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Abstract—Malicious software poses serious threats to our lives,
and the activity to detect malware is becoming more and more
important. An effective approach is to train a classifier using
known software samples and malware samples, and recognize
malware from new software. To do that, a recent popular trend
is to use OpCode, which is extracted from executable modules, as
an expression of software entities to drive machine learning. How-
ever, we found that the effectiveness of such a framework highly
suffers from having insufficient samples, which is caused by the
low success rate of disassembly due to the intrinsic complexity
of the problem. In this paper, we propose to increase the success
rate of disassembly by allowing inaccurate disassembling, with
the attempt to increase the number of successful disassembled
samples to improve OpCode-driven malware detection. We built
a lightweight disassembler D-light based on the linear swap
disassembly method to avoid known issues with the recursive
descent manner of IDA Pro. We carried out experiment to
evaluate the performance, effectiveness, and other design factors
of adopting D-light and IDA Pro as disassemblers for malware
detection. The empirical study shows the D-light is both more
efficient and more effective than IDA Pro in supporting malware
detection.

Index Terms—Malware detection, OpCode, disassembly, D-
light, IDA Pro, linear sweep.

I. INTRODUCTION

The Internet is constantly undergoing attacks from differ-
ent attack surfaces. A typical way to launch such attacks
is through malicious software (aka “malware”), which may
include worms, viruses, Trojan horses, etc. Worms are self-
contained programs that exploit vulnerabilities in the software
running within the network. In contrast, virus infects an
existing program by injecting malicious code into it. When
the infected program executes, the malicious code will be
propagated to other programs. Trojan horses usually pretend
to be benign programs, but behave maliciously [17]. When
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such malware are spread over the computer networks, they
will damage computer systems, delete user data, or leak
privacy information. Due to the rapid development of com-
puter technologies, there is an exponential growth in the
number of new signatures released every year [23]. In [9],
Symantec reported 2,895,802 new software systems in 2009,
as compared to 169,323 in 2008. Panda Security reported the
amount of discovered software is 70 million in 2014, however,
it increased rapidly to 3,050 million in 2015. It is crucial to
detect and eliminate malware in a prompt manner [38].

There are many widely used techniques for detecting ma-
licious software. The dynamic analysis technique is based on
behavior analysis. The malware detection system analyzes the
information collected at runtime, such as system calls, network
access, file manipulations, and other malicious behaviors [16],
[29], [31]. Although dynamic analysis is more effective and
does not need the executable to be unpacked or decrypted, it
is not perfect and often both time- and resource-consuming,
thus raising scalability issues. First, it is not always easy to
simulate the conditions where the malware executes. Second,
the required time to observe the appearance of a malicious
activity is unclear for each malware, which makes it very
time-consuming. Third, more and more malware can detect
the running environment, such as network adapter, processor
type, and so on. Once they find the runtime environment is
suspicious of being monitored, they will behave normally [42].
Moreover, anti-virus software vendors are facing huge num-
bers of suspicious files every day [10]. Those files are collected
from various sources, such as honeypots, third-party providers,
and the files reported by customers. Furthermore, some mali-
cious behaviors are hard to observe. It is therefore very difficult
to detect unknown threats using traditional analysis method,
especially facing so many types of software [38].

The main advantage of static analysis is that it is able
to detect a malware without actually executing it. In static
analysis, information about the executable or its expected
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behavior is analyzed based on binary or source code of the
malware. So it is very efficient and could provide rapid
classification results [28]. One of the most widely used static
analysis technique is the signature-based method, which relies
on the identification of unique strings in the binary code [10].
The signature-based method extracts some unique strings
from binary code, and then analyzes the strings to obtain
the signatures for malware identification. While being very
effective to detect known malware, signature-based methods
are useless against unknown malicious code [21]. Recently,
the basic signature-based method is extended into heuristic-
based method by employing classification algorithms. In these
extended methods, the executable files are represented in the
form of sequences such as byte sequence and code sequence.
Then the classifiers are applied to recognize patterns in the
sequences in order to classify the new executable as malicious
or benign [19]. Recent studies show that when using n-
grams bytes to represent the binary file features, more accurate
classification results can be obtained.

Operation Code (OpCode) is the portion of a machine
level instruction that specifies the operation to perform', and
as a predictor for malware [4], it is a widely studied and
used representation method. Since it is obtained by disas-
sembling the inspected executable files, a majority of current
malware detection framework [1] embed third-party disassem-
bling tools, like IDA Pro [30], W32DASM [41], to extract
OpCode. To generate accurate OpCode, these tools often
work conservatively to alleviate false positive. For example,
in the disassembling process of IDA Pro, recursive descent
algorithm [4], [13], [38]-[40], [42] is used to take care of
the control flow behavior of a program. It may go around
the instruction stream, and jump to a new address whenever
it encounters a branch or function call. When there are a lot
of such jmp instructions, it may nearly enter dead circulation,
spend a very long time (say 1 day or longer) to finish, or finally
quit and leave some intermediate data files. For example, in
Table II of Section IV-B1, we input 30,859 sample files to
drive IDA Pro with the default configuration, and only 14,612
(about 47.38%) of them can be successfully disassembled
with meaningful results. The malware detection framework
mentioned above are data-driven machine learning systems,
and the quality of service provided by the disassembler is no
doubt of great importance to them. However, the quantity of
training is also a dominant impact factor to the performance of
such systems. We cannot help asking the following question.
Since the disassembly problem is complex and we are limited
by the capability of state-of-art technologies, what if we
increase the number of successfully disassembled data by
sacrificing disassembling accuracy marginally? Will it finally
improve the performance of malware detection or not?

