimulation (ordinary and inverse)

2. compute the minimal representation from the minimized processes
according to bisimulation
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Model Checking of SAs
CSL formulas for SAs

I tt is a location formula

I an atomic proposition a ∈ AP is a location formula

I if Φ and Ψ are location formulas, so are ¬Φ and Φ ∨Ψ,

I if Φ is a location formula, then so is Sonp,

I if ϕ is a path formula, the Ponp(ϕ) is a location formula,

I if Φ and Ψ are location formulas, then XintΦ and ΦUintΨ are path
formulas.

int ⊆ R≥0, on∈ {<,≤,≥, >} and p ∈ [0, 1]
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Model Checking Approaches:

I formulas with atomic propositions for locations are evaluated as usual

I steady state analysis
I for irreducible SAs solve p

(∑K
k=0 Gk

)
= 0 or

p
(∑K

k=1 Gk

)
(−G0)−1 = 0 subject to p I1 = 1

I otherwise determine the strongly connected components and compute
the stationary vector for strongly connected components
(locations may belong to more than one strongly connected
component)

add the values in π belonging to locations to obtain a probability
distribution
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Model Checking Approaches:
Compute probabilities for path formulas:

I for ΦU[t0,t1]Ψ (0 ≤ t0 ≤ t1):

I make all locations that do not observe Φ or Ψ absorbing and compute
b1 = e

∑K
k=0 Gk [¬Φ∨¬Ψ](t1−t0) I1

I make all locations that do not observe Φ absorbing and compute
b0 = e

∑K
k=0 Gk [¬Φ]t0b1

I for each I ∈ L
ProbI (ΦU[t0,t1Ψ) = ⊗p∈ena(I )∪sus(I )π

(p)
0 · bI

0 or
ProbI (ΦU[t0,t1Ψ) = pI · bI

0
for some vector p reached during an execution of the SA

I check ProbI (ΦU[t0,t1Ψ) on p
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Model Checking Approaches:

I for X[t0,t1]Φ (0 ≤ t0 ≤ t1) with initial vector ⊗p∈ena(I )∪sus(I )π
(p)
0 :

for each location I ∈ L
I define

F(p)
I ,Φ =

∑
J∈{1,...,N},Φ(J)=tt

∑Kp
k=1 trans(I , (p, k), J)G(p)

k and

F(p)
I =

(
G(p)

0 F(p)
I ,Φ I1

0 0

)

compute
(
b(p)

I , β
(p)
I

)
=
(
π

(p)
0 eG(p)

0 t0 , 0
)

eF(p)
I (t1−t0)

I check
∑

p∈ena(I ) β
(p)
I on p

I similar approach for initial vector pI
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Conclusions

I new class of automata

I interpretation as a piecewise deterministic Markov process

I numerical analysis

I equivalence relations

I first ideas for model checking state labels/rewards

I composition of SAs can be defined and preserves equivalence
(not presented here)

I model checking path labels (not presented here)
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Open issues

I complete characterization of equivalent automata by CSL formulas

I introduction of indeterminism

I decision whether an automaton is valid SA
(vector matrices describe a valid stochastic process)

I decision whether an SA has an equivalent representation as an MA
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Thank you!
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