5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification for Hybrid Systems?

Martin Leucker

Institute for Software Engineering
Universitat zu Liibeck

Bejing, Tuesday 24th of September 2013

Martin Leucker ISCAS, 13/09/24 1/101



UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

Martin Leucker ISCAS, 13/09/24 2/101



UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

Martin Leucker ISCAS, 13/09/24 2/101



AND PROGRAMMING LANGUAG ES

N T E F SbeTwaRE enciNEERING iS p
Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Martin Leucker ISCAS, 13/09/24 2/101



Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

Martin Leucker ISCAS, 13/09/24

2/101



Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

Martin Leucker ISCAS, 13/09/24 2/101



Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions
» Simple verification technique

» Complementing

Martin Leucker ISCAS, 13/09/24 2/101



NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

» Complementing
» Model Checking

Martin Leucker ISCAS, 13/09/24 2/101



Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique
» Complementing

» Model Checking
> Testing

Martin Leucker ISCAS, 13/09/24 2/101



NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique
» Complementing

» Model Checking
> Testing

» Formal: w € L(p)
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> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

» Model of System
> as transition system S with runs £(S)
» Model Checking Problem:
Do all runs of the system satisfy the specification
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Model Checking versus RV

v

Model Checking: infinite words

v

Runtime Verification: finite words

> yet continuously expanding words

v

In RV: Complexity of monitor generation is of less importance than
complexity of the monitor

Model Checking: White-Box-Systems

v

v

Runtime Verification: also Black-Box-Systems
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Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Testing: with Oracle
> test case: finite sequence of input actions
» test oracle: monitor
> test execution: send test cases, let oracle report violations

» similar to runtime verification
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Testing versus RV

» Test oracle manual
» RV monitor from high-level specification (LTL)
> Testing:

How to find good test suites?

» Runtime Verification:
How to generate good monitors?
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Outline

Runtime Verification

Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up

RV with Data

Simple arithmetic computations
Generalisations: LTL with modulo Constraints

Stream-based Approaches: LoLa

Lifting the LTL approach

RV for hybrid systems

Quantitive Measures on the execution

Conclusion
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Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the
study, development, and application of those verification techniques that
allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.
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Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the
study, development, and application of those verification techniques that
allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Definition (Monitor)

A monitor is a device that reads a finite trace and yields a certain verdict.

A verdict is typically a truth value from some truth domain.
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Runtime Verification for LTL

Observing executions/runs

Idea
Specify correctness properties in LTL

Commercial
Specify correctness properties in Regular LTL
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Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.
The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

w u= true|p |pVelpUp|Xp |
false | splonp|pRo | Xp |
—p

Martin Leucker ISCAS, 13/09/24 13/101
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overw € (247)* = xv

|
{r.q} P p q q
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Linear-time Temporal Logic (LTL)

Semantics
overw € (247)* = xv

|
{r.q} P p q q

Abbreviation
Fo = truellp Gy = - F-p
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Llnear-tlme Temporal Logic (LTL)

Semantics
overw € (247)¥ = % P v
P X
I > = pUg
{p.a} p p q q X(pUgq)

Abbreviation
Fo = truellp Gy = - F-p

Example

G (critic1 A criticy), G(—alive — Xalive)

Martin Leucker ISCAS, 13/09/24 14/101
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LTL on infinite words

Definition (LTL semantics (traditional))

Semantics of LTL formulae over an infinite word w = apa; ... € ¥“, where
wi =aidi4+1 ...
w = true
wk=p if peap
w = —p if pd&ao
w = - if notwkE ¢
wEeVYy if wlEkyporwkEy
wEeANyY if wkEeandw =y
w = Xp if w'Eep
w = X if w'Ee
wkEeU if thereiskwith0 <k < |w|: wk =1
and forall I with 0 < I < k' |=
wk=@Ry if forallkwith0 <k < |w|: (w* =
or thereis I with 0 < I < kw' |= ¢)

Martin Leucker ISCAS, 13/09/24 15/101
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LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

SALT

Structured Assertion Language for Temporal Logic
“Syntactic Sugar for LTL” [Bauer, L., Streit@l CFEM’06]

Martin Leucker ISCAS, 13/09/24 16/101
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Projects