In this paper, we propose to increase the success rate of dis-
assembly by building a lightweight disassembler D-light, with
a view to increasing the number of successfully disassembled

'A complete machine level instruction contains OpCode and, optionally,
the specification of one or more operands. The operations of an OpCode may
include arithmetic, data manipulation, logical operations, and program control.

samples to improve OpCode-driven malware detection. We
implement our tool D-light, which adopts a simple disassem-
bly algorithm, linear sweep, to alleviate the problems existing
in the recursive descent algorithm of IDA Pro. In particular,
we translate the binary code into assembler code directly.
Although D-light reduces the accuracy of results a little bit, it
is much more efficient in successfully generating disassembly
results. We carry out an empirical study to compare D-light
with IDA Pro. The empirical results show that we can handle
more executable files and obtain higher disassembly success
rate (about 87.16%). Given a fixed number of executable files,
D-light uses less time to perform disassembling and training.
Furthermore, it also increases the classification accuracy from
48.40% to 93.36% due to more effective disassembling.

The main contribution of our work is threefold. First, we
confirmed that not only the quality of service provided by the
disassemblers but also the quantity of training in the machine-
learning process has a significant impact on the effectiveness
of malware detection tools. Second, we proposed a lightweight
disassembler D-light to extract OpCode for training classifier.
It is much more efficient and has higher (successful) disassem-
bly rate than IDA Pro. Third, we conducted an experiment on a
common data set to compare the effectiveness and efficiency
of using D-light and IDA Pro to support malware detection
and reported optimal configuration for the tools.

The rest of the paper is organized as follows. Section II
uses some unexpected observations to motivate this work.
Section IIl presents our approach, which is evaluated in
Section IV. Section V introduces relevant studies on malware
detection. Finally, we conclude our work in Section VI.

II. MOTIVATION

IDA Pro is recently the world’s smartest and most feature-
full disassembler [30]. It has been applied to many existing
projects [4], [17], [38], [39]. IDA Pro can automatically
analyze executable files, and disassemble them with the most
appropriate configuration. However, it is not perfect to handle
all kinds of realistic files due to the complexity of disassembly.
In this section, we report such findings and inspire our work.

A. Unexpected Observations

IDA Pro can only disassemble the program code that it can
identify [30]. Those unidentified file format will be regarded as
binary blocks. After processing an executable as binary blocks,
the disassembled result is very different from real assembly
code.” According to our experiences of using IDA Pro, such
failures are very common.

For example, in Table II of Section IV-B1, about 52.62% of
the input executable files cannot be successfully disassembled
by IDA Pro. Among these files, we randomly choose one
called Microsoft.Vbe.Interop.dll, which is a win32 dll from
the 32 bit Windows XP. The tool IDA Pro cannot analyze
the file as expected. It reports the error “decode row: Out of

2Browsing through the disassembled results of such “binary blocks”, we
found that most of them only contain one kind of operation code, namely, db,
which is a storage definition operation defining one storage byte.
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TABLE I
EXAMPLE OF UNSUCCESSFUL DISASSEMBLY BY IDA PRO

| void Fun(voids p) { 00401070 push ebp

2 __asm { 00401071 mov ebp, esp

3 add p, 3 00401073 sub esp, OCCh

4 push p 00401079 push ebx

5 pop eax 0040107A push esi

6 mov esp, ebp 0040107B push edi

7 pop ebp 0040107C lea edi, [ebp-0CCh]

8 push eax 00401082 mov ecx, 33h ; '3’

9 ret 4 } } 00401087 mov eax, OCCCCCCCCh

10 int _tmain( ) { 0040108C rep stosd

11 int i = 0; 0040108E mov dword ptr [ebp-8], 0
12 __asm { 00401095 push offset $yyy$3

13 push yyy 0040109A call ?Fun@@VAXPAXeZ

14 call Fun 0040109A ; -----------=-=-==--------
15 _emit O0xE8 0040109F db 0E8h

16 yyy: 004010A0 +yyy dd 33C58BESh, 5B5...
17 _emit O0xE8 004010A0 + ; DATA XREF: _wmain+25
18 mov eax, ebp } 004010A0 + dd 5DE58B00h, 0CCCCC. ..
19 004010A0 +_wmain; sp-analysis fail]
20 return 0; } 004010A0 +

bounds: 485 (table has 485 rows). Error at GetParamProps
code 0x1”. We read the assemble code at the error point
in the file and show the error using a short code excerpt.
Table I shows the excerpt of sample code demonstrating the
problem.? In this code excerpt, we address a pointer “p” (line
3) to the address of statement “return 0” (line 20). Then
we push the pointer “p” and pop it to the register “eax”.
Finally, we push the register “eax” to the head of stack. When
the program execution reaches the statement “ret” (line 9),
the program will return to the address of “return 0” (line
30). We compile the code using Microsoft Visual Studio 2012
on Windows 10, and disassemble the executable file using
IDA Pro. Then we obtain the result as table I.

