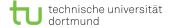


Quantitative Analysis of Systems

Beyond Markov Models -

Peter Buchholz Informatik IV TU Dortmund



Overview

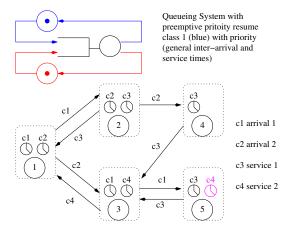
- 1. Beyond Markov Automata
- 2. Analysis of an Automaton
- 3. Equivalence of Automata
- 4. Some Aspects of Model Checking
- 5. Conclusions

A Stochastic Automata Model

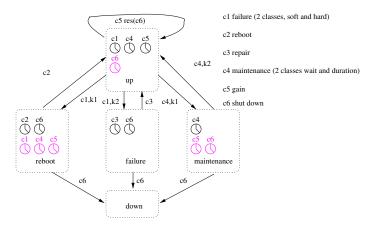
An SA is defined as $(\mathcal{L}, ini, \mathcal{C}, ena, sus, trans, res)$ where

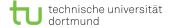
- $ightharpoonup \mathcal{L} = \{1, \dots, N\}$ is a finite set of locations (automata states),
- ightharpoonup ini : $\mathcal{L}
 ightarrow [0,1]$ defines the initial distribution over the set of locations
- C is a finite set of clock processes with classes (defined later)
 (K is the set of clock process class pairs),
- ▶ $ena: \mathcal{L} \rightarrow \mathcal{C}$ enabled clock processes in a location,
- ▶ $sus : \mathcal{L} \to \mathcal{C}$ suspended clock processes in a location, for $I \in \mathcal{L}$, $ena(I) \cap sus(I) = \emptyset$,
- ▶ trans : $\mathcal{L} \times \mathcal{K} \times \mathcal{L} \rightarrow [0,1]$ is the transition function that assigns to a source location, an enabled clock process class pair and a destination location a probability distribution over the set of locations,
- ▶ $res : \mathcal{L} \times \mathcal{K} \times \mathcal{L} \rightarrow \mathcal{C}$ reset function.

Example 1:



Example 2:





How to model clock processes?

How to model clock processes?

- ▶ In principle every stochastic process may be used
- ▶ But we would like to analyze the process numerically/analytically!

How to model clock processes?

- ▶ In principle every stochastic process may be used
- ▶ But we would like to analyze the process numerically/analytically!
- ▶ Use some form of phase type process
- ► Markov processes and beyond ...!?

Markov Automata (MA):

▶ clock process $c \in C$ is an MMAP:

$$\left(\pi_0^{(c)}, \mathbf{G}_0^{(c)}, \mathbf{G}_1^{(c)}, \dots, \mathbf{G}_k^{(c)}\right)$$

 n^c is the size of the state space $\pi_0^{(c)}$ is the initial vector

 $\mathbf{G}_0^{(c)}$ is the generator of an absorbing Markov process

$$\mathbf{G}_{k}^{(c)}$$
 $(1 \leq k \leq K)$ are non-negative,

 $\mathbf{G}_0^{(c)} + \sum_{k=1}^K \mathbf{G}_k^{(c)}$ is an irreducible generator matrix

Probabilistic interpretation of the behavior

Phase type processes beyond Markov processes:

Matrix-exponential (ME) distributions: (π_0, \mathbf{G}_0) such that

$$F_{(\pi_0,\mathbf{G}_0)} = 1 - \pi_0 e^{\mathbf{G}_o t} \mathbb{I}$$

is a valid distribution function.

Example:

$$\pi_0 = (2.63479, -1.22850, -0.406283)$$

$$\mathbf{G}_0 = \left(\begin{array}{ccc} -2.25709 & 0 & 0 \\ 0 & -2.25709 & -2.338187 \\ 0 & 2.338187 & -2.25709 \end{array} \right)$$

distribution with $CV^2 = 0.2009$

Specification of processes $c \in C$ (general case):

$$(\pi_0^{(c)}, \mathbf{G}_0^{(c)}, \mathbf{G}_1^{(c)}, \dots, \mathbf{G}_K^{(c)})$$

