
Factorising the Multiple Fault Localization Problem
Adapting single-fault localizer to multi-fault programs

Cheng Gong, Zheng Zheng Yunqian Zhang
School of Automation Science and Electrical Engineering

Beihang University
Beijing 100191, China

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

Beijing 100190, China
rmgc606@126.com, zhengz@buaa.edu.cn zhangyq814@gmail.com

Zhenyu Zhang † Yunzhi Xue
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing 100190, China

Laboratory for Internet Software Technologies
Institute of Software, Chinese Academy of Sciences

Beijing 100190, China
zhangzy@ios.ac.cn yunzhi@iscas.ac.cn

Abstract—Software failures are not rare and fault localization
is always an important but laborious activity. Since there is no
guarantee that no more than one fault exists in a faulty program,
the approach to locate all the faults is necessary. Spectrum-based
fault localization techniques collect dynamic program spectra as
well as test results of program runs, and estimate the extent of
program elements being related to fault(s). A popular solution is
to generate a ranked list of suspicious candidates, which are
checked in order, stopping whenever a fault is found. Such single-
fault localizers locate one fault in one checking round, terminate,
and wait to be triggered by the regression testing to validate the
fixing of the located fault. In this paper, we study the
manifestation of multiple faults in a program and propose an
effective mechanism to indicate their presence. When a fault is
reached during the checking round, we use it to interpret the
failures observed, and update the indicator to judge whether
there remain other faults in the program. Our indicator serves as
a stopping criterion of checking the ranked list of suspicious
candidates. Our work factorises the multiple fault localization
problem into developing single-fault localizers and adapting them
to multi-fault programs. It both improves the fault localization
efficiencies of single-fault localizers, and avoids the ineffective
efforts of thoroughly abandoning the many single-fault localizers
to develop multi-fault localizers.

Index Terms—fault localization, program spectra, multi-fault

I. INTRODUCTION

With the rapid development of software systems, the
importance of software quality and reliability has more and
more been realized. By the influence of manual coding and
increasing program scales, the release version of software is
rarely found bug-free. Software testing is an effective method
to show the presence of software faults. When a failure is
observed during a program run over a test case, we know faults
exist in the program, and accordingly mark a failed program
run and a failed test case. However, even the existence of faults
has been proved, not all the program runs will fail. It is because
that a program run, which exercising the fault, may reveal no
failure [12]. It increases the difficulty of fault localization.

A. Background
Spectrum-based fault localization is a big family of

automatic fault localization techniques. They collect dynamic
program spectrum data, contrast their differences between the
passes and failed communities (respectively collected from the
passed and failed program runs), and estimate the location of
faults by assessing the suspiciousness of program elements.

Tarantula [6] is a representative such technique. It
calculates the ratio of passed runs and ratio of failed runs that
exercising a program element, and estimates the suspiciousness
of that program element being related to faults. Tarantula
references thus calculated suspiciousness to sort the program
elements in a descending mode, and outputs a ranked list of
suspicious candidates (program elements). Previous studies
showed that it is effective for a programmer to check along the
ranked list of suspicious candidates to locate fault. Once a fault
is reached during the checking, the checking round terminates
and programmer stops to fix the fault, conducts regression
testing to verify the fixing, and starts the next round of fault
localization if any failed test case appears or remains [2][6][15].
This kind of techniques is referred to as single-fault localizers
in this paper; and the above process is illustrated in Figure 1.

† Corresponding author. Figure 1. Different solutions to locate multiple faults

2012 19th Asia-Pacific Software Engineering Conference

1530-1362/12 $26.00 © 2012 IEEE

DOI 10.1109/APSEC.2012.22

729

Based on the assumption that each failed run must be due to
the exercising of at least one faulty program element, Steimann
and Bertchler defined a fault localizer that “takes all possible
suspicious candidate combinations explaining a given set of
failed runs into account” [11]. Their work outputs a ranked list
of suspicious candidate sets, which can be used to search for
multiple faults simultaneously. We refer to this kind of
techniques as multi-fault localizers (shown in Figure 1).