In the table, we can find that there is an error ’sp-analysis
fail’ at address .text:004010A0 (the line in a frame). It means
that some code destroyed the balance of call stack and
confused the tool, causing the disassembling to fail. When
we dive into the mechanism of the tool IDA Pro, we locate
the problem in IDA Pro’s disassembly algorithm.

B. Understanding the Problem

Algorithm 1 shows the main part of IDA Pro’s disassembly
algorithm — recursive descent disassembly. In the process
of recursive descent disassembling, it checks whether an
instruction code is a branch or function call (line 6). According
to the result of checking, the process may jump into each
possible target address of the instruction code and start a
recursive process (line 8), until all branches and function calls
have been explored (line 3). This approach seems perfect in a
conservative manner since it processes all targets of each jump
operation including direct jump, indirect jump, making sure
that all reachable codes are disassembled. Unfortunately, the
key assumption of the algorithm that “the set of control flow
successors of each control transfer operation in the program
can always be correctly identified” is too strong in practice.

For example, not all indirect jumps are through jump tables,
and checking the bounds of all jump tables* can be either

3 All irrelevant details in the sample have been removed from Table 1.
4A jump table refers to an array of address that is commonly used to
implement multi-way control transfers.

Algorithm 1 Recursive Descent Disassembly Algorithm [37]

Input: addr,disStrList
Output: disStrList

1: function RCRSVDSCNTDSPRC(addr, disStr List)

2 if not addr.visited then

3 while addr is valid do

4 disStr = Disassemble(addr)

5: push disStr into disStrList
6: if disStr is a branch or function call then
’7.
8
9

for each possible target t Addr of disStr do
RCRSVDSCNTDSPRC(tAddr, disStr List)

: end for
10: else
11: addr = addr + length(disStr)
12: end if
13: addr.visited = True
14: end while

15: end if
16: end function

unnecessary or infeasible in practice. Take the example in
Table I to illustrate. Because we change the return address of
the function “void Fun (void* p)”, the algorithm cannot
statically predict the correct target address. When it jumps to
the incorrect target address, it continue to check that block as
a call stack and immediately fails since the “call stack” seems
problematic.

In such a case, imprecisely identifying the set of possible
target address of a jump operation will result in a failure in
disassembling. In other words, the complex analysis process
and uncertainty existing in possible target address increase the
risk of unsuccessful disassembling.

C. Our Idea

Let us recall the goal of malware detection, which is to
train a detector or classifier for an explored executable file.
We know that machine learning algorithms are data driven
and the disassembler used to generate input data is crucial.
On the other hand, both the quality of service provided by
the disassembler and the quantity of training determine the
effectiveness of malware detection. We thus consider the prob-
lem that “can we finally improve the performance of malware
detection if we enhance the training step by increasing the
amount of disassembled code while sacrificing the disassembly
accuracy a little bit?”

A straightforward idea is to adopt a more aggressive
algorithm to disassemble executable files. We foresee the
main benefit is to have higher success rate in disassembling.
However, we also realize the challenge that aggressive dis-
assembling algorithm may come with inaccurate disassembly
results. In the next section, we will introduce our method and
give further discussion.

III. OPCODE-DRIVEN MALWARE DETECTION
In this section, we will revisit the current mainstream
malware detection framework, and elaborate on our proposal.
A. IDA Pro and Current Popular Framework

Taking the popular tool IDA Pro as example, the framework
of malware detection is shown in Figure 1. Generally, the pro-
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Fig. 1. Workflow of Current OpCode-Based Malware Detection Framework

cess of classifying an unexplored executable file as malicious
or benign is divided into two phases: training and test.

As showing in Fig. 1, during the training phase (all arrows
in solid lines), executable files including malicious files and
benign files are input into the system. Each file needs to be
disassembled and OpCode sequence is extracted from it. The
OpCode sequences extracted from the files in the training
set and their labels (namely, malicious and benign) are the
inputs of the training algorithm.’ The disassembler is marked
as red rectangle in the figure. After completing the training, we
obtain a detector, also called a classifier, which can determine
whether an unexplored executable file is malicious or benign.

Next, in the test phase (all arrows in dashed lines), a set
of files as the test set is classified by the trained classifier.
Certainly, the files in the test set also need be disassembled
(and OpCode sequences need to be extracted from them)
before they are input into the classifier. Based on the trained
model, the classifier will determine a file as malicious or
benign. More details about the training and test framework
will be introduced in the subsection III-C.

B. Our Proposal

We have shown in Section II-B that IDA Pro works in a
conservative manner to alleviate inaccurate disassembling. As
a result, it reports error and stops disassembling, mostly in the
cases where there are many jmp instructions.

The goal of our present work is to obtain a detector or clas-
sifier for unexplored executable files with good effectiveness,
including high accuracy, low false positive rate (FP), and so on.
To accomplish the goal, we attempt to provide more training
samples in order to get a more effective classifier. If we can
disassemble more files in an effective way, we will obtain
more data for training, thus improving detection performance.
Given this assumption, we propose to use another disassembly
technology, namely, the linear sweep disassembly algorithm.

