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Abstract—Software failures are not rare and fault localization 
is always an important but laborious activity. Since there is no 
guarantee that no more than one fault exists in a faulty program, 
the approach to locate all the faults is necessary. Spectrum-based 
fault localization techniques collect dynamic program spectra as 
well as test results of program runs, and estimate the extent of 
program elements being related to fault(s). A popular solution is 
to generate a ranked list of suspicious candidates, which are 
checked in order, stopping whenever a fault is found. Such single-
fault localizers locate one fault in one checking round, terminate, 
and wait to be triggered by the regression testing to validate the 
fixing of the located fault. In this paper, we study the 
manifestation of multiple faults in a program and propose an 
effective mechanism to indicate their presence. When a fault is 
reached during the checking round, we use it to interpret the 
failures observed, and update the indicator to judge whether 
there remain other faults in the program. Our indicator serves as 
a stopping criterion of checking the ranked list of suspicious 
candidates. Our work factorises the multiple fault localization 
problem into developing single-fault localizers and adapting them 
to multi-fault programs. It both improves the fault localization 
efficiencies of single-fault localizers, and avoids the ineffective 
efforts of thoroughly abandoning the many single-fault localizers 
to develop multi-fault localizers. 

Index Terms—fault localization, program spectra, multi-fault 

I. INTRODUCTION

With the rapid development of software systems, the 
importance of software quality and reliability has more and 
more been realized. By the influence of manual coding and 
increasing program scales, the release version of software is 
rarely found bug-free. Software testing is an effective method 
to show the presence of software faults. When a failure is 
observed during a program run over a test case, we know faults 
exist in the program, and accordingly mark a failed program 
run and a failed test case. However, even the existence of faults 
has been proved, not all the program runs will fail. It is because 
that a program run, which exercising the fault, may reveal no 
failure [12]. It increases the difficulty of fault localization. 

A. Background 
Spectrum-based fault localization is a big family of 

automatic fault localization techniques. They collect dynamic 
program spectrum data, contrast their differences between the 
passes and failed communities (respectively collected from the 
passed and failed program runs), and estimate the location of 
faults by assessing the suspiciousness of program elements.  

Tarantula [6] is a representative such technique. It 
calculates the ratio of passed runs and ratio of failed runs that 
exercising a program element, and estimates the suspiciousness 
of that program element being related to faults. Tarantula 
references thus calculated suspiciousness to sort the program 
elements in a descending mode, and outputs a ranked list of 
suspicious candidates (program elements). Previous studies 
showed that it is effective for a programmer to check along the 
ranked list of suspicious candidates to locate fault. Once a fault 
is reached during the checking, the checking round terminates 
and programmer stops to fix the fault, conducts regression 
testing to verify the fixing, and starts the next round of fault 
localization if any failed test case appears or remains [2][6][15]. 
This kind of techniques is referred to as single-fault localizers
in this paper; and the above process is illustrated in Figure 1. 

† Corresponding author. Figure 1. Different solutions to locate multiple faults
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Based on the assumption that each failed run must be due to 
the exercising of at least one faulty program element, Steimann 
and Bertchler defined a fault localizer that “takes all possible 
suspicious candidate combinations explaining a given set of 
failed runs into account” [11]. Their work outputs a ranked list 
of suspicious candidate sets, which can be used to search for 
multiple faults simultaneously. We refer to this kind of 
techniques as multi-fault localizers (shown in Figure 1). 

B. Problem and Drawbacks 
First, duplicated checking makes single-fault localizers 

ineffective. Existing sing-fault localizers are designed to locate 
one fault in one checking round, stopping whenever a fault is 
reached. Having such a manner is because that blindly 
continuing to check for another fault (when a fault is located) 
can be very inefficient as there is no evidence of another fault. 
If the regression testing to validate the fixing of the located 
fault also generates failed test cases, another round of fault 
localization, as well as another round of checking, will be 
triggered. Let us consider the two testing process on the 
previous program v1 and the revised program v2 (due to fault 
fixing). For some program element, its dynamic spectra 
collected in the two testing process can be similar to each other 
since the program structure may not vary too much in the 
evolution from v1 to v2; and accordingly it may have similar 
suspiciousness values1 in the two ranked lists l1 and l2. As a 
result, for some program elements, to a great extent, their 
orders in the two ranked lists l1 and l2 can resemble each other. 
To locate a fault in the second ranked list l2, a programmer has 
to examine the program elements of higher rankings (i.e., prior 
to the faulty program element in l2), but many of them may 
have been examined in the first ranked list l1 during the first 
checking round. A heuristic is to skip the previously examined 
program elements when locating next faults using a single-fault 
localizer, but it can be very risky. In the motivation example in 
Figure 2, we will further demonstrate that. 