SALT - Smart Assertion Language for Temporal Logic

Goal

Do you want to specify the behavior of your program in a rigorously yet comfortable manner?
Do you see the benefits of temporal specifications but are bothered by the awkward farmalisms available?
Do you want to use

= the power of a Model Checkerto improve the quality of your systems or
® the nowerful nintime reflection annrnach far hiia huntinag and alimination

Martin Leucker ISCAS, 13/09/24 17101


http://www.isp.uni-luebeck.de/salt

umv!ksmr ZU LOBECK, |
TE OF ARE ENGINEERING
P ROCRAMMING LANGL

Runtlme Verlflcatlon for LTL

Idea
Specify correctness properties in LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.
The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

p = true|p |eVoe|oUep|Xe |
false | =p | oAp | pRo | Xp |
P

Martin Leucker ISCAS, 13/09/24 18/101
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Truth Domain

Lattice

> A lattice is a partially ordered set (£, C) where for each x,y € L, there
exists

1. aunique greatest lower bound (glb), which is called the meet of x and y, and
is denoted with x My, and

2. aunique least upper bound (lub), which is called the join of x and y, and is
denoted with x LI y.

» A lattice is called finite iff £ is finite.

» Every finite lattice has a well-defined unique least element, called
bottom, denoted with L,

» and analogously a greatest element, called top, denoted with T.

Martin Leucker ISCAS, 13/09/24 19/101
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Truth Domains (cont.)

Lattice (cont.)

> A lattice is distributive, iff x M (y U z) = (x My) U (x M z), and, dually,
xU(yNz)=(xUy) N (xUz).

> In a de Morgan lattice, every element x has a unique dual element ¥,
such that ¥ = x and x C y implies y C x.

Definition (Truth domain)

We call £ a truth domain, if it is a finite distributive de Morgan lattice.

Martin Leucker ISCAS, 13/09/24 20/101
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LTL's semantics using truth domains

Definition (LTL semantics (common part))

Semantics of LTL formulae over a finite or infinite word w = agay . .. € £°
Boolean constants Boolean combinations
[w |= true] o E T [w = —vlg
[w |= false] o = 1 [wkE=eVvila
Wl e Avle
atomic propositions
T ifp €ag
wEple = w = —pl
e 1 ifp ¢ e s

next X/weak next X TBD

until/release

isp

[wk=ele

[whEelegUwi=vle
[w=ele Nwi=Yle

- |

T
L

ifp & ag
ifp € ag

T thereisak, 0 < k < \wl:[wk = ¥]e = T and

wEeUdleg =
TBD else
@R = (- U-p)

Martin Leucker ISCAS, 13/09/24

forall Iwith0 < I < k: [0l = @] = T

21/101
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Outline

Runtime Verification for LTL
LTL over Finite, Completed Words

Martin Leucker ISCAS, 13/09/24 22/101
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LTL on finite words

Application area: Specify properties of finite word

o
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LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae over a word u = a9 . .

next
e Xolr = W' = ¢le
1
weak next
wexdr = {4
T

Martin Leucker ISCAS, 13/09/24

isp

Ap—1 € DS

iful # ¢

otherwise

iful e

otherwise
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Monitoring LTL on finite words

(Bad) Idea

just compute semantics. . .

Martin Leucker ISCAS, 13/09/24

isp
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Outline
Runtime Verification for LTL

LTL over Finite, Non-Completed Words: Impartiality

Martin Leucker ISCAS, 13/09/24 26/101
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LTL on finite, but not completed words

Application area: Specify properties of finite but expanding word

s

o = =

Martin Leucker ISCAS, 13/09/24 27/101



Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL on finite, but not completed words
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LTL on finite, but not completed words

Be Impartial!
> go for a final verdict (T or L) only if you really know

> be a man: stick to your word
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LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL)
Semantics of FLTL formulae overaword u = ag...a4,_1 € X*

next

' gle iful #e

[ufE Xelr =
17 otherwise

weak next

W' el ifu' #e
TP otherwise

[ = Xl

Martin Leucker ISCAS, 13/09/24 29/101
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Left-to-right!
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Monitoring LTL on finite but expanding words

Rewriting

Idea: Use rewriting of formula

Evaluating FLTL4 for each subsequent letter
> evaluate atomic propositions
> evaluate next-formulas
» that’s it thanks to
pUPp =9V (pAXpU)
and