B. Problem and Drawbacks
First, duplicated checking makes single-fault localizers

ineffective. Existing sing-fault localizers are designed to locate
one fault in one checking round, stopping whenever a fault is
reached. Having such a manner is because that blindly
continuing to check for another fault (when a fault is located)
can be very inefficient as there is no evidence of another fault.
If the regression testing to validate the fixing of the located
fault also generates failed test cases, another round of fault
localization, as well as another round of checking, will be
triggered. Let us consider the two testing process on the
previous program v1 and the revised program v2 (due to fault
fixing). For some program element, its dynamic spectra
collected in the two testing process can be similar to each other
since the program structure may not vary too much in the
evolution from v1 to v2; and accordingly it may have similar
suspiciousness values1 in the two ranked lists l1 and l2. As a
result, for some program elements, to a great extent, their
orders in the two ranked lists l1 and l2 can resemble each other.
To locate a fault in the second ranked list l2, a programmer has
to examine the program elements of higher rankings (i.e., prior
to the faulty program element in l2), but many of them may
have been examined in the first ranked list l1 during the first
checking round. A heuristic is to skip the previously examined
program elements when locating next faults using a single-fault
localizer, but it can be very risky. In the motivation example in
Figure 2, we will further demonstrate that.

Second, the “debugging in parallel” solution relies on the
accuracy of clustering. Jones et al. [5] realized that it can be
common for multiple faults to exist in one program, and
propose to locate multiple faults in parallel. They cluster the
failed runs according to dynamic spectrum information
collected. By separately contrasting the program spectrum in
each cluster of failed runs with the program spectrum in the set
of passed runs, any single-fault localizer can be employed to
locate multiple faults in parallel [5]. However, we realize that
its effectiveness relies on the accuracy of clustering.

Third, developing multi-fault localizers may not be the most
cost-effective choice. Single-fault localizers go through a long-
term development and evolution. Many mature techniques have
been proposed (e.g., [2][3][6][7][8][9][10][13][16]). They have
different granularities [15], are based on different program
elements [16], and work with different program languages [14].
Many optimization and enhancement have been made on them
[3][9][12][16]. If we can adapt existing single-fault localizers
to the use of locating multiple faults effectively (e.g., if we
could locate more than one fault in one checking round), it is a
great save of the efforts to design multi-fault localizers.

1 For example, some program elements in the main function will be exercised

in all the passed and failed runs, and always assigned a suspiciousness value
of 0.5, by some fault localizers (e.g., Tarantula [6], Jaccard [2] or SBI [15]).

C. Our Ongoing Work
In this paper, we propose an indicator mechanism for

single-fault localizers. When a fault is located during the
checking of the resultant ranked list of suspicious candidates,
we use it to interpret the observed failed runs, and query the
indicator to judge whether there remain other faults in the
program. It is used as a stopping criterion to decide whether to
continue checking the rest candidates (for other faults).

The contribution of this ongoing work is at least two-fold. (i)
The first work to adapt single-fault localizers to the use of
locating more than one fault in one checking round. It improves
the fault localization efficiencies of single-fault localizers. (ii)
A universal indicator mechanism, which can be integrated with
single-fault localizers that generate a ranked list of suspicious
candidates. It factorises the multiple fault localization problem
into two sub-problems, i.e., developing single-fault localizers
and adapting them to multi-fault programs.

The rest of the paper is organized as following. Section II
gives related work. Section III motivates our work. Section IV
formulates our methodology. Section V concludes the papers.

II. RELATED WORK

Naish et al. [9] summarized statement-level single-fault
localizers and proposed optimal formulas under the assumption
of existing no more than one fault in a program. In our work,
we do not hold such a strong assumption.

