5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification for Hybrid Systems?

Martin Leucker

Institute for Software Engineering
Universitat zu Liibeck

Bejing, Tuesday 24th of September 2013

Martin Leucker ISCAS, 13/09/24 1/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

Martin Leucker ISCAS, 13/09/24 2/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

Martin Leucker ISCAS, 13/09/24 2/101

AND PROGRAMMING LANGUAG ES

N T E F SbeTwaRE enciNEERING iS p
Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Martin Leucker ISCAS, 13/09/24 2/101

Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

Martin Leucker ISCAS, 13/09/24

2/101

Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

Martin Leucker ISCAS, 13/09/24 2/101

Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions
» Simple verification technique

» Complementing

Martin Leucker ISCAS, 13/09/24 2/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

» Complementing
» Model Checking

Martin Leucker ISCAS, 13/09/24 2/101

Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique
» Complementing

» Model Checking
> Testing

Martin Leucker ISCAS, 13/09/24 2/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique
» Complementing

» Model Checking
> Testing

» Formal: w € L(p)

Martin Leucker ISCAS, 13/09/24 2/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Model Checking

» Specification of System

Martin Leucker ISCAS, 13/09/24 3/101

umvlkslmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Model Checking

» Specification of System

> as formula ¢ of linear-time temporal logic (LTL)

Martin Leucker ISCAS, 13/09/24 3/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Model Checking

» Specification of System

> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

Martin Leucker ISCAS, 13/09/24 3/101

umvlksmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Model Checking

> Specification of System

> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

» Model of System

Martin Leucker ISCAS, 13/09/24

isp

3/101

umvlksmr ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Model Checking

> Specification of System

> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

» Model of System

> as transition system S with runs £(S)

Martin Leucker ISCAS, 13/09/24

isp

3/101

mvlksmr zu LOBECK
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Model Checkmg

> Specification of System

> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

» Model of System

> as transition system S with runs £(S)

» Model Checking Problem:
Do all runs of the system satisfy the specification

Martin Leucker ISCAS, 13/09/24

isp

3/101

mvlksmr zu LOBECK
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Model Checkmg

> Specification of System

> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

» Model of System
> as transition system S with runs £(S)
» Model Checking Problem:
Do all runs of the system satisfy the specification
> £(5) C L(p)

Martin Leucker ISCAS, 13/09/24

isp

3/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Model Checking versus RV

» Model Checking: infinite words

Martin Leucker ISCAS, 13/09/24 4/101

umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Model Checking versus RV

» Model Checking: infinite words

» Runtime Verification: finite words

Martin Leucker ISCAS, 13/09/24 4/101

umvlkslmr ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Model Checking versus RV

» Model Checking: infinite words
» Runtime Verification: finite words

> yet continuously expanding words

Martin Leucker ISCAS, 13/09/24

isp

4/101

umvlkslmr zu LOBECK |
IN OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Model Checking versus RV

» Model Checking: infinite words
» Runtime Verification: finite words

> yet continuously expanding words

» In RV: Complexity of monitor generation is of less importance than
complexity of the monitor

Martin Leucker ISCAS, 13/09/24 4/101

: umvlkslmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Model Checking versus RV

v

Model Checking: infinite words

v

Runtime Verification: finite words

> yet continuously expanding words

v

In RV: Complexity of monitor generation is of less importance than
complexity of the monitor

Model Checking: White-Box-Systems

v

Martin Leucker ISCAS, 13/09/24 4/101

mvlkslmr zu Lua:ck |
TITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £

Model Checking versus RV

v

Model Checking: infinite words

v

Runtime Verification: finite words

> yet continuously expanding words

v

In RV: Complexity of monitor generation is of less importance than
complexity of the monitor

Model Checking: White-Box-Systems

v

v

Runtime Verification: also Black-Box-Systems

Martin Leucker ISCAS, 13/09/24 4/101

isp

5 UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
GES

AND PROGRAMMING LANGUA

Testing

Testing: Input/Output Sequence

» incomplete verification technique

Martin Leucker ISCAS, 13/09/24

5/101

H umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Testing

Testing: Input/Output Sequence
» incomplete verification technique

> test case: finite sequence of input/output actions

Martin Leucker ISCAS, 13/09/24 5/101

AND PROGRAMMING LANGUAGES

umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions

» test suite: finite set of test cases

Martin Leucker ISCAS, 13/09/24 5/101

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Martin Leucker ISCAS, 13/09/24 5/101

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Martin Leucker ISCAS, 13/09/24 5/101

mv!ksmr zu LUBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Testing: with Oracle

> test case: finite sequence of input actions

Martin Leucker ISCAS, 13/09/24 5/101

mv!ksmr zu LUBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Testing: with Oracle
> test case: finite sequence of input actions

» test oracle: monitor

Martin Leucker ISCAS, 13/09/24 5/101

mv!ksmr zu LUBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Testing: with Oracle
> test case: finite sequence of input actions
> test oracle: monitor

> test execution: send test cases, let oracle report violations

Martin Leucker ISCAS, 13/09/24 5/101

mv!ksmr zu LUBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Testing: with Oracle
> test case: finite sequence of input actions
» test oracle: monitor
> test execution: send test cases, let oracle report violations

» similar to runtime verification

Martin Leucker ISCAS, 13/09/24 5/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING

Prrl AND PROGRAMMING LANGUAG ES

Testing versus RV

» Test oracle manual

Martin Leucker ISCAS, 13/09/24 6/101

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Testing versus RV

» Test oracle manual

» RV monitor from high-level specification (LTL)

Martin Leucker ISCAS, 13/09/24 6/101

isp

5 UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
GES

AND PROGRAMMING LANGUA

Testing versus RV

» Test oracle manual
» RV monitor from high-level specification (LTL)

> Testing:
How to find good test suites?

Martin Leucker ISCAS, 13/09/24 6/101

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Testing versus RV

» Test oracle manual
» RV monitor from high-level specification (LTL)
> Testing:

How to find good test suites?

» Runtime Verification:
How to generate good monitors?

Martin Leucker ISCAS, 13/09/24 6/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification

Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up

RV with Data

Simple arithmetic computations
Generalisations: LTL with modulo Constraints

Stream-based Approaches: LoLa

Lifting the LTL approach

RV for hybrid systems

Quantitive Measures on the execution

Conclusion
Martin Leucker ISCAS, 13/09/24 71101

Kl r;

‘ UNIVERSITAT ZU LUBECK
H INSTITUTE OF SOFTWARE ERGINEERING
Oy AND PROGRAMMING LANGUAGE:

- Presentation outline
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality

ooy,

LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
RV with Data
Simple arithmetic computations
Generalisations: LTL with modulo Constraints
Stream-based Approaches: LoLa
Lifting the LTL approach
RV for hybrid systems
Quantitive Measures on the execution

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ ISCAS, 1300924 g0l

NIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the
study, development, and application of those verification techniques that
allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Martin Leucker ISCAS, 13/09/24 9/101

isp

Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the
study, development, and application of those verification techniques that
allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Definition (Monitor)

A monitor is a device that reads a finite trace and yields a certain verdict.