PRY=¢A(pVXpR)

» and remember what to evaluate for the next letter

Martin Leucker ISCAS, 13/09/24 31/101
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Evaluating FLTL4 for each subsequent letter

Pseudo Code

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

evalFLTL4

evalFLTL4

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

Martin Leucker

true
false
P
-

PV

pAY

pUy
® R P

X

0 0 o o

(LR TR

(T, T)

(L,1)

((p in a), (p in a))

let (valPhi,phiRew) = evalFLTL4 ¢ a
in (valPhi, -phiRew)

let
(valPhi,phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 % a
in (valPhi U valPsi,phiRew V psiRew)
let
(valPhi, phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 3 a

in (valPhi Il valPsi,phiRew A psiRew)
evalFLTL4d ¥V (¢ AX(p UY)) a
evalFLTL4 ¥ A (p VX(p R)) a

(L7, o)

(TP, )

ISCAS, 13/09/24 32/101
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Monitoring LTL on finite but expanding words

Automata-theoretic approach
» Synthesize automaton

» Monitoring = stepping through automaton
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isp

Rewriting function defines transition function

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

evalFLTL4

evalFLTL4

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

Martin Leucker

true
false
P
—p

eV

PAY

e U
R P
X

X

Q9 0 0 0

v oo op W

(T, T)

(L,1)

((p in a), (p in a))

let (valPhi,phiRew) = evalFLTL4 ¢ a
in (Ggigﬁz,ﬁphiRew)

let
(valPhi, phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 3 a
in (valPhi U valPsi,phiRew V psiRew)
let
(valPhi,phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 % a

in (valPhi I valPsi,phiRew A psiRew)

= evalFLTL4 ¥ V (p AX(p U)) a

evalFLTL4 ¥ A (¢ VX(p R)) a
(L7, p)
(T, 9)

ISCAS, 13/09/24 34/101
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Automata-theoretic approach

The roadmap
» alternating Mealy machines
» Moore machines

> alternating machines
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» alternating Mealy machines
» Moore machines
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Automata-theoretic approach

The roadmap
» alternating Mealy machines
» Moore machines
> alternating machines
» non-deterministic machines

» deterministic machines

Martin Leucker ISCAS, 13/09/24
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Automata-theoretlc approach

The roadmap

>

>

>

Martin Leucker

alternating Mealy machines
Moore machines
alternating machines
non-deterministic machines
deterministic machines

state sequence for an input word

ISCAS, 13/09/24

isp
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Supporting alternating finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q, 3, T, qo, §) where
» (Qis a finite set of states,
» X is the input alphabet,
» T'is a finite, distributive lattice, the output lattice,
> qo € Qis the initial state and

» §:Q x % — BT(T x Q) is the transition function

Martin Leucker ISCAS, 13/09/24 36/101



mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Supporting alternatlng finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q, 3, T, qo, §) where
» (Qis a finite set of states,
» X is the input alphabet,
» T'is a finite, distributive lattice, the output lattice,
> qo € Qis the initial state and

» §:Q x % — BT(T x Q) is the transition function

Convention
Understand § : Q x & — BT (T' x Q) asa function§ : Q x ¥ — T' x BT(Q)

Martin Leucker ISCAS, 13/09/24 36/101



umv!ksmr zu LUEECK | Sp

ARE ENGINEERING
AND PROCRAMMING LANCU

Supportlng alternatlng finite-state machines

Definition (Run of an Alternating Mealy Machine)

A run of an alternating Mealy machine M = (Q, 3, T, g0, 0) on a finite word
u=dg...a,—1 € LT is a sequence t (o) y Gk oy 1) ek
that
> to = qgo and
> (ti,bio1) = (ti1,8i-1)
where § is inductively defined as follows
> 8(g,a) = 8(g,0),
> 3(qV q',0) = (g, @) US(q', ), (g, 0)]2 v 5(q', )), and
> (g Ad',0) = (@@ N 8(q, ), 3(q,0)]2 A 5(a',a)12)
The output of the run is b,_;.
371101

Martin Leucker ISCAS, 13/09/24



umv:ksmr zu r.ue:clc

ARE ENGINEERING
AND PROCRAMMING LANCU

isp

Transitlon functlon of an alternating Mealy machine

Transition function &§ : Q x ¥ — B™(I" x Q)

