Late Weak Bisimilarity for Markov Automata

Christian Eisentraut¹ Jens Chr. Godskesen² Holger Hermanns¹ Lei Song^{3,1} Lijun Zhang^{4,1}

Saarland University, Germany

IT University of Copenhagen, Denmark

Max-Planck-Institut für Informatik, Germany

Institute of Software, Chinese Academy of Sciences, China

September 27, 2013 ISCAS, Beijing

<ロト < 同ト < 目ト < 目ト < 目ト = 「つのの」</p>

Markov Automata

Markov Automata

An MA *M* is a tuple $(S, Act_{\tau}, \rightarrow, \rightarrow, \bar{s})$ where

- $\bar{s} \in S$ is the initial state,
- S is a finite but non-empty set of states,
- Act_τ = Act ∪ {τ} is a set of actions including the internal action τ,
- ► \longrightarrow \subset *S* × *Act*_{τ} × *Dist*(*S*) is a finite set of probabilistic transitions,

▶ → → ⊂ $S \times \mathbb{R}_{>0} \times S$ is a finite set of Markovian transitions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Probabilistic Automata

Probabilistic Automata

A Probabilistic Automaton *M* is a tuple $(S, Act_{\tau}, \rightarrow, \neg, \bar{s})$ where

- $\bar{s} \in S$ is the initial state,
- S is a finite but non-empty set of states,
- Act_τ = Act ∪ {τ} is a set of actions including the internal action τ,
- ► \longrightarrow \subset *S* × *Act*_{τ} × *Dist*(*S*) is a finite set of probabilistic transitions,

 $\blacktriangleright \longrightarrow = \emptyset.$

イロト イポト イヨト イヨト 二日

Interactive Markov Chain

Interactive Markov Chain

An Interactive Markov Chain *M* is a tuple $(S, Act_{\tau}, \rightarrow , \rightarrow , \bar{s})$ where

- $\bar{s} \in S$ is the initial state,
- S is a finite but non-empty set of states,
- Act_τ = Act ∪ {τ} is a set of actions including the internal action τ,
- \rightarrow \subset S × Act_{τ} × S is a finite set of transitions,
- $\blacktriangleright \longrightarrow \ \subset \ S \times \mathbb{R}_{>0} \times S \text{ is a finite set of Markovian transitions.}$

Example

Early Weak Bisimilarity

A relation $\mathcal{R} \subseteq Dist(S) \times Dist(S)$ is an early weak bisimulation over \mathcal{M} iff $\mu \mathcal{R} \nu$ implies:

• whenever $\mu \xrightarrow{\theta} \mu'$, there exists a $\nu \xrightarrow{\theta} \nu'$ such that $\mu' \mathcal{R} \nu'$;

▶ whenever
$$\mu = \sum_{0 \le i \le n} p_i \cdot \mu_i$$
, there exists
 $\nu \stackrel{\tau}{\Longrightarrow} \sum_{0 \le i \le n} p_i \cdot \nu_i$ such that $\mu_i \mathcal{R} \nu_i$ for each $0 \le i \le n$
where $\sum_{0 \le i \le n} p_i = 1$;

symmetrically for ν.

$$\mathbf{s} \stackrel{\bullet}{\approx} \mathbf{r} \text{ iff } \delta_{\mathbf{s}} \stackrel{\bullet}{\approx} \delta_{\mathbf{r}}$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Early Weak Bisimilarity

A relation $\mathcal{R} \subseteq Dist(S) \times Dist(S)$ is an early weak bisimulation over \mathcal{M} iff $\mu \mathcal{R} \nu$ implies:

• whenever $\mu \xrightarrow{\theta} \mu'$, there exists a $\nu \xrightarrow{\theta} \nu'$ such that $\mu' \mathcal{R} \nu'$;

▶ whenever
$$\mu = \sum_{0 \le i \le n} p_i \cdot \mu_i$$
, there exists
 $\nu \stackrel{\tau}{\Longrightarrow} \sum_{0 \le i \le n} p_i \cdot \nu_i$ such that $\mu_i \mathcal{R} \nu_i$ for each $0 \le i \le n$
where $\sum_{0 \le i \le n} p_i = 1$;

symmetrically for ν.

$$\mathbf{s} \stackrel{\bullet}{\approx} r \text{ iff } \delta_{\mathbf{s}} \stackrel{\bullet}{\approx} \delta_r$$

$$\mu \xrightarrow{\theta} \mu' \text{ iff } \mu' = \sum_{s \in Supp(\mu) \land s \xrightarrow{\theta} \mu_s} \mu(s) \cdot \mu_s$$

Early Weak Bisimilarity

A relation $\mathcal{R} \subseteq Dist(S) \times Dist(S)$ is an early weak bisimulation over \mathcal{M} iff $\mu \mathcal{R} \nu$ implies:

• whenever $\mu \xrightarrow{\theta} \mu'$, there exists a $\nu \xrightarrow{\theta} \nu'$ such that $\mu' \mathcal{R} \nu'$;

▶ whenever
$$\mu = \sum_{0 \le i \le n} p_i \cdot \mu_i$$
, there exists
 $\nu \stackrel{\tau}{\Longrightarrow} \sum_{0 \le i \le n} p_i \cdot \nu_i$ such that $\mu_i \mathcal{R} \nu_i$ for each $0 \le i \le n$
where $\sum_{0 \le i \le n} p_i = 1$;

symmetrically for ν.

$$\{\frac{1}{2}: s_1, \frac{1}{2}: s_2\} = \frac{1}{2}\delta_{s_1} + \frac{1}{2}\delta_{s_2} \\ = \frac{2}{3}\{\frac{1}{4}: s_1, \frac{3}{4}: s_2\} + \frac{1}{3}\delta_{s_1}$$

Properties of \sim

- Relation on distributions.
- ► * is strictly coarser than Weak Probabilistic Bisimulation by Segala.
- \Rightarrow is compositional.
- ► * is the coarsest compositional equivalence preserving trace distribution equivalence.