A verdict is typically a truth value from some truth domain.

Martin Leucker ISCAS, 13/09/24 9/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Taxonomy

finite non-

comple
finite
infinite

inline

information e
collection evaluation T

integration outline

safety runtime

checking

verification

‘monitoring

offline

behavior

Martin Leucker ISCAS, 13/09/24 10/101

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Presentation outline

Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up

Martin Leucker ISCAS, 13/09/24

isp

11/101

£ UNIVERSITAT ZU LUBECK
N

INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANG

Runtime Verification for LTL

Observing executions/runs

isp

Martin Leucker

ISCAS, 13/09/24

12/101

£ UNIVERSITAT ZU LUBECK

INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGE:

Runtime Verification for LTL

Observing executions/runs

isp

Idea

Specify correctness properties in LTL

ISCAS, 13/09/24

12/101

£ UNIVERSITAT ZU LUBECK | S p

INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification for LTL

Observing executions/runs

Idea
Specify correctness properties in LTL

Commercial
Specify correctness properties in Regular LTL

Martin Leucker ISCAS, 13/09/24 12/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.
The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

w u= true|p |pVelpUp|Xp |
false | splonp|pRo | Xp |
—p

Martin Leucker ISCAS, 13/09/24 13/101

: umvlksmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker ISCAS, 13/09/24

Vv

isp

14/101

: umvlksmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker ISCAS, 13/09/24

Vv

isp

14/101

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker ISCAS, 13/09/24

Vv

-p
pUyg
X(pUg)

isp

14/101

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker ISCAS, 13/09/24

Vv

-p
pUyg
X(pUg)

isp

14/101

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker ISCAS, 13/09/24

X(pUg)

isp

14/101

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker ISCAS, 13/09/24

Vv

-p
pUyg
X(pUg)

< X <

isp

14/101

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker ISCAS, 13/09/24

Vv

-p
pUyg
X(pUg)

< <L X<

isp

14/101

umv:ksmr zu LOBECK
OF SOFTWARE ENGINEERING
ND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics
overw € (247)* = xv

|
{r.q} P p q q

Abbreviation
Fo = truellp Gy = - F-p

Martin Leucker ISCAS, 13/09/24

Vv

-p
pUyg
X(pUg)

<. X <

isp

14/101

umv:ksmr zu r.ue:clc |
OF SOFTWARE ENGINEERING
ND PROCRAMMING LANCU

Llnear-tlme Temporal Logic (LTL)

Semantics
overw € (247)¥ = % P v
P X
I > = pUg
{p.a} p p q q X(pUgq)

Abbreviation
Fo = truellp Gy = - F-p

Example

G (critic1 A criticy), G(—alive — Xalive)

Martin Leucker ISCAS, 13/09/24 14/101

zu LUEECK |
OF WARE ENGINEERING

CRAMMING LANGU

LTL on infinite words

Definition (LTL semantics (traditional))

Semantics of LTL formulae over an infinite word w = apa; ... € ¥“, where
wi =aidi4+1 ...
w = true
wk=p if peap
w = —p if pd&ao
w = - if notwkE ¢
wEeVYy if wlEkyporwkEy
wEeANyY if wkEeandw =y
w = Xp if w'Eep
w = X if w'Ee
wkEeU if thereiskwith0 <k < |w|: wk =1
and forall I with 0 < I < k' |=
wk=@Ry if forallkwith0 <k < |w|: (w* =
or thereis I with 0 < I < kw' |= ¢)

Martin Leucker ISCAS, 13/09/24 15/101

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

Martin Leucker ISCAS, 13/09/24 16/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

SALT

Structured Assertion Language for Temporal Logic
“Syntactic Sugar for LTL” [Bauer, L., Streit@l CFEM’06]

Martin Leucker ISCAS, 13/09/24 16/101

Z UNIVERSITAT ZU LUBECK
5 INSTITUT

Be AND PROGRAMMING LANGUAGES
SALT — http://www.isp.uni-luebeck.de/salt
8e0e SALT - Smart Assertion Language for Temporal Logic | ISP - Institute for Software Engineering and Programming Languages
[» ||+ isphup:/ /www.isp.uni-luebeck de/salt ¢ J(Q- Google

Apple Yahoo! Google Maps YouTube Wikipedia News(1257) T Beliebt™ Martin Leucker Leo

Search MY ACCOUNT IMPRESS

UNIVERSITY OF LUBECK

INSTITUTE FOR SOFTWARE ENGINEERING S
AND PROGRAMMING LANGUAGES

NEWS RESEARCH TEACHING STAFF CONTACT

Projects

SALT - Smart Assertion Language for Temporal Logic

Goal

Do you want to specify the behavior of your program in a rigorously yet comfortable manner?
Do you see the benefits of temporal specifications but are bothered by the awkward farmalisms available?
Do you want to use

= the power of a Model Checkerto improve the quality of your systems or
® the nowerful nintime reflection annrnach far hiia huntinag and alimination

Martin Leucker ISCAS, 13/09/24 17101

http://www.isp.uni-luebeck.de/salt

umv!ksmr ZU LOBECK, |
TE OF ARE ENGINEERING
P ROCRAMMING LANGL

Runtlme Verlflcatlon for LTL

Idea
Specify correctness properties in LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.
The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

p = true|p |eVoe|oUep|Xe |
false | =p | oAp | pRo | Xp |
P

Martin Leucker ISCAS, 13/09/24 18/101

T R, isp
Truth Domain

Lattice

> A lattice is a partially ordered set (£, C) where for each x,y € L, there
exists

1. aunique greatest lower bound (glb), which is called the meet of x and y, and
is denoted with x My, and

2. aunique least upper bound (lub), which is called the join of x and y, and is
denoted with x LI y.

» A lattice is called finite iff £ is finite.

» Every finite lattice has a well-defined unique least element, called
bottom, denoted with L,

» and analogously a greatest element, called top, denoted with T.

Martin Leucker ISCAS, 13/09/24 19/101

mv!ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Truth Domains (cont.)

Lattice (cont.)