Martin Leucker

0y (true, a)
04 (false, a)
d1(p,a)

i(p V,a)
S3(p N, a)
AR RTN))

5i(p R 1,a)

(T, true)
(L, false)
(

ISCAS, 13/09/24
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Outline

Runtime Verification for LTL

LTL over Non-Completed Words: Anticipation
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Anticipatory Semantics

Consider possible extensions of the non-completed word

TR
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Outline

Runtime Verification for LTL

LTL over Infinite Words: With Anticipation
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LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

» re-use existing semantics
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LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

» re-use existing semantics

3-valued semantics for LTL over finite words
T ifVoeX¥:uo k=g
Ul = 1 ifVoeX¥:uo o

7?7  else

Martin Leucker ISCAS, 13/09/24 42/101
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Impartial
» Stay with T and L
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Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E  XXXfalse
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Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

Martin Leucker

E  XXXfalse
E  XXfalse

ISCAS, 13/09/24
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Impartial Antlclpatlon

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E  XXXfalse
a E  XXfalse
ar = Xfalse
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Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E  XXXfalse
a E  XXfalse
ar = Xfalse
aaa = false
T ifVo € % : e0 = XXXfalse
[e E XXXfalse] = ¢ 1 ifVo € 2% : eo = XXXfalse

7 else
Martin Leucker ISCAS, 13/09/24 43/101
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Biichi automata (BA)
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Biichi automata (BA)

abab...
(ab)“ € L(A)
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Buchi automata (BA)

abab...
(ab)® € L(A)
(ab)*aa{a,b}* C L(A)
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Buchi automata (BA)

Emptiness test:

abab...
(ab)® € L(A)
(ab)*aa{a,b}* C L(A)
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Buchi automata (BA)

Emptiness test: SCCC, Tarjan

a,b

&
W‘/
Q

abab...
(ab)* € L(A)
(ab)*aa{a,b}* C L(A)

Martin Leucker ISCAS, 13/09/24 44/101
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LTL to BA

[Vardi & Wolper '86]

» Translation of an LTL formula ¢ into Biichi automata A, with

L(Ay) = L(p)

» Complexity: Exponential in the length of ¢

Martin Leucker ISCAS, 13/09/24 45/101
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T ifVoeX¥ :uokEp
MEel=9 L ifVoeXZ¥:uokyp

7 else

Martin Leucker ISCAS, 13/09/24
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Monitor construction — Idea |

T ifVoeX¥ :uokEp
uEwl=¢ L ifVoeX uoltp

7 else

Martin Leucker ISCAS, 13/09/24
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Monitor construction — Idea |

T ifVoeX¥ :uokEp

uEwl=¢ L ifVoeX uoltp
7 else
a,b
T
Po
a

O}

b

Martin Leucker ISCAS, 13/09/24 46/101
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T ifVoeX¥:uc kg

uEwl=¢ L ifVoeX uoltp
7 else
a,b
T

Martin Leucker ISCAS, 13/09/24 46/101
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monitor construction — Idea Il
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monitor construction — Idea Il

<
W‘/
A

NFA
Fo: Qp — {T, L} Emptiness per state

Martin Leucker ISCAS, 13/09/24 47/101



mvlkslmr zu Lua:cx
T SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES
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The construction

¢ —> BA? —> F? —» NFA?

Lemma

-
M@l =19 L ifu¢ L(NFA¥)

?
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The complete construction

The construction
¢ — BA¥ —= F¥ — NFA®

-

Lemma

-
M@l =19 L ifu¢ L(NFA¥)

?
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The complete construction

The construction
¥ —= BA¥ — F¥ — NFA¥

¢ —=BAT¥ — F ¥ = NFA™¥

Lemma
T ifu¢ L(NFA™¥)
M@l =4 L ifug¢ CL(NFA®)

7 else

Martin Leucker ISCAS, 13/09/24
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The complete construction

The construction

_— P (I %}
¥ BA F¥ — NFA

80\

9 —»BA™¥ — F ¥ -~ NFA ™%
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The complete construction

The construction

— > BAY —» F¥ —» ® @
-9 —=BA F¥ —= NFA* —~ DFA

80\

—Y —>BA7Y — F ¥ = NFA™¥ -~ DFA ¥
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The complete construction

