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Markov Automata

Markov Automata

An MA M is a tuple (S,Actτ , , , s̄) where
◮ s̄ ∈ S is the initial state,
◮ S is a finite but non-empty set of states,
◮ Actτ = Act

.
∪ {τ} is a set of actions including the internal

action τ ,
◮ ⊂ S × Actτ × Dist(S) is a finite set of probabilistic

transitions,
◮ ⊂ S ×R>0 ×S is a finite set of Markovian transitions.
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Probabilistic Automata

Probabilistic Automata

A Probabilistic Automaton M is a tuple (S,Actτ , , , s̄)
where

◮ s̄ ∈ S is the initial state,
◮ S is a finite but non-empty set of states,
◮ Actτ = Act

.
∪ {τ} is a set of actions including the internal

action τ ,
◮ ⊂ S × Actτ × Dist(S) is a finite set of probabilistic

transitions,
◮ = ∅.
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Interactive Markov Chain

Interactive Markov Chain

An Interactive Markov Chain M is a tuple (S,Actτ , , , s̄)
where

◮ s̄ ∈ S is the initial state,
◮ S is a finite but non-empty set of states,
◮ Actτ = Act

.
∪ {τ} is a set of actions including the internal

action τ ,
◮ ⊂ S × Actτ × S is a finite set of transitions,
◮ ⊂ S ×R>0 ×S is a finite set of Markovian transitions.
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Early Weak Bisimilarity
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Early Weak Bisimilarity
Early Weak Bisimilarity

A relation R ⊆ Dist(S)× Dist(S) is an early weak bisimulation
over M iff µ R ν implies:

◮ whenever µ θ
−→ µ′, there exists a ν

θ
=⇒ ν ′ such that µ′ R ν ′;

◮ whenever µ =
∑

0≤i≤n pi · µi , there exists

ν
τ

=⇒
∑

0≤i≤n pi · νi such that µi R νi for each 0 ≤ i ≤ n
where

∑
0≤i≤n pi = 1;

◮ symmetrically for ν.

s •≈ r iff δs
•≈ δr
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Properties of •≈

◮ Relation on distributions.
◮

•≈ is strictly coarser than Weak Probabilistic Bisimulation
by Segala.

◮
•≈ is compositional.

◮
•≈ is the coarsest compositional equivalence preserving
trace distribution equivalence.
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A piece of probabilistic program

print(“I am going to toss”);
r = rand();
if r ≥ 1

2 then
print(“head”);

else
print(“tail”);

end
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Another piece of probabilistic program
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The guesser
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Two Less Powerful Schedulers

Partial Information Schedulers

L. De Alfaro. The verification of probabilistic systems under
memoryless partial-information policies is hard.
Technical report, DTIC Document, 1999.
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memoryless partial-information policies is hard.
Technical report, DTIC Document, 1999.

Distributed Schedulers

Sergio Giro and Pedro R. D’Argenio. Quantitative model
checking revisited: neither decidable nor approximable.
In FORMATS, pages 179–194, Berlin, Heidelberg, 2007.
Springer-Verlag.
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Partial Information Schedulers
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Distributed Schedulers
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Distributed Schedulers
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Late Weak Bisimilarity

Late Weak Bisimilarity

A relation R ⊆ Dist(S)× Dist(S) is a late weak bisimulation
over M iff µ R ν implies:

◮ whenever µ θ
−→ µ′, there exists a ν

θ
=⇒ ν ′ such that µ′ R ν ′;

◮ if not −→µ , then there exists µ =
∑

0≤i≤n pi · µi and

ν
τ

=⇒
∑

0≤i≤n pi · νi such that −→µi and µi R νi for each
0 ≤ i ≤ n where

∑
0≤i≤n pi = 1;

◮ symmetrically for ν.

where −→µ if all states in µ have the same observable actions.
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Examples
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Properties of ≈•

◮ Relation on distributions.
◮ ≈• is strictly coarser than •≈.
◮

•≈ is compositional w.r.t. to partial information and
distributed schedulers.

◮
•≈ is the coarsest compositional equivalence preserving
trace distribution equivalence w.r.t. partial information and
distributed schedulers.
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Conclusion and Future Work

◮ Efficient Decision Algorithm (Currently exponential).
◮ Logical Characterization.
◮ . . ..
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Thank You

Q& A
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