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Motivation

Current program verification techniques suffer from scalability.
Compositional way has been thought as an effective solution to the
problem.
Interpolation-based techniques are inherently local and modular,
which can be used to scale up these techniques of program
verification:

Theorem proving: Nelson-Oppen method, SMT;
Model-checking: BMC, CEGAR;
Abstraction interpretation;
Machine learning based approaches.

Synthesizing Craig interpolants is the cornerstone of interpolation
based techniques.
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Related work on synthesizing Craig interpolants

[McMillan 05] on quantifier-free theory of linear inequality with UF;
[Henzinger et al 04] on a theory with arithmetic and pointer
expressions, and call-by-value functions;
[YorshMusuvathi 05] on a class of first-order theories;
[Kapur et al 06] on theories of arrays, sets and multisets;
[RybalchenkoSofronie-Stokkermans 10] to reduce the synthesis of
Craig interpolants of the combined theory of linear arithmetic and
uninterpreted function symbols to constraint solving.

But little work on how to synthesize non-linear interpolants
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Interpolants
Given two formulae φ and ψ of T with `T (φ ∧ ψ)⇒ ⊥, then we say a
formula Θ is an interpolant of φ and ψ, if `T φ⇒ Θ, `T (ψ ∧Θ)⇒ ⊥,
and Θ contains only symbols that φ and ψ share.

Semi-algebraic system

A semi-algebraic system (SAS) T (x) is of the form
∧k

j=0 fj(x) .j 0, where fj
are polynomials in R[x] and .j ∈ {=, 6=,≥}.

Problem description
Let φ1 =

∨m
t=1 T1t(x1), φ2 =

∨n
l=1 T2l(x2), and φ1 ∧ φ2 |= ⊥, the

problem is to find a PF I in which all polynomials are in R[x1 ∩ x2]

s.t. φ1 |= I and I ∧ φ2 |= ⊥
If for each t and l , there is an interpolant Itl for SASs T1t(x1) and
T2l(x2), then I =

∨m
t=1
∧n

l=1 Itl is an interpolant of φ1 and φ2.
So, only need to consider how to construct interpolants for two SASs
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Common varaiables

A simply way by quantifier elimination (QE): applying QE to
∃x1 − x2.φ1(x1) and ∃x2 − x1.φ2(x2), and obtain two formulas on the
common variables x1 ∩ x2.
A more efficient way by local variable elimination according to the
programs to be verified.

Simplified problem
Thus, we only consider T1 ∧ T2 |= ⊥, where

T1 =

 f1(x) ≥ 0, . . . , fs1(x) ≥ 0,
g1(x) 6= 0, . . . , gt1(x) 6= 0,
h1(x) = 0, . . . , hu1(x) = 0

T2 =

 fs1+1(x) ≥ 0, . . . , fs(x) ≥ 0,
gt1+1(x) 6= 0, . . . , gt(x) 6= 0,
hu1+l(x) = 0, . . . , hu(x) = 0
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Step 1: Reduction by Positivestellensatz Theorem

Basic definitions
A polynomial ideal I: i) 0 ∈ I; ii) p1, p2 ∈ I implies p1 + p2 ∈ I; iii)
fg ∈ I whenever f ∈ I and g ∈ R[x].
A polynomial p is called sums of square (SOS), if it can be
represented as of the form f 2

1 + . . .+ f 2
n .

The multiplicative monoid Mult(P) generated by a set of polynomial
P is the set of finite products of the elements of P (the empty
product is 1).
The cone C(P) for a finite set P ⊆ R[x] is {

∑r
i=1 qipi | q1, . . . , qr are

SOS, p1, . . . , pr ∈ Mult(P)}.

Positivestellensatz Theorem
T1 ∧ T2 has no real solutions iff there exist f ∈ C({f1, . . . , fs}),
g ∈ Mult({g1, . . . , gt}) and h ∈ I({h1, . . . , hu}) s.t. f + g2 + h ≡ 0.
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Reduction
Thus, T1 ∧ T2 |= ⊥ iff f + g2 + h ≡ 0, for some

g = Πt
i=1g

2m
i ,

h = q1h1 + · · ·+ qu1hu1 + · · ·+ quhu,

f = p0 + p1f1 + · · ·+ ps fs + p12f1f2 + · · ·+ p1...s f1 . . . fs .

in which qi and pi are SOS.

Restricted solution
If f can be represented as p0+ fT1 + fT2 , where
fT1 =

∑
v⊆1,...,s1 pv Πi∈v fi , fT2 =

∑
v⊆s1+1,...,s pv Πi∈v fi ,

in which ∀x.p0(x) > 0 and pv ∈ SOS, then let
hT1 = q1h1 + · · ·+ qu1hu1 ,
hT2 = h − hT1 ,
q = fT1 + g2 + hT1 + q0

2 = −(fT2 + hT2)− q0
2 .