The construction

_— P [ P 7}

. P ¥ BA F NFA DFA @

—
—¢ —>BA7Y — F ¥ = NFA™¥ ~DFA™¥

Martin Leucker ISCAS, 13/09/24
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Complexity

The construction

— — — > @

@ __— ¥ BA¥ F? NFA DFA i:@

-
9 —>BA™¥Y — F7%¢ > NFA7¥ -~ DFA™%
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Complexity

The construction

¥ — BA

\—* F¥ — NFA” — DFA® @
7 — F¥ -~ NFA ¥ ~ DFA™¥
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The construction

Complexity
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Complexity

The construction

XFA? - DFAX i@
‘A™% » DFAF

Complexity

|M‘ S 22|‘P\

Optimal result!
FSM can be minimised (Myhill-Nerode)

Martin Leucker ISCAS, 13/09/24 49/101
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On-the-fly Construction

The construction

L RAP 4y TP ® 7
R BA F FA® — DFA
TN = BA™ — F ¥ =WFA™ - DFA™¥ @

Martin Leucker ISCAS, 13/09/24 50/101
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Outline

Runtime Verification for LTL

Monitorable Properties

Martin Leucker ISCAS, 13/09/24
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Monitorability

When does anticipation help?

Martin Leucker ISCAS, 13/09/24 52/101
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Monitors revisited

Structure of Monitors

NG
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Structure of Monitors

Classification of Prefixes of Words

» Bad prefixes

Martin Leucker

ISCAS, 13/09/24
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Structure of Monitors
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» Bad prefixes [Kupferman & Vardi'01]
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» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]
» Ugly prefixes

Martin Leucker ISCAS, 13/09/24 53/101



: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitors rewsned

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]
» Ugly prefixes
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Monitorable

Non-Monitorable [Pnueli & Zaks’07]

 is non-monitorable after 1, if u cannot be extended to a bad oder good

prefix.

Monitorable

 is monitorable if there is no such u.
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 is non-monitorable after 1, if # cannot be extended to a bad oder good

prefix.

Monitorable

 is monitorable if there is no such u.
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Monitorable Properties

Safety Properties

Co-Safety Properties

N

Note
Safety and Co-Safety Properties are monitorable

Martin Leucker ISCAS, 13/09/24
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Safety- and Co-Safety-Properties

Theorem

The class of monitorable properties
» comprises safety- and co-safety properties, but

> is strictly larger than their union.

Proof
Consider ((p v q)Ur) V Gp

Martin Leucker ISCAS, 13/09/24 56/101
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Outline

Runtime Verification for LTL

LTL with a Predictive Semantics
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Fusing model checking and runtime verification

LTL with a predictive semantics
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Recall anticipatory LTL semantics

The truth value of a LTLs formula ¢ wrt. 1, denoted by [u = ¢], is an element
of B3 defined by

T ifVoeX¥ uok=p
uFE o] = 1 ifVYoeX¥ uo o

7 otherwise.

Martin Leucker ISCAS, 13/09/24 59/101



mvlksmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Applied to the empty word

Empty word e

e = ‘P]P =
iff VoeX“withec e P:eoc=op
ifft L(P)E=ey

RV more difficult than MC?

Then runtime verification implicitly answers model checking

Martin Leucker ISCAS, 13/09/24 60/101
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Abstraction

An over-abstraction or and over-approximation of a program P is a program
P such that £(P) C L(P) C =¢.

Martin Leucker ISCAS, 13/09/24 61/101
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Predictive Semantics

Definition (Predictive semantics of LTL)

Let P be a program and let P be an over-approximation of P. Let u € ¥*
denote a finite trace. The truth value of u and an LTL; formula ¢ wrt. P,
denoted by [u =5 ¢], is an element of B3 and defined as follows:
T ifVo € ¥ withuo € P:uo = ¢
MlEpel=4 L ifVoeX¥withuceP:uo o
?  else

We write LTLp whenever we consider LTL formulas with a predictive

semantics.

Martin Leucker ISCAS, 13/09/24 62/101



mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Properties of Predlctlve Semantics

Let P be an over-approximation of a program P over ¥, u € %*, and
¢ € LTL.