> A lattice is distributive, iff x M (y U z) = (x My) U (x M z), and, dually,
xU(yNz)=(xUy) N (xUz).

> In a de Morgan lattice, every element x has a unique dual element ¥,
such that ¥ = x and x C y implies y C x.

Definition (Truth domain)

We call £ a truth domain, if it is a finite distributive de Morgan lattice.

Martin Leucker ISCAS, 13/09/24 20/101

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL's semantics using truth domains

Definition (LTL semantics (common part))

Semantics of LTL formulae over a finite or infinite word w = agay . .. € £°
Boolean constants Boolean combinations
[w |= true] o E T [w = —vlg
[w |= false] o = 1 [wkE=eVvila
Wl e Avle
atomic propositions
T ifp €ag
wEple = w = —pl
e 1 ifp ¢ e s

next X/weak next X TBD

until/release

isp

[wk=ele

[whEelegUwi=vle
[w=ele Nwi=Yle

- |

T
L

ifp & ag
ifp € ag

T thereisak, 0 < k < \wl:[wk = ¥]e = T and

wEeUdleg =
TBD else
@R = (- U-p)

Martin Leucker ISCAS, 13/09/24

forall Iwith0 < I < k: [0l = @] = T

21/101

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL
LTL over Finite, Completed Words

Martin Leucker ISCAS, 13/09/24 22/101

zu LUEECK |
OF WARE ENGINEERING

CRAMMING LANGU

LTL on finite words

Application area: Specify properties of finite word

o

Martin Leucker ISCAS, 13/09/24 23/101

mv!ksmr zu LOBECK
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae over a word u = a9 . .

next
e Xolr = W' = ¢le
1
weak next
wexdr = {4
T

Martin Leucker ISCAS, 13/09/24

isp

Ap—1 € DS

iful # ¢

otherwise

iful e

otherwise

24/101

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitoring LTL on finite words

(Bad) Idea

just compute semantics. . .

Martin Leucker ISCAS, 13/09/24

isp

25/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline
Runtime Verification for LTL

LTL over Finite, Non-Completed Words: Impartiality

Martin Leucker ISCAS, 13/09/24 26/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL on finite, but not completed words

Application area: Specify properties of finite but expanding word

s

o = =

Martin Leucker ISCAS, 13/09/24 27/101

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL on finite, but not completed words

Be Impartial!
> go for a final verdict (T or L) only if you really know

Martin Leucker ISCAS, 13/09/24 28/101

: umvlkslmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

LTL on finite, but not completed words

Be Impartial!
> go for a final verdict (T or L) only if you really know

> be a man: stick to your word

Martin Leucker ISCAS, 13/09/24 28/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL)
Semantics of FLTL formulae overaword u = ag...a4,_1 € X*

next

' gle iful #e

[ufE Xelr =
17 otherwise

weak next

W' el ifu' #e
TP otherwise

[= Xl

Martin Leucker ISCAS, 13/09/24 29/101

UNIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Monitoring LTL on finite but expanding words

Left-to-right!

Martin Leucker ISCAS, 13/09/24 30/101

NIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitoring LTL on finite but expanding words

Rewriting

Idea: Use rewriting of formula

Evaluating FLTL4 for each subsequent letter
> evaluate atomic propositions
> evaluate next-formulas
» that’s it thanks to
pUPp =9V (pAXpU)
and

PRY=¢A(pVXpR)

» and remember what to evaluate for the next letter

Martin Leucker ISCAS, 13/09/24 31/101

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENG
AND PROGRAMMING LANGUAG E

INEERING
s

isp

Evaluating FLTL4 for each subsequent letter

Pseudo Code

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

evalFLTL4

evalFLTL4

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

Martin Leucker

true
false
P
-

PV

pAY

pUy
® R P

X

0 0 o o

(LR TR

(T, T)

(L,1)

((p in a), (p in a))

let (valPhi,phiRew) = evalFLTL4 ¢ a
in (valPhi, -phiRew)

let
(valPhi,phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 % a
in (valPhi U valPsi,phiRew V psiRew)
let
(valPhi, phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 3 a

in (valPhi Il valPsi,phiRew A psiRew)
evalFLTL4d ¥V (¢ AX(p UY)) a
evalFLTL4 ¥ A (p VX(p R)) a

(L7, o)

(TP,)

ISCAS, 13/09/24 32/101

: umvlkslmr ZU LOBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Monitoring LTL on finite but expanding words

Automata-theoretic approach
» Synthesize automaton

» Monitoring = stepping through automaton

Martin Leucker ISCAS, 13/09/24 33/101

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENG
ND PROGRAMMING LANGUAGE

Rewriting vs. automata

INEERING
s

isp

Rewriting function defines transition function

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

evalFLTL4

evalFLTL4

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

Martin Leucker

true
false
P
—p

eV

PAY

e U
R P
X

X

Q9 0 0 0

v oo op W

(T, T)

(L,1)

((p in a), (p in a))

let (valPhi,phiRew) = evalFLTL4 ¢ a
in (Ggigﬁz,ﬁphiRew)

let
(valPhi, phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 3 a
in (valPhi U valPsi,phiRew V psiRew)
let
(valPhi,phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 % a

in (valPhi I valPsi,phiRew A psiRew)

= evalFLTL4 ¥ V (p AX(p U)) a

evalFLTL4 ¥ A (¢ VX(p R)) a
(L7, p)
(T, 9)

ISCAS, 13/09/24 34/101

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Automata-theoretic approach

The roadmap

» alternating Mealy machines

Martin Leucker ISCAS, 13/09/24 35/101

: umvlkslmr ZU LOBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Automata-theoretic approach

The roadmap
» alternating Mealy machines

» Moore machines

Martin Leucker ISCAS, 13/09/24 35/101

: umvlkslmr ZU LOBECK | S
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGE

Automata-theoretic approach

The roadmap
» alternating Mealy machines
» Moore machines

> alternating machines

Martin Leucker ISCAS, 13/09/24 35/101

umvlksmr ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Automata-theoretlc approach

The roadmap
» alternating Mealy machines
» Moore machines
> alternating machines

» non-deterministic machines

Martin Leucker ISCAS, 13/09/24 35/101

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Automata-theoretic approach

The roadmap
» alternating Mealy machines
» Moore machines
> alternating machines
» non-deterministic machines