Let I = q(x) > 0. Obviously, T1 |= I and I ∧ T2 |=⊥.
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A running example

1 if (x ∗ x + y ∗ y < 1)
2 { /* initial values */
3 while (x ∗ x + y ∗ y < 3)
4 { x := x ∗ x + y − 1;
5 y := y + x ∗ y + 1;
6 if (x ∗ x − 2 ∗ y ∗ y − 4 > 0)
7 /* unsafe area */
8 error(); } }

g1 = 1− x2 − y2 > 0

g2 = 3− x2 − y2 > 0
f1 = x2 + y − 1− x ′ = 0
f2 = y + x ′y + 1− y ′ = 0
g3 = x ′2 − 2y ′2 − 4 > 0

The property to be verified is that error() procedure will never be
executed.
Suppose there is an execution segment 1→ 3→ 4→ 5→ 6→ 8.
Let φ , g1 > 0 ∧ f1 = 0 ∧ f2 = 0 and ψ , g3 > 0.
The execution segment is infeasible iff φ ∧ ψ is unsatisfiable.
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Cont’d
So, by the above analysis, if there exist δ1, . . . , δ7 s.t.

g1δ2 + f1(δ3 − δ4) + f2(δ5 − δ6) + g3δ7 + δ1 + 1 ≡ 0,

where δ1, . . . , δ6 ∈ R[x , y , x ′, y ′], δ7 ∈ R[x ′, y ′] are sums of squares (SOS),
then g3δ7 + 1

2 < 0 is an interpolant for φ and ψ.
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Step 2: Construction of f , g , h by SDP

Showing the basic idea by continuing the example

Set deg(δ1) = deg(δ2) = · · · = deg(δ7) = 4. Then δ1 = (Z 4
2 )TQ1(Z 4

2 ),
δ2 = (Z 4

2 )TQ2(Z 4
2 ), . . . , δ7 = (Z 4

2 )TQ7(Z 4
2 ) , where

Q1, . . . ,Q7 are 15× 15-symmetric matrices, and all entries of
Q1, . . . ,Q7 are parameters.
Z 4

2 =
[
1, x , y , x ′, y ′, xy , xx ′, xy ′, x ′y , x ′y ′, yy ′, x2, y2, x ′2, y ′2

]
.

N. Zhan et al (SKLCS) Nonlinear Interp. Gen. and Apps Prob.&Hybrid Workshop 11 / 25



Problem Description Synthesizing Non-linear Interpolants Archimedean Condition To invariant generation To machine-learning Conclusion

g1δ2+f1(δ3−δ4)+f2(δ5−δ6)+g3δ7+δ1+1 =
∑

i+j+k+m≤4
c i,j,k,mx iy jx ′ky ′m,

where ci,j,k,m = 〈Ai,j,k,m,X 〉, X = diag{Q1,Q2, . . . ,Q7}, entries of
Ai,j,k,m comes from coefficients of g1, f1, f2, g3, e.g.,

A0,0,0,0 =



1 · · · 0 · · · 0 · · · · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 1 · · · 0 · · · · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · −1 · · · · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · · · · −4


Resulted SDP: inf

X∈Sym105
〈C ,X 〉 s.t. X � 0, 〈Ai,j,k,m,X 〉 = 0

(i , j , k,m = 1, . . . , 4).
Solving the SDP, obtain δ1, . . . δ7 with tool AiSat. Thus,
g3δ7 + 1

2 < 0 is an interpolant.
In addition, we can verify that it is an inductive invariant by QE.
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Discussions
The approach is sound, but not complete in general.
Under which condition will the approach become complete?
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Quadratic module
The quadratic module generated by g1, . . . , gm is the set
M(g1, . . . , gm) = {δ0 +

∑m
j=1 δjgj | δ0, δj are SOS}.

Archimedean condition
A quadratic module M(g1, . . . , gm) is said to be Archimedean if
∀p ∈ R[x],∃n ∈ N.n ± p ∈M(f1, . . . , fs).
Let T ′1 = f1(x) ≥ 0, . . . , fs1(x) ≥ 0 and T ′2 = fs1+1(x) ≥ 0, . . . , fs(x) ≥ 0
be two SASs, which contains constraints cl ≤ xi ≤ cr for every xi ∈ x,
where cl and cr are reals. We can always obtain a system
{f1(x), . . . , fs′(x)} s.t. M (f1, . . . , fs′) is Archimedean and
f1 ≥ 0 ∧ · · · ∧ fs ≥ 0 ⇔ f1 ≥ 0 ∧ · · · ∧ fs′ ≥ 0.

Theorem
If T ′1 ∧ T ′2 is unsatisfiable, then −1 ∈M(f1, . . . , fs′).
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{f1(x), . . . , fs′(x)} s.t. M (f1, . . . , fs′) is Archimedean and
f1 ≥ 0 ∧ · · · ∧ fs ≥ 0 ⇔ f1 ≥ 0 ∧ · · · ∧ fs′ ≥ 0.

Theorem
If T ′1 ∧ T ′2 is unsatisfiable, then −1 ∈M(f1, . . . , fs′).
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Revised algorithm
There exist σ0, . . . , σs′ which are SOS s.t.
−1 = σ0 + σ1f1 + · · ·+ σs1 fs1 + σs1+1fs1+1 + · · ·+ fs′σs′ .