» Model checking is more precise than RV with the predictive semantics:

P | ¢ implies [u =5 ¢] € {T,7}

» RV has no false negatives: [u =5 ¢] = L implies P [~ ¢

> The predictive semantics of an LTL formula is more precise than LTLs:

ME@ =T implies [ulFEpe@l=T
ME@ =1 implies [ufpepl =1

The reverse directions are in general not true.

Martin Leucker ISCAS, 13/09/24 63/101
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Monitor generation

The procedure for getting [u =5 ] for a given ¢ and
over-approximation P
(=)

Martin Leucker ISCAS, 13/09/24 64/101
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Intermediate Summary

Semantics
> completed traces
> two valued semantics Monitors
» non-completed traces > left-to-right

> Impartiality » time versus space trade-off

> at least three values > rewriting
> Anticipation

> alternating automata
> finite traces » non-deterministic automata
A s
infinite traces » deterministic automata

> e

> monitorability

> Prediction

Martin Leucker ISCAS, 13/09/24 66/101
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Classical Loglcs

Evolution
» Propositional logic:p, g, p Aq,x >0, ...
» First-order logic: x >y, Ixp(x), . ..
» Second-order logic: VX3yX(y), . ..

Rational

» have a notion of values, functions, relations, . . .

> express properties on these

Martin Leucker ISCAS, 13/09/24 68/101
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'5.g1s%"

In Temporal Logics

Propositional

I S B e e

First-order
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Are we done?
» First-order LTL is (well) understood

> Apply same methods as for LTL also in the context of FO-LTL

But ...
» FO logic is undecidable, so how to check properties in a single world?
> Restrict to decidable worlds - and finite words?
» How to do rewriting for FO-LTL?
» Impartiality: Extension to many values needed

> Anticiptation: FO-LTL has an undecidable satisfiability problem, also

over wolrds with finite domains
» How to do automata constructions for FO-LTL?

» How to do RV with data efficiently?

Martin Leucker ISCAS, 13/09/24 70/101
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» Approach only useful when restricting to special (yet general) cases

» Some work to do

Martin Leucker ISCAS, 13/09/24 71/101
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Elaboration of the domain

What kind of data do we have in systems?

Martin Leucker ISCAS, 13/09/24 72/101



mv!ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Data in computer science

What kind of data do we have in systems?
» Simple arithmetic computations along the program’s execution
> Stream-based computations

> Identities especially in object orientation

v

Object/Process creation

v

Anlog Signals

Martin Leucker ISCAS, 13/09/24 73/101
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The Frames

What kind of data do we have in systems?

Martin Leucker ISCAS, 13/09/24 74/101
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Presentation outline

Simple arithmetic computations
Generalisations: LTL with modulo Constraints

Martin Leucker ISCAS, 13/09/24
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Outline

Simple arithmetic computations
Generalisations: LTL with modulo Constraints
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Many linear-time logics
» LTL with Past
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Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past
» linear-time p-calculus
» RLTL

» LTL with integer constraints

G(fopen, — ((x = Xx) U fclosey))

Martin Leucker ISCAS, 13/09/24

isp

771101



mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Linear-time Loglc

Definition (Linear-time Logic)

A linear-time logic L defines
> aset F; of L-formulae and

> a two-valued semantics |=;.

Every L-formula ¢ € F; has an associated and possibly infinite alphabet .

Moreover, for every formula ¢ € F; and every word o € X, we require
(L1) th e F; : A F;.
(L2) Vo e Xy : (oL © oL y).

Martin Leucker ISCAS, 13/09/24
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Anticipation Semantlcs

Definition (Anticipation Semantics)

Let L be a linear-time logic. We define the anticipation semantics [ = ¢]; of
an L-formula ¢ € F; and a finite word = € £, with

T ifVoeXy : nofro
[r =], = 1 ifVoeXy : mo e

? otherwise

Martin Leucker ISCAS, 13/09/24 79/101
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Evaluation using deC|de

decide
T ifdecide o (7) = L
[T, =¢ L ifdecide,(n) =1
? otherwise

where decide,, () is defined to return T for ¢ € F; and 7 € X, if
do € 3 : 7o =L ¢ holds, and L otherwise.

