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Motivation

Quantum mechanics is highly counterintuitive;

flaws and errors creep in during the design of

quantum programs and quantum protocols.

So, it is indispensable to develop techniques of

verifying and debugging quantum systems.
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Model checking

Model-checking is one of the dominant techniques

for verification of classical hardware as well as

software systems.

It has proved mature as witnessed by a large

number of successful industrial applications.

Quantum model checking???
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Probability Theory v.s. Quantum Information
Theory

Binary Random Varable X:

X = 0 or X = 1

1

0

Quantum bit:

Unit vector in a 2D Hilbert space
|φ〉 = a0|0〉+ a1|1〉,
ai ∈ C, |a0|2 + |a1|2 = 1

|1〉

|0〉

|φ〉
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Probability Theory v.s. Quantum Information
Theory

Evolution: Stochastic Matrices

Preserve l1-norm
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Evolution: Unitary Matrices

Preserve l2-norm
|φ′〉 = U · |φ〉(
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Probability Theory v.s. Quantum Information
Theory

Observation:

Pr(X = b) = pb,
pb ∈ [0, 1]

Measurement:

A measurement of |φ〉 according to a Hermitian
operator M = ∑i λi |bi 〉〈bi | is a projection
onto the orthonormal vectors |bi 〉, and
Pr[outcome is λi ] = |〈φ|bi 〉|2.

|1〉

|0〉|φ〉⊥

|φ〉
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Density operators

Mixed state: Classical distribution over (pure)

quantum states.

ρ =


|φ1〉, with probability p1
...

...

|φk〉, with probability pk

Ensemble: {pi : |φi 〉}.
Density operator: ρ = ∑k

i=1 pi |φi 〉〈φi | (hermitian,
trace 1, positive)

Contains all information about the state.

Different ensembles can have the same density

operator.
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Density operators

Different ensembles can have the same density

operator.{
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Super-operators and Kraus theorem

Super-operators: (special) mapping from density

operators to density operators.

Kraus representation theorem: A map E is a

super-operator if and only if

E(ρ) =
d

∑
i=1

Ei ρE
†
i

for some set of matrices {Ei , i = 1, . . . , d} with

∑i E
†
i Ei ≤ I.

Special case:

Unitary transformation: ρ→ UρU†

Measurement with outcome i: ρ→ |bi 〉〈bi |ρ|bi 〉〈bi |
Measurement with reading outcome:

ρ→ ∑i |bi 〉〈bi |ρ|bi 〉〈bi |
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Matrix representation of super-operators

Let E = {Ei : i ∈ I} be a super-operator. The matrix

representation of E is defined as

ME = ∑
i∈I

Ei ⊗ E ∗i .

Here the complex conjugate is taken according to the orthonormal
basis {|k〉 : k ∈ K}. It is easy to check that ME is independent of
the choice of orthonormal basis and the Kraus operators Ei .
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Markov chains

A Markov chain (MC) is a tuple (S ,P) where

S is a countable set of states;

P : S × S → [0, 1] such that for each s ∈ S,

∑
t∈S

P(s, t) = 1,

or equivalently, P(s, ·) is a probabilistic

distribution over S.
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Quantum Markov chains

(S ,P) ⇒ (H, E)

Set S

Prob. distributions

P : Dist(S)→ Dist(S)

⇒

⇒

⇒

Hilbert space H

Density operators

E : D(H)→ D(H)
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Obstacles for model checking quantum system

The set of all possible quantum states, H, is a

continuum, even when it is finite dimensional.

The techniques of classical model checking, which

normally work for finite state spaces, cannot be

applied directly.
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In this talk, we propose...

A super-operator weighted Markov chain model

which aims at providing finite models for general

quantum programs and quantum communication

protocols.

A quantum extension QCTL of the logic PCTL to

descibe properties we are interested in for QMCs.

An algorithm to model check logic formulas in

QCTL against a QMC model.
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Some more notations

Let SO(H) be the set of super-operators on H, ranged over by
E ,F , · · · .
Definition

Let E ,F ∈ SO(H).

1 E v F if for any ρ ∈ D(H), F (ρ)− E(ρ) is positive
semi-definite;

2 E . F if for any ρ ∈ D(H), tr(E(ρ)) ≤ tr(F (ρ)).

Let h be . ∩ &; it is obviously an equivalence relation.
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Some notations

Let
SI(H) = {E ∈ SO(H) : E . IH}

be the ‘quantum’ correspondence of the unit interval [0, 1] for real
numbers.
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Quantum Markov chains

A super-operator weighted Markov chain, or quantum Markov
chain (QMC), over H is a tuple (S , Q,AP, L), where

S is a countable set of states;

Q : S × S → SI(H) such that for each s ∈ S,

∑t∈S Q(s, t) h IH,
AP is a finite set of atomic propositions;

L is a mapping from S to 2AP.