without probabilistic interpretation, but

- $F_{\pi_0^{(c)},\mathbf{G}_0^{(c)}}(t)=1-\pi_0^{(p)}\mathrm{e}^{\mathbf{G}_0^{(c)}t}\mathbb{I}$ is a valid distribution function,
- $\begin{array}{l} & f_{\pi_0^{(c)},\mathbf{G}_0^{(c)},\mathbf{G}_1^{(c)},\ldots,\mathbf{G}_K^{(c)}}\left(t_1,k_1,\ldots,t_j,k_j\right) = \\ & \pi_0^{(c)}e^{\mathbf{G}_0^{(c)}t_1}\mathbf{G}_{k_1}^{(c)}e^{\mathbf{G}_0^{(c)}t_2}\mathbf{G}_{k_2}^{(c)}\ldots e^{\mathbf{G}_0^{(c)}t_j}\mathbf{G}_{k_j}^{(c)}\mathbb{I} \\ & \text{is a valid density for } t_i \geq 0 \text{ and } k_i \in \{1,\ldots,K\}, \end{array}$
- ▶ $\mathbf{G}^{(c)}\mathbb{I} = \sum_{k=0}^{K} \mathbf{G}_{k}^{(c)}\mathbb{I} = \mathbf{0}$ and $\mathbf{G}^{(c)}$ is irreducible.

Marked Rational Arrival Process (MRAP)

Behavior of MRAPs:

- process behaves deterministically according to the ODE $\dot{\pi}=\pi {\bf G}_0$ (i.e., $\pi_t=\pi_0 e^{{\bf G}_0 t}$)
- ▶ at time t an event of type/class k occurs with density $\pi_t \mathbf{G}_k \mathbb{I}$
- ▶ if event k occurs at time t, the state changes from $\frac{\pi_t}{\pi_t \mathbb{I}}$ to $\frac{\pi_t \mathsf{G}_k}{\pi_t \mathsf{G}_k \mathbb{I}}$

state is given by the whole vector π_t

Piecewise Deterministic Markov Process

Behavior is deterministic for a given history $\mathcal{H} = (t_0, k_1, t_1, k_2, \dots, t_{H-1}, k_H, t_H)$ (removing the stochastic part)

Some properties of MRAP $(\pi_0, \mathbf{G}_0, \mathbf{G}_1, \dots, \mathbf{G}_K)$:

- ▶ the MRAP is *class random* if for every state π that is reached after an arbitrary history \mathcal{H} $\pi e^{\mathbf{G}_0 t'} \mathbf{G}_k$ holds for every $k \in \{1, \dots, K\}$ and some t' > 0
- ► the MRAP has an *equivalent Markovian representation* if an equivalent MMAP exists (definition of equivalence later)
- ► MRAPs without a finite MMAP representation exist
- the MRAP is minimal if no equivalent MRAP with a state space of a smaller dimension exists.

Behavior of an SA (with MRAPs):

- ▶ the initial vector $\pi_0 = (\pi_0^1, \dots, \pi_0^N)$ where $\pi_0^I = \nu_I \otimes_{p \in ena(I) \cup sus(I)} \pi_0^{(p)}$ and ν_I is the probability to start in location I
- ▶ in a location / MRAPs from ena(I) behave deterministically according to the ODE $\dot{\pi} = \pi \oplus_{c \in ena(I)} \mathbf{G}_0^{(c)}$
- location changes occur according to events defined by the rates of enabled MRAPs
- state changes occur at event times with respect to
 - state change in the MRAP that causes the event
 - enabling/suspending/disabling of events in the destination location
 - resetting of event due to function res(.)

An SA describes an MRAP!

Analysis of an SA with representation $(\pi_0, \mathbf{G}_0, \mathbf{G}_1, \dots, \mathbf{G}_K)$:

expectation of the state at time t:

$$\mathbf{p}_t = E[\pi_t] = \pi_0 e^{\left(\mathbf{G}_0 + \sum_{k=1}^K \mathbf{G}_k\right)t}$$

▶ state at time t for history $\mathcal{H} = (t_0, k_1, t_1, \dots, k_H, t_H)$ with $t = \sum_{h=1}^{H} t_h$:

$$\pi_{t} = \frac{\pi_{0}e^{\mathbf{G}_{o}t_{0}}\prod_{h=1}^{H}\mathbf{G}_{k_{h}}e^{\mathbf{G}_{0}t_{h}}}{\pi_{0}e^{\mathbf{G}_{o}t_{0}}\prod_{h=1}^{H}\mathbf{G}_{k_{h}}e^{\mathbf{G}_{0}t_{h}}\mathbb{I}}$$