We have highlighted in Section II-B that the recursive
descent algorithm takes into account the control flow behavior
of the program and tries to get around every piece of data
linked in the instruction stream by branch or calls. Generally,
recursive descent and linear sweep are two commonly used
disassembler technologies [37]. It is believed that recursive
descent provides more accurate disassembling than linear
sweep, although the latter is more efficient. However, we

SEach OpCode will be vectorized according to selected representative
features. We do not go deep into this step here since it is the standard machine
learning methodology.

revisit the problem and raise the supposal that “it is quantity
of training rather than quality of service provided by the
disassembler that impacts the performance of classification-
based malware detection framework dominantly”. As a result,
we venture to abandon the popular recursive descent manner
and propose to use a lightweight candidate — linear sweep.

C. Framework Details

In this section, we will present our training and test frame-
work as shown in Fig 1, as well as how to select representative
OpCode as features and how to transform OpCode files into
vectors for training.

1) Basic Pattern: To understand the meaning of one word,
it is important to understand its context first. To train the
classifier, we use n-gram [6] OpCode as the basic pattern.
An n-gram is a contiguous sequence of n items from a
given sequence of text or speech. The value of n is called
the size of the n-gram. The n-gram model is one type of
probabilistic language model for predicting the next item in
such a sequence in the form of an (n — 1) order Markov
model. It is widely used in probability, communication theory,
computational linguistics (such as statistical natural language
processing), computational biology (such as biological se-
quence analysis), and data compression. In our experiments,
we identified 933 1-gram sequences, 92464 2-gram sequences,
2281065 3-gram sequences, 24700730 4-gram sequences, and
99926702 5-gram sequences. It is difficult to narrow down
on the basic classes of n-grams for the empirical study. If we
choose a small n, the number of features will not be excessive
and the training will be easy. But the accuracy can be also low.
In contrast, if we choose a large n, the number of features will
be huge and the training will be difficult. Finally, based on
the suggestions from existing work [39] and our problem, we
choose to use 2-gram OpCode sequences as the basic pattern
in this work.

2) Feature Selection: To train a classifier for malware
detection, we have to vectorize disassembled executable files
such that a machine learning model can understand.

However, when we finish disassembling those files and
obtain the OpCode, we find that there are too many statements.
If we choose every OpCode as a feature, the large number
of features presents a significant problem because many of
them do not help improve the accuracy and even may decrease
it [39]. Meanwhile, it is of importance to identify the terms that
appear in most of the files in order to avoid vectors containing
too many zeros, which will affect performance. So before
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Algorithm 2 Linear Sweep Disassembly Algorithm [37]

Input: addr, startAddr, endAddr, disStrList
Output: disStrList

1: function LNRSWPDSPRC(addr, disStr List)
2: while startAddr < addr < endAddr do

3 disStr = Disassemble(addr)
4: push disStr into disStrList

5: addr = addr + length(disStr)
6 end while

7: end function

converting file into vectorial representation, we need to select
some common and frequent terms as features for vectorization,
as to improve the effectiveness and reduce the training time.

In the process of selecting features, a measure is used
to quantify the correlation of each feature to the class, and
to estimate its expected contribution to the right classifica-
tion [20]. The measure used in feature selection is independent
of all kinds of classification algorithms, so that comparison of
different classification algorithms can be fair. The document
frequency measure (DF) [33], information gain ratio (GR) [14]
or Fisher Score (FS) [11] are all typical such measures. In
this paper, similar to [6], [39], we use the simple but effective
measure DF to select top 300 highest terms as features.

3) Vectorization: In text categorization field, TF and TFIDF
are well known measures [33]. In this paper, each 2-gram
OpCode are regarded as one term. While we generate 2-
gram OpCode sequences, we count the times of each term
(2-gram OpCode) appearing in one file as TF, and the number
of files containing the term as DF. In order to represent all
samples fairly instead of favoring long files, we normalize TF
as normalized-TF by dividing the frequency of the term in the
file by the biggest frequency in the same document.

After acquiring features mentioned above, we use the
selected set of terms to vectorize each file. We use the
normalized-TF as weight of each term in features. The features
are used to vector samples not only in the training set, but also
in the test set. In other words, when we process an unexplored
file, we vectorize it with the same features after disassembling
and extracting 2-gram OpCode sequences from it, too.

4) Training and Classification: With thus represented pro-
files, now we can train a classifying model to process un-
explored executable files. Referring to the results in [39]
and considering in accessibility, we choose Support Vector
Machine (SVM) [3] as our classifying algorithm.

D. Implementation Details

The basic algorithm of linear sweep is showing in Al-
gorithm 2. Different from the recursive descent disassembly
algorithm, linear sweep begins disassembling from the first
executable byte of the input file (line 1), and simply sweeps
through the entire text section disassembling each instruction
as it is encountered (line 5). Its main advantage is simplicity.
Especially, there is no need to buffer intermediate results (so
no need of recursion), the input stream can be disassembled
with one pass, and each instruction string can be directly
discarded after processing. Among the many implementations

of linear sweep, we stick to existing work [7], [30] to design
our own tool, which can handle all kinds of executable files
without the limit of operating system. We name our tool as
D-light to hight that it is based on lightweight Disassembler.
Besides the substitution of main algorithm, we also made other
optimizations when implementing our tool.