» deterministic machines

Martin Leucker ISCAS, 13/09/24

isp

35/101

umv:ksmr ZU LOBECK
IN

TE OF SOFTWARE ENGINEERING

AND PROGRAMMING LANGU

Automata-theoretlc approach

The roadmap

>

>

>

Martin Leucker

alternating Mealy machines
Moore machines
alternating machines
non-deterministic machines
deterministic machines

state sequence for an input word

ISCAS, 13/09/24

isp

35/101

: umvlkslmr zu LOBECK | S
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Supporting alternating finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q, 3, T, qo, §) where
» (Qis a finite set of states,
» X is the input alphabet,
» T'is a finite, distributive lattice, the output lattice,
> qo € Qis the initial state and

» §:Q x % — BT(T x Q) is the transition function

Martin Leucker ISCAS, 13/09/24 36/101

mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Supporting alternatlng finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q, 3, T, qo, §) where
» (Qis a finite set of states,
» X is the input alphabet,
» T'is a finite, distributive lattice, the output lattice,
> qo € Qis the initial state and

» §:Q x % — BT(T x Q) is the transition function

Convention
Understand § : Q x & — BT (T' x Q) asa function§ : Q x ¥ — T' x BT(Q)

Martin Leucker ISCAS, 13/09/24 36/101

umv!ksmr zu LUEECK | Sp

ARE ENGINEERING
AND PROCRAMMING LANCU

Supportlng alternatlng finite-state machines

Definition (Run of an Alternating Mealy Machine)

A run of an alternating Mealy machine M = (Q, 3, T, g0, 0) on a finite word
u=dg...a,—1 € LT is a sequence t (o) y Gk oy 1) ek
that
> to = qgo and
> (ti,bio1) = (ti1,8i-1)
where § is inductively defined as follows
> 8(g,a) = 8(g,0),
> 3(qV q',0) = (g, @) US(q',), (g, 0)]2 v 5(q',)), and
> (g Ad',0) = (@@ N 8(q,), 3(q,0)]2 A 5(a',a)12)
The output of the run is b,_;.
371101

Martin Leucker ISCAS, 13/09/24

umv:ksmr zu r.ue:clc

ARE ENGINEERING
AND PROCRAMMING LANCU

isp

Transitlon functlon of an alternating Mealy machine

Transition function &§ : Q x ¥ — B™(I" x Q)

Martin Leucker

0y (true, a)
04 (false, a)
d1(p,a)

i(p V,a)
S3(p N, a)
AR RTN))

5i(p R 1,a)

(T, true)
(L, false)
(

ISCAS, 13/09/24

38/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL

LTL over Non-Completed Words: Anticipation

Martin Leucker ISCAS, 13/09/24 39/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Anticipatory Semantics

Consider possible extensions of the non-completed word

TR

Martin Leucker ISCAS, 13/09/24 40/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL

LTL over Infinite Words: With Anticipation

Martin Leucker ISCAS, 13/09/24 41/101

UNIVERSITAT ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

» re-use existing semantics

Martin Leucker ISCAS, 13/09/24 42/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

» re-use existing semantics

3-valued semantics for LTL over finite words
T ifVoeX¥:uo k=g
Ul = 1 ifVoeX¥:uo o

7?7 else

Martin Leucker ISCAS, 13/09/24 42/101

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Impartial Anticipation

Impartial
» Stay with T and L

Martin Leucker ISCAS, 13/09/24 43/101

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Impartial Antlclpatlon

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E XXXfalse

Martin Leucker ISCAS, 13/09/24 43/101

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

Martin Leucker

E XXXfalse
E XXfalse

ISCAS, 13/09/24

isp

43/101

mv!ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Impartial Antlclpatlon

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E XXXfalse
a E XXfalse
ar = Xfalse

Martin Leucker ISCAS, 13/09/24 43/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E XXXfalse
a E XXfalse
ar = Xfalse
aaa = false
T ifVo € % : e0 = XXXfalse
[e E XXXfalse] = ¢ 1 ifVo € 2% : eo = XXXfalse

7 else
Martin Leucker ISCAS, 13/09/24 43/101

umv!ksmr zu LUEECK
OF SOFTWARE ENGINEERING
CRARMING LANGUAG 8

Biichi automata (BA)

Martin Leucker ISCAS, 13/09/24 44/101

umv:ksmr zu r.ue:clc |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Buchl automata (BA)

Martin Leucker ISCAS, 13/09/24 44/101

UNIVERSITAT ZU LOBECK
TE SOFTWARE ENGINEERING
Rt A CRAMMING LANCUAGES

Biichi automata (BA)

Martin Leucker ISCAS, 13/09/24 44/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Blichi automata (BA)

Martin Leucker ISCAS, 13/09/24 44/101

UNIVERSITAT ZU LOBECK
TE SOFTWARE ENGINEERING
Rt A CRAMMING LANCUAGES

Biichi automata (BA)

ab

Martin Leucker ISCAS, 13/09/24 44/101

UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
s AND PROGRAMMING LANGUAGES

Biichi automata (BA)

ab

Martin Leucker ISCAS, 13/09/24 44/101

UNIVERSITAT ZU LOBECK i
TE SOFTWARE ENGINEERING
Rt A CRAMMING LANCUAGES

Biichi automata (BA)

aba

Martin Leucker ISCAS, 13/09/24 44/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Blichi automata (BA)

aba

Martin Leucker ISCAS, 13/09/24 44/101

UNIVERSITAT ZU LOBECK i
TE SOFTWARE ENGINEERING
Rt A CRAMMING LANCUAGES

Biichi automata (BA)

abab

Martin Leucker ISCAS, 13/09/24 44/101

UNIVERSITAT ZU LOBECK i
TE SOFTWARE ENGINEERING
Rt A CRAMMING LANCUAGES

Biichi automata (BA)

abab...

Martin Leucker ISCAS, 13/09/24 44/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Biichi automata (BA)

abab...
(ab)“ € L(A)

Martin Leucker ISCAS, 13/09/24 44/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Buchi automata (BA)

abab...
(ab)® € L(A)
(ab)*aa{a,b}* C L(A)

Martin Leucker ISCAS, 13/09/24 44/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Buchi automata (BA)

Emptiness test:

abab...
(ab)® € L(A)
(ab)*aa{a,b}* C L(A)

Martin Leucker ISCAS, 13/09/24 44/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Buchi automata (BA)

Emptiness test: SCCC, Tarjan

a,b

&
W‘/
Q

abab...
(ab)* € L(A)
(ab)*aa{a,b}* C L(A)

Martin Leucker ISCAS, 13/09/24 44/101

mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

LTL to BA

[Vardi & Wolper '86]

» Translation of an LTL formula ¢ into Biichi automata A, with

L(Ay) = L(p)

» Complexity: Exponential in the length of ¢

Martin Leucker ISCAS, 13/09/24 45/101

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitor construction — Idea |

T ifVoeX¥ :uokEp
MEel=9 L ifVoeXZ¥:uokyp

7 else

Martin Leucker ISCAS, 13/09/24

isp

46/101

mv!ksmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitor construction — Idea |