Second, the “debugging in parallel” solution relies on the 
accuracy of clustering. Jones et al. [5] realized that it can be 
common for multiple faults to exist in one program, and 
propose to locate multiple faults in parallel. They cluster the 
failed runs according to dynamic spectrum information 
collected. By separately contrasting the program spectrum in 
each cluster of failed runs with the program spectrum in the set 
of passed runs, any single-fault localizer can be employed to 
locate multiple faults in parallel [5]. However, we realize that 
its effectiveness relies on the accuracy of clustering. 

Third, developing multi-fault localizers may not be the most 
cost-effective choice. Single-fault localizers go through a long-
term development and evolution. Many mature techniques have 
been proposed (e.g., [2][3][6][7][8][9][10][13][16]). They have 
different granularities [15], are based on different program 
elements [16], and work with different program languages [14]. 
Many optimization and enhancement have been made on them 
[3][9][12][16]. If we can adapt existing single-fault localizers 
to the use of locating multiple faults effectively (e.g., if we 
could locate more than one fault in one checking round), it is a 
great save of the efforts to design multi-fault localizers. 

                                                           
1 For example, some program elements in the main function will be exercised 

in all the passed and failed runs, and always assigned a suspiciousness value 
of 0.5, by some fault localizers (e.g., Tarantula [6], Jaccard [2] or SBI [15]).

C. Our Ongoing Work 
In this paper, we propose an indicator mechanism for 

single-fault localizers. When a fault is located during the 
checking of the resultant ranked list of suspicious candidates, 
we use it to interpret the observed failed runs, and query the 
indicator to judge whether there remain other faults in the 
program. It is used as a stopping criterion to decide whether to 
continue checking the rest candidates (for other faults). 

The contribution of this ongoing work is at least two-fold. (i) 
The first work to adapt single-fault localizers to the use of 
locating more than one fault in one checking round. It improves 
the fault localization efficiencies of single-fault localizers. (ii) 
A universal indicator mechanism, which can be integrated with 
single-fault localizers that generate a ranked list of suspicious 
candidates. It factorises the multiple fault localization problem 
into two sub-problems, i.e., developing single-fault localizers
and adapting them to multi-fault programs.

The rest of the paper is organized as following. Section II 
gives related work. Section III motivates our work. Section IV 
formulates our methodology. Section V concludes the papers. 

II. RELATED WORK

Naish et al. [9] summarized statement-level single-fault 
localizers and proposed optimal formulas under the assumption 
of existing no more than one fault in a program. In our work, 
we do not hold such a strong assumption. 

Liblit et al. [7] proposed to install predicates into programs 
and manage to locate fault-relevant predicates. Their technique 
is of high scalability, compared to the statement-level fault 
localizer. They further proposed HOLMES [3] to locate fault in 
path-level. Liu et al. [8] proposed SOBER to locate fault-
relevant predicates with the use of evaluation bias. Our work 
can be applied on predicate-based localizers if all failed run can 
be explained as exercising some fault-relevant predicate(s). 

DiGiuseppe and Jones [4] conducted an experiment to 
evaluate the effectiveness of using single-fault localizer to 
locate faults iteratively in multi-fault programs. Their empirical 
results show that the effort to locate the first fault in multi-fault 
programs is comparable to that of locating fault in a single-fault 
program. Since the increasing in fault number will theoretically 
make it much probably to reach a fault, we foresee there is 
space for improvements and conduct this study. 

Jones et al. [5] made use of clustering techniques to 
differentiate the failed runs due to different faults, and thus 
enables locating faults in parallel using single-fault localizers. 
We predict that their effectiveness is related to the accuracy of 
clustering. In the future work, we will compare with such kind 
of approaches (e.g., [17]) for effectiveness comparison. 

Abreu et al. [1] used Bayesian reasoning to deduce multi-
fault candidates and their probabilities, and proposed the 
technique BARINEL. Empirical study showed that BARINEL can 
outperform studied peer techniques with marginal higher 
complexity. In this paper, we do not involve probabilistic 
deducing. Instead of that, we deterministically indicate whether 
there exists more than one fault in a program. 