Code obfuscation is an important technique used by at-
tackers in order to avoid detection by security mechanisms,
such anti-virus software, IDS (Intrusion Detection System),
IPS (Intrusion Prevention System), and so on [18]. These
obfuscation techniques are also used on benign software for
copyrights protection purposes. Security experts often spend
a lot of time dumping the files from memory and manually
unpacking them. In our experiences, we would like to point out
that a large number of obfuscation techniques are not used by
attackers, because attackers want the malicious files to appear
benign. So that malware can pass security mechanisms, which
are deployed to block content that is encrypted or obfuscated
against inspection [38]. In our method, we do not unpack any
input data, but disassemble them directly and let classifiers
learn from the disassembled code.

Finally, the code excerpt in Table I is successfully disassem-
bled by our method. However, two complicated instructions
are not recognized and misunderstood in the disassembled
result since D-light has no transversal process to understand
them. We judge that it will have no adverse effect on the
accuracy of the malware detection system. The reasoning is
that in so long as the disassembler generates stable results, any
correct or incorrect instruction sequence will be remembered
by the machine-learning-enabled classifier. In the next section,
we will evaluate our tool and validate that.

IV. EVALUATION

In this section, we raise research questions, introduce ex-
periment setup steps, and report empirical observation in
comparing the performance of IDA Pro and D-light.

A. Research Questions

Regarding our proposal, we raise the following research
questions. They will be answered by comparing the perfor-
mance of IDA Pro and D-light.

Q1: Which disassembly algorithm has better performance in
disassembling?

Q2: Which disassembly algorithm has better performance in
supporting malware detection in the current framework?

Q3: How do quality of service and quantity of training impact

the performance of detecting malware?

B. Experiment Setup

1) Subject Samples: We refer to existing work [38], [39],
[42] to select subject programs in our experiment. We obtain
35,611 samples in total, consisting of 24,865 malicious files
from VX Heaven [12], and 10,746 benign files from Windows
XP operating system. After picking out the executable file,
deleting duplicated ones, and passing anti-virus checks, we
obtain the final subject set, which includes 30,859 files (20,113
malicious and 10,746 benign). Table II shows the statistics.
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TABLE 1T
DESCRIPTIVE STATISTICS OF SUBJECTS

File Format Count
COM executable for DOS 2123
DOS executable (COM) 4770
MS-DOS executable, for MS Windows 5566
PE32 executable (console) Intel 80386, for MS Windows 1144
PE32 executable (DLL) Intel 80386, for MS Windows 7927
PE32 executable (GUI) Intel 80386, for MS Windows 3475
PE32 executable (native) Intel 80386, for MS Windows 384
PE32+ executable (console) Intel Itanium, for MS Windows 136
PE32+ executable (console) x86-64, for MS Windows 45
PE32+ executable (DLL) x86-64, for MS Windows 5179
PE32+ executable (native) x86-64, for MS Windows 42
PE32+ executable (GUI) x86-64, for MS Windows 41
Linux-Dev86 executable, headerless 27
Malicious samples 20,113
Benign samples 10,746
Total 30,859

2) Target Disassembly Algorithms: In this experiment, we
process each subject file using two disassemblers, namely,
IDA Pro and D-light.

The implementation of IDA Pro is directly taken from its
official site. By default, IDA Pro does not export assembler
code. We write idc scripts® and python scripts to drive it.
We manage to invoke IDA Pro in command-line manner and
interact with it in batch mode to accelerate the experiment.
In such a way, we can also disassemble files concurrently.
To compare with IDA Pro, we implement the algorithm of
D-light, which details have been introduced in Section III-B.

To compare the performance of the two tools in supporting
malware detection, we embed them separately in the current
malware detection framework.

3) Settings of the Malware Detection Framework: After
obtaining OpCode data from IDA Pro and D-light, we organize
them to form training set and test set, and input them to a
standard malware detection framework. In this experiment, we
follow existing work [39] to specify the configuration.

As showing in Table III, we extract 2-gram OpCode se-
quences. In the feature selection phase, we pick the top
300 2-gram OpCode sequences as features according to their
document frequency (DF). After the features are determined,
we use the normalized term frequency (TF) for the features
to vectorize each sample. In the training phase, we choose
support vector machine (SVM) to train a classifier. Further, we
use a polynomial kernel function for the SVM algorithm [3].

4) Performance Metrics: To measure the performance of
classification, we refer to standard accuracy measurements.

First, we need to know how many (or what percentage
of) files can be detected correctly, including both malicious
and benign ones. Commonly, it is measured by the Accuracy
metrics in Machine Leaning. To do that, we use True Positive
(TP) to represent the number of recognized positive samples,
False Positive (FP) to represent the number of unrecognized
negative samples, True Negative (TN) to represent the number
of recognized negative samples, and False Negative (FN) to
represent the number of unrecognized positive samples. At

%A powerful C-like embedded programming language extending IDA.

TABLE III
CONFIGURATION AND VARIABLES OF THE FRAMEWORK
Configuration
Size of n-grams 2
No. of features 300
Cross-validation 10 fold

Model support vector machine (SVM)
Feature selection document frequency (DF)
Vectorization Normalized-TF

Kernel functions polynomial

the same time, if a sample cannot be classified into any
group, it is marked to be the opposite class. For example, if
a benign executable file cannot be disassembled successfully
by IDA Pro, we mark its class as malicious (False Negative,
accordingly). The Accuracy metrics is given as follows.