T ifVoeX¥ :uokEp
uEwl=¢ L ifVoeX uoltp

7 else

Martin Leucker ISCAS, 13/09/24

isp

46/101

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitor construction — Idea |

T ifVoeX¥ :uokEp

uEwl=¢ L ifVoeX uoltp
7 else
a,b
T
Po
a

O}

b

Martin Leucker ISCAS, 13/09/24 46/101

: umvlkslmr ZU LOBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Monitor construction — Idea |

T ifVoeX¥:uc kg

uEwl=¢ L ifVoeX uoltp
7 else
a,b
T

Martin Leucker ISCAS, 13/09/24 46/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

monitor construction — Idea Il

Martin Leucker ISCAS, 13/09/24 47/101

UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
siew® AND PROGRAMMING LANGUAGES

monitor construction — Idea Il

Martin Leucker ISCAS, 13/09/24 47/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

monitor construction — Idea Il

#1

Martin Leucker ISCAS, 13/09/24 47/101

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

monitor construction — Idea Il

<
W‘/
A

NFA
Fo: Qp — {T, L} Emptiness per state

Martin Leucker ISCAS, 13/09/24 47/101

mvlkslmr zu Lua:cx
T SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

The complete construction

The construction

¢ —> BA? —> F? —» NFA?

Lemma

-
M@l =19 L ifu¢ L(NFA¥)

?

Martin Leucker ISCAS, 13/09/24

isp

48/101

mvlkslmr zu Lua:cx
T SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

The complete construction

The construction
¢ — BA¥ —= F¥ — NFA®

-

Lemma

-
M@l =19 L ifu¢ L(NFA¥)

?

Martin Leucker ISCAS, 13/09/24

isp

48/101

mvlkslmr zu Lua:ck
T OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

The complete construction

The construction
¥ —= BA¥ — F¥ — NFA¥

¢ —=BAT¥ — F ¥ = NFA™¥

Lemma
T ifu¢ L(NFA™¥)
M@l =4 L ifug¢ CL(NFA®)

7 else

Martin Leucker ISCAS, 13/09/24

isp

48/101

valkslmr ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

The complete construction

The construction

_— P (I %}
¥ BA F¥ — NFA

80\

9 —»BA™¥ — F ¥ -~ NFA ™%

Martin Leucker ISCAS, 13/09/24

isp

48/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

The complete construction

The construction

— > BAY —» F¥ —» ® @
-9 —=BA F¥ —= NFA* —~ DFA

80\

—Y —>BA7Y — F ¥ = NFA™¥ -~ DFA ¥

Martin Leucker ISCAS, 13/09/24 48/101

valkslmr ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

The complete construction

The construction

_— P [P 7}

. P ¥ BA F NFA DFA @

—
—¢ —>BA7Y — F ¥ = NFA™¥ ~DFA™¥

Martin Leucker ISCAS, 13/09/24

isp

48/101

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Complexity

The construction

— — — > @

@ __— ¥ BA¥ F? NFA DFA i:@

-
9 —>BA™¥Y — F7%¢ > NFA7¥ -~ DFA™%

Martin Leucker ISCAS, 13/09/24 49/101

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Complexity

The construction

¥ — BA

\—* F¥ — NFA” — DFA® @
7 — F¥ -~ NFA ¥ ~ DFA™¥

Martin Leucker ISCAS, 13/09/24 49/101

£ UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
vt AND PROGRAMMING LANGUAG ES

Complexity

The construction

Martin Leucker ISCAS, 13/09/24 49/101

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Complexity

The construction

Complexity

Martin Leucker ISCAS, 13/09/24 49/101

mvlkslmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Complexity

The construction

XFA? - DFAX i@
‘A™% » DFAF

Complexity

|M‘ S 22|‘P\

Optimal result!
FSM can be minimised (Myhill-Nerode)

Martin Leucker ISCAS, 13/09/24 49/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

On-the-fly Construction

The construction

L RAP 4y TP ® 7
R BA F FA® — DFA
TN = BA™ — F ¥ =WFA™ - DFA™¥ @

Martin Leucker ISCAS, 13/09/24 50/101

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL

Monitorable Properties

Martin Leucker ISCAS, 13/09/24

isp

51/101

£ UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
vt AND PROGRAMMING LANGUAG ES

Monitorability

When does anticipation help?

Martin Leucker ISCAS, 13/09/24 52/101

UNIVERSITAT ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitors revisited

Structure of Monitors

NG

Martin Leucker ISCAS, 13/09/24 53/101

mv!ksmr zu LOBECK
TIT OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitors reV|S|ted

Structure of Monitors

Classification of Prefixes of Words

» Bad prefixes

Martin Leucker

ISCAS, 13/09/24

isp

uopn

[Kupferman & Vardi'01]

53/101

mv!ksmr ZU LOBECK | S
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitors reV|S|ted

Structure of Monitors

uou

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]

Martin Leucker ISCAS, 13/09/24 53/101

NIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitors revisited

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]

Martin Leucker ISCAS, 13/09/24 53/101

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitors rewsned

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]

Martin Leucker ISCAS, 13/09/24 53/101

mvlksmr zu LOBECK |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Monitors rewsned

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]
» Ugly prefixes

Martin Leucker ISCAS, 13/09/24 53/101

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitors rewsned

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]
» Ugly prefixes

Martin Leucker ISCAS, 13/09/24 53/101

mvlkslmr zu Lua:ck |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Monitorable

Non-Monitorable [Pnueli & Zaks’07]

 is non-monitorable after 1, if u cannot be extended to a bad oder good

prefix.

Monitorable

 is monitorable if there is no such u.

Martin Leucker ISCAS, 13/09/24 54/101

mv!ntsmr ZU LOBECK, | S
TE OF ARE ENGINEERING
AND PROGRAMMING LANGL

Monitorable

Non-Monitorable [Pnueli & Zaks’'07]

 is non-monitorable after 1, if # cannot be extended to a bad oder good

prefix.

Monitorable

 is monitorable if there is no such u.

Martin Leucker ISCAS, 13/09/24 54/101

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

Martin Leucker ISCAS, 13/09/24 55/101

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

Martin Leucker ISCAS, 13/09/24 55/101

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

A\

Martin Leucker ISCAS, 13/09/24 55/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

A\

Co-Safety Properties

Martin Leucker ISCAS, 13/09/24 55/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

A\

Co-Safety Properties

Martin Leucker ISCAS, 13/09/24 55/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

Co-Safety Properties

Martin Leucker ISCAS, 13/09/24 55/101

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

Co-Safety Properties

N

Note
Safety and Co-Safety Properties are monitorable

Martin Leucker ISCAS, 13/09/24

isp

55/101

mvlkslmr zu Lua:ck |
TITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £

Safety- and Co-Safety-Properties

Theorem

The class of monitorable properties
» comprises safety- and co-safety properties, but

> is strictly larger than their union.