A classical Markov chain may be viewed as a degenerate quantum
Markov chain in which all super-operators appear in the transition
matrix have the form pIH for some 0 ≤ p ≤ 1.
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Example: quantum loop

A simple quantum loop program goes as follows:

l0 : q := F (q)
l1 : while M [q] do

l2 : q := E(q)
l3 : od

where M = λ0|0〉〈0|+ λ1|1〉〈1|.
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Example: quantum loop

l0

l1

l2 l3

Fq

E0
q

E1
q

Eq

I

Here E0q = {|0〉q〈0|} and E1q = {|1〉q〈1|}.
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QCTL

The syntax of quantum computation tree logic (QCTL) is as
follows:

Φ ::= a | ¬Φ | Φ ∧Ψ | Q∼E [ψ]

ψ ::= XΦ | ΦUΨ

where a is an atomic proposition, ∼ ∈ {.,&}, and E ∈ SI(H).
We call Φ a state formula and ψ a path formula.
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QCTL

Let M = (S , Q,AP, L). The satisfaction relation |= is defined
inductively: for any state s ∈ S ,

s |= a iff a ∈ L(s)

s |= ¬Φ iff s 6|= Φ
s |= Φ ∧Ψ iff s |= Φ and s |= Ψ

and for any path π ∈ PathM(s),

π |= XΦ iff π(1) |= Φ
π |= ΦUΨ iff ∃i ∈N.(π(i) |= Ψ ∧ ∀j < i .(π(j) |= Φ)).
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QCTL

Finally,

s |= Q∼E [ψ] iff QM(s, ψ) ∼ E
where

QM(s, ψ) = Qs({π ∈ PathM(s) | π |= ψ}).

But how to define Qs?
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Super-operator valued measures

Let (Ω, Σ) be a measurable space; that is, Ω is a non-empty set
and Σ a σ-algebra over Ω. A function ∆ : Σ→ SI(H) is said to
be a super-operator valued measure (SVM for short) if ∆ satisfies
the following properties:

1 ∆(Ω) h IH;
2 ∆(

⊎
i Ai ) h ∑i ∆(Ai ) for all pairwise disjoint and

countable sequence A1, A2, . . . in Ω.

We call the triple (Ω, Σ, ∆) a (super-operator valued) measure
space.
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Properties of super-operator valued measures

Let (Ω, Σ, ∆) be a measure space. Then

1 ∆(∅) = 0H;
2 ∆(Ac) + ∆(A) h IH;
3 for any A,A′ ∈ Σ, if A ⊆ A′ then ∆(A) . ∆(A′);
4 for any sequence A1,A2, . . . in Σ,

if A1 ⊆ A2 ⊆ . . . , then there exists a sequence

E1 v E2 v . . . in SI(H) such that for any i,
∆(Ai ) h Ei, and ∆(

⋃
i≥1 Ai ) = limi→∞ Ei .

if A1 ⊇ A2 ⊇ . . . , then there exists a sequence

E1 w E2 w . . . in SI(H) such that for any i,
∆(Ai ) h Ei, and ∆(

⋂
i≥1 Ai ) = limi→∞ Ei .
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SVM for a QMC

Fix a state s ∈ S .

Sample space Ω = PathM(s).

Let the cylinder set Cyl(π̂) ⊆ PathM(s) be defined

as

Cyl(π̂) = {π ∈ PathM(s) : π̂ is a prefix of π};

that is, the set of all infinite paths with

prefix π̂.

σ-algebra over Ω:

Σs = σ({Cyl(π̂) : π̂ ∈ PathMfin (s)}
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SVM for QMCs

For any finite path π̂ = s0 . . . sn ∈ PathMfin (s), we

define the super-operator

Q(π̂) =

{ IH, if n = 0;
Q(sn−1, sn) · · ·Q(s0, s1), otherwise.

Let a mapping Qs be defined by letting Qs(∅) = 0H
and

Qs(Cyl(π̂)) = Q(π̂). (1)
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Extend Qs to a SVM

Theorem

The mapping Qs can be extended to a SVM on the σ-algebra Σs .
Furthermore, this extension is unique up to the equivalence relation
h.