Liblit et al. [7] proposed to install predicates into programs
and manage to locate fault-relevant predicates. Their technique
is of high scalability, compared to the statement-level fault
localizer. They further proposed HOLMES [3] to locate fault in
path-level. Liu et al. [8] proposed SOBER to locate fault-
relevant predicates with the use of evaluation bias. Our work
can be applied on predicate-based localizers if all failed run can
be explained as exercising some fault-relevant predicate(s).

DiGiuseppe and Jones [4] conducted an experiment to
evaluate the effectiveness of using single-fault localizer to
locate faults iteratively in multi-fault programs. Their empirical
results show that the effort to locate the first fault in multi-fault
programs is comparable to that of locating fault in a single-fault
program. Since the increasing in fault number will theoretically
make it much probably to reach a fault, we foresee there is
space for improvements and conduct this study.

Jones et al. [5] made use of clustering techniques to
differentiate the failed runs due to different faults, and thus
enables locating faults in parallel using single-fault localizers.
We predict that their effectiveness is related to the accuracy of
clustering. In the future work, we will compare with such kind
of approaches (e.g., [17]) for effectiveness comparison.

Abreu et al. [1] used Bayesian reasoning to deduce multi-
fault candidates and their probabilities, and proposed the
technique BARINEL. Empirical study showed that BARINEL can
outperform studied peer techniques with marginal higher
complexity. In this paper, we do not involve probabilistic
deducing. Instead of that, we deterministically indicate whether
there exists more than one fault in a program.

Similar reasoning have been proposed in existing multi-
fault localizers [1][11]. The insight of this work is to factorise
the problem of locating multiple faults into locating single-fault
and adapt them to multi-fault programs, and provide solution
for the latter (since the former has been well studied).

730

III. MOTIVATION

A. The Sample Multi-fault Program
Figure 2 shows a program excerpt 2 to find the middle

number among three inputs. In this program, the main
procedure (line 1-4) reads three inputs x, y, and z, invokes the
function mid to find the median among them, and creates a
buffer string msg to receive the answer. In the function mid
(line 6-33), the values of x, y, and z are compared, and an
answer is written into the buffer string. When all three inputs
are zero, it is deemed uninitialized and will gives warning.

There exist at least two faults (line 11 and line 25) in the
program. We choose ten test cases to run the program and find
that four of them (t4, t6, t7, and t9) fail to output correct results.
We use an “F” in the “test result” row to indicate a failed run.

2 This example is taken from a previous study [15]. We expend it to

demonstrate the presence of multiple faults in one program.

B. The Previous Approach
The failed test cases confirm the existence of fault(s) in the

program. To drive a single-fault localizer to locate the fault(s),
we capture the coverage status for each statement, in the
program run with respect to each test case. In Figure 2, we use
a dot “�” to indicate that a statement is exercised in a program
run; otherwise, the cell is left blank.

Suppose a programmer is using Tarantula [6] to locate
faults. As shown in Figure 2, statements at line 18, 21, 23, 26,
and 29 are assigned the highest suspiciousness value and are
given the highest ranking. They are examined first, but no fault
exists in them. Statements 15 and 17 are examined next, and
statements 1, 2, 3, 4, 9, 10, and 20 are examined after that.
When statements 11 and 12 are examined, a fault is found at
statement 11. Now 16 statements have been examined to locate
the first fault, and the effort is 16/32=50%. The programmer
stops checking the rest statements, fixes the fault in statement
11, conducts regression test on all the test cases, and finds a

Test cases
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

 0
,
0,

0
-2

,-
2,

0
-8

,-
8,

0
 2

,
1,

3
-1

,-
1,

0
 4

,
2,

9
 2

,
2,

1
-5

,-
5,

0
 3

,
1,

5
-4

,-
4,

0

Score Rank
The
first
round:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

string buf[0xf];
read("Input 3 numbers:", x, y, z);
invoke mid(x, y, z, buf);
write(buf);

function
mid(int x, int y, int z, string msg)
{
 msg="mid: z";
 if(y<z)

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

0.50
0.50
0.50
0.50

0.50
0.50

14
14
14
14
32
32
32
32
14
14

The basic idea:

When a programmer
checks the ranked list,
reaches the statement at
line 11 and confirms its
faultiness, we realize the
presence of another fault
in the same program. It is
because that the located
fault cannot explain the
failed test case t7.