TP + TN
TP + FP + 1N + FN

It stands for how many percentage of files (both malware and
benign ones) are correctly recognized (detected). The larger
the value of Accuracy, the more accurate will be the classifier.

Additionally, we also care about the error rate, which is the
number of malicious files classified as benign or vice versa.
Similarly, in Machine Learning, the True Positive Rate (TPR)
metrics is used to measure the percentage of positive instances
classified correctly, and the False Positive Rate (FPR) metrics
measures the percentage of negative instances misclassified.
We use these two factors to estimate error rate, which are
calculated as follows.

Accuracy = x 100% (1)

TPR x 100%, FPR = x 100% (2

TP FP
TP+ FN FP+ TN
The larger the value of TFP, the smaller will be the error rate
of the classifier. On the contrary, the smaller the value FPR,
the smaller will be the error rate of the classifier.

In order to realize the negative effects of data, we also
introduce another measure, G-mean, which is usually used
in the data imbalance problem, to quantify the performance
issue [2]. G-mean is calculated as follows.

\/ TP TN
G-mean = X
TP+ FN FP+ TN

We may simply interpret that the bigger the value of G-mean,
the more stable will be the classifier.

5) Experiment Environment: We implement the experi-
ments using python Scikit-learn [26] on Linux Ubuntu 14.04
system. All the representative vector profiles for the subjects
are stored in local text files. In order to avoid accidents such
as program crashes, we also write the intermediate results into
local files in the training phase. Besides, we dump the trained
model into a local file for reuse. During the training phase,
we record the time consumed from loading data to generate
trained model. Since the time taken to detect a new sample is
very short, we do not take it into consideration.

3)

C. Experiment Result

We organize three tests to answer the research questions.
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Fig. 3. Data Preparation for Test Two

1) Test One: Table 2 shows the experiment results in dis-
assembling. Among the 30,859 subject files, 26,898 (87.16%)
of them can be successfully disassembled by D-light. In
particular, 16,152 (80.31%) of the 20,113 malicious files and
10,746 (100%) of the 10,746 benign files are successfully
disassembled. At the same time, we could only obtain 14,612
(47.38%) OpCode files by using IDA Pro, which consists of
8,005 (39.80%) malicious files and 6,607 (61.48%) benign
files. Further, we notice that all the samples, which can be
disassembled by IDA Pro, can be disassembled by D-light,
but not vice versa.

Meanwhile, D-light uses 2 hours to process all the files,
while IDA Pro uses up to 48 hours to finish. From the results
in Fig. 2, we can answer research question QI as follows.

Al: D-light is more efficient and comes with higher success
rate in disassembling, while IDA Pro outputs more accu-
rate results.

The second part is well known and also observed in the
experiment — at least 12,286 (26,898—14,612) results of D-
light are actually not accurate since they are not processable
to the more capable disassembler IDA Pro. So we continue
the next test to know how they support malware detection.

2) Test Two: Fig. 3 shows the data preparation for this
test. From the 26,898 files (recalling Fig. 2) that can be

TABLE IV
RESULT OF TEST TWO

| Accuracy TPR  FPR  G-mean | Time Taken
D-light 93.44  95.15 6.74 0.9420 2 minutes
IDA Pro 4826 6197 5323 0.5384 2 minutes

disassembled by D-light, we randomly select 10,086 malicious
files and 10,086 benign files to construct a training set and the
rest (6,066 malicious and 660 benign files) files to construct
a test set, for D-light. We do such arrangements in order to:
(i) let the size of the training set to be three times that of
the test set’, and (ii) let the training set to contain identical
number of malicious samples and benign samples. The former
is to simulate a scenario where we have many samples for
training followed by some unexplored files to process. The
latter is to follow the basic rule in machine learning to keep
the balance of different classes to alleviate data impact. The
same training set and test set are inputted to IDA Pro (as
shown in Fig. 3). However, only 4,909 malicious samples and
6,134 benign samples in the training set can be disassembled
by IDA Pro. Only 3,096 malicious samples and 473 benign
samples in the test set can be disassembled. The impacts will
be discussed later in Section IV-C3.

Table IV shows the classification results of D-light and
IDA Pro, driven by the data sets in Fig. 3. Taking the first
row to illustrate, in the 6,726 samples, D-light could correctly
classify 6,285 of them, and the Accuracy is 93.44%. The error
rate can be measured as 95.15% in TPR and 6.74% in FPR. By
contrasting the performance results of D-light and IDA Pro,
we find that D-light consistently and observably outperforms
IDA Pro. For example, the result in Accuracy by D-light is
93.44%, while that by IDA Pro is only 48.26%. By using
TPR, FPR, and G-mean to evaluate, D-light also outperforms
IDA Pro (95.15% to 61.97%, 6.74% to 53.23%, and 0.9420
to 0.5384, respectively). As a result, we answer the research
question Q2 as follows.

A2: The framework embedding the disassembler D-light de-
tects more malware.

However, we also realize that unidentical number of training
samples are used for D-light and IDA Pro in this test (see
Fig. 3), which may cause unfair comparison when evaluating
the accuracy of the a machine-learning system. We continue
the last test to address this issue.