Similar reasoning have been proposed in existing multi-
fault localizers [1][11]. The insight of this work is to factorise 
the problem of locating multiple faults into locating single-fault
and adapt them to multi-fault programs, and provide solution 
for the latter (since the former has been well studied). 
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III. MOTIVATION

A. The Sample Multi-fault Program 
Figure 2 shows a program excerpt 2 to find the middle 

number among three inputs. In this program, the main 
procedure (line 1-4) reads three inputs x, y, and z, invokes the 
function mid to find the median among them, and creates a 
buffer string msg to receive the answer. In the function mid
(line 6-33), the values of x, y, and z are compared, and an 
answer is written into the buffer string. When all three inputs 
are zero, it is deemed uninitialized and will gives warning. 

There exist at least two faults (line 11 and line 25) in the 
program. We choose ten test cases to run the program and find 
that four of them (t4, t6, t7, and t9) fail to output correct results. 
We use an “F” in the “test result” row to indicate a failed run. 

                                                           
2  This example is taken from a previous study [15]. We expend it to 

demonstrate the presence of multiple faults in one program. 

B. The Previous Approach 
The failed test cases confirm the existence of fault(s) in the 

program. To drive a single-fault localizer to locate the fault(s), 
we capture the coverage status for each statement, in the 
program run with respect to each test case. In Figure 2, we use 
a dot “�” to indicate that a statement is exercised in a program 
run; otherwise, the cell is left blank. 

Suppose a programmer is using Tarantula [6] to locate 
faults. As shown in Figure 2, statements at line 18, 21, 23, 26, 
and 29 are assigned the highest suspiciousness value and are 
given the highest ranking. They are examined first, but no fault 
exists in them. Statements 15 and 17 are examined next, and 
statements 1, 2, 3, 4, 9, 10, and 20 are examined after that. 
When statements 11 and 12 are examined, a fault is found at 
statement 11. Now 16 statements have been examined to locate 
the first fault, and the effort is 16/32=50%. The programmer 
stops checking the rest statements, fixes the fault in statement 
11, conducts regression test on all the test cases, and finds a 

Test cases 
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

 0
, 
0,

0 
-2

,-
2,

0 
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,-
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 4

, 
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9 
 2
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2,

1 
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1,

5 
-4

,-
4,

0 

Score Rank
The 
first 
round: 

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

string buf[0xf]; 
read("Input 3 numbers:", x, y, z); 
invoke mid(x, y, z, buf); 
write(buf); 

function 
mid(int x, int y, int z, string msg)
{
  msg="mid: z"; 
  if(y<z) 
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�
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�
�

�
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0.50
0.50
0.50
0.50

0.50
0.50

14 
14 
14 
14 
32 
32 
32 
32 
14 
14 

The basic idea:

When a programmer 
checks the ranked list, 
reaches the statement at 
line 11 and confirms its 
faultiness, we realize the 
presence of another fault 
in the same program. It is 
because that the located  
fault cannot explain the 
failed test case t7. 

Continuing to search for 
the next fault (located at 
line 25) needs only 3% 
additional effort.  

11:     if(x>=y) // x<y � � � � � � � � 0.47 16 ���

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

      msg="mid: y"; 
    else if(x<z) 
      msg="mid: x"; 
  else if(x>y) 
    msg="mid: y"; 
  else if(x>z) 
    msg="mid: x"; 

  if(x!=y) 
    if(y==z) 
      msg="mid: y or z"; 
    else if(x==z) 
      msg="mid: x or z"; 
  else if(y+=z) // y==z
    if(x==0) 
      msg="warning: uninitialized"; 
    else 
      msg="mid: x, y or z"; 
  else 
    msg="mid: x or y"; 
}
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0.47

0.60

0.60
1.00

0.50
1.00

1.00

0.20
1.00

1.00

0.00

16
32 
32 
7

32 
7
5

32 
14 
5

32 
5

32 
17 
5

32 
32 
5

32 
18 
32 

���

test result: F F F F 50% effort to locate the 1st fault 

The 
second 
round:

���
25:   else if(y+=z) // y==z � � � � � � � 0.20 17 

���
test  result: F 53% effort to locate the 2nd fault 

The 
third 
round:

1: char msg[0xf]; � � � � � � � � � �
���

27:
���

      msg="warning: uninitialized"; �

test  result: F
Figure 2. Motivating example: Adapt single-fault localizer to the use of locating multiple faults in one checking round 
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failed run (t7) in the second round (as in Figure 2). This time, 
53% effort (17 among the 32 statements are examined) is 
needed to locate the second fault (in statement 25). 