Continuing to search for
the next fault (located at
line 25) needs only 3%
additional effort.

11: if(x>=y) // x<y � � � � � � � � 0.47 16 ���

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

 msg="mid: y";
 else if(x<z)
 msg="mid: x";
 else if(x>y)
 msg="mid: y";
 else if(x>z)
 msg="mid: x";

 if(x!=y)
 if(y==z)
 msg="mid: y or z";
 else if(x==z)
 msg="mid: x or z";
 else if(y+=z) // y==z
 if(x==0)
 msg="warning: uninitialized";
 else
 msg="mid: x, y or z";
 else
 msg="mid: x or y";
}

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�
�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

0.47

0.60

0.60
1.00

0.50
1.00

1.00

0.20
1.00

1.00

0.00

16
32
32
7

32
7
5

32
14
5

32
5

32
17
5

32
32
5

32
18
32

���

test result: F F F F 50% effort to locate the 1st fault

The
second
round:

���
25: else if(y+=z) // y==z � � � � � � � 0.20 17

���
test result: F 53% effort to locate the 2nd fault

The
third
round:

1: char msg[0xf]; � � � � � � � � � �
���

27:
���

 msg="warning: uninitialized"; �

test result: F
Figure 2. Motivating example: Adapt single-fault localizer to the use of locating multiple faults in one checking round

731

failed run (t7) in the second round (as in Figure 2). This time,
53% effort (17 among the 32 statements are examined) is
needed to locate the second fault (in statement 25).

C. Inspiring Our Work
By using Tarantula to locate the two faults (at statement 11

and 25), we examined 33 statements in total, in which many of
them have been checked twice. An interesting phenomenon is
that the ranking order of statements in the ranked list of the
second round resembles that in the first round to a great extent.
Can we simply skip the statements examined in the first round,
when locating the second fault (in the second round)? The
answer is No, and in fact, such a heuristics is very risky. For
example, after fixing the second fault, the regression testing is
conducted on all the test cases and one run (t1) fails in the third
round (shown in Figure 2). The third fault is found on
statement 1, which unsuitably allocates space for a buffer string
used in statement 27. However, since statement 27 is never
exercised in the former two rounds, there is no clue to point out
the faultiness of statement 1, even if it has been checked in the
former two rounds. Blindly skipping the statements examined
in previous rounds will have a high chance to miss a fault.

Let us revisit the checking round to search for clues. When
the first fault (at statement 11) is located, we find that it is
exercised in the program runs of test cases t2, t3, t4, t5, t6, t8,
t9, and t10. We realize that it cannot explain [11] the failure
observed with test case t7 because the located fault (statement
11) is not exercised in the program run of t7. As a result, we
have evidence that there remain at least one fault in the
program and the most promising action is to continue checking
the rest candidates. The next suspicious candidate is statement
25, it is found faulty. As a result, we use 53% effort (17 among
the 32 statements are examined) to locate two faults with one
checking round. The improved efficiency is satisfactory. On the
other hand, we notice that statement 25 is exercised in the
program run of t7. Since the found faults (at statement 11 and
25) can explain all the observed failures, we stop checking, fix
the two faults, and conduct regression testing as usual.

IV. OUR FAULT INDICATOR

We have demonstrated that using the located fault(s) to
explain the observed failures provides clues on the existence of
multiple faults in the program.

We now formulate our methodology as follows. Let P = {s1,
s2, …, sn� be the statements of a program P. R = {r1, r2, …, rm}
is the set of failed runs. We use Ei,j = 1 to denote that the
statement si is exercised in the failed run rj; Ei,j = 0, otherwise.
LT = �si1, si2, …, sin� is the ranked list of suspicious candidates
generated by a single-fault localizer T.