3) Test Three: In this test, we re-prepare the data as
Table V, in three groups. Group 1 and Group 3 are exactly
what we did in Test Two. We revisit them as follows. Group
3 is the test with D-light, where the training set is given as in
Fig. 3. Group 1 is the test with IDA Pro, where the training
set is as that in Group 3 but filtering out those samples that
cannot be successfully disassembled by IDA Pro. Group 2 is
a test with D-light, where the training set is as that in Group
1. Since the samples of the training set inputted to D-light in

"The ratio between training sets and test sets generally ranges from 2/3 to
4/5 in existing work.
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TABLE V
DATA PREPARATION FOR TEST THREE
Group 1 Group 2 Group 3
IDA Pro  D-light (limited) D-light
Training set (malicious) 4,909 4,909 10,086
Training set (benign) 6,134 6,134 10,086
Subtotal 11,043 11,043 20,172
Test set (malicious) 6,066 6,066 6,066
Test set (benign) 660 660 660
Subtotal 6,726 6,726 6,726

Group 2 is intentionally limited for a comparison purpose, we
use “D-light (limited)” to name this group.

We design such as to simulate the scenario that: (i) A
training set is given, (ii) Not all samples can be disassembled
by IDA Pro, so only the supported ones are used to test
IDA Pro, that is Group 1, (iii) We apply the same sets (as
Group 1) to test D-light, that is Group 2, and (iv) Since the
capability of D-light is limited in Group 2, we further input
the rest of it to test D-light, that is Group 3.

The results of the three groups are showed in Fig. 4. In this
figure, the z-axis represents four different kinds of metrics
used to measure the performance of the two classifiers. The
y-axis represents the result of each concrete metric, and the
range is from 0 to 100 (%). Four groups of columns in order
show effectiveness results in Accuracy, TPR, FPR, and G-
mean. In particular, the columns in white represent results for
IDA Pro (Group 1), the columns in black represent results for
D-light (Group 3), and the columns in brick pattern represent
results for D-light (limited) (Group 2). Take the four columns
in brick pattern to illustrate. They show the values in the four
metrics, that is, 91.41% in Accuracy, 93.33% in TPR, 8.80%
in FPR, and 0.9226 in G-mean, of D-light (limited) in Group
2. Recalling the meaning of the four metrics, this figure intui-
tively shows that D-light has better effectiveness in detecting
malware than IDA Pro, which is consistent with what was
stated in Table IV.

This figure also indicates that: (1) by limiting the size of
the training set, the accuracy of D-light decreases marginally
(from Group 3 to Group 2), and (2) given training sets of the
same size, the accuracy of D-light is observably better than that
of IDA Pro (Group 2 to Group 1). From such observations,

100 1
OIDA Pro

80 aD-light (limited)
@D-light

(0 .

40 A

20 4

0

Accuracy TPR FPR G-mean

Fig. 4. Result of Test Three

we answer the research question Q3 as follows.

A3 The quantity of training has a more observable impact
on OpCode-driven malware detection framework than the
quality of service provided by disassembler.

D. Threats to Validity

IDA Pro needs to load a lot of plugins to analyze executable
file at launch phase, and it also takes a lot of time to analyze
samples and generate result files. Even when it is invoked in
a command-line manner, it is still very time-consuming. In
our experiments, one executable file called import10.dll from
32 bit Windows XP spent more than 24 hours to disassemble
and finally fails. For such reasons, we have removed from our
experiment all the samples that need more than 48 hours to
disassemble. An experiment using more capable computing
units may result in different results.

With IDA Pro, we find that most of the executable files fail-
ing in disassembling are treated as binary file. For those files,
no operation code rather than db, which is a storage operation
code defining one storage byte, is recognized. IDA Pro only
generated some incomplete intermediate files (with suffixes
like .id0, .idI, and .ti[) and gave up the disassembling task
early. Exceptions are raised in the process, which include too
many jump, identifying incorrect target address, and so on. We
do not exclude the possibility that IDA Pro could be hacked
to work well, by given particular configurations.

Although we refer to existing work [38], [39], [42] to select
subject programs in our experiment, the dataset is a little out
of date. It may be a small influence on the evaluation.

Our experiment is carried out with unpacked code, which
also causes threats to the validity of the empirical observations.
Normally, some off-the-shelf tools, like UPX, PEcompact2,
and Armadillo, are used for packing and compressing soft-
ware. In such a case, traditional static analysis methods may
fail to obtain the correct result without unpacking a packed
file [8]. Various proposals have been given to address this
challenge [8], [27], [32]. However, for some new packing and
compressing techniques, it may be hard to find an existing
tool to unpack. Sometimes, it is also challenging to identify
the correct packer or to unpack a file correctly.

We have discussed the impact of having different number
of training samples to the comparison of malware detecting
accuracies in Section IV-C3. At the same time, IDA Pro cannot
disassemble some samples of the test set in the experiment.
Samples unsuccessfully disassembled cannot be correctly clas-
sified, and are accordingly marked as either False Negative (for
benign samples) or False Positive (for malicious samples). Not
counting them on will affect the observations on empirical
results. However, we insist that they are not ignorable in
evaluating the performance of a malware detection system.