C. Inspiring Our Work 
By using Tarantula to locate the two faults (at statement 11 

and 25), we examined 33 statements in total, in which many of 
them have been checked twice. An interesting phenomenon is 
that the ranking order of statements in the ranked list of the 
second round resembles that in the first round to a great extent. 
Can we simply skip the statements examined in the first round, 
when locating the second fault (in the second round)? The 
answer is No, and in fact, such a heuristics is very risky. For 
example, after fixing the second fault, the regression testing is 
conducted on all the test cases and one run (t1) fails in the third 
round (shown in Figure 2). The third fault is found on 
statement 1, which unsuitably allocates space for a buffer string 
used in statement 27. However, since statement 27 is never 
exercised in the former two rounds, there is no clue to point out 
the faultiness of statement 1, even if it has been checked in the 
former two rounds. Blindly skipping the statements examined 
in previous rounds will have a high chance to miss a fault. 

Let us revisit the checking round to search for clues. When 
the first fault (at statement 11) is located, we find that it is 
exercised in the program runs of test cases t2, t3, t4, t5, t6, t8, 
t9, and t10. We realize that it cannot explain [11] the failure 
observed with test case t7 because the located fault (statement 
11) is not exercised in the program run of t7. As a result, we 
have evidence that there remain at least one fault in the 
program and the most promising action is to continue checking 
the rest candidates. The next suspicious candidate is statement 
25, it is found faulty. As a result, we use 53% effort (17 among 
the 32 statements are examined) to locate two faults with one 
checking round. The improved efficiency is satisfactory. On the 
other hand, we notice that statement 25 is exercised in the 
program run of t7. Since the found faults (at statement 11 and 
25) can explain all the observed failures, we stop checking, fix 
the two faults, and conduct regression testing as usual. 

IV. OUR FAULT INDICATOR

We have demonstrated that using the located fault(s) to 
explain the observed failures provides clues on the existence of 
multiple faults in the program. 

We now formulate our methodology as follows. Let P = {s1,
s2, …, sn� be the statements of a program P. R = {r1, r2, …, rm}
is the set of failed runs. We use Ei,j = 1 to denote that the 
statement si is exercised in the failed run rj; Ei,j = 0, otherwise. 
LT = �si1, si2, …, sin� is the ranked list of suspicious candidates 
generated by a single-fault localizer T.

Suppose the prior t1 candidates in T has been examined and 
sit1 is found to be a fault, the conventional solution is to stop 
checking the rest n – t1 candidates, fix sit1, and conduct 
regression testing. Instead of that, we use an indicator I to 
judge whether there remain other faults (besides sit1) in the 
program. When I return “yes”, we continue to check the rest 
candidates; otherwise, the checking is terminated. We 
iterative this process and use {sit1, sit2, …� to denote the located 
faulty program elements. The indicator I is given as follows. 

� � ���	 
���
�� �	������ �� ������ � ��
�� ������
��

It is intuitively explained as follows. If there exists a failed run, 
in which all the located faulty statements are not exercised, it 
must be due to triggering some other faults (exercising faulty 
statements rather than the located ones). As a result, we have 
confidence in the existence of other fault in the program. 

V. CONCLUSION AND EXTENSIONS

To facilitate the laborious software debugging process, 
single-fault localizers and multi-fault localizers are proposed to 
automate the fault localization task. The former can be of lower 
efficiency, while abandoning the former and developing the 
latter family is not cost-effective. In this paper, we propose an 
indicator mechanism, which improves the fault-localization 
efficiency of single-fault localizers by providing a stopping 
criterion to enable them to locate more than one fault with one 
checking round. We thus factorise the fault localization 
problem into developing single-fault localizers and adapt them 
to multi-fault programs.

Extensions include model development and refinement. 
When a fault is located during the checking and the indicator 
confirms the existence of other faults, the suspiciousness of the 
remaining (not examined) candidates can be refined according 
to the located fault. We are also interested in the theoretical 
comparison with existing multi-fault localizers to know the 
benefit of the problem factorization approach in this paper. 
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