▶ if values of the state components in π_t or \mathbf{p}_t are added, then a probability distribution over the locations of the SA is defined

Equivalence of SAs:

- 1. Locations of the SA are observable equivalent SAs have isomorphic locations but possibly different processes in $\ensuremath{\mathcal{C}}$
- Locations observe predicates sets of locations with different predicates have to be distinguished, but not locations with the same predicates
- 3. Locations are not observable locations need not be distinguished, only events are observable
- 1. and 2. can be transformed in 3. by defining *pseudo* events for states that have to be distinguished, e.g., event e is state I with trans(I, e, I) = 1 and corresponding process with $\mathbf{G}_0 = (-\mu)$, $\mathbf{G}_1 = (\mu)$.

Equivalence of MRAPs

 $(\pi_0, \mathbf{G}_0, \mathbf{G}_1, \dots, \mathbf{G}_K)$ and $(\phi_0, \mathbf{H}_0, \mathbf{H}_1, \dots, \mathbf{H}_K)$ are equivalent if and only if for all histories $\mathcal{H} = (t_0, k_1, t_1, \dots, k_H, 0)$:

$$\pi_0 \left(\prod_{h=1}^H e^{\mathsf{G}_0 t_{h-1}} \mathsf{G}_{k_h} \right) \mathbb{I} = \phi_0 \left(\prod_{h=1}^H e^{\mathsf{H}_0 t_{h-1}} \mathsf{H}_{k_h} \right) \mathbb{I}$$

i.e., the conditional density of observing a sequence of events is identical for both MRAPs

Let $(\pi_0, \mathbf{G}_0, \mathbf{G}_1, \dots, \mathbf{G}_K)$ and $(\phi_0, \mathbf{H}_0, \mathbf{H}_1, \dots, \mathbf{H}_K)$ be two equivalent MRAPs of size m and n $(m \ge n)$, respectively.

Then one of the following two relations hold:

1. there exists a $m \times n$ matrix **V** with:

$$V\mathbb{I} = \mathbb{I}$$
, $\pi_0 V = \phi_0$ and $G_k V = VH_k$ for all $k = 0, \dots, K$

2. there exists an $n \times m$ matrix **W** with:

$$\mathbf{W}\mathbb{I} = \mathbb{I}$$
, $\pi_0 = \mathbf{W}\phi_0$ and $\mathbf{W}\mathbf{G}_k = \mathbf{H}_k\mathbf{W}$ for all $k = 0, \dots, K$

V or **W** can be efficiently computed to find a minimal equivalent representation for a given MRAP

An Example:

An Example:

An equivalent MRAP of size 3

$$\phi_0 = (0,0,1) \,, \mathbf{H}_0 = \begin{pmatrix} -1.36364 & 4.13365 & -6.65777 \\ -1.14992 & -1.46376 & 4.02489 \\ 0 & 1.1726 & -3.1726 \end{pmatrix},$$

$$\mathbf{H}_1 = \begin{pmatrix} 0 & 0 & 2.91582 \\ 0 & 0 & -1.05841 \\ 0 & 0 & 1.5 \end{pmatrix}, \mathbf{H}_2 = \begin{pmatrix} 0 & 0 & 0.97194 \\ 0 & 0 & -0.3528 \\ 0 & 0 & 0.5 \end{pmatrix}.$$

Computation of minimal equivalent representations

- ightharpoonup compute minimal representations for all processes in ${\cal C}$
- compute minimal representation for the whole SA

Steps for larger state spaces:

- 1. compute stochastic bisimulation (ordinary and inverse)
- 2. compute the minimal representation from the minimized processes according to bisimulation

Model Checking of SAs

CSL formulas for SAs

- tt is a location formula
- ▶ an atomic proposition $a \in AP$ is a location formula
- ▶ if Φ and Ψ are location formulas, so are $\neg \Phi$ and $\Phi \lor \Psi$,
- if Φ is a location formula, then so is $\mathcal{S}_{\bowtie p}$,
- if φ is a path formula, the $\mathcal{P}_{\bowtie p}(\varphi)$ is a location formula,
- ▶ if Φ and Ψ are location formulas, then $X_{int}\Phi$ and $\Phi U_{int}\Psi$ are path formulas.