V. RELATED WORK

A. Bytecode-Driven Malware Detection

Over the past decade, several studies focused on the detec-
tion of unknown malware based on the binary code content of
targets. Schultz et al. [36] firstly proposed to apply Machine
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Learning (ML) technologies to detect different malware based
on their respective binary codes. In their work, three different
feature extraction methods are employed — the features ex-
tracted from the Portable Executable (PE) section, meaningful
plain-text strings that are encoded in program files, and byte
sequence features of the target files.

Abou-Assaleh et al. [1] introduced a framework that uses the
common n-gram (CNG) method and the k-nearest neighbor
(KNN) classifier for the detection of malware. This framework
used a profile to represent malicious file and benign file. When
an unexplored executable file is processed, it will first be
represented by the profile, and then compared with the profiles
of malicious and benign classes. Finally, it is classified to be
of the most similar class. Cai et al. [5] conducted several
experiments, in which they evaluated the combinations of
seven feature selection methods, three classifiers, and n-grams
of various sizes. Moskovitch et al. [22] present the results of
a study using a test sample containing more than 30,000 files
represented by the n-gram bytecode format.

Our proposal in this paper is different from the above
techniques in that it focuses on Op-Code rather than bytecode
as input to the machine-learning malware detection framework.

B. OpCode-Driven Malware Detection

Bilar [4] examines the difference of statistical OpCode
frequency distribution in malicious and benign code. The
statistics of total 67 malicious executables were compared with
that of the 20 benign samples. The results showed that mali-
cious software OpCode distributions differ significantly from
those of the benign software. Therefore, the work concluded
that OpCode is a good predictor for malware.

Data mining methods (such as logistic regression, artifi-
cial neural networks, and decision trees) are used in [40]
to automatically identify critical instruction sequences that
can distinguish malicious from benign programs. Karim et
al. [13] proposed to track malware evolution based on OpCode
sequences and permutations. The evaluation results showed a
high accuracy rate of 98.4%. Similar to bytecode-driven frame-
work, n-gram methodologies are also employed in OpCode-
driven malware detection. Shabtai et al. [39] used n-grams
of various sizes while Bilar [4] used only 1-gram. Based
on their experiments, using OpCode sequences can improve
the malware detection performance significantly. Furthermore,
they summarized a set of good parameters to train the classifier
for analyzing new executable. In this paper, we use a similar
configuration to train the models. Santos et al. [34] used mul-
tiple OpCode representations (such as 1-grams and 2-grams)
to classify malware instances by measuring the similarity
between files. This is, however, different from our goal to
classify unexplored suspicious files as malicious or benign.

Santos et al. [35] proposed a technique to detect unknown
malware. Their model was based on the frequency of the Op-
Code sequences. In their results, the technique was capable of
detecting unknown malware effectively. We are also interested
in integrating our method with such approaches.

C. OpCode Extraction

Broadly, there are two disassembly approaches, namely
static disassembly and dynamic disassembly. Static disas-
sembly, is a method without executing the file during the
process, and dynamic disassembly will execute the file on
some input. Static disassembly can load the entire file at one
time, while dynamic disassembly only can handle a part of
the executable file. More importantly, the time complexity of
static disassembly is approximately proportional to the size of
the program, while the time taken by dynamic disassembly is
typically proportional to the number of instructions executed
by the file at runtime [18]. In this paper, we focus on the static
disassembly to extract OpCode patterns.

Recursive traversal and linear sweep [37] are two generally
used techniques for static disassembly. Linear sweep is a
straightforward approach to decode everything appearing in
sections of the executable that are typically reserved for
machine code. It is prone to disassembly errors resulting from
the misinterpretation of data that is embedded in the instruction
stream, because it is the logic of linear sweep that does not
take into account the control flow behavior of the program.
Recursive traversal is more sensitive to jmp instruments and
the validation of addresses. With branch condition taken in,
the modified disassembly algorithm is called recursive de-
scent [18], [43]. In this paper, we argue and compare the use
of them to support state-of-the-art malware detection.

Additionally, there are also many studies to use not OpCode
but other information such as control flow graph [24], api
call [15], system call [25], and so on.

VI. CONCLUSION

Machine learning methods are used to classify unknown
malware. The IDA Pro disassembler is extensively used in de
facto state-of-the-art frameworks of such malware detection
approaches. At the same time, the performance of such sys-
tems is inevitably affected by at least two factors, namely the
quality of service provided by disassembler and quantity of
training in the machine-learning process. We noticed that to
generate accurate disassembled code, IDA Pro employs the
recursive descent algorithm, which is both capable to track
complicated program execution paths and also conservative
to deny service when suspicious code section is reached. As
a result, the malware detection framework could be short of
training samples, causing low detection accuracy.

In this paper, we implemented our tool D-light to use a
simple disassembly method, linear sweep, to address this issue
with the recursive traversal manner adopted by IDA Pro. Our
idea is to provide many marginally defective samples rather
than few well disassembled samples to the OpCode-driven
malware detection framework. We predict that the quantity
of training plays a more important role than the quality of
service provided by the disassembler, in determining the final
performance of such a framework. The experiments reported
that D-light outperforms IDA Pro empirically, which validates
our proposal and confirms our supposal.
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In the future, we will carry out experiments with other al-
gorithms. We are also looking into classification methods used
in other fields, like image recognition and speech recognition,
to inspect similar problems.
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