Proof
Consider ((p v q)Ur) V Gp

Martin Leucker ISCAS, 13/09/24 56/101

5 UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL

LTL with a Predictive Semantics

Martin Leucker ISCAS, 13/09/24

isp

57/101

£ UNIVERSITAT ZU LUBECK |
s INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Fusing model checking and runtime verification

LTL with a predictive semantics

Martin Leucker ISCAS, 13/09/24 58/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Recall anticipatory LTL semantics

The truth value of a LTLs formula ¢ wrt. 1, denoted by [u = ¢], is an element
of B3 defined by

T ifVoeX¥ uok=p
uFE o] = 1 ifVYoeX¥ uo o

7 otherwise.

Martin Leucker ISCAS, 13/09/24 59/101

mvlksmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Applied to the empty word

Empty word e

e = ‘P]P =
iff VoeX“withec e P:eoc=op
ifft L(P)E=ey

RV more difficult than MC?

Then runtime verification implicitly answers model checking

Martin Leucker ISCAS, 13/09/24 60/101

UNIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Abstraction

An over-abstraction or and over-approximation of a program P is a program
P such that £(P) C L(P) C =¢.

Martin Leucker ISCAS, 13/09/24 61/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Predictive Semantics

Definition (Predictive semantics of LTL)

Let P be a program and let P be an over-approximation of P. Let u € ¥*
denote a finite trace. The truth value of u and an LTL; formula ¢ wrt. P,
denoted by [u =5 ¢], is an element of B3 and defined as follows:
T ifVo € ¥ withuo € P:uo = ¢
MlEpel=4 L ifVoeX¥withuceP:uo o
? else

We write LTLp whenever we consider LTL formulas with a predictive

semantics.

Martin Leucker ISCAS, 13/09/24 62/101

mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Properties of Predlctlve Semantics

Let P be an over-approximation of a program P over ¥, u € %*, and
¢ € LTL.

» Model checking is more precise than RV with the predictive semantics:

P | ¢ implies [u =5 ¢] € {T,7}

» RV has no false negatives: [u =5 ¢] = L implies P [~ ¢

> The predictive semantics of an LTL formula is more precise than LTLs:

ME@ =T implies [ulFEpe@l=T
ME@ =1 implies [ufpepl =1

The reverse directions are in general not true.

Martin Leucker ISCAS, 13/09/24 63/101

: umvlkslmr ZU LOBECK |
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGE

Monitor generation

The procedure for getting [u =5] for a given ¢ and
over-approximation P
(=)

Martin Leucker ISCAS, 13/09/24 64/101

Kl r;

‘ UNIVERSITAT ZU LUBECK
H INSTITUTE OF SOFTWARE ERGINEERING
Oy AND PROGRAMMING LANGUAGE:

- Outline
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality

ooy,

LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
RV with Data
Simple arithmetic computations
Generalisations: LTL with modulo Constraints
Stream-based Approaches: LoLa
Lifting the LTL approach
RV for hybrid systems
Quantitive Measures on the execution

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ ISCAS, 1300924 e5101

UNIVERSITAT ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Intermediate Summary

Semantics
> completed traces
> two valued semantics Monitors
» non-completed traces > left-to-right

> Impartiality » time versus space trade-off

> at least three values > rewriting
> Anticipation

> alternating automata
> finite traces » non-deterministic automata
A s
infinite traces » deterministic automata

> e

> monitorability

> Prediction

Martin Leucker ISCAS, 13/09/24 66/101

Bt 'a

‘ UNIVERSITAT ZU LUBECK I S
H INSTITUTE OF SOFTWARE ENGINEERING.
O, AND PROGRAMMING LANGUAG ES

—
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality

ooy,

LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
RV with Data
Simple arithmetic computations
Generalisations: LTL with modulo Constraints
Stream-based Approaches: LoLa
Lifting the LTL approach
RV for hybrid systems
Quantitive Measures on the execution

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ ISCAS, 1300924 7101

mv!ksmr ZU LOBECK | S
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Classical Loglcs

Evolution
» Propositional logic:p, g, p Aq,x >0, ...
» First-order logic: x >y, Ixp(x), . ..
» Second-order logic: VX3yX(y), . ..

Rational

» have a notion of values, functions, relations, . . .

> express properties on these

Martin Leucker ISCAS, 13/09/24 68/101

UNIVERSITAT ZU LOBECK | S
INSTITUT s

TE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

'5.g1s%"

In Temporal Logics

Propositional

I S B e e

First-order

Martin Leucker ISCAS, 13/09/24 69/101

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Are we done?
» First-order LTL is (well) understood

> Apply same methods as for LTL also in the context of FO-LTL

But ...
» FO logic is undecidable, so how to check properties in a single world?
> Restrict to decidable worlds - and finite words?
» How to do rewriting for FO-LTL?
» Impartiality: Extension to many values needed

> Anticiptation: FO-LTL has an undecidable satisfiability problem, also

over wolrds with finite domains
» How to do automata constructions for FO-LTL?

» How to do RV with data efficiently?

Martin Leucker ISCAS, 13/09/24 70/101

umvlkslmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

» Approach only useful when restricting to special (yet general) cases

» Some work to do

Martin Leucker ISCAS, 13/09/24 71/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Elaboration of the domain

What kind of data do we have in systems?

Martin Leucker ISCAS, 13/09/24 72/101

mv!ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Data in computer science

What kind of data do we have in systems?
» Simple arithmetic computations along the program’s execution
> Stream-based computations

> Identities especially in object orientation

v

Object/Process creation

v

Anlog Signals

Martin Leucker ISCAS, 13/09/24 73/101

: umvlkslmr ZU LOBECK |
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGE

The Frames

What kind of data do we have in systems?