Then, −( 1
2 + σs1+1fs1+1 + · · ·+ σs′ fs′) = 1

2 + σ0 + σ1f1 + · · ·+ σs1 fs1 .

Let q(x) = 1
2 + σ0 + σ1f1 + · · ·+ σs1 fs1 , we have ∀x ∈ T1.q(x) > 0 and

∀x ∈ T2.fs′(x) ≥ 0, so q(x) < 0. Thus, I = q(x) > 0 is an interpolant of
T1 and T2.

Discussions
Reasonability: Only bounded numbers with finite precision can be

represented in computer;
Necessity: Let T1 = {x1 ≥ 0, x2 ≥ 0} and T2 = {−x1x2 − 1 ≥ 0}. So,

T1 ∧ T2 = ∅ is not Archimedean and unsatisfiable, but
−1 6∈ M(x1, x2,−x1x2 − 1).
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Complexity

The total cost of the revised algorithm is polynomial in
bf u
(n+bf /2

n

)(n+bf
n

)
.

For a given problem in which n, u are fixed, the complexity of the
algorithm becomes polynomial in bf .
The upper bound on bf is at least triply exponential in u and n.
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Part II: Applications to Program Verification
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Invariant

Inductive invariant of loop
Given a Hoare triple {Pre} while B do P {Post}, we say a formula θ is an
invariant of the loop, if

θ ⇒ Pre

{θ ∧ B} P {θ}
θ ∧ ¬B ⇒ Post

General framework
To negate Post;
For each single execution of P, generating an interpolant between
Pre and ¬Post;
Using QE to verify the disjunct of the obtained interpolants form an
inductive invariant of the loop.
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Example

Source code

1 vc := 0;
2 /* the initial veclocity */
3 fr := 1000;
4 /* the initial force */
5 ac := 0.0005 ∗ fr ;
6 /* the initial acceleration */
7 while ( 1 )
8 { fa := 0.5418 ∗ vc ∗ vc ;
9 /* the force control */
10 fr := 1000− fa;
11 ac := 0.0005 ∗ fr ;
12 vc := vc + ac ;
13 assert(vc < 49.61);
14 /* the safety velocity */ }

Safety property is that the
velocity of the car cannot
surpass 49.61m/s.
Suppose (vc < 49.61)→ 8
→ 10→ 11→ 12→ 13
(vc ≥ 49.61).
By applying AiSat, we can
obtain an interpolant
−1.3983vc + 69.358 > 0,
which guarantees vc < 49.61.
It is easy to verify
−1.3983vc + 69.358 > 0 is an
inductive invariant.
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Comparison with other approaches

Interpolation based vs QE based
Interpolation based is complete under Archimedean condition, while
QE based is complete related to the predefined templates.
Interpolation based is more efficient, its complexity is polynomial in
the given degree, whose upper bound is at least triply exponential in
the numbers of variables and constraints; while QE based is doubly
exponential in the number of parameters and variables in the
predefined templates in general.
Interpolation based has to consider error issue because of numerical
computation, while QE based does not need.

Combining interpolation generation with QE to invariant generation can
improve efficiency, also makes error is controllable.
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Combining with machine-learning

General framework

Queries 

Answers 

Abstraction Concretization 

Enlarge A 

After n steps 

Two parts: Learning +
discovering predicate set.

Learning=CDNF+predicate
abstraction+SMT solver.

Discovering predicate set is
by interpolation.

Learning part is incomplete:
after n steps, if no invariant
is synthesized, either restart
or enlarge the predicate set
by interpolation.

Previous work is only
applicable to linear cases.
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Extending to non-linear cases
A non-linear example

To prove
{x2 + y2 < 10} while x2 + y2 < 100 do {x=x+1;y=x*y+1 }
{x > 0}.
The learning algorithm cannot generate an inductive invariant from
the predicate set {x2 + y2 < 10, x2 + y2 < 100, x > 0}.
Using our approach, we can generate an interpolant
19.5267− 0.3550 ∗ y2 − 0.3550 ∗ x2 > 0 for x2 + y2 < 10 and
¬(x2 + y2 < 100 ∨ x > 0.
The learning algorithm can discover in inductive invariant
19.5267− 0.3550 ∗ y2 − 0.3550 ∗ x2 > 0 ∨ x > 0 using the new
predicate set.
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Conclusion
We first summarize our recent work on generating non-linear
interpolants by semi-definite programming.
Then we show how to apply the results to program verification,
including invariant generation and combining with machine-learning
based techniques.

Future work
Some issues related to nonlinear interpolant generation, like

How to relax the Archimedean condition.
How to combine non-linear arithmetic with other well-established
decidable first order theories.
To investigate errors caused by numerical computation in SDP is
quite interesting.

To investigate combining with other verification techniques, like
CEGAR, BMC, SMT and so on.
To investigate the possibility to the verification of hybrid systems.
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Thanks & Questions?
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