Remark: The main tool we use to prove this theorem is the
Kluvanek’s generalisation of the Carathéodory-Hahn extension
theorem from vector measure theory.
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QCTL

Theorem

For each path formula ψ and each state s in a QMC M, the set

{π ∈ PathM(s) | π |= ψ}

is measurable.
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Back to the example

l0

l1

l2 l3

Fq

E0
q

E1
q

Eq

I

Let ♦Ψ ≡ ttUΨ. The QCTL formula Q&E [♦ l3] asserts that the
probability that the loop program terminates is lower bounded by
E . That is, for any initial quantum state ρ, the termination
probability is not less than tr(E(ρ)).
In particular, the property that it terminates everywhere can be
described as Q&IH [♦ l3].
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Model checking

Given a state s in a qMC M = (S , Q,AP, L) and a state formula
Φ expressed in QCTL, model checking if s |= Φ is essentially to
determine whether s belongs to the satisfaction set
Sat(Φ) = {s ∈ S : s |= Φ} which is defined inductively as follows:

Sat(a) = {s ∈ S : a ∈ L(s)}
Sat(¬Ψ) = S\Sat(Ψ)

Sat(Ψ ∧Φ) = Sat(Ψ) ∩ Sat(Φ)

Sat(Q∼E [ψ]) = {s ∈ S : QM(s, ψ) ∼ E}.

Recall: QM(s, ψ) = Qs({π ∈ PathM(s) | π |= ψ})
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Case 1: ψ = XΦ

By definition, {π ∈ PathM(s) : π |= XΦ} = ⊎
t∈Sat(Φ) Cyl(st).

Thus

QM(s, XΦ) = Qs

 ⊎
t∈Sat(Φ)

Cyl(st)

 h ∑
t∈Sat(Φ)

Qs(Cyl(st))

= ∑
t∈Sat(Φ)

Q(s, t).

This can be calculated easily since by the recursive nature of the
definition, we can assume that Sat(Φ) is already known.
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Case 2: ψ = ΦUΨ

In this case, after some calculation, we get the equation system

QM(s, ΦUΨ) h


IH, if s ∈ Sat(Ψ);
0H, if s 6∈ Sat(Φ) ∪ Sat(Ψ);

∑
t∈S

QM(t, ΦUΨ)Q(s, t), if s ∈ Sat(Φ)\Sat(Ψ).

Then for each s ∈ Sat(Φ)\Sat(Ψ),

QM(s, ΦUΨ) h ∑
t∈Sat(Φ)\Sat(Ψ)

QM(t, ΦUΨ)Q(s, t)+ ∑
t∈Sat(Ψ)

Q(s, t).
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Let S ′ = Sat(Φ)\Sat(Ψ). For any s ∈ S ′,

QM(s, ΦUΨ) h ∑
t∈S ′

QM(t, ΦUΨ)Q(s, t) + ∑
t∈Sat(Ψ)

Q(s, t).

Let
T = [Q(t, s)]s,t∈S ′

and

G =

[
∑

t∈Sat(Ψ)

Q(s, t)

]
s∈S ′

.

Then the required row vector (QM(s, ΦUΨ))s∈S ′ is equivalent to
the fixed point of the function

f (X ) = XT + G.
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A theorem

Theorem

Let
f (X ) = XT + G

be defined above. Then

1 f (X ) has the least fixed point, denoted by E0, in SI(H)|S
′|

under the order v;

2 Given any E ∈ SI(H) and 1 ≤ i ≤ |S ′|, it can be decided
whether E ∼ E0i , ∼ ∈{.,&}, in time O(n2d4) where
d = dim(H) is the dimension of H and n = |S ′|.
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Back to the example again

We check the property Q&E [♦ l3] = Q&E [ttUl3] when

F = {|+〉〈i | : i = 0, 1}, E i = {|i〉〈i |}, i = 0, 1, and E = X .

l0

l1

l2 l3

Fq

E0
q

E1
q

Eq

I

We first calculate that Sat(l3) = {l3} and Sat(tt) = {l0, l1, l2, l3}.
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Back to the example again

l0

l1

l2 l3

Fq

E0
q

E1
q

Eq

I

QM(l0,♦ l3) = QM(l1,♦ l3)F
QM(l1,♦ l3) = QM(l2,♦ l3)E1 + E0
QM(l2,♦ l3) = QM(l1,♦ l3)E
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Example

We calculate that for i = 0, 1, 2,

QM(li ,♦ l3) = Set0

where Set0 = {|0〉〈0|, |0〉〈1|} h I , and so

li |= Q&E [♦ l3]

for any E . I .
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Summary

A super-operator weighted Markov chain model

which aims at providing finite models for general

quantum programs and quantum communication

protocols.

A quantum extension QCTL of the logic PCTL to

descibe properties we are interested in for QMCs.

An algorithm to model check logic formulas in

QCTL against a QMC model.
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Topics for further studies

Tools to implement the model checking algorithm.

Model checking quantum properties.

Check security of physically implemented quantum

cryptographic systems.
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Thank you!

Questions or Comments?
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