イロト 不得 トイヨト イヨト 二日

A piece of probabilistic program

```
print("I am going to toss");

r = rand();

if r \ge \frac{1}{2} then

| print("head");

else

| print("tail");

end
```

A piece of probabilistic program

```
print("I am going to toss");

r = rand();

if r \ge \frac{1}{2} then

| print("head");

else

| print("tail");

end
```


Another piece of probabilistic program

```
\begin{array}{l} r = rand();\\ \text{if } r \geq \frac{1}{2} \text{ then}\\ & \text{ print("I am going to toss");}\\ & \text{ print("head");}\\ \text{else}\\ & \text{ print("I am going to toss");}\\ & \text{ print("tail");}\\ \text{end} \end{array}
```

Another piece of probabilistic program

```
 \begin{array}{l} r = rand(); \\ \text{if } r \geq \frac{1}{2} \text{ then} \\ | print("I am going to toss"); \\ print("head"); \\ \text{else} \\ | print("I am going to toss"); \\ \end{array}
```

print("tail");

end

向下 イヨト イヨト

The guesser

<ロト < 回 > < 回 > < 回 > < 回 >

э

<ロト < 回 > < 回 > < 回 > < 回 >

э

<ロト < 回 > < 回 > < 回 > < 回 >

э

Two Less Powerful Schedulers

Partial Information Schedulers

L. De Alfaro. The verification of probabilistic systems under memoryless partial-information policies is hard. Technical report, DTIC Document, 1999.

★御▶ ★理▶ ★理▶

Two Less Powerful Schedulers

Partial Information Schedulers

L. De Alfaro. The verification of probabilistic systems under memoryless partial-information policies is hard. Technical report, DTIC Document, 1999.

Distributed Schedulers

Sergio Giro and Pedro R. D'Argenio. Quantitative model checking revisited: neither decidable nor approximable. In *FORMATS*, pages 179–194, Berlin, Heidelberg, 2007. Springer-Verlag.

イロト イポト イヨト イヨト

Partial Information Schedulers

Distributed Schedulers

Distributed Schedulers

Late Weak Bisimilarity

Late Weak Bisimilarity

A relation $\mathcal{R} \subseteq Dist(S) \times Dist(S)$ is a late weak bisimulation over \mathcal{M} iff $\mu \mathcal{R} \nu$ implies:

- whenever $\mu \xrightarrow{\theta} \mu'$, there exists a $\nu \xrightarrow{\theta} \nu'$ such that $\mu' \mathcal{R} \nu'$;
- ▶ if not $\overrightarrow{\mu}$, then there exists $\mu = \sum_{0 \le i \le n} p_i \cdot \mu_i$ and $\nu \stackrel{\tau}{\Longrightarrow} \sum_{0 \le i \le n} p_i \cdot \nu_i$ such that $\overrightarrow{\mu_i}$ and $\mu_i \mathcal{R} \nu_i$ for each $0 \le i \le n$ where $\sum_{0 \le i \le n} p_i = 1$;
- symmetrically for ν.

where $\overrightarrow{\mu}$ if all states in μ have the same observable actions.

イロト 不得 トイヨト イヨト 三日

Late Weak Bisimilarity

Late Weak Bisimilarity

A relation $\mathcal{R} \subseteq Dist(S) \times Dist(S)$ is a late weak bisimulation over \mathcal{M} iff $\mu \mathcal{R} \nu$ implies:

- whenever $\mu \xrightarrow{\theta} \mu'$, there exists a $\nu \xrightarrow{\theta} \nu'$ such that $\mu' \mathcal{R} \nu'$;
- ▶ if not $\overrightarrow{\mu}$, then there exists $\mu = \sum_{0 \le i \le n} p_i \cdot \mu_i$ and $\nu \stackrel{\tau}{\Longrightarrow} \sum_{0 \le i \le n} p_i \cdot \nu_i$ such that $\overrightarrow{\mu_i}$ and $\mu_i \mathcal{R} \nu_i$ for each $0 \le i \le n$ where $\sum_{0 \le i \le n} p_i = 1$;
- symmetrically for ν.

where $\overrightarrow{\mu}$ if all states in μ have the same observable actions.

$$\mathbf{s} \approx \mathbf{r} \text{ iff } \delta_{\mathbf{s}} \approx \delta_{\mathbf{r}}$$

イロト 不得 トイヨト イヨト 三日

Examples

S1 **S**0 \approx ి S_2 α au α S₃ <u>2</u> 3 $\frac{1}{3}$ au<u>2</u> 3 <u>1</u> 3 S4 **S**5 ١ ١ 1 $\frac{2}{3}$ $\frac{1}{3}$ α α r_2 r_1 r_2 r_1 r_2 r_1

イロン イロン イヨン イヨン

2

Examples

イロン イロン イヨン イヨン

2

Properties of \approx

- Relation on distributions.
- \approx is strictly coarser than \approx .
- ► *≈ is compositional w.r.t. to partial information and distributed schedulers.
- *> is the coarsest compositional equivalence preserving trace distribution equivalence w.r.t. partial information and distributed schedulers.

イロト 不得 トイヨト イヨト 二日

Conclusion and Future Work

- Efficient Decision Algorithm (Currently exponential).
- Logical Characterization.
- ▶

Thank You

Q& A

・ロン ・回 と ・ ヨ と ・ ヨ と