Martin Leucker ISCAS, 13/09/24 80/101
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The automata theoretlc approach to SAT

Definition (Satisfiability Check by Automata Abstraction)

Given a linear-time logic L with its formulae F;, the satisfiability check by
automata abstraction proceeds as follows. For formula ¢ € Fp,

1. define alphabet abstraction ¥, — ¥, finite, abstract alphabet
2. define a word abstraction a(-) : 3% — %

3. define an automaton construction ¢ + w-automaton A, over %, such
that for all & € £ it holds

L(Ap)iff Jo € 3¥ : 6 =a(o)and o = ¢

Then
¢ satisfiable iff £L(A,) # 0 iff non-empty(A,)

Martin Leucker ISCAS, 13/09/24 81/101
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From finite to |nf|n|te

Definition (extrapolate)

extrapolate( {a 7o) i+ 1=|n|,0€ ZW}

Definition (Accuracy of Abstract Automata)

accuracy of abstract automata property holds, if, for all = € 3%,
> (3o : mo L) = (3736 : 7o € L(A,)) with T € extrapolate(r),
» (36 : 75 € L(A,)) = (Fndo : wo =L ) with T € extrapolate(r).

Martin Leucker ISCAS, 13/09/24
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Non-mcremental version

Theorem (Correctness of decide)

Given a satisfiability check by automata abstraction for a linear-time logic L
satisfying the accuracy of automata property, we have

decide(w) = non-empty U (g, 7)

q€Qp, 7 €extrapolate ()

Martin Leucker ISCAS, 13/09/24 83/101



NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Faithful abstraction

Definition (Forgettable Past and Faithful Abstraction)

Given « of a satisfiability check by automata abstraction. We say that

> a satisfies the forgettable past property, iff

)i+1,..i+1 .0

a(mao = a(ao)”

forallm € X%, |r| =i+ 1,a € X, and o € X*.
> «is called faithful, iff forallw € %, |x| =i+ 1,a € &, 0,0’ € X for

which there is some 0" € ¥ with a(r0)*a(ac’)" " = a(c”)* !
there also exists a ¢’’’ € ¢ with
a(ﬂ,a)o la(ao_l)O...O _ CE(TF[ZO'/”)OMH—l

Martin Leucker ISCAS, 13/09/24 84/101



NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Incremental version

Theorem (Incremental Emptiness for Extrapolation)

Let A be a Biichi automaton obtained via a satisfiability check by automata
abstraction satisfying the accuracy of automaton abstraction property with a faithful
abstraction function having the forgettable past property. Then, for all T € ¥* and
a € X, it holds

L(A(extrapolate(na))) = L(.A(extrapolate(r)extrapolate(a)))

Martin Leucker ISCAS, 13/09/24 85/101
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Further logics

Indeed works
» LTL with Past

» linear-time pu-calculus

» RLTL

\4

LTL with integer constraints

Martin Leucker ISCAS, 13/09/24 86/101
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Presentation outline

Stream-based Approaches: LoLa
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LOLA

1
52
53
84
85
56
87
S8
89
510

7

true

t3

bV (ts < 1)

((t3)2 +7) mod 15
ite(ss, s4,84 + 1)
ite(ty,t3 < s4,183)
t1[+1, false]

t1[—1, true]

sg[—1,0] + (t3 mod 2)

to V (t1 A sio[l, true])

[Ben D’Angelo, Sriram Sankaranarayanan, Csar Snchez, Will Robinson, Bernd

Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, Zohar Manna: LOLA: Runtime
Monitoring of Synchronous Systems. TIME 2005: 166-174]

Martin Leucker

ISCAS, 13/09/24

isp

88/101



Z UNIVERSITAT ZU LUBECK
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LOLA

n f t t 51

52

E 3 2 zS
H t t t b:
E 3 2 S6

f t 87

g

S9

H 510

true

t3

t V(3 <1)

((t3)2 +7) mod 15
ite(ss, s4,84 + 1)
ite(ty,t3 < s4,183)
t1[+1, false]

t1[—1, true]

sg[—1,0] + (t3 mod 2)

to V (t1 A sio[l, true])

[Ben D’Angelo, Sriram Sankaranarayanan, Csar Snchez, Will Robinson, Bernd

Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, Zohar Manna: LOLA: Runtime
Monitoring of Synchronous Systems. TIME 2005: 166-174]
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LOLA
f t t sy = true
S0 = i3
s3 = h1V (t3 <1)