Martin Leucker ISCAS, 13/09/24 74/101

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Presentation outline

Simple arithmetic computations
Generalisations: LTL with modulo Constraints

Martin Leucker ISCAS, 13/09/24

isp

75/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Simple arithmetic computations
Generalisations: LTL with modulo Constraints

Martin Leucker ISCAS, 13/09/24 76/101

mvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past

Martin Leucker ISCAS, 13/09/24 771101

mvlkslmr zu Lua:ck |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past

» linear-time p-calculus

Martin Leucker ISCAS, 13/09/24 771101

mvlkslmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past
» linear-time p-calculus

» RLTL

Martin Leucker ISCAS, 13/09/24 771101

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past
» linear-time p-calculus
» RLTL

» LTL with integer constraints

G(fopen, — ((x = Xx) U fclosey))

Martin Leucker ISCAS, 13/09/24

isp

771101

mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Linear-time Loglc

Definition (Linear-time Logic)

A linear-time logic L defines
> aset F; of L-formulae and

> a two-valued semantics |=;.

Every L-formula ¢ € F; has an associated and possibly infinite alphabet .

Moreover, for every formula ¢ € F; and every word o € X, we require
(L1) th e F; : A F;.
(L2) Vo e Xy : (oL © oL y).

Martin Leucker ISCAS, 13/09/24

78/101

mvlksmr zu LOBECK | S
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Anticipation Semantlcs

Definition (Anticipation Semantics)

Let L be a linear-time logic. We define the anticipation semantics [= ¢]; of
an L-formula ¢ € F; and a finite word = € £, with

T ifVoeXy : nofro
[r =], = 1 ifVoeXy : mo e

? otherwise

Martin Leucker ISCAS, 13/09/24 79/101

mv!ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Evaluation using deC|de

decide
T ifdecide o (7) = L
[T, =¢ L ifdecide,(n) =1
? otherwise

where decide,, () is defined to return T for ¢ € F; and 7 € X, if
do € 3 : 7o =L ¢ holds, and L otherwise.

Martin Leucker ISCAS, 13/09/24 80/101

umv:ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

The automata theoretlc approach to SAT

Definition (Satisfiability Check by Automata Abstraction)

Given a linear-time logic L with its formulae F;, the satisfiability check by
automata abstraction proceeds as follows. For formula ¢ € Fp,

1. define alphabet abstraction ¥, — ¥, finite, abstract alphabet
2. define a word abstraction a(-) : 3% — %

3. define an automaton construction ¢ + w-automaton A, over %, such
that for all & € £ it holds

L(Ap)iff Jo € 3¥ : 6 =a(o)and o = ¢

Then
¢ satisfiable iff £L(A,) # 0 iff non-empty(A,)

Martin Leucker ISCAS, 13/09/24 81/101

umvlksmr zu r.ua:clc |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

From finite to |nf|n|te

Definition (extrapolate)

extrapolate({a 7o) i+ 1=|n|,0€ ZW}

Definition (Accuracy of Abstract Automata)

accuracy of abstract automata property holds, if, for all = € 3%,
> (3o : mo L) = (3736 : 7o € L(A,)) with T € extrapolate(r),
» (36 : 75 € L(A,)) = (Fndo : wo =L) with T € extrapolate(r).

Martin Leucker ISCAS, 13/09/24

82/101

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Non-mcremental version

Theorem (Correctness of decide)

Given a satisfiability check by automata abstraction for a linear-time logic L
satisfying the accuracy of automata property, we have

decide(w) = non-empty U (g, 7)

q€Qp, 7 €extrapolate ()

Martin Leucker ISCAS, 13/09/24 83/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Faithful abstraction

Definition (Forgettable Past and Faithful Abstraction)

Given « of a satisfiability check by automata abstraction. We say that

> a satisfies the forgettable past property, iff

)i+1,..i+1 .0

a(mao = a(ao)”

forallm € X%, |r| =i+ 1,a € X, and o € X*.
> «is called faithful, iff forallw € %, |x| =i+ 1,a € &, 0,0’ € X for

which there is some 0" € ¥ with a(r0)*a(ac’)" " = a(c”)* !
there also exists a ¢’’’ € ¢ with
a(ﬂ,a)o la(ao_l)O...O _ CE(TF[ZO'/”)OMH—l

Martin Leucker ISCAS, 13/09/24 84/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Incremental version

Theorem (Incremental Emptiness for Extrapolation)

Let A be a Biichi automaton obtained via a satisfiability check by automata
abstraction satisfying the accuracy of automaton abstraction property with a faithful
abstraction function having the forgettable past property. Then, for all T € ¥* and
a € X, it holds

L(A(extrapolate(na))) = L(.A(extrapolate(r)extrapolate(a)))

Martin Leucker ISCAS, 13/09/24 85/101

umvlkslmr ZU LOBECK | S
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Further logics

Indeed works
» LTL with Past

» linear-time pu-calculus

» RLTL

\4

LTL with integer constraints

Martin Leucker ISCAS, 13/09/24 86/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Presentation outline

Stream-based Approaches: LoLa

Martin Leucker ISCAS, 13/09/24 87/101

Z UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LOLA

1
52
53
84
85
56
87
S8
89
510

7

true

t3

bV (ts < 1)

((t3)2 +7) mod 15
ite(ss, s4,84 + 1)
ite(ty,t3 < s4,183)
t1[+1, false]

t1[—1, true]

sg[—1,0] + (t3 mod 2)

to V (t1 A sio[l, true])

[Ben D’Angelo, Sriram Sankaranarayanan, Csar Snchez, Will Robinson, Bernd

Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, Zohar Manna: LOLA: Runtime
Monitoring of Synchronous Systems. TIME 2005: 166-174]

Martin Leucker

ISCAS, 13/09/24

isp

88/101

Z UNIVERSITAT ZU LUBECK
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LOLA

n f t t 51

52

E 3 2 zS
H t t t b:
E 3 2 S6

f t 87

g

S9

H 510

true

t3

t V(3 <1)

((t3)2 +7) mod 15
ite(ss, s4,84 + 1)
ite(ty,t3 < s4,183)
t1[+1, false]

t1[—1, true]

sg[—1,0] + (t3 mod 2)

to V (t1 A sio[l, true])

[Ben D’Angelo, Sriram Sankaranarayanan, Csar Snchez, Will Robinson, Bernd

Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, Zohar Manna: LOLA: Runtime
Monitoring of Synchronous Systems. TIME 2005: 166-174]

Martin Leucker

ISCAS, 13/09/24

isp

88/101

Z UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LOLA
f t t sy = true
S0 = i3
s3 = h1V (t3 <1)

((t3)% +7) mod 15
ite(ss, 54,54+ 1)
(

W
=N
Il

olale]sfals]s
r
:
4
R
I

7 PR sg = ite(ty,l3 < sq,783)
LB s = ti[+1, false]
L sg = ti[—1,true]
s9 = 89[—1,0] + (t3 mod 2)
il sio = ta V (1 A sio[l, true])

[Ben D’Angelo, Sriram Sankaranarayanan, Csar Snchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, Zohar Manna: LOLA: Runtime
Monitoring of Synchronous Systems. TIME 2005: 166-174]