$$int \subseteq \mathbb{R}_{\geq 0}$$
, $\bowtie \in \{<, \leq, \geq, >\}$ and $p \in [0, 1]$

Model Checking Approaches:

- formulas with atomic propositions for locations are evaluated as usual
- steady state analysis
 - ▶ for irreducible SAs solve $\mathbf{p}\left(\sum_{k=0}^{K}\mathbf{G}_{k}\right) = \mathbf{0}$ or $\mathbf{p}\left(\sum_{k=1}^{K}\mathbf{G}_{k}\right)(-\mathbf{G}_{0})^{-1} = \mathbf{0}$ subject to $\mathbf{p}\mathbb{I} = 1$
 - otherwise determine the strongly connected components and compute the stationary vector for strongly connected components (locations may belong to more than one strongly connected component)

add the values in π belonging to locations to obtain a probability distribution

Model Checking Approaches:

Compute probabilities for path formulas:

- for $\Phi \mathcal{U}_{[t_0,t_1]} \Psi$ $(0 \le t_0 \le t_1)$:
 - ▶ make all locations that do not observe Φ or Ψ absorbing and compute $\mathbf{b_1} = e^{\sum_{k=0}^{K} \mathbf{G_k} [\neg Φ \lor \neg Ψ](t_1 t_0)} \mathbb{I}$
 - ▶ make all locations that do not observe Φ absorbing and compute $\mathbf{b}_0 = e^{\sum_{k=0}^{K} \mathbf{G}_k [\neg \Phi] t_0} \mathbf{b}_1$
 - ▶ for each $I \in \mathcal{L}$ $Prob_I(\Phi \mathcal{U}_{[t_0,t_1}\Psi) = \bigotimes_{p \in ena(I) \cup sus(I)} \pi_0^{(p)} \cdot \mathbf{b}_0^I$ or $Prob_I(\Phi \mathcal{U}_{[t_0,t_1}\Psi) = \mathbf{p}^I \cdot \mathbf{b}_0^I$ for some vector \mathbf{p} reached during an execution of the SA
 - ▶ check $Prob_I(\Phi \mathcal{U}_{[t_0,t_1}\Psi) \bowtie p$

Model Checking Approaches:

- ▶ for $X_{[t_0,t_1]}\Phi$ ($0 \le t_0 \le t_1$) with initial vector $\bigotimes_{p \in ena(I) \cup sus(I)} \pi_0^{(p)}$: for each location $I \in \mathcal{L}$
 - define

$$\begin{aligned} \mathbf{F}_{I,\Phi}^{(p)} &= \sum_{J \in \{1,\dots,N\}, \Phi(J) = tt} \sum_{k=1}^{K_p} trans(I,(p,k),J) \mathbf{G}_k^{(p)} & \text{and} \\ \mathbf{F}_I^{(p)} &= \begin{pmatrix} \mathbf{G}_0^{(p)} & \mathbf{F}_{I,\Phi}^{(p)} \mathbb{I} \\ \mathbf{0} & 0 \end{pmatrix} \end{aligned}$$

compute
$$\left(\mathbf{b}_{I}^{(p)}, \beta_{I}^{(p)}\right) = \left(\pi_{0}^{(p)} e^{\mathbf{G}_{0}^{(p)} t_{0}}, 0\right) e^{\mathbf{F}_{I}^{(p)} (t_{1} - t_{0})}$$

- check $\sum_{p \in ena(I)} \beta_I^{(p)} \bowtie p$
- ightharpoonup similar approach for initial vector \mathbf{p}^I

Conclusions

- new class of automata
- ▶ interpretation as a piecewise deterministic Markov process
- numerical analysis
- equivalence relations
- first ideas for model checking state labels/rewards
- composition of SAs can be defined and preserves equivalence (not presented here)
- model checking path labels (not presented here)

Open issues

- complete characterization of equivalent automata by CSL formulas
- introduction of indeterminism
- decision whether an automaton is valid SA (vector matrices describe a valid stochastic process)
- decision whether an SA has an equivalent representation as an MA

Thank you!