Suppose the prior t1 candidates in T has been examined and
sit1 is found to be a fault, the conventional solution is to stop
checking the rest n – t1 candidates, fix sit1, and conduct
regression testing. Instead of that, we use an indicator I to
judge whether there remain other faults (besides sit1) in the
program. When I return “yes”, we continue to check the rest
candidates; otherwise, the checking is terminated. We
iterative this process and use {sit1, sit2, …� to denote the located
faulty program elements. The indicator I is given as follows.

� � ���	
���
�� �	������ �� ������ � ��
�� ������
��

It is intuitively explained as follows. If there exists a failed run,
in which all the located faulty statements are not exercised, it
must be due to triggering some other faults (exercising faulty
statements rather than the located ones). As a result, we have
confidence in the existence of other fault in the program.

V. CONCLUSION AND EXTENSIONS

To facilitate the laborious software debugging process,
single-fault localizers and multi-fault localizers are proposed to
automate the fault localization task. The former can be of lower
efficiency, while abandoning the former and developing the
latter family is not cost-effective. In this paper, we propose an
indicator mechanism, which improves the fault-localization
efficiency of single-fault localizers by providing a stopping
criterion to enable them to locate more than one fault with one
checking round. We thus factorise the fault localization
problem into developing single-fault localizers and adapt them
to multi-fault programs.

Extensions include model development and refinement.
When a fault is located during the checking and the indicator
confirms the existence of other faults, the suspiciousness of the
remaining (not examined) candidates can be refined according
to the located fault. We are also interested in the theoretical
comparison with existing multi-fault localizers to know the
benefit of the problem factorization approach in this paper.

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, Spectrum-based
multiple fault localization. In ASE 2009.

[2] R. Abreu, P. Zoeteweij, R. Golsteijn, and A.J.C. van Gemund, A
practical evaluation of spectrum-based fault localization. JSS, 2009.

[3] T.M. Chilimbi, B. Liblit, K. Mehra, A.V. Nori, and K. Vaswani,
HOLMES: effective statistical debugging via efficient path profiling. In
ICSE 2009.

[4] N. DiGiuseppe and J. A. Jones, On the influence of multiple faults on
coverage-based fault localization. In ISSTA 2011.

[5] J. A. Jones, J. F. Bowring, and M. J. Harrold, Debugging in parallel. In
ISSTA 2007.

[6] J. A. Jones and M. J. Harrold, Empirical evaluation of the tarantula
automatic fault-localization technique. In ASE 2005.

[7] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I. Jordan, Scalable
statistical bug isolation. In PLDI 2005.

[8] C. Liu, L. Fei, X. Yan, S.P. Midkiff, and J. Han, Statistical debugging: a
hypothesis testing-based approach. TSE, 2006.

[9] L. Naish, H. J. Lee, and K. Ramamohanarao, A model for spectra-based
software diagnosis. TOSEM, 2011.

[10] M. Renieris and S.P. Reiss, Fault localization with nearest neighbor
queries. In ASE 2003.

[11] F. Steimann and M. Bertchler, A simple coverage-based locator for
multiple faults. In ICST 2009.

[12] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang. Taming coincidental
correctness: Coverage refinement with context patterns to improve fault
localization. In ICSE 2009.

[13] W. E. Wong, Y. Qi, L. Zhao, and K. Y. Cai, Effective fault localization
using code coverage. In COMPSAC 2007.

[14] J. Xu, W. K. Chan, Z. Zhang, and T. H. Tse. A dynamic fault localization
technique with noise reduction for Java programs. In QSIC 2011.

[15] Y. Yu, J.A. Jones, and M.J. Harrold, An empirical study of the effects of
test-suite reduction on fault localization. In ICSE 2008.

[16] Z. Zhang, W.K. Chan, and T.H. Tse, Fault localization based only on
failed runs. IEEE Computer, 2012.

[17] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken, Statistical
debugging: simultaneous identification of multiple bugs. In ICML 2006.

732