((t3)% +7) mod 15
ite(ss, 54,54+ 1)
(

W
=N
Il

olale]sfals]s
r
:
4
R
I

7 PR sg = ite(ty,l3 < sq,783)
LB s = ti[+1, false]
L sg = ti[—1,true]
s9 = 89[—1,0] + (t3 mod 2)
il sio = ta V (1 A sio[l, true])

[Ben D’Angelo, Sriram Sankaranarayanan, Csar Snchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, Zohar Manna: LOLA: Runtime
Monitoring of Synchronous Systems. TIME 2005: 166-174]
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LOLA and the linear .-calculus

LTL vs. lin. p-calculus
»pUg=qV(pAX(pUq)
> uX.qgVV(pAOoX

sy = true
n s2 = t3
ﬂ s3 = t1V(t3<1)
s = ((t3)2+7) mod 15
H s5 = ite(ss,s4,84+1)
E s¢ = ite(ty,t3 < s4,783)
s7 = t1[+1, false]
sg = ti[—1,true]
S9 = Sg[*l, 0] o (tg mod 2)
s10 = t2 V (t1 i 310[1,true])

Martin Leucker ISCAS, 13/09/24 89/101
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Discussion on LOLA

Extensions

» LOLA over infinite frames
» Impartial Semantics

» Anticipatory Semantics

Applicability
» Rich computations
» Fixed set of variables

> May be efficient

Martin Leucker ISCAS, 13/09/24
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Parameterized Propositions

Query-Response Properties

> Always request implies eventually answered

Observations
» Implicitly universally quantified property

» No computation on x needed

> Goal: Reasoning with names

Martin Leucker ISCAS, 13/09/24
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Parameterized Propositions

Query-Response Properties
> Always request implies eventually answered

> Always request(x) implies eventually answered(x)

Observations
» Implicitly universally quantified property
» No computation on x needed

> Goal: Reasoning with names
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> These properties can be checked “individually”
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Rosu et al.

» These properties can be checked “individually

> Vxp(x) = Ayep p(%)

”
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Rosu et al.

> These properties can be checked “individually”

> Vxp(x) = Ayep p(%)
> handle each ¢(a) separately
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Rosu et al.

> These properties can be checked “individually”

Vxp(x) = Acep (%)
handle each ¢(a) separately

v

v

> =M,
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Rosu et al.

> These properties can be checked “individually”

Vxp(x) = Acep (%)
handle each ¢(a) separately

v

v

> =M,
/\xeD L)O(JC) — I_IxeDMga(x)

v
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Hybrid systems

Hybrid System

Continous Behaviour in different states

Specification of Correctness Properties for Hybrid System
» Hybrid automata
> Linear Temporal Logic
» Discretized Specification (Specify samples)

» DSL: Check for limits etc.

Monitoring
» Sampling and checking samples
» Sampling and Interpolation

» Anticipation?

Martin Leucker ISCAS, 13/09/24 95/101
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Presentation outline

Quantitive Measures on the execution
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Quantitative Specifications

Usa Sammapun, Insup Lee, Oleg Sokolsky, John Regehr: Statistical Runtime
Checking of Probabilistic Properties. RV 2007: 164-175

Frequency LTL
The syntax of Frequency Linear-time Temporal Logic (fLTL) formulae is
given by
pu=true| ~p|pAp|Xe|o U o|p (p€AP)
where each U-operator is annotated by a rational number ¢ € Q with
0 < ¢ < 1. fLTL formulae are interpreted over words w € X%, w = agaa2 as
follows:
wkEeU'y if 3,:w"|Eand
How(m) Zc-n

Martin Leucker ISCAS, 13/09/24 97/101
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Conclusion

Summary

> RV needs similar temporal logics as model checking, but adaptions for
> finite runs
> impartiality
> anticipation
> prediction
» RV in the presence of data is a challenge
> anticipation often not possible
> efficient monitoring is more challenging
> RV for hybrid systems?
> what is the right specification formalism?
> discretization and then as for typical data?
> interpolation of dynamic behevviour?
> anticipation?
> we hear something about it

> Quantitive Aspects would be interesting, too

Martin Leucker ISCAS, 13/09/24
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That’s it!

Thanks! - Questions?

Martin Leucker ISCAS, 13/09/24 101/101
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