Martin Leucker ISCAS, 13/09/24

isp

88/101

valkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

LOLA and the linear .-calculus

LTL vs. lin. p-calculus
»pUg=qV(pAX(pUq)
> uX.qgVV(pAOoX

sy = true
n s2 = t3
ﬂ s3 = t1V(t3<1)
s = ((t3)2+7) mod 15
H s5 = ite(ss,s4,84+1)
E s¢ = ite(ty,t3 < s4,783)
s7 = t1[+1, false]
sg = ti[—1,true]
S9 = Sg[*l, 0] o (tg mod 2)
s10 = t2 V (t1 i 310[1,true])

Martin Leucker ISCAS, 13/09/24 89/101

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Discussion on LOLA

Extensions

» LOLA over infinite frames
» Impartial Semantics

» Anticipatory Semantics

Applicability
» Rich computations
» Fixed set of variables

> May be efficient

Martin Leucker ISCAS, 13/09/24

isp

90/101

Kl r;

‘ UNIVERSITAT ZU LUBECK
H INSTITUTE OF SOFTWARE ERGINEERING
Oy AND PROGRAMMING LANGUAGE:

- Presentation outline
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality

ooy,

LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
RV with Data
Simple arithmetic computations
Generalisations: LTL with modulo Constraints
Stream-based Approaches: LoLa
Lifting the LTL approach
RV for hybrid systems
Quantitive Measures on the execution

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ ISCAS,13009/24 gt101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Parameterized Propositions

Query-Response Properties

> Always request implies eventually answered

Observations
» Implicitly universally quantified property

» No computation on x needed

> Goal: Reasoning with names

Martin Leucker ISCAS, 13/09/24

92/101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Parameterized Propositions

Query-Response Properties
> Always request implies eventually answered

> Always request(x) implies eventually answered(x)

Observations
» Implicitly universally quantified property
» No computation on x needed

> Goal: Reasoning with names

Martin Leucker ISCAS, 13/09/24 92/101

umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Rosu et al.

> These properties can be checked “individually”

Martin Leucker ISCAS, 13/09/24 93/101

umvlkslmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Rosu et al.

» These properties can be checked “individually

> Vxp(x) = Ayep p(%)

”

Martin Leucker ISCAS, 13/09/24 93/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Rosu et al.

> These properties can be checked “individually”

> Vxp(x) = Ayep p(%)
> handle each ¢(a) separately

Martin Leucker ISCAS, 13/09/24

93/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Rosu et al.

> These properties can be checked “individually”

Vxp(x) = Acep (%)
handle each ¢(a) separately

v

v

> =M,

Martin Leucker ISCAS, 13/09/24 93/101

umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Rosu et al.

> These properties can be checked “individually”

Vxp(x) = Acep (%)
handle each ¢(a) separately

v

v

> =M,
/\xeD L)O(JC) — I_IxeDMga(x)

v

Martin Leucker ISCAS, 13/09/24 93/101

Kl r;

‘ UNIVERSITAT ZU LUBECK
H INSTITUTE OF SOFTWARE ERGINEERING
Oy AND PROGRAMMING LANGUAGE:

- Presentation outline
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality

ooy,

LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
RV with Data
Simple arithmetic computations
Generalisations: LTL with modulo Constraints
Stream-based Approaches: LoLa
Lifting the LTL approach
RV for hybrid systems
Quantitive Measures on the execution

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ ISCAS, 1300924 9101

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Hybrid systems

Hybrid System

Continous Behaviour in different states

Specification of Correctness Properties for Hybrid System
» Hybrid automata
> Linear Temporal Logic
» Discretized Specification (Specify samples)

» DSL: Check for limits etc.

Monitoring
» Sampling and checking samples
» Sampling and Interpolation

» Anticipation?

Martin Leucker ISCAS, 13/09/24 95/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Presentation outline

Quantitive Measures on the execution

Martin Leucker ISCAS, 13/09/24 96/101

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Quantitative Specifications

Usa Sammapun, Insup Lee, Oleg Sokolsky, John Regehr: Statistical Runtime
Checking of Probabilistic Properties. RV 2007: 164-175

Frequency LTL
The syntax of Frequency Linear-time Temporal Logic (fLTL) formulae is
given by
pu=true| ~p|pAp|Xe|o U o|p (p€AP)
where each U-operator is annotated by a rational number ¢ € Q with
0 < ¢ < 1. fLTL formulae are interpreted over words w € X%, w = agaa2 as
follows:
wkEeU'y if 3,:w"|Eand
How(m) Zc-n

Martin Leucker ISCAS, 13/09/24 97/101

e,

UNIVERSITAT

%
£ INsTITUTE

ck R
FTWARE ENGINEERING
AND PROGRAMMING anh'ug'zgs N

Bt 'a

‘ UNIVERSITAT ZU LUBECK I S
H INSTITUTE OF SOFTWARE ENGINEERING.
O, AND PROGRAMMING LANGUAG ES

—
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality

ooy,

LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
RV with Data
Simple arithmetic computations
Generalisations: LTL with modulo Constraints
Stream-based Approaches: LoLa
Lifting the LTL approach
RV for hybrid systems
Quantitive Measures on the execution

Conclusion «Or«Fr=r > T 9AC
. MartinLeucker ~ ISCAS, 1300924 99101

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Conclusion

Summary

> RV needs similar temporal logics as model checking, but adaptions for
> finite runs
> impartiality
> anticipation
> prediction
» RV in the presence of data is a challenge
> anticipation often not possible
> efficient monitoring is more challenging
> RV for hybrid systems?
> what is the right specification formalism?
> discretization and then as for typical data?
> interpolation of dynamic behevviour?
> anticipation?
> we hear something about it

> Quantitive Aspects would be interesting, too

Martin Leucker ISCAS, 13/09/24

100/101

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING

Pt AND PROGRAMMING LANGUAGES

That’s it!

Thanks! - Questions?

Martin Leucker ISCAS, 13/09/24 101/101

	Runtime Verification
	Runtime Verification for LTL
	LTL over Finite, Completed Words
	LTL over Finite, Non-Completed Words: Impartiality
	LTL over Non-Completed Words: Anticipation
	LTL over Infinite Words: With Anticipation
	Monitorable Properties
	LTL with a Predictive Semantics
	LTL wrap-up

	RV with Data
	Simple arithmetic computations
	Generalisations: LTL with modulo Constraints

	Stream-based Approaches: LoLa
	Lifting the LTL approach
	RV for hybrid systems
	Quantitive Measures on the execution
	Conclusion

